linux/include/linux/sched/signal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_SIGNAL_H
   3#define _LINUX_SCHED_SIGNAL_H
   4
   5#include <linux/rculist.h>
   6#include <linux/signal.h>
   7#include <linux/sched.h>
   8#include <linux/sched/jobctl.h>
   9#include <linux/sched/task.h>
  10#include <linux/cred.h>
  11#include <linux/refcount.h>
  12#include <linux/posix-timers.h>
  13#include <linux/mm_types.h>
  14#include <asm/ptrace.h>
  15
  16/*
  17 * Types defining task->signal and task->sighand and APIs using them:
  18 */
  19
  20struct sighand_struct {
  21        spinlock_t              siglock;
  22        refcount_t              count;
  23        wait_queue_head_t       signalfd_wqh;
  24        struct k_sigaction      action[_NSIG];
  25};
  26
  27/*
  28 * Per-process accounting stats:
  29 */
  30struct pacct_struct {
  31        int                     ac_flag;
  32        long                    ac_exitcode;
  33        unsigned long           ac_mem;
  34        u64                     ac_utime, ac_stime;
  35        unsigned long           ac_minflt, ac_majflt;
  36};
  37
  38struct cpu_itimer {
  39        u64 expires;
  40        u64 incr;
  41};
  42
  43/*
  44 * This is the atomic variant of task_cputime, which can be used for
  45 * storing and updating task_cputime statistics without locking.
  46 */
  47struct task_cputime_atomic {
  48        atomic64_t utime;
  49        atomic64_t stime;
  50        atomic64_t sum_exec_runtime;
  51};
  52
  53#define INIT_CPUTIME_ATOMIC \
  54        (struct task_cputime_atomic) {                          \
  55                .utime = ATOMIC64_INIT(0),                      \
  56                .stime = ATOMIC64_INIT(0),                      \
  57                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  58        }
  59/**
  60 * struct thread_group_cputimer - thread group interval timer counts
  61 * @cputime_atomic:     atomic thread group interval timers.
  62 *
  63 * This structure contains the version of task_cputime, above, that is
  64 * used for thread group CPU timer calculations.
  65 */
  66struct thread_group_cputimer {
  67        struct task_cputime_atomic cputime_atomic;
  68};
  69
  70struct multiprocess_signals {
  71        sigset_t signal;
  72        struct hlist_node node;
  73};
  74
  75struct core_thread {
  76        struct task_struct *task;
  77        struct core_thread *next;
  78};
  79
  80struct core_state {
  81        atomic_t nr_threads;
  82        struct core_thread dumper;
  83        struct completion startup;
  84};
  85
  86/*
  87 * NOTE! "signal_struct" does not have its own
  88 * locking, because a shared signal_struct always
  89 * implies a shared sighand_struct, so locking
  90 * sighand_struct is always a proper superset of
  91 * the locking of signal_struct.
  92 */
  93struct signal_struct {
  94        refcount_t              sigcnt;
  95        atomic_t                live;
  96        int                     nr_threads;
  97        struct list_head        thread_head;
  98
  99        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 100
 101        /* current thread group signal load-balancing target: */
 102        struct task_struct      *curr_target;
 103
 104        /* shared signal handling: */
 105        struct sigpending       shared_pending;
 106
 107        /* For collecting multiprocess signals during fork */
 108        struct hlist_head       multiprocess;
 109
 110        /* thread group exit support */
 111        int                     group_exit_code;
 112        /* overloaded:
 113         * - notify group_exit_task when ->count is equal to notify_count
 114         * - everyone except group_exit_task is stopped during signal delivery
 115         *   of fatal signals, group_exit_task processes the signal.
 116         */
 117        int                     notify_count;
 118        struct task_struct      *group_exit_task;
 119
 120        /* thread group stop support, overloads group_exit_code too */
 121        int                     group_stop_count;
 122        unsigned int            flags; /* see SIGNAL_* flags below */
 123
 124        struct core_state *core_state; /* coredumping support */
 125
 126        /*
 127         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 128         * manager, to re-parent orphan (double-forking) child processes
 129         * to this process instead of 'init'. The service manager is
 130         * able to receive SIGCHLD signals and is able to investigate
 131         * the process until it calls wait(). All children of this
 132         * process will inherit a flag if they should look for a
 133         * child_subreaper process at exit.
 134         */
 135        unsigned int            is_child_subreaper:1;
 136        unsigned int            has_child_subreaper:1;
 137
 138#ifdef CONFIG_POSIX_TIMERS
 139
 140        /* POSIX.1b Interval Timers */
 141        int                     posix_timer_id;
 142        struct list_head        posix_timers;
 143
 144        /* ITIMER_REAL timer for the process */
 145        struct hrtimer real_timer;
 146        ktime_t it_real_incr;
 147
 148        /*
 149         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 150         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 151         * values are defined to 0 and 1 respectively
 152         */
 153        struct cpu_itimer it[2];
 154
 155        /*
 156         * Thread group totals for process CPU timers.
 157         * See thread_group_cputimer(), et al, for details.
 158         */
 159        struct thread_group_cputimer cputimer;
 160
 161#endif
 162        /* Empty if CONFIG_POSIX_TIMERS=n */
 163        struct posix_cputimers posix_cputimers;
 164
 165        /* PID/PID hash table linkage. */
 166        struct pid *pids[PIDTYPE_MAX];
 167
 168#ifdef CONFIG_NO_HZ_FULL
 169        atomic_t tick_dep_mask;
 170#endif
 171
 172        struct pid *tty_old_pgrp;
 173
 174        /* boolean value for session group leader */
 175        int leader;
 176
 177        struct tty_struct *tty; /* NULL if no tty */
 178
 179#ifdef CONFIG_SCHED_AUTOGROUP
 180        struct autogroup *autogroup;
 181#endif
 182        /*
 183         * Cumulative resource counters for dead threads in the group,
 184         * and for reaped dead child processes forked by this group.
 185         * Live threads maintain their own counters and add to these
 186         * in __exit_signal, except for the group leader.
 187         */
 188        seqlock_t stats_lock;
 189        u64 utime, stime, cutime, cstime;
 190        u64 gtime;
 191        u64 cgtime;
 192        struct prev_cputime prev_cputime;
 193        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 194        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 195        unsigned long inblock, oublock, cinblock, coublock;
 196        unsigned long maxrss, cmaxrss;
 197        struct task_io_accounting ioac;
 198
 199        /*
 200         * Cumulative ns of schedule CPU time fo dead threads in the
 201         * group, not including a zombie group leader, (This only differs
 202         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 203         * other than jiffies.)
 204         */
 205        unsigned long long sum_sched_runtime;
 206
 207        /*
 208         * We don't bother to synchronize most readers of this at all,
 209         * because there is no reader checking a limit that actually needs
 210         * to get both rlim_cur and rlim_max atomically, and either one
 211         * alone is a single word that can safely be read normally.
 212         * getrlimit/setrlimit use task_lock(current->group_leader) to
 213         * protect this instead of the siglock, because they really
 214         * have no need to disable irqs.
 215         */
 216        struct rlimit rlim[RLIM_NLIMITS];
 217
 218#ifdef CONFIG_BSD_PROCESS_ACCT
 219        struct pacct_struct pacct;      /* per-process accounting information */
 220#endif
 221#ifdef CONFIG_TASKSTATS
 222        struct taskstats *stats;
 223#endif
 224#ifdef CONFIG_AUDIT
 225        unsigned audit_tty;
 226        struct tty_audit_buf *tty_audit_buf;
 227#endif
 228
 229        /*
 230         * Thread is the potential origin of an oom condition; kill first on
 231         * oom
 232         */
 233        bool oom_flag_origin;
 234        short oom_score_adj;            /* OOM kill score adjustment */
 235        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 236                                         * Only settable by CAP_SYS_RESOURCE. */
 237        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 238                                         * killed by the oom killer */
 239
 240        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 241                                         * credential calculations
 242                                         * (notably. ptrace)
 243                                         * Deprecated do not use in new code.
 244                                         * Use exec_update_lock instead.
 245                                         */
 246        struct rw_semaphore exec_update_lock;   /* Held while task_struct is
 247                                                 * being updated during exec,
 248                                                 * and may have inconsistent
 249                                                 * permissions.
 250                                                 */
 251} __randomize_layout;
 252
 253/*
 254 * Bits in flags field of signal_struct.
 255 */
 256#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 257#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 258#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 259#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 260/*
 261 * Pending notifications to parent.
 262 */
 263#define SIGNAL_CLD_STOPPED      0x00000010
 264#define SIGNAL_CLD_CONTINUED    0x00000020
 265#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 266
 267#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 268
 269#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 270                          SIGNAL_STOP_CONTINUED)
 271
 272static inline void signal_set_stop_flags(struct signal_struct *sig,
 273                                         unsigned int flags)
 274{
 275        WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 276        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 277}
 278
 279/* If true, all threads except ->group_exit_task have pending SIGKILL */
 280static inline int signal_group_exit(const struct signal_struct *sig)
 281{
 282        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 283                (sig->group_exit_task != NULL);
 284}
 285
 286extern void flush_signals(struct task_struct *);
 287extern void ignore_signals(struct task_struct *);
 288extern void flush_signal_handlers(struct task_struct *, int force_default);
 289extern int dequeue_signal(struct task_struct *task,
 290                          sigset_t *mask, kernel_siginfo_t *info);
 291
 292static inline int kernel_dequeue_signal(void)
 293{
 294        struct task_struct *task = current;
 295        kernel_siginfo_t __info;
 296        int ret;
 297
 298        spin_lock_irq(&task->sighand->siglock);
 299        ret = dequeue_signal(task, &task->blocked, &__info);
 300        spin_unlock_irq(&task->sighand->siglock);
 301
 302        return ret;
 303}
 304
 305static inline void kernel_signal_stop(void)
 306{
 307        spin_lock_irq(&current->sighand->siglock);
 308        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 309                set_special_state(TASK_STOPPED);
 310        spin_unlock_irq(&current->sighand->siglock);
 311
 312        schedule();
 313}
 314#ifdef __ia64__
 315# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
 316#else
 317# define ___ARCH_SI_IA64(_a1, _a2, _a3)
 318#endif
 319
 320int force_sig_fault_to_task(int sig, int code, void __user *addr
 321        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 322        , struct task_struct *t);
 323int force_sig_fault(int sig, int code, void __user *addr
 324        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
 325int send_sig_fault(int sig, int code, void __user *addr
 326        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 327        , struct task_struct *t);
 328
 329int force_sig_mceerr(int code, void __user *, short);
 330int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
 331
 332int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
 333int force_sig_pkuerr(void __user *addr, u32 pkey);
 334int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
 335
 336int force_sig_ptrace_errno_trap(int errno, void __user *addr);
 337int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
 338int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
 339                        struct task_struct *t);
 340int force_sig_seccomp(int syscall, int reason, bool force_coredump);
 341
 342extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
 343extern void force_sigsegv(int sig);
 344extern int force_sig_info(struct kernel_siginfo *);
 345extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
 346extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
 347extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
 348                                const struct cred *);
 349extern int kill_pgrp(struct pid *pid, int sig, int priv);
 350extern int kill_pid(struct pid *pid, int sig, int priv);
 351extern __must_check bool do_notify_parent(struct task_struct *, int);
 352extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 353extern void force_sig(int);
 354extern void force_fatal_sig(int);
 355extern void force_exit_sig(int);
 356extern int send_sig(int, struct task_struct *, int);
 357extern int zap_other_threads(struct task_struct *p);
 358extern struct sigqueue *sigqueue_alloc(void);
 359extern void sigqueue_free(struct sigqueue *);
 360extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
 361extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 362
 363static inline int restart_syscall(void)
 364{
 365        set_tsk_thread_flag(current, TIF_SIGPENDING);
 366        return -ERESTARTNOINTR;
 367}
 368
 369static inline int task_sigpending(struct task_struct *p)
 370{
 371        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 372}
 373
 374static inline int signal_pending(struct task_struct *p)
 375{
 376        /*
 377         * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
 378         * behavior in terms of ensuring that we break out of wait loops
 379         * so that notify signal callbacks can be processed.
 380         */
 381        if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
 382                return 1;
 383        return task_sigpending(p);
 384}
 385
 386static inline int __fatal_signal_pending(struct task_struct *p)
 387{
 388        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 389}
 390
 391static inline int fatal_signal_pending(struct task_struct *p)
 392{
 393        return task_sigpending(p) && __fatal_signal_pending(p);
 394}
 395
 396static inline int signal_pending_state(unsigned int state, struct task_struct *p)
 397{
 398        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 399                return 0;
 400        if (!signal_pending(p))
 401                return 0;
 402
 403        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 404}
 405
 406/*
 407 * This should only be used in fault handlers to decide whether we
 408 * should stop the current fault routine to handle the signals
 409 * instead, especially with the case where we've got interrupted with
 410 * a VM_FAULT_RETRY.
 411 */
 412static inline bool fault_signal_pending(vm_fault_t fault_flags,
 413                                        struct pt_regs *regs)
 414{
 415        return unlikely((fault_flags & VM_FAULT_RETRY) &&
 416                        (fatal_signal_pending(current) ||
 417                         (user_mode(regs) && signal_pending(current))));
 418}
 419
 420/*
 421 * Reevaluate whether the task has signals pending delivery.
 422 * Wake the task if so.
 423 * This is required every time the blocked sigset_t changes.
 424 * callers must hold sighand->siglock.
 425 */
 426extern void recalc_sigpending_and_wake(struct task_struct *t);
 427extern void recalc_sigpending(void);
 428extern void calculate_sigpending(void);
 429
 430extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 431
 432static inline void signal_wake_up(struct task_struct *t, bool resume)
 433{
 434        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 435}
 436static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 437{
 438        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 439}
 440
 441void task_join_group_stop(struct task_struct *task);
 442
 443#ifdef TIF_RESTORE_SIGMASK
 444/*
 445 * Legacy restore_sigmask accessors.  These are inefficient on
 446 * SMP architectures because they require atomic operations.
 447 */
 448
 449/**
 450 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 451 *
 452 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 453 * will run before returning to user mode, to process the flag.  For
 454 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 455 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 456 * arch code will notice on return to user mode, in case those bits
 457 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 458 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 459 */
 460static inline void set_restore_sigmask(void)
 461{
 462        set_thread_flag(TIF_RESTORE_SIGMASK);
 463}
 464
 465static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 466{
 467        clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 468}
 469
 470static inline void clear_restore_sigmask(void)
 471{
 472        clear_thread_flag(TIF_RESTORE_SIGMASK);
 473}
 474static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 475{
 476        return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 477}
 478static inline bool test_restore_sigmask(void)
 479{
 480        return test_thread_flag(TIF_RESTORE_SIGMASK);
 481}
 482static inline bool test_and_clear_restore_sigmask(void)
 483{
 484        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 485}
 486
 487#else   /* TIF_RESTORE_SIGMASK */
 488
 489/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 490static inline void set_restore_sigmask(void)
 491{
 492        current->restore_sigmask = true;
 493}
 494static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 495{
 496        task->restore_sigmask = false;
 497}
 498static inline void clear_restore_sigmask(void)
 499{
 500        current->restore_sigmask = false;
 501}
 502static inline bool test_restore_sigmask(void)
 503{
 504        return current->restore_sigmask;
 505}
 506static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 507{
 508        return task->restore_sigmask;
 509}
 510static inline bool test_and_clear_restore_sigmask(void)
 511{
 512        if (!current->restore_sigmask)
 513                return false;
 514        current->restore_sigmask = false;
 515        return true;
 516}
 517#endif
 518
 519static inline void restore_saved_sigmask(void)
 520{
 521        if (test_and_clear_restore_sigmask())
 522                __set_current_blocked(&current->saved_sigmask);
 523}
 524
 525extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
 526
 527static inline void restore_saved_sigmask_unless(bool interrupted)
 528{
 529        if (interrupted)
 530                WARN_ON(!signal_pending(current));
 531        else
 532                restore_saved_sigmask();
 533}
 534
 535static inline sigset_t *sigmask_to_save(void)
 536{
 537        sigset_t *res = &current->blocked;
 538        if (unlikely(test_restore_sigmask()))
 539                res = &current->saved_sigmask;
 540        return res;
 541}
 542
 543static inline int kill_cad_pid(int sig, int priv)
 544{
 545        return kill_pid(cad_pid, sig, priv);
 546}
 547
 548/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 549#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
 550#define SEND_SIG_PRIV   ((struct kernel_siginfo *) 1)
 551
 552static inline int __on_sig_stack(unsigned long sp)
 553{
 554#ifdef CONFIG_STACK_GROWSUP
 555        return sp >= current->sas_ss_sp &&
 556                sp - current->sas_ss_sp < current->sas_ss_size;
 557#else
 558        return sp > current->sas_ss_sp &&
 559                sp - current->sas_ss_sp <= current->sas_ss_size;
 560#endif
 561}
 562
 563/*
 564 * True if we are on the alternate signal stack.
 565 */
 566static inline int on_sig_stack(unsigned long sp)
 567{
 568        /*
 569         * If the signal stack is SS_AUTODISARM then, by construction, we
 570         * can't be on the signal stack unless user code deliberately set
 571         * SS_AUTODISARM when we were already on it.
 572         *
 573         * This improves reliability: if user state gets corrupted such that
 574         * the stack pointer points very close to the end of the signal stack,
 575         * then this check will enable the signal to be handled anyway.
 576         */
 577        if (current->sas_ss_flags & SS_AUTODISARM)
 578                return 0;
 579
 580        return __on_sig_stack(sp);
 581}
 582
 583static inline int sas_ss_flags(unsigned long sp)
 584{
 585        if (!current->sas_ss_size)
 586                return SS_DISABLE;
 587
 588        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 589}
 590
 591static inline void sas_ss_reset(struct task_struct *p)
 592{
 593        p->sas_ss_sp = 0;
 594        p->sas_ss_size = 0;
 595        p->sas_ss_flags = SS_DISABLE;
 596}
 597
 598static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 599{
 600        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 601#ifdef CONFIG_STACK_GROWSUP
 602                return current->sas_ss_sp;
 603#else
 604                return current->sas_ss_sp + current->sas_ss_size;
 605#endif
 606        return sp;
 607}
 608
 609extern void __cleanup_sighand(struct sighand_struct *);
 610extern void flush_itimer_signals(void);
 611
 612#define tasklist_empty() \
 613        list_empty(&init_task.tasks)
 614
 615#define next_task(p) \
 616        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 617
 618#define for_each_process(p) \
 619        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 620
 621extern bool current_is_single_threaded(void);
 622
 623/*
 624 * Careful: do_each_thread/while_each_thread is a double loop so
 625 *          'break' will not work as expected - use goto instead.
 626 */
 627#define do_each_thread(g, t) \
 628        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 629
 630#define while_each_thread(g, t) \
 631        while ((t = next_thread(t)) != g)
 632
 633#define __for_each_thread(signal, t)    \
 634        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 635
 636#define for_each_thread(p, t)           \
 637        __for_each_thread((p)->signal, t)
 638
 639/* Careful: this is a double loop, 'break' won't work as expected. */
 640#define for_each_process_thread(p, t)   \
 641        for_each_process(p) for_each_thread(p, t)
 642
 643typedef int (*proc_visitor)(struct task_struct *p, void *data);
 644void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 645
 646static inline
 647struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 648{
 649        struct pid *pid;
 650        if (type == PIDTYPE_PID)
 651                pid = task_pid(task);
 652        else
 653                pid = task->signal->pids[type];
 654        return pid;
 655}
 656
 657static inline struct pid *task_tgid(struct task_struct *task)
 658{
 659        return task->signal->pids[PIDTYPE_TGID];
 660}
 661
 662/*
 663 * Without tasklist or RCU lock it is not safe to dereference
 664 * the result of task_pgrp/task_session even if task == current,
 665 * we can race with another thread doing sys_setsid/sys_setpgid.
 666 */
 667static inline struct pid *task_pgrp(struct task_struct *task)
 668{
 669        return task->signal->pids[PIDTYPE_PGID];
 670}
 671
 672static inline struct pid *task_session(struct task_struct *task)
 673{
 674        return task->signal->pids[PIDTYPE_SID];
 675}
 676
 677static inline int get_nr_threads(struct task_struct *task)
 678{
 679        return task->signal->nr_threads;
 680}
 681
 682static inline bool thread_group_leader(struct task_struct *p)
 683{
 684        return p->exit_signal >= 0;
 685}
 686
 687static inline
 688bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 689{
 690        return p1->signal == p2->signal;
 691}
 692
 693static inline struct task_struct *next_thread(const struct task_struct *p)
 694{
 695        return list_entry_rcu(p->thread_group.next,
 696                              struct task_struct, thread_group);
 697}
 698
 699static inline int thread_group_empty(struct task_struct *p)
 700{
 701        return list_empty(&p->thread_group);
 702}
 703
 704#define delay_group_leader(p) \
 705                (thread_group_leader(p) && !thread_group_empty(p))
 706
 707extern bool thread_group_exited(struct pid *pid);
 708
 709extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
 710                                                        unsigned long *flags);
 711
 712static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
 713                                                       unsigned long *flags)
 714{
 715        struct sighand_struct *ret;
 716
 717        ret = __lock_task_sighand(task, flags);
 718        (void)__cond_lock(&task->sighand->siglock, ret);
 719        return ret;
 720}
 721
 722static inline void unlock_task_sighand(struct task_struct *task,
 723                                                unsigned long *flags)
 724{
 725        spin_unlock_irqrestore(&task->sighand->siglock, *flags);
 726}
 727
 728#ifdef CONFIG_LOCKDEP
 729extern void lockdep_assert_task_sighand_held(struct task_struct *task);
 730#else
 731static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
 732#endif
 733
 734static inline unsigned long task_rlimit(const struct task_struct *task,
 735                unsigned int limit)
 736{
 737        return READ_ONCE(task->signal->rlim[limit].rlim_cur);
 738}
 739
 740static inline unsigned long task_rlimit_max(const struct task_struct *task,
 741                unsigned int limit)
 742{
 743        return READ_ONCE(task->signal->rlim[limit].rlim_max);
 744}
 745
 746static inline unsigned long rlimit(unsigned int limit)
 747{
 748        return task_rlimit(current, limit);
 749}
 750
 751static inline unsigned long rlimit_max(unsigned int limit)
 752{
 753        return task_rlimit_max(current, limit);
 754}
 755
 756#endif /* _LINUX_SCHED_SIGNAL_H */
 757