linux/include/linux/slab.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   4 *
   5 * (C) SGI 2006, Christoph Lameter
   6 *      Cleaned up and restructured to ease the addition of alternative
   7 *      implementations of SLAB allocators.
   8 * (C) Linux Foundation 2008-2013
   9 *      Unified interface for all slab allocators
  10 */
  11
  12#ifndef _LINUX_SLAB_H
  13#define _LINUX_SLAB_H
  14
  15#include <linux/gfp.h>
  16#include <linux/overflow.h>
  17#include <linux/types.h>
  18#include <linux/workqueue.h>
  19#include <linux/percpu-refcount.h>
  20
  21
  22/*
  23 * Flags to pass to kmem_cache_create().
  24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
  25 */
  26/* DEBUG: Perform (expensive) checks on alloc/free */
  27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
  28/* DEBUG: Red zone objs in a cache */
  29#define SLAB_RED_ZONE           ((slab_flags_t __force)0x00000400U)
  30/* DEBUG: Poison objects */
  31#define SLAB_POISON             ((slab_flags_t __force)0x00000800U)
  32/* Align objs on cache lines */
  33#define SLAB_HWCACHE_ALIGN      ((slab_flags_t __force)0x00002000U)
  34/* Use GFP_DMA memory */
  35#define SLAB_CACHE_DMA          ((slab_flags_t __force)0x00004000U)
  36/* Use GFP_DMA32 memory */
  37#define SLAB_CACHE_DMA32        ((slab_flags_t __force)0x00008000U)
  38/* DEBUG: Store the last owner for bug hunting */
  39#define SLAB_STORE_USER         ((slab_flags_t __force)0x00010000U)
  40/* Panic if kmem_cache_create() fails */
  41#define SLAB_PANIC              ((slab_flags_t __force)0x00040000U)
  42/*
  43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
  44 *
  45 * This delays freeing the SLAB page by a grace period, it does _NOT_
  46 * delay object freeing. This means that if you do kmem_cache_free()
  47 * that memory location is free to be reused at any time. Thus it may
  48 * be possible to see another object there in the same RCU grace period.
  49 *
  50 * This feature only ensures the memory location backing the object
  51 * stays valid, the trick to using this is relying on an independent
  52 * object validation pass. Something like:
  53 *
  54 *  rcu_read_lock()
  55 * again:
  56 *  obj = lockless_lookup(key);
  57 *  if (obj) {
  58 *    if (!try_get_ref(obj)) // might fail for free objects
  59 *      goto again;
  60 *
  61 *    if (obj->key != key) { // not the object we expected
  62 *      put_ref(obj);
  63 *      goto again;
  64 *    }
  65 *  }
  66 *  rcu_read_unlock();
  67 *
  68 * This is useful if we need to approach a kernel structure obliquely,
  69 * from its address obtained without the usual locking. We can lock
  70 * the structure to stabilize it and check it's still at the given address,
  71 * only if we can be sure that the memory has not been meanwhile reused
  72 * for some other kind of object (which our subsystem's lock might corrupt).
  73 *
  74 * rcu_read_lock before reading the address, then rcu_read_unlock after
  75 * taking the spinlock within the structure expected at that address.
  76 *
  77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
  78 */
  79/* Defer freeing slabs to RCU */
  80#define SLAB_TYPESAFE_BY_RCU    ((slab_flags_t __force)0x00080000U)
  81/* Spread some memory over cpuset */
  82#define SLAB_MEM_SPREAD         ((slab_flags_t __force)0x00100000U)
  83/* Trace allocations and frees */
  84#define SLAB_TRACE              ((slab_flags_t __force)0x00200000U)
  85
  86/* Flag to prevent checks on free */
  87#ifdef CONFIG_DEBUG_OBJECTS
  88# define SLAB_DEBUG_OBJECTS     ((slab_flags_t __force)0x00400000U)
  89#else
  90# define SLAB_DEBUG_OBJECTS     0
  91#endif
  92
  93/* Avoid kmemleak tracing */
  94#define SLAB_NOLEAKTRACE        ((slab_flags_t __force)0x00800000U)
  95
  96/* Fault injection mark */
  97#ifdef CONFIG_FAILSLAB
  98# define SLAB_FAILSLAB          ((slab_flags_t __force)0x02000000U)
  99#else
 100# define SLAB_FAILSLAB          0
 101#endif
 102/* Account to memcg */
 103#ifdef CONFIG_MEMCG_KMEM
 104# define SLAB_ACCOUNT           ((slab_flags_t __force)0x04000000U)
 105#else
 106# define SLAB_ACCOUNT           0
 107#endif
 108
 109#ifdef CONFIG_KASAN
 110#define SLAB_KASAN              ((slab_flags_t __force)0x08000000U)
 111#else
 112#define SLAB_KASAN              0
 113#endif
 114
 115/* The following flags affect the page allocator grouping pages by mobility */
 116/* Objects are reclaimable */
 117#define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0x00020000U)
 118#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
 119
 120/* Slab deactivation flag */
 121#define SLAB_DEACTIVATED        ((slab_flags_t __force)0x10000000U)
 122
 123/*
 124 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 125 *
 126 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 127 *
 128 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 129 * Both make kfree a no-op.
 130 */
 131#define ZERO_SIZE_PTR ((void *)16)
 132
 133#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
 134                                (unsigned long)ZERO_SIZE_PTR)
 135
 136#include <linux/kasan.h>
 137
 138struct mem_cgroup;
 139/*
 140 * struct kmem_cache related prototypes
 141 */
 142void __init kmem_cache_init(void);
 143bool slab_is_available(void);
 144
 145struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
 146                        unsigned int align, slab_flags_t flags,
 147                        void (*ctor)(void *));
 148struct kmem_cache *kmem_cache_create_usercopy(const char *name,
 149                        unsigned int size, unsigned int align,
 150                        slab_flags_t flags,
 151                        unsigned int useroffset, unsigned int usersize,
 152                        void (*ctor)(void *));
 153void kmem_cache_destroy(struct kmem_cache *s);
 154int kmem_cache_shrink(struct kmem_cache *s);
 155
 156/*
 157 * Please use this macro to create slab caches. Simply specify the
 158 * name of the structure and maybe some flags that are listed above.
 159 *
 160 * The alignment of the struct determines object alignment. If you
 161 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 162 * then the objects will be properly aligned in SMP configurations.
 163 */
 164#define KMEM_CACHE(__struct, __flags)                                   \
 165                kmem_cache_create(#__struct, sizeof(struct __struct),   \
 166                        __alignof__(struct __struct), (__flags), NULL)
 167
 168/*
 169 * To whitelist a single field for copying to/from usercopy, use this
 170 * macro instead for KMEM_CACHE() above.
 171 */
 172#define KMEM_CACHE_USERCOPY(__struct, __flags, __field)                 \
 173                kmem_cache_create_usercopy(#__struct,                   \
 174                        sizeof(struct __struct),                        \
 175                        __alignof__(struct __struct), (__flags),        \
 176                        offsetof(struct __struct, __field),             \
 177                        sizeof_field(struct __struct, __field), NULL)
 178
 179/*
 180 * Common kmalloc functions provided by all allocators
 181 */
 182void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
 183void kfree(const void *objp);
 184void kfree_sensitive(const void *objp);
 185size_t __ksize(const void *objp);
 186size_t ksize(const void *objp);
 187#ifdef CONFIG_PRINTK
 188bool kmem_valid_obj(void *object);
 189void kmem_dump_obj(void *object);
 190#endif
 191
 192#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
 193void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
 194                        bool to_user);
 195#else
 196static inline void __check_heap_object(const void *ptr, unsigned long n,
 197                                       struct page *page, bool to_user) { }
 198#endif
 199
 200/*
 201 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 202 * alignment larger than the alignment of a 64-bit integer.
 203 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 204 */
 205#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 206#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 207#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 208#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 209#else
 210#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 211#endif
 212
 213/*
 214 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 215 * Intended for arches that get misalignment faults even for 64 bit integer
 216 * aligned buffers.
 217 */
 218#ifndef ARCH_SLAB_MINALIGN
 219#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 220#endif
 221
 222/*
 223 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 224 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 225 * aligned pointers.
 226 */
 227#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
 228#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
 229#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
 230
 231/*
 232 * Kmalloc array related definitions
 233 */
 234
 235#ifdef CONFIG_SLAB
 236/*
 237 * The largest kmalloc size supported by the SLAB allocators is
 238 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 239 * less than 32 MB.
 240 *
 241 * WARNING: Its not easy to increase this value since the allocators have
 242 * to do various tricks to work around compiler limitations in order to
 243 * ensure proper constant folding.
 244 */
 245#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 246                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 247#define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
 248#ifndef KMALLOC_SHIFT_LOW
 249#define KMALLOC_SHIFT_LOW       5
 250#endif
 251#endif
 252
 253#ifdef CONFIG_SLUB
 254/*
 255 * SLUB directly allocates requests fitting in to an order-1 page
 256 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
 257 */
 258#define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
 259#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
 260#ifndef KMALLOC_SHIFT_LOW
 261#define KMALLOC_SHIFT_LOW       3
 262#endif
 263#endif
 264
 265#ifdef CONFIG_SLOB
 266/*
 267 * SLOB passes all requests larger than one page to the page allocator.
 268 * No kmalloc array is necessary since objects of different sizes can
 269 * be allocated from the same page.
 270 */
 271#define KMALLOC_SHIFT_HIGH      PAGE_SHIFT
 272#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
 273#ifndef KMALLOC_SHIFT_LOW
 274#define KMALLOC_SHIFT_LOW       3
 275#endif
 276#endif
 277
 278/* Maximum allocatable size */
 279#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
 280/* Maximum size for which we actually use a slab cache */
 281#define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
 282/* Maximum order allocatable via the slab allocator */
 283#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 284
 285/*
 286 * Kmalloc subsystem.
 287 */
 288#ifndef KMALLOC_MIN_SIZE
 289#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 290#endif
 291
 292/*
 293 * This restriction comes from byte sized index implementation.
 294 * Page size is normally 2^12 bytes and, in this case, if we want to use
 295 * byte sized index which can represent 2^8 entries, the size of the object
 296 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 297 * If minimum size of kmalloc is less than 16, we use it as minimum object
 298 * size and give up to use byte sized index.
 299 */
 300#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
 301                               (KMALLOC_MIN_SIZE) : 16)
 302
 303/*
 304 * Whenever changing this, take care of that kmalloc_type() and
 305 * create_kmalloc_caches() still work as intended.
 306 *
 307 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
 308 * is for accounted but unreclaimable and non-dma objects. All the other
 309 * kmem caches can have both accounted and unaccounted objects.
 310 */
 311enum kmalloc_cache_type {
 312        KMALLOC_NORMAL = 0,
 313#ifndef CONFIG_ZONE_DMA
 314        KMALLOC_DMA = KMALLOC_NORMAL,
 315#endif
 316#ifndef CONFIG_MEMCG_KMEM
 317        KMALLOC_CGROUP = KMALLOC_NORMAL,
 318#else
 319        KMALLOC_CGROUP,
 320#endif
 321        KMALLOC_RECLAIM,
 322#ifdef CONFIG_ZONE_DMA
 323        KMALLOC_DMA,
 324#endif
 325        NR_KMALLOC_TYPES
 326};
 327
 328#ifndef CONFIG_SLOB
 329extern struct kmem_cache *
 330kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
 331
 332/*
 333 * Define gfp bits that should not be set for KMALLOC_NORMAL.
 334 */
 335#define KMALLOC_NOT_NORMAL_BITS                                 \
 336        (__GFP_RECLAIMABLE |                                    \
 337        (IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |       \
 338        (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
 339
 340static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
 341{
 342        /*
 343         * The most common case is KMALLOC_NORMAL, so test for it
 344         * with a single branch for all the relevant flags.
 345         */
 346        if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
 347                return KMALLOC_NORMAL;
 348
 349        /*
 350         * At least one of the flags has to be set. Their priorities in
 351         * decreasing order are:
 352         *  1) __GFP_DMA
 353         *  2) __GFP_RECLAIMABLE
 354         *  3) __GFP_ACCOUNT
 355         */
 356        if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
 357                return KMALLOC_DMA;
 358        if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
 359                return KMALLOC_RECLAIM;
 360        else
 361                return KMALLOC_CGROUP;
 362}
 363
 364/*
 365 * Figure out which kmalloc slab an allocation of a certain size
 366 * belongs to.
 367 * 0 = zero alloc
 368 * 1 =  65 .. 96 bytes
 369 * 2 = 129 .. 192 bytes
 370 * n = 2^(n-1)+1 .. 2^n
 371 *
 372 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
 373 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
 374 * Callers where !size_is_constant should only be test modules, where runtime
 375 * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
 376 */
 377static __always_inline unsigned int __kmalloc_index(size_t size,
 378                                                    bool size_is_constant)
 379{
 380        if (!size)
 381                return 0;
 382
 383        if (size <= KMALLOC_MIN_SIZE)
 384                return KMALLOC_SHIFT_LOW;
 385
 386        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 387                return 1;
 388        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 389                return 2;
 390        if (size <=          8) return 3;
 391        if (size <=         16) return 4;
 392        if (size <=         32) return 5;
 393        if (size <=         64) return 6;
 394        if (size <=        128) return 7;
 395        if (size <=        256) return 8;
 396        if (size <=        512) return 9;
 397        if (size <=       1024) return 10;
 398        if (size <=   2 * 1024) return 11;
 399        if (size <=   4 * 1024) return 12;
 400        if (size <=   8 * 1024) return 13;
 401        if (size <=  16 * 1024) return 14;
 402        if (size <=  32 * 1024) return 15;
 403        if (size <=  64 * 1024) return 16;
 404        if (size <= 128 * 1024) return 17;
 405        if (size <= 256 * 1024) return 18;
 406        if (size <= 512 * 1024) return 19;
 407        if (size <= 1024 * 1024) return 20;
 408        if (size <=  2 * 1024 * 1024) return 21;
 409        if (size <=  4 * 1024 * 1024) return 22;
 410        if (size <=  8 * 1024 * 1024) return 23;
 411        if (size <=  16 * 1024 * 1024) return 24;
 412        if (size <=  32 * 1024 * 1024) return 25;
 413
 414        if ((IS_ENABLED(CONFIG_CC_IS_GCC) || CONFIG_CLANG_VERSION >= 110000)
 415            && !IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
 416                BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
 417        else
 418                BUG();
 419
 420        /* Will never be reached. Needed because the compiler may complain */
 421        return -1;
 422}
 423#define kmalloc_index(s) __kmalloc_index(s, true)
 424#endif /* !CONFIG_SLOB */
 425
 426void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
 427void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
 428void kmem_cache_free(struct kmem_cache *s, void *objp);
 429
 430/*
 431 * Bulk allocation and freeing operations. These are accelerated in an
 432 * allocator specific way to avoid taking locks repeatedly or building
 433 * metadata structures unnecessarily.
 434 *
 435 * Note that interrupts must be enabled when calling these functions.
 436 */
 437void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
 438int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
 439
 440/*
 441 * Caller must not use kfree_bulk() on memory not originally allocated
 442 * by kmalloc(), because the SLOB allocator cannot handle this.
 443 */
 444static __always_inline void kfree_bulk(size_t size, void **p)
 445{
 446        kmem_cache_free_bulk(NULL, size, p);
 447}
 448
 449#ifdef CONFIG_NUMA
 450void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
 451                                                         __alloc_size(1);
 452void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
 453                                                                         __malloc;
 454#else
 455static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
 456{
 457        return __kmalloc(size, flags);
 458}
 459
 460static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
 461{
 462        return kmem_cache_alloc(s, flags);
 463}
 464#endif
 465
 466#ifdef CONFIG_TRACING
 467extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
 468                                   __assume_slab_alignment __alloc_size(3);
 469
 470#ifdef CONFIG_NUMA
 471extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
 472                                         int node, size_t size) __assume_slab_alignment
 473                                                                __alloc_size(4);
 474#else
 475static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
 476                                                 gfp_t gfpflags, int node, size_t size)
 477{
 478        return kmem_cache_alloc_trace(s, gfpflags, size);
 479}
 480#endif /* CONFIG_NUMA */
 481
 482#else /* CONFIG_TRACING */
 483static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
 484                                                                    gfp_t flags, size_t size)
 485{
 486        void *ret = kmem_cache_alloc(s, flags);
 487
 488        ret = kasan_kmalloc(s, ret, size, flags);
 489        return ret;
 490}
 491
 492static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
 493                                                         int node, size_t size)
 494{
 495        void *ret = kmem_cache_alloc_node(s, gfpflags, node);
 496
 497        ret = kasan_kmalloc(s, ret, size, gfpflags);
 498        return ret;
 499}
 500#endif /* CONFIG_TRACING */
 501
 502extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
 503                                                                         __alloc_size(1);
 504
 505#ifdef CONFIG_TRACING
 506extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 507                                __assume_page_alignment __alloc_size(1);
 508#else
 509static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
 510                                                                 unsigned int order)
 511{
 512        return kmalloc_order(size, flags, order);
 513}
 514#endif
 515
 516static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
 517{
 518        unsigned int order = get_order(size);
 519        return kmalloc_order_trace(size, flags, order);
 520}
 521
 522/**
 523 * kmalloc - allocate memory
 524 * @size: how many bytes of memory are required.
 525 * @flags: the type of memory to allocate.
 526 *
 527 * kmalloc is the normal method of allocating memory
 528 * for objects smaller than page size in the kernel.
 529 *
 530 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
 531 * bytes. For @size of power of two bytes, the alignment is also guaranteed
 532 * to be at least to the size.
 533 *
 534 * The @flags argument may be one of the GFP flags defined at
 535 * include/linux/gfp.h and described at
 536 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
 537 *
 538 * The recommended usage of the @flags is described at
 539 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
 540 *
 541 * Below is a brief outline of the most useful GFP flags
 542 *
 543 * %GFP_KERNEL
 544 *      Allocate normal kernel ram. May sleep.
 545 *
 546 * %GFP_NOWAIT
 547 *      Allocation will not sleep.
 548 *
 549 * %GFP_ATOMIC
 550 *      Allocation will not sleep.  May use emergency pools.
 551 *
 552 * %GFP_HIGHUSER
 553 *      Allocate memory from high memory on behalf of user.
 554 *
 555 * Also it is possible to set different flags by OR'ing
 556 * in one or more of the following additional @flags:
 557 *
 558 * %__GFP_HIGH
 559 *      This allocation has high priority and may use emergency pools.
 560 *
 561 * %__GFP_NOFAIL
 562 *      Indicate that this allocation is in no way allowed to fail
 563 *      (think twice before using).
 564 *
 565 * %__GFP_NORETRY
 566 *      If memory is not immediately available,
 567 *      then give up at once.
 568 *
 569 * %__GFP_NOWARN
 570 *      If allocation fails, don't issue any warnings.
 571 *
 572 * %__GFP_RETRY_MAYFAIL
 573 *      Try really hard to succeed the allocation but fail
 574 *      eventually.
 575 */
 576static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
 577{
 578        if (__builtin_constant_p(size)) {
 579#ifndef CONFIG_SLOB
 580                unsigned int index;
 581#endif
 582                if (size > KMALLOC_MAX_CACHE_SIZE)
 583                        return kmalloc_large(size, flags);
 584#ifndef CONFIG_SLOB
 585                index = kmalloc_index(size);
 586
 587                if (!index)
 588                        return ZERO_SIZE_PTR;
 589
 590                return kmem_cache_alloc_trace(
 591                                kmalloc_caches[kmalloc_type(flags)][index],
 592                                flags, size);
 593#endif
 594        }
 595        return __kmalloc(size, flags);
 596}
 597
 598static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
 599{
 600#ifndef CONFIG_SLOB
 601        if (__builtin_constant_p(size) &&
 602                size <= KMALLOC_MAX_CACHE_SIZE) {
 603                unsigned int i = kmalloc_index(size);
 604
 605                if (!i)
 606                        return ZERO_SIZE_PTR;
 607
 608                return kmem_cache_alloc_node_trace(
 609                                kmalloc_caches[kmalloc_type(flags)][i],
 610                                                flags, node, size);
 611        }
 612#endif
 613        return __kmalloc_node(size, flags, node);
 614}
 615
 616/**
 617 * kmalloc_array - allocate memory for an array.
 618 * @n: number of elements.
 619 * @size: element size.
 620 * @flags: the type of memory to allocate (see kmalloc).
 621 */
 622static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 623{
 624        size_t bytes;
 625
 626        if (unlikely(check_mul_overflow(n, size, &bytes)))
 627                return NULL;
 628        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 629                return kmalloc(bytes, flags);
 630        return __kmalloc(bytes, flags);
 631}
 632
 633/**
 634 * krealloc_array - reallocate memory for an array.
 635 * @p: pointer to the memory chunk to reallocate
 636 * @new_n: new number of elements to alloc
 637 * @new_size: new size of a single member of the array
 638 * @flags: the type of memory to allocate (see kmalloc)
 639 */
 640static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
 641                                                                    size_t new_n,
 642                                                                    size_t new_size,
 643                                                                    gfp_t flags)
 644{
 645        size_t bytes;
 646
 647        if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
 648                return NULL;
 649
 650        return krealloc(p, bytes, flags);
 651}
 652
 653/**
 654 * kcalloc - allocate memory for an array. The memory is set to zero.
 655 * @n: number of elements.
 656 * @size: element size.
 657 * @flags: the type of memory to allocate (see kmalloc).
 658 */
 659static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
 660{
 661        return kmalloc_array(n, size, flags | __GFP_ZERO);
 662}
 663
 664/*
 665 * kmalloc_track_caller is a special version of kmalloc that records the
 666 * calling function of the routine calling it for slab leak tracking instead
 667 * of just the calling function (confusing, eh?).
 668 * It's useful when the call to kmalloc comes from a widely-used standard
 669 * allocator where we care about the real place the memory allocation
 670 * request comes from.
 671 */
 672extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
 673                                   __alloc_size(1);
 674#define kmalloc_track_caller(size, flags) \
 675        __kmalloc_track_caller(size, flags, _RET_IP_)
 676
 677static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
 678                                                          int node)
 679{
 680        size_t bytes;
 681
 682        if (unlikely(check_mul_overflow(n, size, &bytes)))
 683                return NULL;
 684        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 685                return kmalloc_node(bytes, flags, node);
 686        return __kmalloc_node(bytes, flags, node);
 687}
 688
 689static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
 690{
 691        return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
 692}
 693
 694
 695#ifdef CONFIG_NUMA
 696extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
 697                                         unsigned long caller) __alloc_size(1);
 698#define kmalloc_node_track_caller(size, flags, node) \
 699        __kmalloc_node_track_caller(size, flags, node, \
 700                        _RET_IP_)
 701
 702#else /* CONFIG_NUMA */
 703
 704#define kmalloc_node_track_caller(size, flags, node) \
 705        kmalloc_track_caller(size, flags)
 706
 707#endif /* CONFIG_NUMA */
 708
 709/*
 710 * Shortcuts
 711 */
 712static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 713{
 714        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 715}
 716
 717/**
 718 * kzalloc - allocate memory. The memory is set to zero.
 719 * @size: how many bytes of memory are required.
 720 * @flags: the type of memory to allocate (see kmalloc).
 721 */
 722static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
 723{
 724        return kmalloc(size, flags | __GFP_ZERO);
 725}
 726
 727/**
 728 * kzalloc_node - allocate zeroed memory from a particular memory node.
 729 * @size: how many bytes of memory are required.
 730 * @flags: the type of memory to allocate (see kmalloc).
 731 * @node: memory node from which to allocate
 732 */
 733static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
 734{
 735        return kmalloc_node(size, flags | __GFP_ZERO, node);
 736}
 737
 738extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
 739static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
 740{
 741        return kvmalloc_node(size, flags, NUMA_NO_NODE);
 742}
 743static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
 744{
 745        return kvmalloc_node(size, flags | __GFP_ZERO, node);
 746}
 747static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
 748{
 749        return kvmalloc(size, flags | __GFP_ZERO);
 750}
 751
 752static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 753{
 754        size_t bytes;
 755
 756        if (unlikely(check_mul_overflow(n, size, &bytes)))
 757                return NULL;
 758
 759        return kvmalloc(bytes, flags);
 760}
 761
 762static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
 763{
 764        return kvmalloc_array(n, size, flags | __GFP_ZERO);
 765}
 766
 767extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
 768                      __alloc_size(3);
 769extern void kvfree(const void *addr);
 770extern void kvfree_sensitive(const void *addr, size_t len);
 771
 772unsigned int kmem_cache_size(struct kmem_cache *s);
 773void __init kmem_cache_init_late(void);
 774
 775#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
 776int slab_prepare_cpu(unsigned int cpu);
 777int slab_dead_cpu(unsigned int cpu);
 778#else
 779#define slab_prepare_cpu        NULL
 780#define slab_dead_cpu           NULL
 781#endif
 782
 783#endif  /* _LINUX_SLAB_H */
 784