linux/include/linux/sched/mm.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_MM_H
   3#define _LINUX_SCHED_MM_H
   4
   5#include <linux/kernel.h>
   6#include <linux/atomic.h>
   7#include <linux/sched.h>
   8#include <linux/mm_types.h>
   9#include <linux/gfp.h>
  10#include <linux/sync_core.h>
  11
  12/*
  13 * Routines for handling mm_structs
  14 */
  15extern struct mm_struct *mm_alloc(void);
  16
  17/**
  18 * mmgrab() - Pin a &struct mm_struct.
  19 * @mm: The &struct mm_struct to pin.
  20 *
  21 * Make sure that @mm will not get freed even after the owning task
  22 * exits. This doesn't guarantee that the associated address space
  23 * will still exist later on and mmget_not_zero() has to be used before
  24 * accessing it.
  25 *
  26 * This is a preferred way to pin @mm for a longer/unbounded amount
  27 * of time.
  28 *
  29 * Use mmdrop() to release the reference acquired by mmgrab().
  30 *
  31 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
  32 * of &mm_struct.mm_count vs &mm_struct.mm_users.
  33 */
  34static inline void mmgrab(struct mm_struct *mm)
  35{
  36        atomic_inc(&mm->mm_count);
  37}
  38
  39extern void __mmdrop(struct mm_struct *mm);
  40
  41static inline void mmdrop(struct mm_struct *mm)
  42{
  43        /*
  44         * The implicit full barrier implied by atomic_dec_and_test() is
  45         * required by the membarrier system call before returning to
  46         * user-space, after storing to rq->curr.
  47         */
  48        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
  49                __mmdrop(mm);
  50}
  51
  52#ifdef CONFIG_PREEMPT_RT
  53/*
  54 * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
  55 * by far the least expensive way to do that.
  56 */
  57static inline void __mmdrop_delayed(struct rcu_head *rhp)
  58{
  59        struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
  60
  61        __mmdrop(mm);
  62}
  63
  64/*
  65 * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
  66 * kernels via RCU.
  67 */
  68static inline void mmdrop_sched(struct mm_struct *mm)
  69{
  70        /* Provides a full memory barrier. See mmdrop() */
  71        if (atomic_dec_and_test(&mm->mm_count))
  72                call_rcu(&mm->delayed_drop, __mmdrop_delayed);
  73}
  74#else
  75static inline void mmdrop_sched(struct mm_struct *mm)
  76{
  77        mmdrop(mm);
  78}
  79#endif
  80
  81/**
  82 * mmget() - Pin the address space associated with a &struct mm_struct.
  83 * @mm: The address space to pin.
  84 *
  85 * Make sure that the address space of the given &struct mm_struct doesn't
  86 * go away. This does not protect against parts of the address space being
  87 * modified or freed, however.
  88 *
  89 * Never use this function to pin this address space for an
  90 * unbounded/indefinite amount of time.
  91 *
  92 * Use mmput() to release the reference acquired by mmget().
  93 *
  94 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
  95 * of &mm_struct.mm_count vs &mm_struct.mm_users.
  96 */
  97static inline void mmget(struct mm_struct *mm)
  98{
  99        atomic_inc(&mm->mm_users);
 100}
 101
 102static inline bool mmget_not_zero(struct mm_struct *mm)
 103{
 104        return atomic_inc_not_zero(&mm->mm_users);
 105}
 106
 107/* mmput gets rid of the mappings and all user-space */
 108extern void mmput(struct mm_struct *);
 109#ifdef CONFIG_MMU
 110/* same as above but performs the slow path from the async context. Can
 111 * be called from the atomic context as well
 112 */
 113void mmput_async(struct mm_struct *);
 114#endif
 115
 116/* Grab a reference to a task's mm, if it is not already going away */
 117extern struct mm_struct *get_task_mm(struct task_struct *task);
 118/*
 119 * Grab a reference to a task's mm, if it is not already going away
 120 * and ptrace_may_access with the mode parameter passed to it
 121 * succeeds.
 122 */
 123extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
 124/* Remove the current tasks stale references to the old mm_struct on exit() */
 125extern void exit_mm_release(struct task_struct *, struct mm_struct *);
 126/* Remove the current tasks stale references to the old mm_struct on exec() */
 127extern void exec_mm_release(struct task_struct *, struct mm_struct *);
 128
 129#ifdef CONFIG_MEMCG
 130extern void mm_update_next_owner(struct mm_struct *mm);
 131#else
 132static inline void mm_update_next_owner(struct mm_struct *mm)
 133{
 134}
 135#endif /* CONFIG_MEMCG */
 136
 137#ifdef CONFIG_MMU
 138extern void arch_pick_mmap_layout(struct mm_struct *mm,
 139                                  struct rlimit *rlim_stack);
 140extern unsigned long
 141arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 142                       unsigned long, unsigned long);
 143extern unsigned long
 144arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 145                          unsigned long len, unsigned long pgoff,
 146                          unsigned long flags);
 147#else
 148static inline void arch_pick_mmap_layout(struct mm_struct *mm,
 149                                         struct rlimit *rlim_stack) {}
 150#endif
 151
 152static inline bool in_vfork(struct task_struct *tsk)
 153{
 154        bool ret;
 155
 156        /*
 157         * need RCU to access ->real_parent if CLONE_VM was used along with
 158         * CLONE_PARENT.
 159         *
 160         * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
 161         * imply CLONE_VM
 162         *
 163         * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
 164         * ->real_parent is not necessarily the task doing vfork(), so in
 165         * theory we can't rely on task_lock() if we want to dereference it.
 166         *
 167         * And in this case we can't trust the real_parent->mm == tsk->mm
 168         * check, it can be false negative. But we do not care, if init or
 169         * another oom-unkillable task does this it should blame itself.
 170         */
 171        rcu_read_lock();
 172        ret = tsk->vfork_done &&
 173                        rcu_dereference(tsk->real_parent)->mm == tsk->mm;
 174        rcu_read_unlock();
 175
 176        return ret;
 177}
 178
 179/*
 180 * Applies per-task gfp context to the given allocation flags.
 181 * PF_MEMALLOC_NOIO implies GFP_NOIO
 182 * PF_MEMALLOC_NOFS implies GFP_NOFS
 183 * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
 184 */
 185static inline gfp_t current_gfp_context(gfp_t flags)
 186{
 187        unsigned int pflags = READ_ONCE(current->flags);
 188
 189        if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
 190                /*
 191                 * NOIO implies both NOIO and NOFS and it is a weaker context
 192                 * so always make sure it makes precedence
 193                 */
 194                if (pflags & PF_MEMALLOC_NOIO)
 195                        flags &= ~(__GFP_IO | __GFP_FS);
 196                else if (pflags & PF_MEMALLOC_NOFS)
 197                        flags &= ~__GFP_FS;
 198
 199                if (pflags & PF_MEMALLOC_PIN)
 200                        flags &= ~__GFP_MOVABLE;
 201        }
 202        return flags;
 203}
 204
 205#ifdef CONFIG_LOCKDEP
 206extern void __fs_reclaim_acquire(unsigned long ip);
 207extern void __fs_reclaim_release(unsigned long ip);
 208extern void fs_reclaim_acquire(gfp_t gfp_mask);
 209extern void fs_reclaim_release(gfp_t gfp_mask);
 210#else
 211static inline void __fs_reclaim_acquire(unsigned long ip) { }
 212static inline void __fs_reclaim_release(unsigned long ip) { }
 213static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
 214static inline void fs_reclaim_release(gfp_t gfp_mask) { }
 215#endif
 216
 217/**
 218 * might_alloc - Mark possible allocation sites
 219 * @gfp_mask: gfp_t flags that would be used to allocate
 220 *
 221 * Similar to might_sleep() and other annotations, this can be used in functions
 222 * that might allocate, but often don't. Compiles to nothing without
 223 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
 224 */
 225static inline void might_alloc(gfp_t gfp_mask)
 226{
 227        fs_reclaim_acquire(gfp_mask);
 228        fs_reclaim_release(gfp_mask);
 229
 230        might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 231}
 232
 233/**
 234 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
 235 *
 236 * This functions marks the beginning of the GFP_NOIO allocation scope.
 237 * All further allocations will implicitly drop __GFP_IO flag and so
 238 * they are safe for the IO critical section from the allocation recursion
 239 * point of view. Use memalloc_noio_restore to end the scope with flags
 240 * returned by this function.
 241 *
 242 * This function is safe to be used from any context.
 243 */
 244static inline unsigned int memalloc_noio_save(void)
 245{
 246        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
 247        current->flags |= PF_MEMALLOC_NOIO;
 248        return flags;
 249}
 250
 251/**
 252 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
 253 * @flags: Flags to restore.
 254 *
 255 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
 256 * Always make sure that the given flags is the return value from the
 257 * pairing memalloc_noio_save call.
 258 */
 259static inline void memalloc_noio_restore(unsigned int flags)
 260{
 261        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
 262}
 263
 264/**
 265 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
 266 *
 267 * This functions marks the beginning of the GFP_NOFS allocation scope.
 268 * All further allocations will implicitly drop __GFP_FS flag and so
 269 * they are safe for the FS critical section from the allocation recursion
 270 * point of view. Use memalloc_nofs_restore to end the scope with flags
 271 * returned by this function.
 272 *
 273 * This function is safe to be used from any context.
 274 */
 275static inline unsigned int memalloc_nofs_save(void)
 276{
 277        unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
 278        current->flags |= PF_MEMALLOC_NOFS;
 279        return flags;
 280}
 281
 282/**
 283 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
 284 * @flags: Flags to restore.
 285 *
 286 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
 287 * Always make sure that the given flags is the return value from the
 288 * pairing memalloc_nofs_save call.
 289 */
 290static inline void memalloc_nofs_restore(unsigned int flags)
 291{
 292        current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
 293}
 294
 295static inline unsigned int memalloc_noreclaim_save(void)
 296{
 297        unsigned int flags = current->flags & PF_MEMALLOC;
 298        current->flags |= PF_MEMALLOC;
 299        return flags;
 300}
 301
 302static inline void memalloc_noreclaim_restore(unsigned int flags)
 303{
 304        current->flags = (current->flags & ~PF_MEMALLOC) | flags;
 305}
 306
 307static inline unsigned int memalloc_pin_save(void)
 308{
 309        unsigned int flags = current->flags & PF_MEMALLOC_PIN;
 310
 311        current->flags |= PF_MEMALLOC_PIN;
 312        return flags;
 313}
 314
 315static inline void memalloc_pin_restore(unsigned int flags)
 316{
 317        current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
 318}
 319
 320#ifdef CONFIG_MEMCG
 321DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
 322/**
 323 * set_active_memcg - Starts the remote memcg charging scope.
 324 * @memcg: memcg to charge.
 325 *
 326 * This function marks the beginning of the remote memcg charging scope. All the
 327 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
 328 * given memcg.
 329 *
 330 * NOTE: This function can nest. Users must save the return value and
 331 * reset the previous value after their own charging scope is over.
 332 */
 333static inline struct mem_cgroup *
 334set_active_memcg(struct mem_cgroup *memcg)
 335{
 336        struct mem_cgroup *old;
 337
 338        if (!in_task()) {
 339                old = this_cpu_read(int_active_memcg);
 340                this_cpu_write(int_active_memcg, memcg);
 341        } else {
 342                old = current->active_memcg;
 343                current->active_memcg = memcg;
 344        }
 345
 346        return old;
 347}
 348#else
 349static inline struct mem_cgroup *
 350set_active_memcg(struct mem_cgroup *memcg)
 351{
 352        return NULL;
 353}
 354#endif
 355
 356#ifdef CONFIG_MEMBARRIER
 357enum {
 358        MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY                = (1U << 0),
 359        MEMBARRIER_STATE_PRIVATE_EXPEDITED                      = (1U << 1),
 360        MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY                 = (1U << 2),
 361        MEMBARRIER_STATE_GLOBAL_EXPEDITED                       = (1U << 3),
 362        MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY      = (1U << 4),
 363        MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE            = (1U << 5),
 364        MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY           = (1U << 6),
 365        MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ                 = (1U << 7),
 366};
 367
 368enum {
 369        MEMBARRIER_FLAG_SYNC_CORE       = (1U << 0),
 370        MEMBARRIER_FLAG_RSEQ            = (1U << 1),
 371};
 372
 373#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
 374#include <asm/membarrier.h>
 375#endif
 376
 377static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
 378{
 379        if (current->mm != mm)
 380                return;
 381        if (likely(!(atomic_read(&mm->membarrier_state) &
 382                     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
 383                return;
 384        sync_core_before_usermode();
 385}
 386
 387extern void membarrier_exec_mmap(struct mm_struct *mm);
 388
 389extern void membarrier_update_current_mm(struct mm_struct *next_mm);
 390
 391#else
 392#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
 393static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
 394                                             struct mm_struct *next,
 395                                             struct task_struct *tsk)
 396{
 397}
 398#endif
 399static inline void membarrier_exec_mmap(struct mm_struct *mm)
 400{
 401}
 402static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
 403{
 404}
 405static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
 406{
 407}
 408#endif
 409
 410#endif /* _LINUX_SCHED_MM_H */
 411