linux/include/linux/regset.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * User-mode machine state access
   4 *
   5 * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
   6 *
   7 * Red Hat Author: Roland McGrath.
   8 */
   9
  10#ifndef _LINUX_REGSET_H
  11#define _LINUX_REGSET_H 1
  12
  13#include <linux/compiler.h>
  14#include <linux/types.h>
  15#include <linux/bug.h>
  16#include <linux/uaccess.h>
  17struct task_struct;
  18struct user_regset;
  19
  20struct membuf {
  21        void *p;
  22        size_t left;
  23};
  24
  25static inline int membuf_zero(struct membuf *s, size_t size)
  26{
  27        if (s->left) {
  28                if (size > s->left)
  29                        size = s->left;
  30                memset(s->p, 0, size);
  31                s->p += size;
  32                s->left -= size;
  33        }
  34        return s->left;
  35}
  36
  37static inline int membuf_write(struct membuf *s, const void *v, size_t size)
  38{
  39        if (s->left) {
  40                if (size > s->left)
  41                        size = s->left;
  42                memcpy(s->p, v, size);
  43                s->p += size;
  44                s->left -= size;
  45        }
  46        return s->left;
  47}
  48
  49static inline struct membuf membuf_at(const struct membuf *s, size_t offs)
  50{
  51        struct membuf n = *s;
  52
  53        if (offs > n.left)
  54                offs = n.left;
  55        n.p += offs;
  56        n.left -= offs;
  57
  58        return n;
  59}
  60
  61/* current s->p must be aligned for v; v must be a scalar */
  62#define membuf_store(s, v)                              \
  63({                                                      \
  64        struct membuf *__s = (s);                       \
  65        if (__s->left) {                                \
  66                typeof(v) __v = (v);                    \
  67                size_t __size = sizeof(__v);            \
  68                if (unlikely(__size > __s->left)) {     \
  69                        __size = __s->left;             \
  70                        memcpy(__s->p, &__v, __size);   \
  71                } else {                                \
  72                        *(typeof(__v + 0) *)__s->p = __v;       \
  73                }                                       \
  74                __s->p += __size;                       \
  75                __s->left -= __size;                    \
  76        }                                               \
  77        __s->left;})
  78
  79/**
  80 * user_regset_active_fn - type of @active function in &struct user_regset
  81 * @target:     thread being examined
  82 * @regset:     regset being examined
  83 *
  84 * Return -%ENODEV if not available on the hardware found.
  85 * Return %0 if no interesting state in this thread.
  86 * Return >%0 number of @size units of interesting state.
  87 * Any get call fetching state beyond that number will
  88 * see the default initialization state for this data,
  89 * so a caller that knows what the default state is need
  90 * not copy it all out.
  91 * This call is optional; the pointer is %NULL if there
  92 * is no inexpensive check to yield a value < @n.
  93 */
  94typedef int user_regset_active_fn(struct task_struct *target,
  95                                  const struct user_regset *regset);
  96
  97typedef int user_regset_get2_fn(struct task_struct *target,
  98                               const struct user_regset *regset,
  99                               struct membuf to);
 100
 101/**
 102 * user_regset_set_fn - type of @set function in &struct user_regset
 103 * @target:     thread being examined
 104 * @regset:     regset being examined
 105 * @pos:        offset into the regset data to access, in bytes
 106 * @count:      amount of data to copy, in bytes
 107 * @kbuf:       if not %NULL, a kernel-space pointer to copy from
 108 * @ubuf:       if @kbuf is %NULL, a user-space pointer to copy from
 109 *
 110 * Store register values.  Return %0 on success; -%EIO or -%ENODEV
 111 * are usual failure returns.  The @pos and @count values are in
 112 * bytes, but must be properly aligned.  If @kbuf is non-null, that
 113 * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
 114 * ubuf gives a userland pointer to access directly, and an -%EFAULT
 115 * return value is possible.
 116 */
 117typedef int user_regset_set_fn(struct task_struct *target,
 118                               const struct user_regset *regset,
 119                               unsigned int pos, unsigned int count,
 120                               const void *kbuf, const void __user *ubuf);
 121
 122/**
 123 * user_regset_writeback_fn - type of @writeback function in &struct user_regset
 124 * @target:     thread being examined
 125 * @regset:     regset being examined
 126 * @immediate:  zero if writeback at completion of next context switch is OK
 127 *
 128 * This call is optional; usually the pointer is %NULL.  When
 129 * provided, there is some user memory associated with this regset's
 130 * hardware, such as memory backing cached register data on register
 131 * window machines; the regset's data controls what user memory is
 132 * used (e.g. via the stack pointer value).
 133 *
 134 * Write register data back to user memory.  If the @immediate flag
 135 * is nonzero, it must be written to the user memory so uaccess or
 136 * access_process_vm() can see it when this call returns; if zero,
 137 * then it must be written back by the time the task completes a
 138 * context switch (as synchronized with wait_task_inactive()).
 139 * Return %0 on success or if there was nothing to do, -%EFAULT for
 140 * a memory problem (bad stack pointer or whatever), or -%EIO for a
 141 * hardware problem.
 142 */
 143typedef int user_regset_writeback_fn(struct task_struct *target,
 144                                     const struct user_regset *regset,
 145                                     int immediate);
 146
 147/**
 148 * struct user_regset - accessible thread CPU state
 149 * @n:                  Number of slots (registers).
 150 * @size:               Size in bytes of a slot (register).
 151 * @align:              Required alignment, in bytes.
 152 * @bias:               Bias from natural indexing.
 153 * @core_note_type:     ELF note @n_type value used in core dumps.
 154 * @get:                Function to fetch values.
 155 * @set:                Function to store values.
 156 * @active:             Function to report if regset is active, or %NULL.
 157 * @writeback:          Function to write data back to user memory, or %NULL.
 158 *
 159 * This data structure describes a machine resource we call a register set.
 160 * This is part of the state of an individual thread, not necessarily
 161 * actual CPU registers per se.  A register set consists of a number of
 162 * similar slots, given by @n.  Each slot is @size bytes, and aligned to
 163 * @align bytes (which is at least @size).  For dynamically-sized
 164 * regsets, @n must contain the maximum possible number of slots for the
 165 * regset.
 166 *
 167 * For backward compatibility, the @get and @set methods must pad to, or
 168 * accept, @n * @size bytes, even if the current regset size is smaller.
 169 * The precise semantics of these operations depend on the regset being
 170 * accessed.
 171 *
 172 * The functions to which &struct user_regset members point must be
 173 * called only on the current thread or on a thread that is in
 174 * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not
 175 * be woken up and return to user mode, and that we have called
 176 * wait_task_inactive() on.  (The target thread always might wake up for
 177 * SIGKILL while these functions are working, in which case that
 178 * thread's user_regset state might be scrambled.)
 179 *
 180 * The @pos argument must be aligned according to @align; the @count
 181 * argument must be a multiple of @size.  These functions are not
 182 * responsible for checking for invalid arguments.
 183 *
 184 * When there is a natural value to use as an index, @bias gives the
 185 * difference between the natural index and the slot index for the
 186 * register set.  For example, x86 GDT segment descriptors form a regset;
 187 * the segment selector produces a natural index, but only a subset of
 188 * that index space is available as a regset (the TLS slots); subtracting
 189 * @bias from a segment selector index value computes the regset slot.
 190 *
 191 * If nonzero, @core_note_type gives the n_type field (NT_* value)
 192 * of the core file note in which this regset's data appears.
 193 * NT_PRSTATUS is a special case in that the regset data starts at
 194 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
 195 * part of the per-machine ELF formats userland knows about.  In
 196 * other cases, the core file note contains exactly the whole regset
 197 * (@n * @size) and nothing else.  The core file note is normally
 198 * omitted when there is an @active function and it returns zero.
 199 */
 200struct user_regset {
 201        user_regset_get2_fn             *regset_get;
 202        user_regset_set_fn              *set;
 203        user_regset_active_fn           *active;
 204        user_regset_writeback_fn        *writeback;
 205        unsigned int                    n;
 206        unsigned int                    size;
 207        unsigned int                    align;
 208        unsigned int                    bias;
 209        unsigned int                    core_note_type;
 210};
 211
 212/**
 213 * struct user_regset_view - available regsets
 214 * @name:       Identifier, e.g. UTS_MACHINE string.
 215 * @regsets:    Array of @n regsets available in this view.
 216 * @n:          Number of elements in @regsets.
 217 * @e_machine:  ELF header @e_machine %EM_* value written in core dumps.
 218 * @e_flags:    ELF header @e_flags value written in core dumps.
 219 * @ei_osabi:   ELF header @e_ident[%EI_OSABI] value written in core dumps.
 220 *
 221 * A regset view is a collection of regsets (&struct user_regset,
 222 * above).  This describes all the state of a thread that can be seen
 223 * from a given architecture/ABI environment.  More than one view might
 224 * refer to the same &struct user_regset, or more than one regset
 225 * might refer to the same machine-specific state in the thread.  For
 226 * example, a 32-bit thread's state could be examined from the 32-bit
 227 * view or from the 64-bit view.  Either method reaches the same thread
 228 * register state, doing appropriate widening or truncation.
 229 */
 230struct user_regset_view {
 231        const char *name;
 232        const struct user_regset *regsets;
 233        unsigned int n;
 234        u32 e_flags;
 235        u16 e_machine;
 236        u8 ei_osabi;
 237};
 238
 239/*
 240 * This is documented here rather than at the definition sites because its
 241 * implementation is machine-dependent but its interface is universal.
 242 */
 243/**
 244 * task_user_regset_view - Return the process's native regset view.
 245 * @tsk: a thread of the process in question
 246 *
 247 * Return the &struct user_regset_view that is native for the given process.
 248 * For example, what it would access when it called ptrace().
 249 * Throughout the life of the process, this only changes at exec.
 250 */
 251const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
 252
 253static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
 254                                     const void **kbuf,
 255                                     const void __user **ubuf, void *data,
 256                                     const int start_pos, const int end_pos)
 257{
 258        if (*count == 0)
 259                return 0;
 260        BUG_ON(*pos < start_pos);
 261        if (end_pos < 0 || *pos < end_pos) {
 262                unsigned int copy = (end_pos < 0 ? *count
 263                                     : min(*count, end_pos - *pos));
 264                data += *pos - start_pos;
 265                if (*kbuf) {
 266                        memcpy(data, *kbuf, copy);
 267                        *kbuf += copy;
 268                } else if (__copy_from_user(data, *ubuf, copy))
 269                        return -EFAULT;
 270                else
 271                        *ubuf += copy;
 272                *pos += copy;
 273                *count -= copy;
 274        }
 275        return 0;
 276}
 277
 278static inline int user_regset_copyin_ignore(unsigned int *pos,
 279                                            unsigned int *count,
 280                                            const void **kbuf,
 281                                            const void __user **ubuf,
 282                                            const int start_pos,
 283                                            const int end_pos)
 284{
 285        if (*count == 0)
 286                return 0;
 287        BUG_ON(*pos < start_pos);
 288        if (end_pos < 0 || *pos < end_pos) {
 289                unsigned int copy = (end_pos < 0 ? *count
 290                                     : min(*count, end_pos - *pos));
 291                if (*kbuf)
 292                        *kbuf += copy;
 293                else
 294                        *ubuf += copy;
 295                *pos += copy;
 296                *count -= copy;
 297        }
 298        return 0;
 299}
 300
 301extern int regset_get(struct task_struct *target,
 302                      const struct user_regset *regset,
 303                      unsigned int size, void *data);
 304
 305extern int regset_get_alloc(struct task_struct *target,
 306                            const struct user_regset *regset,
 307                            unsigned int size,
 308                            void **data);
 309
 310extern int copy_regset_to_user(struct task_struct *target,
 311                               const struct user_regset_view *view,
 312                               unsigned int setno, unsigned int offset,
 313                               unsigned int size, void __user *data);
 314
 315/**
 316 * copy_regset_from_user - store into thread's user_regset data from user memory
 317 * @target:     thread to be examined
 318 * @view:       &struct user_regset_view describing user thread machine state
 319 * @setno:      index in @view->regsets
 320 * @offset:     offset into the regset data, in bytes
 321 * @size:       amount of data to copy, in bytes
 322 * @data:       user-mode pointer to copy from
 323 */
 324static inline int copy_regset_from_user(struct task_struct *target,
 325                                        const struct user_regset_view *view,
 326                                        unsigned int setno,
 327                                        unsigned int offset, unsigned int size,
 328                                        const void __user *data)
 329{
 330        const struct user_regset *regset = &view->regsets[setno];
 331
 332        if (!regset->set)
 333                return -EOPNOTSUPP;
 334
 335        if (!access_ok(data, size))
 336                return -EFAULT;
 337
 338        return regset->set(target, regset, offset, size, NULL, data);
 339}
 340
 341#endif  /* <linux/regset.h> */
 342