linux/include/net/sock.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the AF_INET socket handler.
   8 *
   9 * Version:     @(#)sock.h      1.0.4   05/13/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *              Alan Cox        :       Volatiles in skbuff pointers. See
  18 *                                      skbuff comments. May be overdone,
  19 *                                      better to prove they can be removed
  20 *                                      than the reverse.
  21 *              Alan Cox        :       Added a zapped field for tcp to note
  22 *                                      a socket is reset and must stay shut up
  23 *              Alan Cox        :       New fields for options
  24 *      Pauline Middelink       :       identd support
  25 *              Alan Cox        :       Eliminate low level recv/recvfrom
  26 *              David S. Miller :       New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  29 *                                      protinfo be just a void pointer, as the
  30 *                                      protocol specific parts were moved to
  31 *                                      respective headers and ipv4/v6, etc now
  32 *                                      use private slabcaches for its socks
  33 *              Pedro Hortas    :       New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>       /* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63#include <linux/indirect_call_wrapper.h>
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71#include <uapi/linux/socket.h>
  72
  73/*
  74 * This structure really needs to be cleaned up.
  75 * Most of it is for TCP, and not used by any of
  76 * the other protocols.
  77 */
  78
  79/* Define this to get the SOCK_DBG debugging facility. */
  80#define SOCK_DEBUGGING
  81#ifdef SOCK_DEBUGGING
  82#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  83                                        printk(KERN_DEBUG msg); } while (0)
  84#else
  85/* Validate arguments and do nothing */
  86static inline __printf(2, 3)
  87void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  88{
  89}
  90#endif
  91
  92/* This is the per-socket lock.  The spinlock provides a synchronization
  93 * between user contexts and software interrupt processing, whereas the
  94 * mini-semaphore synchronizes multiple users amongst themselves.
  95 */
  96typedef struct {
  97        spinlock_t              slock;
  98        int                     owned;
  99        wait_queue_head_t       wq;
 100        /*
 101         * We express the mutex-alike socket_lock semantics
 102         * to the lock validator by explicitly managing
 103         * the slock as a lock variant (in addition to
 104         * the slock itself):
 105         */
 106#ifdef CONFIG_DEBUG_LOCK_ALLOC
 107        struct lockdep_map dep_map;
 108#endif
 109} socket_lock_t;
 110
 111struct sock;
 112struct proto;
 113struct net;
 114
 115typedef __u32 __bitwise __portpair;
 116typedef __u64 __bitwise __addrpair;
 117
 118/**
 119 *      struct sock_common - minimal network layer representation of sockets
 120 *      @skc_daddr: Foreign IPv4 addr
 121 *      @skc_rcv_saddr: Bound local IPv4 addr
 122 *      @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 123 *      @skc_hash: hash value used with various protocol lookup tables
 124 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 125 *      @skc_dport: placeholder for inet_dport/tw_dport
 126 *      @skc_num: placeholder for inet_num/tw_num
 127 *      @skc_portpair: __u32 union of @skc_dport & @skc_num
 128 *      @skc_family: network address family
 129 *      @skc_state: Connection state
 130 *      @skc_reuse: %SO_REUSEADDR setting
 131 *      @skc_reuseport: %SO_REUSEPORT setting
 132 *      @skc_ipv6only: socket is IPV6 only
 133 *      @skc_net_refcnt: socket is using net ref counting
 134 *      @skc_bound_dev_if: bound device index if != 0
 135 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 136 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 137 *      @skc_prot: protocol handlers inside a network family
 138 *      @skc_net: reference to the network namespace of this socket
 139 *      @skc_v6_daddr: IPV6 destination address
 140 *      @skc_v6_rcv_saddr: IPV6 source address
 141 *      @skc_cookie: socket's cookie value
 142 *      @skc_node: main hash linkage for various protocol lookup tables
 143 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 144 *      @skc_tx_queue_mapping: tx queue number for this connection
 145 *      @skc_rx_queue_mapping: rx queue number for this connection
 146 *      @skc_flags: place holder for sk_flags
 147 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 148 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 149 *      @skc_listener: connection request listener socket (aka rsk_listener)
 150 *              [union with @skc_flags]
 151 *      @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 152 *              [union with @skc_flags]
 153 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 154 *      @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 155 *              [union with @skc_incoming_cpu]
 156 *      @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 157 *              [union with @skc_incoming_cpu]
 158 *      @skc_refcnt: reference count
 159 *
 160 *      This is the minimal network layer representation of sockets, the header
 161 *      for struct sock and struct inet_timewait_sock.
 162 */
 163struct sock_common {
 164        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 165         * address on 64bit arches : cf INET_MATCH()
 166         */
 167        union {
 168                __addrpair      skc_addrpair;
 169                struct {
 170                        __be32  skc_daddr;
 171                        __be32  skc_rcv_saddr;
 172                };
 173        };
 174        union  {
 175                unsigned int    skc_hash;
 176                __u16           skc_u16hashes[2];
 177        };
 178        /* skc_dport && skc_num must be grouped as well */
 179        union {
 180                __portpair      skc_portpair;
 181                struct {
 182                        __be16  skc_dport;
 183                        __u16   skc_num;
 184                };
 185        };
 186
 187        unsigned short          skc_family;
 188        volatile unsigned char  skc_state;
 189        unsigned char           skc_reuse:4;
 190        unsigned char           skc_reuseport:1;
 191        unsigned char           skc_ipv6only:1;
 192        unsigned char           skc_net_refcnt:1;
 193        int                     skc_bound_dev_if;
 194        union {
 195                struct hlist_node       skc_bind_node;
 196                struct hlist_node       skc_portaddr_node;
 197        };
 198        struct proto            *skc_prot;
 199        possible_net_t          skc_net;
 200
 201#if IS_ENABLED(CONFIG_IPV6)
 202        struct in6_addr         skc_v6_daddr;
 203        struct in6_addr         skc_v6_rcv_saddr;
 204#endif
 205
 206        atomic64_t              skc_cookie;
 207
 208        /* following fields are padding to force
 209         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 210         * assuming IPV6 is enabled. We use this padding differently
 211         * for different kind of 'sockets'
 212         */
 213        union {
 214                unsigned long   skc_flags;
 215                struct sock     *skc_listener; /* request_sock */
 216                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 217        };
 218        /*
 219         * fields between dontcopy_begin/dontcopy_end
 220         * are not copied in sock_copy()
 221         */
 222        /* private: */
 223        int                     skc_dontcopy_begin[0];
 224        /* public: */
 225        union {
 226                struct hlist_node       skc_node;
 227                struct hlist_nulls_node skc_nulls_node;
 228        };
 229        unsigned short          skc_tx_queue_mapping;
 230#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 231        unsigned short          skc_rx_queue_mapping;
 232#endif
 233        union {
 234                int             skc_incoming_cpu;
 235                u32             skc_rcv_wnd;
 236                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 237        };
 238
 239        refcount_t              skc_refcnt;
 240        /* private: */
 241        int                     skc_dontcopy_end[0];
 242        union {
 243                u32             skc_rxhash;
 244                u32             skc_window_clamp;
 245                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 246        };
 247        /* public: */
 248};
 249
 250struct bpf_local_storage;
 251
 252/**
 253  *     struct sock - network layer representation of sockets
 254  *     @__sk_common: shared layout with inet_timewait_sock
 255  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 256  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 257  *     @sk_lock:       synchronizer
 258  *     @sk_kern_sock: True if sock is using kernel lock classes
 259  *     @sk_rcvbuf: size of receive buffer in bytes
 260  *     @sk_wq: sock wait queue and async head
 261  *     @sk_rx_dst: receive input route used by early demux
 262  *     @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
 263  *     @sk_rx_dst_cookie: cookie for @sk_rx_dst
 264  *     @sk_dst_cache: destination cache
 265  *     @sk_dst_pending_confirm: need to confirm neighbour
 266  *     @sk_policy: flow policy
 267  *     @sk_receive_queue: incoming packets
 268  *     @sk_wmem_alloc: transmit queue bytes committed
 269  *     @sk_tsq_flags: TCP Small Queues flags
 270  *     @sk_write_queue: Packet sending queue
 271  *     @sk_omem_alloc: "o" is "option" or "other"
 272  *     @sk_wmem_queued: persistent queue size
 273  *     @sk_forward_alloc: space allocated forward
 274  *     @sk_reserved_mem: space reserved and non-reclaimable for the socket
 275  *     @sk_napi_id: id of the last napi context to receive data for sk
 276  *     @sk_ll_usec: usecs to busypoll when there is no data
 277  *     @sk_allocation: allocation mode
 278  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 279  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 280  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 281  *     @sk_sndbuf: size of send buffer in bytes
 282  *     @__sk_flags_offset: empty field used to determine location of bitfield
 283  *     @sk_padding: unused element for alignment
 284  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 285  *     @sk_no_check_rx: allow zero checksum in RX packets
 286  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 287  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 288  *     @sk_route_forced_caps: static, forced route capabilities
 289  *             (set in tcp_init_sock())
 290  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 291  *     @sk_gso_max_size: Maximum GSO segment size to build
 292  *     @sk_gso_max_segs: Maximum number of GSO segments
 293  *     @sk_pacing_shift: scaling factor for TCP Small Queues
 294  *     @sk_lingertime: %SO_LINGER l_linger setting
 295  *     @sk_backlog: always used with the per-socket spinlock held
 296  *     @sk_callback_lock: used with the callbacks in the end of this struct
 297  *     @sk_error_queue: rarely used
 298  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 299  *                       IPV6_ADDRFORM for instance)
 300  *     @sk_err: last error
 301  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 302  *                   persistent failure not just 'timed out'
 303  *     @sk_drops: raw/udp drops counter
 304  *     @sk_ack_backlog: current listen backlog
 305  *     @sk_max_ack_backlog: listen backlog set in listen()
 306  *     @sk_uid: user id of owner
 307  *     @sk_prefer_busy_poll: prefer busypolling over softirq processing
 308  *     @sk_busy_poll_budget: napi processing budget when busypolling
 309  *     @sk_priority: %SO_PRIORITY setting
 310  *     @sk_type: socket type (%SOCK_STREAM, etc)
 311  *     @sk_protocol: which protocol this socket belongs in this network family
 312  *     @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
 313  *     @sk_peer_pid: &struct pid for this socket's peer
 314  *     @sk_peer_cred: %SO_PEERCRED setting
 315  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 316  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 317  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 318  *     @sk_txhash: computed flow hash for use on transmit
 319  *     @sk_filter: socket filtering instructions
 320  *     @sk_timer: sock cleanup timer
 321  *     @sk_stamp: time stamp of last packet received
 322  *     @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 323  *     @sk_tsflags: SO_TIMESTAMPING flags
 324  *     @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
 325  *                   for timestamping
 326  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 327  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 328  *     @sk_socket: Identd and reporting IO signals
 329  *     @sk_user_data: RPC layer private data
 330  *     @sk_frag: cached page frag
 331  *     @sk_peek_off: current peek_offset value
 332  *     @sk_send_head: front of stuff to transmit
 333  *     @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 334  *     @sk_security: used by security modules
 335  *     @sk_mark: generic packet mark
 336  *     @sk_cgrp_data: cgroup data for this cgroup
 337  *     @sk_memcg: this socket's memory cgroup association
 338  *     @sk_write_pending: a write to stream socket waits to start
 339  *     @sk_state_change: callback to indicate change in the state of the sock
 340  *     @sk_data_ready: callback to indicate there is data to be processed
 341  *     @sk_write_space: callback to indicate there is bf sending space available
 342  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 343  *     @sk_backlog_rcv: callback to process the backlog
 344  *     @sk_validate_xmit_skb: ptr to an optional validate function
 345  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 346  *     @sk_reuseport_cb: reuseport group container
 347  *     @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 348  *     @sk_rcu: used during RCU grace period
 349  *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 350  *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 351  *     @sk_txtime_report_errors: set report errors mode for SO_TXTIME
 352  *     @sk_txtime_unused: unused txtime flags
 353  */
 354struct sock {
 355        /*
 356         * Now struct inet_timewait_sock also uses sock_common, so please just
 357         * don't add nothing before this first member (__sk_common) --acme
 358         */
 359        struct sock_common      __sk_common;
 360#define sk_node                 __sk_common.skc_node
 361#define sk_nulls_node           __sk_common.skc_nulls_node
 362#define sk_refcnt               __sk_common.skc_refcnt
 363#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 364#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 365#define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
 366#endif
 367
 368#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 369#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 370#define sk_hash                 __sk_common.skc_hash
 371#define sk_portpair             __sk_common.skc_portpair
 372#define sk_num                  __sk_common.skc_num
 373#define sk_dport                __sk_common.skc_dport
 374#define sk_addrpair             __sk_common.skc_addrpair
 375#define sk_daddr                __sk_common.skc_daddr
 376#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 377#define sk_family               __sk_common.skc_family
 378#define sk_state                __sk_common.skc_state
 379#define sk_reuse                __sk_common.skc_reuse
 380#define sk_reuseport            __sk_common.skc_reuseport
 381#define sk_ipv6only             __sk_common.skc_ipv6only
 382#define sk_net_refcnt           __sk_common.skc_net_refcnt
 383#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 384#define sk_bind_node            __sk_common.skc_bind_node
 385#define sk_prot                 __sk_common.skc_prot
 386#define sk_net                  __sk_common.skc_net
 387#define sk_v6_daddr             __sk_common.skc_v6_daddr
 388#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 389#define sk_cookie               __sk_common.skc_cookie
 390#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 391#define sk_flags                __sk_common.skc_flags
 392#define sk_rxhash               __sk_common.skc_rxhash
 393
 394        socket_lock_t           sk_lock;
 395        atomic_t                sk_drops;
 396        int                     sk_rcvlowat;
 397        struct sk_buff_head     sk_error_queue;
 398        struct sk_buff_head     sk_receive_queue;
 399        /*
 400         * The backlog queue is special, it is always used with
 401         * the per-socket spinlock held and requires low latency
 402         * access. Therefore we special case it's implementation.
 403         * Note : rmem_alloc is in this structure to fill a hole
 404         * on 64bit arches, not because its logically part of
 405         * backlog.
 406         */
 407        struct {
 408                atomic_t        rmem_alloc;
 409                int             len;
 410                struct sk_buff  *head;
 411                struct sk_buff  *tail;
 412        } sk_backlog;
 413#define sk_rmem_alloc sk_backlog.rmem_alloc
 414
 415        int                     sk_forward_alloc;
 416        u32                     sk_reserved_mem;
 417#ifdef CONFIG_NET_RX_BUSY_POLL
 418        unsigned int            sk_ll_usec;
 419        /* ===== mostly read cache line ===== */
 420        unsigned int            sk_napi_id;
 421#endif
 422        int                     sk_rcvbuf;
 423
 424        struct sk_filter __rcu  *sk_filter;
 425        union {
 426                struct socket_wq __rcu  *sk_wq;
 427                /* private: */
 428                struct socket_wq        *sk_wq_raw;
 429                /* public: */
 430        };
 431#ifdef CONFIG_XFRM
 432        struct xfrm_policy __rcu *sk_policy[2];
 433#endif
 434        struct dst_entry __rcu  *sk_rx_dst;
 435        int                     sk_rx_dst_ifindex;
 436        u32                     sk_rx_dst_cookie;
 437
 438        struct dst_entry __rcu  *sk_dst_cache;
 439        atomic_t                sk_omem_alloc;
 440        int                     sk_sndbuf;
 441
 442        /* ===== cache line for TX ===== */
 443        int                     sk_wmem_queued;
 444        refcount_t              sk_wmem_alloc;
 445        unsigned long           sk_tsq_flags;
 446        union {
 447                struct sk_buff  *sk_send_head;
 448                struct rb_root  tcp_rtx_queue;
 449        };
 450        struct sk_buff_head     sk_write_queue;
 451        __s32                   sk_peek_off;
 452        int                     sk_write_pending;
 453        __u32                   sk_dst_pending_confirm;
 454        u32                     sk_pacing_status; /* see enum sk_pacing */
 455        long                    sk_sndtimeo;
 456        struct timer_list       sk_timer;
 457        __u32                   sk_priority;
 458        __u32                   sk_mark;
 459        unsigned long           sk_pacing_rate; /* bytes per second */
 460        unsigned long           sk_max_pacing_rate;
 461        struct page_frag        sk_frag;
 462        netdev_features_t       sk_route_caps;
 463        netdev_features_t       sk_route_nocaps;
 464        netdev_features_t       sk_route_forced_caps;
 465        int                     sk_gso_type;
 466        unsigned int            sk_gso_max_size;
 467        gfp_t                   sk_allocation;
 468        __u32                   sk_txhash;
 469
 470        /*
 471         * Because of non atomicity rules, all
 472         * changes are protected by socket lock.
 473         */
 474        u8                      sk_padding : 1,
 475                                sk_kern_sock : 1,
 476                                sk_no_check_tx : 1,
 477                                sk_no_check_rx : 1,
 478                                sk_userlocks : 4;
 479        u8                      sk_pacing_shift;
 480        u16                     sk_type;
 481        u16                     sk_protocol;
 482        u16                     sk_gso_max_segs;
 483        unsigned long           sk_lingertime;
 484        struct proto            *sk_prot_creator;
 485        rwlock_t                sk_callback_lock;
 486        int                     sk_err,
 487                                sk_err_soft;
 488        u32                     sk_ack_backlog;
 489        u32                     sk_max_ack_backlog;
 490        kuid_t                  sk_uid;
 491#ifdef CONFIG_NET_RX_BUSY_POLL
 492        u8                      sk_prefer_busy_poll;
 493        u16                     sk_busy_poll_budget;
 494#endif
 495        spinlock_t              sk_peer_lock;
 496        struct pid              *sk_peer_pid;
 497        const struct cred       *sk_peer_cred;
 498
 499        long                    sk_rcvtimeo;
 500        ktime_t                 sk_stamp;
 501#if BITS_PER_LONG==32
 502        seqlock_t               sk_stamp_seq;
 503#endif
 504        u16                     sk_tsflags;
 505        int                     sk_bind_phc;
 506        u8                      sk_shutdown;
 507        u32                     sk_tskey;
 508        atomic_t                sk_zckey;
 509
 510        u8                      sk_clockid;
 511        u8                      sk_txtime_deadline_mode : 1,
 512                                sk_txtime_report_errors : 1,
 513                                sk_txtime_unused : 6;
 514
 515        struct socket           *sk_socket;
 516        void                    *sk_user_data;
 517#ifdef CONFIG_SECURITY
 518        void                    *sk_security;
 519#endif
 520        struct sock_cgroup_data sk_cgrp_data;
 521        struct mem_cgroup       *sk_memcg;
 522        void                    (*sk_state_change)(struct sock *sk);
 523        void                    (*sk_data_ready)(struct sock *sk);
 524        void                    (*sk_write_space)(struct sock *sk);
 525        void                    (*sk_error_report)(struct sock *sk);
 526        int                     (*sk_backlog_rcv)(struct sock *sk,
 527                                                  struct sk_buff *skb);
 528#ifdef CONFIG_SOCK_VALIDATE_XMIT
 529        struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
 530                                                        struct net_device *dev,
 531                                                        struct sk_buff *skb);
 532#endif
 533        void                    (*sk_destruct)(struct sock *sk);
 534        struct sock_reuseport __rcu     *sk_reuseport_cb;
 535#ifdef CONFIG_BPF_SYSCALL
 536        struct bpf_local_storage __rcu  *sk_bpf_storage;
 537#endif
 538        struct rcu_head         sk_rcu;
 539};
 540
 541enum sk_pacing {
 542        SK_PACING_NONE          = 0,
 543        SK_PACING_NEEDED        = 1,
 544        SK_PACING_FQ            = 2,
 545};
 546
 547/* Pointer stored in sk_user_data might not be suitable for copying
 548 * when cloning the socket. For instance, it can point to a reference
 549 * counted object. sk_user_data bottom bit is set if pointer must not
 550 * be copied.
 551 */
 552#define SK_USER_DATA_NOCOPY     1UL
 553#define SK_USER_DATA_BPF        2UL     /* Managed by BPF */
 554#define SK_USER_DATA_PTRMASK    ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 555
 556/**
 557 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 558 * @sk: socket
 559 */
 560static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 561{
 562        return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 563}
 564
 565#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 566
 567#define rcu_dereference_sk_user_data(sk)                                \
 568({                                                                      \
 569        void *__tmp = rcu_dereference(__sk_user_data((sk)));            \
 570        (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);              \
 571})
 572#define rcu_assign_sk_user_data(sk, ptr)                                \
 573({                                                                      \
 574        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 575        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 576        rcu_assign_pointer(__sk_user_data((sk)), __tmp);                \
 577})
 578#define rcu_assign_sk_user_data_nocopy(sk, ptr)                         \
 579({                                                                      \
 580        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 581        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 582        rcu_assign_pointer(__sk_user_data((sk)),                        \
 583                           __tmp | SK_USER_DATA_NOCOPY);                \
 584})
 585
 586/*
 587 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 588 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 589 * on a socket means that the socket will reuse everybody else's port
 590 * without looking at the other's sk_reuse value.
 591 */
 592
 593#define SK_NO_REUSE     0
 594#define SK_CAN_REUSE    1
 595#define SK_FORCE_REUSE  2
 596
 597int sk_set_peek_off(struct sock *sk, int val);
 598
 599static inline int sk_peek_offset(struct sock *sk, int flags)
 600{
 601        if (unlikely(flags & MSG_PEEK)) {
 602                return READ_ONCE(sk->sk_peek_off);
 603        }
 604
 605        return 0;
 606}
 607
 608static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 609{
 610        s32 off = READ_ONCE(sk->sk_peek_off);
 611
 612        if (unlikely(off >= 0)) {
 613                off = max_t(s32, off - val, 0);
 614                WRITE_ONCE(sk->sk_peek_off, off);
 615        }
 616}
 617
 618static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 619{
 620        sk_peek_offset_bwd(sk, -val);
 621}
 622
 623/*
 624 * Hashed lists helper routines
 625 */
 626static inline struct sock *sk_entry(const struct hlist_node *node)
 627{
 628        return hlist_entry(node, struct sock, sk_node);
 629}
 630
 631static inline struct sock *__sk_head(const struct hlist_head *head)
 632{
 633        return hlist_entry(head->first, struct sock, sk_node);
 634}
 635
 636static inline struct sock *sk_head(const struct hlist_head *head)
 637{
 638        return hlist_empty(head) ? NULL : __sk_head(head);
 639}
 640
 641static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 642{
 643        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 644}
 645
 646static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 647{
 648        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 649}
 650
 651static inline struct sock *sk_next(const struct sock *sk)
 652{
 653        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 654}
 655
 656static inline struct sock *sk_nulls_next(const struct sock *sk)
 657{
 658        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 659                hlist_nulls_entry(sk->sk_nulls_node.next,
 660                                  struct sock, sk_nulls_node) :
 661                NULL;
 662}
 663
 664static inline bool sk_unhashed(const struct sock *sk)
 665{
 666        return hlist_unhashed(&sk->sk_node);
 667}
 668
 669static inline bool sk_hashed(const struct sock *sk)
 670{
 671        return !sk_unhashed(sk);
 672}
 673
 674static inline void sk_node_init(struct hlist_node *node)
 675{
 676        node->pprev = NULL;
 677}
 678
 679static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 680{
 681        node->pprev = NULL;
 682}
 683
 684static inline void __sk_del_node(struct sock *sk)
 685{
 686        __hlist_del(&sk->sk_node);
 687}
 688
 689/* NB: equivalent to hlist_del_init_rcu */
 690static inline bool __sk_del_node_init(struct sock *sk)
 691{
 692        if (sk_hashed(sk)) {
 693                __sk_del_node(sk);
 694                sk_node_init(&sk->sk_node);
 695                return true;
 696        }
 697        return false;
 698}
 699
 700/* Grab socket reference count. This operation is valid only
 701   when sk is ALREADY grabbed f.e. it is found in hash table
 702   or a list and the lookup is made under lock preventing hash table
 703   modifications.
 704 */
 705
 706static __always_inline void sock_hold(struct sock *sk)
 707{
 708        refcount_inc(&sk->sk_refcnt);
 709}
 710
 711/* Ungrab socket in the context, which assumes that socket refcnt
 712   cannot hit zero, f.e. it is true in context of any socketcall.
 713 */
 714static __always_inline void __sock_put(struct sock *sk)
 715{
 716        refcount_dec(&sk->sk_refcnt);
 717}
 718
 719static inline bool sk_del_node_init(struct sock *sk)
 720{
 721        bool rc = __sk_del_node_init(sk);
 722
 723        if (rc) {
 724                /* paranoid for a while -acme */
 725                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 726                __sock_put(sk);
 727        }
 728        return rc;
 729}
 730#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 731
 732static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 733{
 734        if (sk_hashed(sk)) {
 735                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 736                return true;
 737        }
 738        return false;
 739}
 740
 741static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 742{
 743        bool rc = __sk_nulls_del_node_init_rcu(sk);
 744
 745        if (rc) {
 746                /* paranoid for a while -acme */
 747                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 748                __sock_put(sk);
 749        }
 750        return rc;
 751}
 752
 753static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 754{
 755        hlist_add_head(&sk->sk_node, list);
 756}
 757
 758static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 759{
 760        sock_hold(sk);
 761        __sk_add_node(sk, list);
 762}
 763
 764static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 765{
 766        sock_hold(sk);
 767        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 768            sk->sk_family == AF_INET6)
 769                hlist_add_tail_rcu(&sk->sk_node, list);
 770        else
 771                hlist_add_head_rcu(&sk->sk_node, list);
 772}
 773
 774static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 775{
 776        sock_hold(sk);
 777        hlist_add_tail_rcu(&sk->sk_node, list);
 778}
 779
 780static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 781{
 782        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 783}
 784
 785static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 786{
 787        hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 788}
 789
 790static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 791{
 792        sock_hold(sk);
 793        __sk_nulls_add_node_rcu(sk, list);
 794}
 795
 796static inline void __sk_del_bind_node(struct sock *sk)
 797{
 798        __hlist_del(&sk->sk_bind_node);
 799}
 800
 801static inline void sk_add_bind_node(struct sock *sk,
 802                                        struct hlist_head *list)
 803{
 804        hlist_add_head(&sk->sk_bind_node, list);
 805}
 806
 807#define sk_for_each(__sk, list) \
 808        hlist_for_each_entry(__sk, list, sk_node)
 809#define sk_for_each_rcu(__sk, list) \
 810        hlist_for_each_entry_rcu(__sk, list, sk_node)
 811#define sk_nulls_for_each(__sk, node, list) \
 812        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 813#define sk_nulls_for_each_rcu(__sk, node, list) \
 814        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 815#define sk_for_each_from(__sk) \
 816        hlist_for_each_entry_from(__sk, sk_node)
 817#define sk_nulls_for_each_from(__sk, node) \
 818        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 819                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 820#define sk_for_each_safe(__sk, tmp, list) \
 821        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 822#define sk_for_each_bound(__sk, list) \
 823        hlist_for_each_entry(__sk, list, sk_bind_node)
 824
 825/**
 826 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 827 * @tpos:       the type * to use as a loop cursor.
 828 * @pos:        the &struct hlist_node to use as a loop cursor.
 829 * @head:       the head for your list.
 830 * @offset:     offset of hlist_node within the struct.
 831 *
 832 */
 833#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 834        for (pos = rcu_dereference(hlist_first_rcu(head));                     \
 835             pos != NULL &&                                                    \
 836                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 837             pos = rcu_dereference(hlist_next_rcu(pos)))
 838
 839static inline struct user_namespace *sk_user_ns(struct sock *sk)
 840{
 841        /* Careful only use this in a context where these parameters
 842         * can not change and must all be valid, such as recvmsg from
 843         * userspace.
 844         */
 845        return sk->sk_socket->file->f_cred->user_ns;
 846}
 847
 848/* Sock flags */
 849enum sock_flags {
 850        SOCK_DEAD,
 851        SOCK_DONE,
 852        SOCK_URGINLINE,
 853        SOCK_KEEPOPEN,
 854        SOCK_LINGER,
 855        SOCK_DESTROY,
 856        SOCK_BROADCAST,
 857        SOCK_TIMESTAMP,
 858        SOCK_ZAPPED,
 859        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 860        SOCK_DBG, /* %SO_DEBUG setting */
 861        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 862        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 863        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 864        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 865        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 866        SOCK_FASYNC, /* fasync() active */
 867        SOCK_RXQ_OVFL,
 868        SOCK_ZEROCOPY, /* buffers from userspace */
 869        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 870        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 871                     * Will use last 4 bytes of packet sent from
 872                     * user-space instead.
 873                     */
 874        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 875        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 876        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 877        SOCK_TXTIME,
 878        SOCK_XDP, /* XDP is attached */
 879        SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 880};
 881
 882#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 883
 884static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 885{
 886        nsk->sk_flags = osk->sk_flags;
 887}
 888
 889static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 890{
 891        __set_bit(flag, &sk->sk_flags);
 892}
 893
 894static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 895{
 896        __clear_bit(flag, &sk->sk_flags);
 897}
 898
 899static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 900                                     int valbool)
 901{
 902        if (valbool)
 903                sock_set_flag(sk, bit);
 904        else
 905                sock_reset_flag(sk, bit);
 906}
 907
 908static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 909{
 910        return test_bit(flag, &sk->sk_flags);
 911}
 912
 913#ifdef CONFIG_NET
 914DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 915static inline int sk_memalloc_socks(void)
 916{
 917        return static_branch_unlikely(&memalloc_socks_key);
 918}
 919
 920void __receive_sock(struct file *file);
 921#else
 922
 923static inline int sk_memalloc_socks(void)
 924{
 925        return 0;
 926}
 927
 928static inline void __receive_sock(struct file *file)
 929{ }
 930#endif
 931
 932static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 933{
 934        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 935}
 936
 937static inline void sk_acceptq_removed(struct sock *sk)
 938{
 939        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 940}
 941
 942static inline void sk_acceptq_added(struct sock *sk)
 943{
 944        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 945}
 946
 947/* Note: If you think the test should be:
 948 *      return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
 949 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
 950 */
 951static inline bool sk_acceptq_is_full(const struct sock *sk)
 952{
 953        return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 954}
 955
 956/*
 957 * Compute minimal free write space needed to queue new packets.
 958 */
 959static inline int sk_stream_min_wspace(const struct sock *sk)
 960{
 961        return READ_ONCE(sk->sk_wmem_queued) >> 1;
 962}
 963
 964static inline int sk_stream_wspace(const struct sock *sk)
 965{
 966        return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 967}
 968
 969static inline void sk_wmem_queued_add(struct sock *sk, int val)
 970{
 971        WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 972}
 973
 974void sk_stream_write_space(struct sock *sk);
 975
 976/* OOB backlog add */
 977static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 978{
 979        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 980        skb_dst_force(skb);
 981
 982        if (!sk->sk_backlog.tail)
 983                WRITE_ONCE(sk->sk_backlog.head, skb);
 984        else
 985                sk->sk_backlog.tail->next = skb;
 986
 987        WRITE_ONCE(sk->sk_backlog.tail, skb);
 988        skb->next = NULL;
 989}
 990
 991/*
 992 * Take into account size of receive queue and backlog queue
 993 * Do not take into account this skb truesize,
 994 * to allow even a single big packet to come.
 995 */
 996static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 997{
 998        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 999
1000        return qsize > limit;
1001}
1002
1003/* The per-socket spinlock must be held here. */
1004static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1005                                              unsigned int limit)
1006{
1007        if (sk_rcvqueues_full(sk, limit))
1008                return -ENOBUFS;
1009
1010        /*
1011         * If the skb was allocated from pfmemalloc reserves, only
1012         * allow SOCK_MEMALLOC sockets to use it as this socket is
1013         * helping free memory
1014         */
1015        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1016                return -ENOMEM;
1017
1018        __sk_add_backlog(sk, skb);
1019        sk->sk_backlog.len += skb->truesize;
1020        return 0;
1021}
1022
1023int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1024
1025static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1026{
1027        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1028                return __sk_backlog_rcv(sk, skb);
1029
1030        return sk->sk_backlog_rcv(sk, skb);
1031}
1032
1033static inline void sk_incoming_cpu_update(struct sock *sk)
1034{
1035        int cpu = raw_smp_processor_id();
1036
1037        if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1038                WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1039}
1040
1041static inline void sock_rps_record_flow_hash(__u32 hash)
1042{
1043#ifdef CONFIG_RPS
1044        struct rps_sock_flow_table *sock_flow_table;
1045
1046        rcu_read_lock();
1047        sock_flow_table = rcu_dereference(rps_sock_flow_table);
1048        rps_record_sock_flow(sock_flow_table, hash);
1049        rcu_read_unlock();
1050#endif
1051}
1052
1053static inline void sock_rps_record_flow(const struct sock *sk)
1054{
1055#ifdef CONFIG_RPS
1056        if (static_branch_unlikely(&rfs_needed)) {
1057                /* Reading sk->sk_rxhash might incur an expensive cache line
1058                 * miss.
1059                 *
1060                 * TCP_ESTABLISHED does cover almost all states where RFS
1061                 * might be useful, and is cheaper [1] than testing :
1062                 *      IPv4: inet_sk(sk)->inet_daddr
1063                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1064                 * OR   an additional socket flag
1065                 * [1] : sk_state and sk_prot are in the same cache line.
1066                 */
1067                if (sk->sk_state == TCP_ESTABLISHED)
1068                        sock_rps_record_flow_hash(sk->sk_rxhash);
1069        }
1070#endif
1071}
1072
1073static inline void sock_rps_save_rxhash(struct sock *sk,
1074                                        const struct sk_buff *skb)
1075{
1076#ifdef CONFIG_RPS
1077        if (unlikely(sk->sk_rxhash != skb->hash))
1078                sk->sk_rxhash = skb->hash;
1079#endif
1080}
1081
1082static inline void sock_rps_reset_rxhash(struct sock *sk)
1083{
1084#ifdef CONFIG_RPS
1085        sk->sk_rxhash = 0;
1086#endif
1087}
1088
1089#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
1090        ({      int __rc;                                               \
1091                release_sock(__sk);                                     \
1092                __rc = __condition;                                     \
1093                if (!__rc) {                                            \
1094                        *(__timeo) = wait_woken(__wait,                 \
1095                                                TASK_INTERRUPTIBLE,     \
1096                                                *(__timeo));            \
1097                }                                                       \
1098                sched_annotate_sleep();                                 \
1099                lock_sock(__sk);                                        \
1100                __rc = __condition;                                     \
1101                __rc;                                                   \
1102        })
1103
1104int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1105int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1106void sk_stream_wait_close(struct sock *sk, long timeo_p);
1107int sk_stream_error(struct sock *sk, int flags, int err);
1108void sk_stream_kill_queues(struct sock *sk);
1109void sk_set_memalloc(struct sock *sk);
1110void sk_clear_memalloc(struct sock *sk);
1111
1112void __sk_flush_backlog(struct sock *sk);
1113
1114static inline bool sk_flush_backlog(struct sock *sk)
1115{
1116        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1117                __sk_flush_backlog(sk);
1118                return true;
1119        }
1120        return false;
1121}
1122
1123int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1124
1125struct request_sock_ops;
1126struct timewait_sock_ops;
1127struct inet_hashinfo;
1128struct raw_hashinfo;
1129struct smc_hashinfo;
1130struct module;
1131struct sk_psock;
1132
1133/*
1134 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1135 * un-modified. Special care is taken when initializing object to zero.
1136 */
1137static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1138{
1139        if (offsetof(struct sock, sk_node.next) != 0)
1140                memset(sk, 0, offsetof(struct sock, sk_node.next));
1141        memset(&sk->sk_node.pprev, 0,
1142               size - offsetof(struct sock, sk_node.pprev));
1143}
1144
1145/* Networking protocol blocks we attach to sockets.
1146 * socket layer -> transport layer interface
1147 */
1148struct proto {
1149        void                    (*close)(struct sock *sk,
1150                                        long timeout);
1151        int                     (*pre_connect)(struct sock *sk,
1152                                        struct sockaddr *uaddr,
1153                                        int addr_len);
1154        int                     (*connect)(struct sock *sk,
1155                                        struct sockaddr *uaddr,
1156                                        int addr_len);
1157        int                     (*disconnect)(struct sock *sk, int flags);
1158
1159        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1160                                          bool kern);
1161
1162        int                     (*ioctl)(struct sock *sk, int cmd,
1163                                         unsigned long arg);
1164        int                     (*init)(struct sock *sk);
1165        void                    (*destroy)(struct sock *sk);
1166        void                    (*shutdown)(struct sock *sk, int how);
1167        int                     (*setsockopt)(struct sock *sk, int level,
1168                                        int optname, sockptr_t optval,
1169                                        unsigned int optlen);
1170        int                     (*getsockopt)(struct sock *sk, int level,
1171                                        int optname, char __user *optval,
1172                                        int __user *option);
1173        void                    (*keepalive)(struct sock *sk, int valbool);
1174#ifdef CONFIG_COMPAT
1175        int                     (*compat_ioctl)(struct sock *sk,
1176                                        unsigned int cmd, unsigned long arg);
1177#endif
1178        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1179                                           size_t len);
1180        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1181                                           size_t len, int noblock, int flags,
1182                                           int *addr_len);
1183        int                     (*sendpage)(struct sock *sk, struct page *page,
1184                                        int offset, size_t size, int flags);
1185        int                     (*bind)(struct sock *sk,
1186                                        struct sockaddr *addr, int addr_len);
1187        int                     (*bind_add)(struct sock *sk,
1188                                        struct sockaddr *addr, int addr_len);
1189
1190        int                     (*backlog_rcv) (struct sock *sk,
1191                                                struct sk_buff *skb);
1192        bool                    (*bpf_bypass_getsockopt)(int level,
1193                                                         int optname);
1194
1195        void            (*release_cb)(struct sock *sk);
1196
1197        /* Keeping track of sk's, looking them up, and port selection methods. */
1198        int                     (*hash)(struct sock *sk);
1199        void                    (*unhash)(struct sock *sk);
1200        void                    (*rehash)(struct sock *sk);
1201        int                     (*get_port)(struct sock *sk, unsigned short snum);
1202#ifdef CONFIG_BPF_SYSCALL
1203        int                     (*psock_update_sk_prot)(struct sock *sk,
1204                                                        struct sk_psock *psock,
1205                                                        bool restore);
1206#endif
1207
1208        /* Keeping track of sockets in use */
1209#ifdef CONFIG_PROC_FS
1210        unsigned int            inuse_idx;
1211#endif
1212
1213        int                     (*forward_alloc_get)(const struct sock *sk);
1214
1215        bool                    (*stream_memory_free)(const struct sock *sk, int wake);
1216        bool                    (*sock_is_readable)(struct sock *sk);
1217        /* Memory pressure */
1218        void                    (*enter_memory_pressure)(struct sock *sk);
1219        void                    (*leave_memory_pressure)(struct sock *sk);
1220        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1221        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1222
1223        /*
1224         * Pressure flag: try to collapse.
1225         * Technical note: it is used by multiple contexts non atomically.
1226         * All the __sk_mem_schedule() is of this nature: accounting
1227         * is strict, actions are advisory and have some latency.
1228         */
1229        unsigned long           *memory_pressure;
1230        long                    *sysctl_mem;
1231
1232        int                     *sysctl_wmem;
1233        int                     *sysctl_rmem;
1234        u32                     sysctl_wmem_offset;
1235        u32                     sysctl_rmem_offset;
1236
1237        int                     max_header;
1238        bool                    no_autobind;
1239
1240        struct kmem_cache       *slab;
1241        unsigned int            obj_size;
1242        slab_flags_t            slab_flags;
1243        unsigned int            useroffset;     /* Usercopy region offset */
1244        unsigned int            usersize;       /* Usercopy region size */
1245
1246        unsigned int __percpu   *orphan_count;
1247
1248        struct request_sock_ops *rsk_prot;
1249        struct timewait_sock_ops *twsk_prot;
1250
1251        union {
1252                struct inet_hashinfo    *hashinfo;
1253                struct udp_table        *udp_table;
1254                struct raw_hashinfo     *raw_hash;
1255                struct smc_hashinfo     *smc_hash;
1256        } h;
1257
1258        struct module           *owner;
1259
1260        char                    name[32];
1261
1262        struct list_head        node;
1263#ifdef SOCK_REFCNT_DEBUG
1264        atomic_t                socks;
1265#endif
1266        int                     (*diag_destroy)(struct sock *sk, int err);
1267} __randomize_layout;
1268
1269int proto_register(struct proto *prot, int alloc_slab);
1270void proto_unregister(struct proto *prot);
1271int sock_load_diag_module(int family, int protocol);
1272
1273#ifdef SOCK_REFCNT_DEBUG
1274static inline void sk_refcnt_debug_inc(struct sock *sk)
1275{
1276        atomic_inc(&sk->sk_prot->socks);
1277}
1278
1279static inline void sk_refcnt_debug_dec(struct sock *sk)
1280{
1281        atomic_dec(&sk->sk_prot->socks);
1282        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1283               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1284}
1285
1286static inline void sk_refcnt_debug_release(const struct sock *sk)
1287{
1288        if (refcount_read(&sk->sk_refcnt) != 1)
1289                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1290                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1291}
1292#else /* SOCK_REFCNT_DEBUG */
1293#define sk_refcnt_debug_inc(sk) do { } while (0)
1294#define sk_refcnt_debug_dec(sk) do { } while (0)
1295#define sk_refcnt_debug_release(sk) do { } while (0)
1296#endif /* SOCK_REFCNT_DEBUG */
1297
1298INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1299
1300static inline int sk_forward_alloc_get(const struct sock *sk)
1301{
1302        if (!sk->sk_prot->forward_alloc_get)
1303                return sk->sk_forward_alloc;
1304
1305        return sk->sk_prot->forward_alloc_get(sk);
1306}
1307
1308static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1309{
1310        if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1311                return false;
1312
1313        return sk->sk_prot->stream_memory_free ?
1314                INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1315                                     tcp_stream_memory_free, sk, wake) : true;
1316}
1317
1318static inline bool sk_stream_memory_free(const struct sock *sk)
1319{
1320        return __sk_stream_memory_free(sk, 0);
1321}
1322
1323static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1324{
1325        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1326               __sk_stream_memory_free(sk, wake);
1327}
1328
1329static inline bool sk_stream_is_writeable(const struct sock *sk)
1330{
1331        return __sk_stream_is_writeable(sk, 0);
1332}
1333
1334static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1335                                            struct cgroup *ancestor)
1336{
1337#ifdef CONFIG_SOCK_CGROUP_DATA
1338        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1339                                    ancestor);
1340#else
1341        return -ENOTSUPP;
1342#endif
1343}
1344
1345static inline bool sk_has_memory_pressure(const struct sock *sk)
1346{
1347        return sk->sk_prot->memory_pressure != NULL;
1348}
1349
1350static inline bool sk_under_memory_pressure(const struct sock *sk)
1351{
1352        if (!sk->sk_prot->memory_pressure)
1353                return false;
1354
1355        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1356            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1357                return true;
1358
1359        return !!*sk->sk_prot->memory_pressure;
1360}
1361
1362static inline long
1363sk_memory_allocated(const struct sock *sk)
1364{
1365        return atomic_long_read(sk->sk_prot->memory_allocated);
1366}
1367
1368static inline long
1369sk_memory_allocated_add(struct sock *sk, int amt)
1370{
1371        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1372}
1373
1374static inline void
1375sk_memory_allocated_sub(struct sock *sk, int amt)
1376{
1377        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1378}
1379
1380#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1381
1382static inline void sk_sockets_allocated_dec(struct sock *sk)
1383{
1384        percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1385                                 SK_ALLOC_PERCPU_COUNTER_BATCH);
1386}
1387
1388static inline void sk_sockets_allocated_inc(struct sock *sk)
1389{
1390        percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1391                                 SK_ALLOC_PERCPU_COUNTER_BATCH);
1392}
1393
1394static inline u64
1395sk_sockets_allocated_read_positive(struct sock *sk)
1396{
1397        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1398}
1399
1400static inline int
1401proto_sockets_allocated_sum_positive(struct proto *prot)
1402{
1403        return percpu_counter_sum_positive(prot->sockets_allocated);
1404}
1405
1406static inline long
1407proto_memory_allocated(struct proto *prot)
1408{
1409        return atomic_long_read(prot->memory_allocated);
1410}
1411
1412static inline bool
1413proto_memory_pressure(struct proto *prot)
1414{
1415        if (!prot->memory_pressure)
1416                return false;
1417        return !!*prot->memory_pressure;
1418}
1419
1420
1421#ifdef CONFIG_PROC_FS
1422/* Called with local bh disabled */
1423void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1424int sock_prot_inuse_get(struct net *net, struct proto *proto);
1425int sock_inuse_get(struct net *net);
1426#else
1427static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1428                int inc)
1429{
1430}
1431#endif
1432
1433
1434/* With per-bucket locks this operation is not-atomic, so that
1435 * this version is not worse.
1436 */
1437static inline int __sk_prot_rehash(struct sock *sk)
1438{
1439        sk->sk_prot->unhash(sk);
1440        return sk->sk_prot->hash(sk);
1441}
1442
1443/* About 10 seconds */
1444#define SOCK_DESTROY_TIME (10*HZ)
1445
1446/* Sockets 0-1023 can't be bound to unless you are superuser */
1447#define PROT_SOCK       1024
1448
1449#define SHUTDOWN_MASK   3
1450#define RCV_SHUTDOWN    1
1451#define SEND_SHUTDOWN   2
1452
1453#define SOCK_BINDADDR_LOCK      4
1454#define SOCK_BINDPORT_LOCK      8
1455
1456struct socket_alloc {
1457        struct socket socket;
1458        struct inode vfs_inode;
1459};
1460
1461static inline struct socket *SOCKET_I(struct inode *inode)
1462{
1463        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1464}
1465
1466static inline struct inode *SOCK_INODE(struct socket *socket)
1467{
1468        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1469}
1470
1471/*
1472 * Functions for memory accounting
1473 */
1474int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1475int __sk_mem_schedule(struct sock *sk, int size, int kind);
1476void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1477void __sk_mem_reclaim(struct sock *sk, int amount);
1478
1479/* We used to have PAGE_SIZE here, but systems with 64KB pages
1480 * do not necessarily have 16x time more memory than 4KB ones.
1481 */
1482#define SK_MEM_QUANTUM 4096
1483#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1484#define SK_MEM_SEND     0
1485#define SK_MEM_RECV     1
1486
1487/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1488static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1489{
1490        long val = sk->sk_prot->sysctl_mem[index];
1491
1492#if PAGE_SIZE > SK_MEM_QUANTUM
1493        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1494#elif PAGE_SIZE < SK_MEM_QUANTUM
1495        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1496#endif
1497        return val;
1498}
1499
1500static inline int sk_mem_pages(int amt)
1501{
1502        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1503}
1504
1505static inline bool sk_has_account(struct sock *sk)
1506{
1507        /* return true if protocol supports memory accounting */
1508        return !!sk->sk_prot->memory_allocated;
1509}
1510
1511static inline bool sk_wmem_schedule(struct sock *sk, int size)
1512{
1513        if (!sk_has_account(sk))
1514                return true;
1515        return size <= sk->sk_forward_alloc ||
1516                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1517}
1518
1519static inline bool
1520sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1521{
1522        if (!sk_has_account(sk))
1523                return true;
1524        return size <= sk->sk_forward_alloc ||
1525                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1526                skb_pfmemalloc(skb);
1527}
1528
1529static inline int sk_unused_reserved_mem(const struct sock *sk)
1530{
1531        int unused_mem;
1532
1533        if (likely(!sk->sk_reserved_mem))
1534                return 0;
1535
1536        unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1537                        atomic_read(&sk->sk_rmem_alloc);
1538
1539        return unused_mem > 0 ? unused_mem : 0;
1540}
1541
1542static inline void sk_mem_reclaim(struct sock *sk)
1543{
1544        int reclaimable;
1545
1546        if (!sk_has_account(sk))
1547                return;
1548
1549        reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1550
1551        if (reclaimable >= SK_MEM_QUANTUM)
1552                __sk_mem_reclaim(sk, reclaimable);
1553}
1554
1555static inline void sk_mem_reclaim_final(struct sock *sk)
1556{
1557        sk->sk_reserved_mem = 0;
1558        sk_mem_reclaim(sk);
1559}
1560
1561static inline void sk_mem_reclaim_partial(struct sock *sk)
1562{
1563        int reclaimable;
1564
1565        if (!sk_has_account(sk))
1566                return;
1567
1568        reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1569
1570        if (reclaimable > SK_MEM_QUANTUM)
1571                __sk_mem_reclaim(sk, reclaimable - 1);
1572}
1573
1574static inline void sk_mem_charge(struct sock *sk, int size)
1575{
1576        if (!sk_has_account(sk))
1577                return;
1578        sk->sk_forward_alloc -= size;
1579}
1580
1581/* the following macros control memory reclaiming in sk_mem_uncharge()
1582 */
1583#define SK_RECLAIM_THRESHOLD    (1 << 21)
1584#define SK_RECLAIM_CHUNK        (1 << 20)
1585
1586static inline void sk_mem_uncharge(struct sock *sk, int size)
1587{
1588        int reclaimable;
1589
1590        if (!sk_has_account(sk))
1591                return;
1592        sk->sk_forward_alloc += size;
1593        reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1594
1595        /* Avoid a possible overflow.
1596         * TCP send queues can make this happen, if sk_mem_reclaim()
1597         * is not called and more than 2 GBytes are released at once.
1598         *
1599         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1600         * no need to hold that much forward allocation anyway.
1601         */
1602        if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1603                __sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1604}
1605
1606static inline void sock_release_ownership(struct sock *sk)
1607{
1608        if (sk->sk_lock.owned) {
1609                sk->sk_lock.owned = 0;
1610
1611                /* The sk_lock has mutex_unlock() semantics: */
1612                mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1613        }
1614}
1615
1616/*
1617 * Macro so as to not evaluate some arguments when
1618 * lockdep is not enabled.
1619 *
1620 * Mark both the sk_lock and the sk_lock.slock as a
1621 * per-address-family lock class.
1622 */
1623#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1624do {                                                                    \
1625        sk->sk_lock.owned = 0;                                          \
1626        init_waitqueue_head(&sk->sk_lock.wq);                           \
1627        spin_lock_init(&(sk)->sk_lock.slock);                           \
1628        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1629                        sizeof((sk)->sk_lock));                         \
1630        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1631                                (skey), (sname));                               \
1632        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1633} while (0)
1634
1635static inline bool lockdep_sock_is_held(const struct sock *sk)
1636{
1637        return lockdep_is_held(&sk->sk_lock) ||
1638               lockdep_is_held(&sk->sk_lock.slock);
1639}
1640
1641void lock_sock_nested(struct sock *sk, int subclass);
1642
1643static inline void lock_sock(struct sock *sk)
1644{
1645        lock_sock_nested(sk, 0);
1646}
1647
1648void __lock_sock(struct sock *sk);
1649void __release_sock(struct sock *sk);
1650void release_sock(struct sock *sk);
1651
1652/* BH context may only use the following locking interface. */
1653#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1654#define bh_lock_sock_nested(__sk) \
1655                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1656                                SINGLE_DEPTH_NESTING)
1657#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1658
1659bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1660
1661/**
1662 * lock_sock_fast - fast version of lock_sock
1663 * @sk: socket
1664 *
1665 * This version should be used for very small section, where process wont block
1666 * return false if fast path is taken:
1667 *
1668 *   sk_lock.slock locked, owned = 0, BH disabled
1669 *
1670 * return true if slow path is taken:
1671 *
1672 *   sk_lock.slock unlocked, owned = 1, BH enabled
1673 */
1674static inline bool lock_sock_fast(struct sock *sk)
1675{
1676        /* The sk_lock has mutex_lock() semantics here. */
1677        mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1678
1679        return __lock_sock_fast(sk);
1680}
1681
1682/* fast socket lock variant for caller already holding a [different] socket lock */
1683static inline bool lock_sock_fast_nested(struct sock *sk)
1684{
1685        mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1686
1687        return __lock_sock_fast(sk);
1688}
1689
1690/**
1691 * unlock_sock_fast - complement of lock_sock_fast
1692 * @sk: socket
1693 * @slow: slow mode
1694 *
1695 * fast unlock socket for user context.
1696 * If slow mode is on, we call regular release_sock()
1697 */
1698static inline void unlock_sock_fast(struct sock *sk, bool slow)
1699        __releases(&sk->sk_lock.slock)
1700{
1701        if (slow) {
1702                release_sock(sk);
1703                __release(&sk->sk_lock.slock);
1704        } else {
1705                mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1706                spin_unlock_bh(&sk->sk_lock.slock);
1707        }
1708}
1709
1710/* Used by processes to "lock" a socket state, so that
1711 * interrupts and bottom half handlers won't change it
1712 * from under us. It essentially blocks any incoming
1713 * packets, so that we won't get any new data or any
1714 * packets that change the state of the socket.
1715 *
1716 * While locked, BH processing will add new packets to
1717 * the backlog queue.  This queue is processed by the
1718 * owner of the socket lock right before it is released.
1719 *
1720 * Since ~2.3.5 it is also exclusive sleep lock serializing
1721 * accesses from user process context.
1722 */
1723
1724static inline void sock_owned_by_me(const struct sock *sk)
1725{
1726#ifdef CONFIG_LOCKDEP
1727        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1728#endif
1729}
1730
1731static inline bool sock_owned_by_user(const struct sock *sk)
1732{
1733        sock_owned_by_me(sk);
1734        return sk->sk_lock.owned;
1735}
1736
1737static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1738{
1739        return sk->sk_lock.owned;
1740}
1741
1742/* no reclassification while locks are held */
1743static inline bool sock_allow_reclassification(const struct sock *csk)
1744{
1745        struct sock *sk = (struct sock *)csk;
1746
1747        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1748}
1749
1750struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751                      struct proto *prot, int kern);
1752void sk_free(struct sock *sk);
1753void sk_destruct(struct sock *sk);
1754struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1755void sk_free_unlock_clone(struct sock *sk);
1756
1757struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1758                             gfp_t priority);
1759void __sock_wfree(struct sk_buff *skb);
1760void sock_wfree(struct sk_buff *skb);
1761struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1762                             gfp_t priority);
1763void skb_orphan_partial(struct sk_buff *skb);
1764void sock_rfree(struct sk_buff *skb);
1765void sock_efree(struct sk_buff *skb);
1766#ifdef CONFIG_INET
1767void sock_edemux(struct sk_buff *skb);
1768void sock_pfree(struct sk_buff *skb);
1769#else
1770#define sock_edemux sock_efree
1771#endif
1772
1773int sock_setsockopt(struct socket *sock, int level, int op,
1774                    sockptr_t optval, unsigned int optlen);
1775
1776int sock_getsockopt(struct socket *sock, int level, int op,
1777                    char __user *optval, int __user *optlen);
1778int sock_gettstamp(struct socket *sock, void __user *userstamp,
1779                   bool timeval, bool time32);
1780struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1781                                    int noblock, int *errcode);
1782struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1783                                     unsigned long data_len, int noblock,
1784                                     int *errcode, int max_page_order);
1785void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1786void sock_kfree_s(struct sock *sk, void *mem, int size);
1787void sock_kzfree_s(struct sock *sk, void *mem, int size);
1788void sk_send_sigurg(struct sock *sk);
1789
1790struct sockcm_cookie {
1791        u64 transmit_time;
1792        u32 mark;
1793        u16 tsflags;
1794};
1795
1796static inline void sockcm_init(struct sockcm_cookie *sockc,
1797                               const struct sock *sk)
1798{
1799        *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1800}
1801
1802int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1803                     struct sockcm_cookie *sockc);
1804int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1805                   struct sockcm_cookie *sockc);
1806
1807/*
1808 * Functions to fill in entries in struct proto_ops when a protocol
1809 * does not implement a particular function.
1810 */
1811int sock_no_bind(struct socket *, struct sockaddr *, int);
1812int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1813int sock_no_socketpair(struct socket *, struct socket *);
1814int sock_no_accept(struct socket *, struct socket *, int, bool);
1815int sock_no_getname(struct socket *, struct sockaddr *, int);
1816int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1817int sock_no_listen(struct socket *, int);
1818int sock_no_shutdown(struct socket *, int);
1819int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1820int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1821int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1822int sock_no_mmap(struct file *file, struct socket *sock,
1823                 struct vm_area_struct *vma);
1824ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1825                         size_t size, int flags);
1826ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1827                                int offset, size_t size, int flags);
1828
1829/*
1830 * Functions to fill in entries in struct proto_ops when a protocol
1831 * uses the inet style.
1832 */
1833int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834                                  char __user *optval, int __user *optlen);
1835int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1836                        int flags);
1837int sock_common_setsockopt(struct socket *sock, int level, int optname,
1838                           sockptr_t optval, unsigned int optlen);
1839
1840void sk_common_release(struct sock *sk);
1841
1842/*
1843 *      Default socket callbacks and setup code
1844 */
1845
1846/* Initialise core socket variables */
1847void sock_init_data(struct socket *sock, struct sock *sk);
1848
1849/*
1850 * Socket reference counting postulates.
1851 *
1852 * * Each user of socket SHOULD hold a reference count.
1853 * * Each access point to socket (an hash table bucket, reference from a list,
1854 *   running timer, skb in flight MUST hold a reference count.
1855 * * When reference count hits 0, it means it will never increase back.
1856 * * When reference count hits 0, it means that no references from
1857 *   outside exist to this socket and current process on current CPU
1858 *   is last user and may/should destroy this socket.
1859 * * sk_free is called from any context: process, BH, IRQ. When
1860 *   it is called, socket has no references from outside -> sk_free
1861 *   may release descendant resources allocated by the socket, but
1862 *   to the time when it is called, socket is NOT referenced by any
1863 *   hash tables, lists etc.
1864 * * Packets, delivered from outside (from network or from another process)
1865 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1866 *   when they sit in queue. Otherwise, packets will leak to hole, when
1867 *   socket is looked up by one cpu and unhasing is made by another CPU.
1868 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1869 *   (leak to backlog). Packet socket does all the processing inside
1870 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1871 *   use separate SMP lock, so that they are prone too.
1872 */
1873
1874/* Ungrab socket and destroy it, if it was the last reference. */
1875static inline void sock_put(struct sock *sk)
1876{
1877        if (refcount_dec_and_test(&sk->sk_refcnt))
1878                sk_free(sk);
1879}
1880/* Generic version of sock_put(), dealing with all sockets
1881 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1882 */
1883void sock_gen_put(struct sock *sk);
1884
1885int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1886                     unsigned int trim_cap, bool refcounted);
1887static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1888                                 const int nested)
1889{
1890        return __sk_receive_skb(sk, skb, nested, 1, true);
1891}
1892
1893static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1894{
1895        /* sk_tx_queue_mapping accept only upto a 16-bit value */
1896        if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1897                return;
1898        sk->sk_tx_queue_mapping = tx_queue;
1899}
1900
1901#define NO_QUEUE_MAPPING        USHRT_MAX
1902
1903static inline void sk_tx_queue_clear(struct sock *sk)
1904{
1905        sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1906}
1907
1908static inline int sk_tx_queue_get(const struct sock *sk)
1909{
1910        if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1911                return sk->sk_tx_queue_mapping;
1912
1913        return -1;
1914}
1915
1916static inline void __sk_rx_queue_set(struct sock *sk,
1917                                     const struct sk_buff *skb,
1918                                     bool force_set)
1919{
1920#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1921        if (skb_rx_queue_recorded(skb)) {
1922                u16 rx_queue = skb_get_rx_queue(skb);
1923
1924                if (force_set ||
1925                    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1926                        WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1927        }
1928#endif
1929}
1930
1931static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1932{
1933        __sk_rx_queue_set(sk, skb, true);
1934}
1935
1936static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1937{
1938        __sk_rx_queue_set(sk, skb, false);
1939}
1940
1941static inline void sk_rx_queue_clear(struct sock *sk)
1942{
1943#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1944        WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1945#endif
1946}
1947
1948static inline int sk_rx_queue_get(const struct sock *sk)
1949{
1950#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1951        if (sk) {
1952                int res = READ_ONCE(sk->sk_rx_queue_mapping);
1953
1954                if (res != NO_QUEUE_MAPPING)
1955                        return res;
1956        }
1957#endif
1958
1959        return -1;
1960}
1961
1962static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1963{
1964        sk->sk_socket = sock;
1965}
1966
1967static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1968{
1969        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1970        return &rcu_dereference_raw(sk->sk_wq)->wait;
1971}
1972/* Detach socket from process context.
1973 * Announce socket dead, detach it from wait queue and inode.
1974 * Note that parent inode held reference count on this struct sock,
1975 * we do not release it in this function, because protocol
1976 * probably wants some additional cleanups or even continuing
1977 * to work with this socket (TCP).
1978 */
1979static inline void sock_orphan(struct sock *sk)
1980{
1981        write_lock_bh(&sk->sk_callback_lock);
1982        sock_set_flag(sk, SOCK_DEAD);
1983        sk_set_socket(sk, NULL);
1984        sk->sk_wq  = NULL;
1985        write_unlock_bh(&sk->sk_callback_lock);
1986}
1987
1988static inline void sock_graft(struct sock *sk, struct socket *parent)
1989{
1990        WARN_ON(parent->sk);
1991        write_lock_bh(&sk->sk_callback_lock);
1992        rcu_assign_pointer(sk->sk_wq, &parent->wq);
1993        parent->sk = sk;
1994        sk_set_socket(sk, parent);
1995        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1996        security_sock_graft(sk, parent);
1997        write_unlock_bh(&sk->sk_callback_lock);
1998}
1999
2000kuid_t sock_i_uid(struct sock *sk);
2001unsigned long sock_i_ino(struct sock *sk);
2002
2003static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2004{
2005        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2006}
2007
2008static inline u32 net_tx_rndhash(void)
2009{
2010        u32 v = prandom_u32();
2011
2012        return v ?: 1;
2013}
2014
2015static inline void sk_set_txhash(struct sock *sk)
2016{
2017        /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2018        WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2019}
2020
2021static inline bool sk_rethink_txhash(struct sock *sk)
2022{
2023        if (sk->sk_txhash) {
2024                sk_set_txhash(sk);
2025                return true;
2026        }
2027        return false;
2028}
2029
2030static inline struct dst_entry *
2031__sk_dst_get(struct sock *sk)
2032{
2033        return rcu_dereference_check(sk->sk_dst_cache,
2034                                     lockdep_sock_is_held(sk));
2035}
2036
2037static inline struct dst_entry *
2038sk_dst_get(struct sock *sk)
2039{
2040        struct dst_entry *dst;
2041
2042        rcu_read_lock();
2043        dst = rcu_dereference(sk->sk_dst_cache);
2044        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2045                dst = NULL;
2046        rcu_read_unlock();
2047        return dst;
2048}
2049
2050static inline void __dst_negative_advice(struct sock *sk)
2051{
2052        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2053
2054        if (dst && dst->ops->negative_advice) {
2055                ndst = dst->ops->negative_advice(dst);
2056
2057                if (ndst != dst) {
2058                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
2059                        sk_tx_queue_clear(sk);
2060                        sk->sk_dst_pending_confirm = 0;
2061                }
2062        }
2063}
2064
2065static inline void dst_negative_advice(struct sock *sk)
2066{
2067        sk_rethink_txhash(sk);
2068        __dst_negative_advice(sk);
2069}
2070
2071static inline void
2072__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2073{
2074        struct dst_entry *old_dst;
2075
2076        sk_tx_queue_clear(sk);
2077        sk->sk_dst_pending_confirm = 0;
2078        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2079                                            lockdep_sock_is_held(sk));
2080        rcu_assign_pointer(sk->sk_dst_cache, dst);
2081        dst_release(old_dst);
2082}
2083
2084static inline void
2085sk_dst_set(struct sock *sk, struct dst_entry *dst)
2086{
2087        struct dst_entry *old_dst;
2088
2089        sk_tx_queue_clear(sk);
2090        sk->sk_dst_pending_confirm = 0;
2091        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2092        dst_release(old_dst);
2093}
2094
2095static inline void
2096__sk_dst_reset(struct sock *sk)
2097{
2098        __sk_dst_set(sk, NULL);
2099}
2100
2101static inline void
2102sk_dst_reset(struct sock *sk)
2103{
2104        sk_dst_set(sk, NULL);
2105}
2106
2107struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2108
2109struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2110
2111static inline void sk_dst_confirm(struct sock *sk)
2112{
2113        if (!READ_ONCE(sk->sk_dst_pending_confirm))
2114                WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2115}
2116
2117static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2118{
2119        if (skb_get_dst_pending_confirm(skb)) {
2120                struct sock *sk = skb->sk;
2121                unsigned long now = jiffies;
2122
2123                /* avoid dirtying neighbour */
2124                if (READ_ONCE(n->confirmed) != now)
2125                        WRITE_ONCE(n->confirmed, now);
2126                if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2127                        WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2128        }
2129}
2130
2131bool sk_mc_loop(struct sock *sk);
2132
2133static inline bool sk_can_gso(const struct sock *sk)
2134{
2135        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2136}
2137
2138void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2139
2140static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2141{
2142        sk->sk_route_nocaps |= flags;
2143        sk->sk_route_caps &= ~flags;
2144}
2145
2146static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2147                                           struct iov_iter *from, char *to,
2148                                           int copy, int offset)
2149{
2150        if (skb->ip_summed == CHECKSUM_NONE) {
2151                __wsum csum = 0;
2152                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2153                        return -EFAULT;
2154                skb->csum = csum_block_add(skb->csum, csum, offset);
2155        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2156                if (!copy_from_iter_full_nocache(to, copy, from))
2157                        return -EFAULT;
2158        } else if (!copy_from_iter_full(to, copy, from))
2159                return -EFAULT;
2160
2161        return 0;
2162}
2163
2164static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2165                                       struct iov_iter *from, int copy)
2166{
2167        int err, offset = skb->len;
2168
2169        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2170                                       copy, offset);
2171        if (err)
2172                __skb_trim(skb, offset);
2173
2174        return err;
2175}
2176
2177static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2178                                           struct sk_buff *skb,
2179                                           struct page *page,
2180                                           int off, int copy)
2181{
2182        int err;
2183
2184        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2185                                       copy, skb->len);
2186        if (err)
2187                return err;
2188
2189        skb->len             += copy;
2190        skb->data_len        += copy;
2191        skb->truesize        += copy;
2192        sk_wmem_queued_add(sk, copy);
2193        sk_mem_charge(sk, copy);
2194        return 0;
2195}
2196
2197/**
2198 * sk_wmem_alloc_get - returns write allocations
2199 * @sk: socket
2200 *
2201 * Return: sk_wmem_alloc minus initial offset of one
2202 */
2203static inline int sk_wmem_alloc_get(const struct sock *sk)
2204{
2205        return refcount_read(&sk->sk_wmem_alloc) - 1;
2206}
2207
2208/**
2209 * sk_rmem_alloc_get - returns read allocations
2210 * @sk: socket
2211 *
2212 * Return: sk_rmem_alloc
2213 */
2214static inline int sk_rmem_alloc_get(const struct sock *sk)
2215{
2216        return atomic_read(&sk->sk_rmem_alloc);
2217}
2218
2219/**
2220 * sk_has_allocations - check if allocations are outstanding
2221 * @sk: socket
2222 *
2223 * Return: true if socket has write or read allocations
2224 */
2225static inline bool sk_has_allocations(const struct sock *sk)
2226{
2227        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2228}
2229
2230/**
2231 * skwq_has_sleeper - check if there are any waiting processes
2232 * @wq: struct socket_wq
2233 *
2234 * Return: true if socket_wq has waiting processes
2235 *
2236 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2237 * barrier call. They were added due to the race found within the tcp code.
2238 *
2239 * Consider following tcp code paths::
2240 *
2241 *   CPU1                CPU2
2242 *   sys_select          receive packet
2243 *   ...                 ...
2244 *   __add_wait_queue    update tp->rcv_nxt
2245 *   ...                 ...
2246 *   tp->rcv_nxt check   sock_def_readable
2247 *   ...                 {
2248 *   schedule               rcu_read_lock();
2249 *                          wq = rcu_dereference(sk->sk_wq);
2250 *                          if (wq && waitqueue_active(&wq->wait))
2251 *                              wake_up_interruptible(&wq->wait)
2252 *                          ...
2253 *                       }
2254 *
2255 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2256 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2257 * could then endup calling schedule and sleep forever if there are no more
2258 * data on the socket.
2259 *
2260 */
2261static inline bool skwq_has_sleeper(struct socket_wq *wq)
2262{
2263        return wq && wq_has_sleeper(&wq->wait);
2264}
2265
2266/**
2267 * sock_poll_wait - place memory barrier behind the poll_wait call.
2268 * @filp:           file
2269 * @sock:           socket to wait on
2270 * @p:              poll_table
2271 *
2272 * See the comments in the wq_has_sleeper function.
2273 */
2274static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2275                                  poll_table *p)
2276{
2277        if (!poll_does_not_wait(p)) {
2278                poll_wait(filp, &sock->wq.wait, p);
2279                /* We need to be sure we are in sync with the
2280                 * socket flags modification.
2281                 *
2282                 * This memory barrier is paired in the wq_has_sleeper.
2283                 */
2284                smp_mb();
2285        }
2286}
2287
2288static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2289{
2290        /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2291        u32 txhash = READ_ONCE(sk->sk_txhash);
2292
2293        if (txhash) {
2294                skb->l4_hash = 1;
2295                skb->hash = txhash;
2296        }
2297}
2298
2299void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2300
2301/*
2302 *      Queue a received datagram if it will fit. Stream and sequenced
2303 *      protocols can't normally use this as they need to fit buffers in
2304 *      and play with them.
2305 *
2306 *      Inlined as it's very short and called for pretty much every
2307 *      packet ever received.
2308 */
2309static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2310{
2311        skb_orphan(skb);
2312        skb->sk = sk;
2313        skb->destructor = sock_rfree;
2314        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2315        sk_mem_charge(sk, skb->truesize);
2316}
2317
2318static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2319{
2320        if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2321                skb_orphan(skb);
2322                skb->destructor = sock_efree;
2323                skb->sk = sk;
2324                return true;
2325        }
2326        return false;
2327}
2328
2329static inline void skb_prepare_for_gro(struct sk_buff *skb)
2330{
2331        if (skb->destructor != sock_wfree) {
2332                skb_orphan(skb);
2333                return;
2334        }
2335        skb->slow_gro = 1;
2336}
2337
2338void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2339                    unsigned long expires);
2340
2341void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2342
2343void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2344
2345int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2346                        struct sk_buff *skb, unsigned int flags,
2347                        void (*destructor)(struct sock *sk,
2348                                           struct sk_buff *skb));
2349int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2350int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2351
2352int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2353struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2354
2355/*
2356 *      Recover an error report and clear atomically
2357 */
2358
2359static inline int sock_error(struct sock *sk)
2360{
2361        int err;
2362
2363        /* Avoid an atomic operation for the common case.
2364         * This is racy since another cpu/thread can change sk_err under us.
2365         */
2366        if (likely(data_race(!sk->sk_err)))
2367                return 0;
2368
2369        err = xchg(&sk->sk_err, 0);
2370        return -err;
2371}
2372
2373void sk_error_report(struct sock *sk);
2374
2375static inline unsigned long sock_wspace(struct sock *sk)
2376{
2377        int amt = 0;
2378
2379        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2380                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2381                if (amt < 0)
2382                        amt = 0;
2383        }
2384        return amt;
2385}
2386
2387/* Note:
2388 *  We use sk->sk_wq_raw, from contexts knowing this
2389 *  pointer is not NULL and cannot disappear/change.
2390 */
2391static inline void sk_set_bit(int nr, struct sock *sk)
2392{
2393        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2394            !sock_flag(sk, SOCK_FASYNC))
2395                return;
2396
2397        set_bit(nr, &sk->sk_wq_raw->flags);
2398}
2399
2400static inline void sk_clear_bit(int nr, struct sock *sk)
2401{
2402        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2403            !sock_flag(sk, SOCK_FASYNC))
2404                return;
2405
2406        clear_bit(nr, &sk->sk_wq_raw->flags);
2407}
2408
2409static inline void sk_wake_async(const struct sock *sk, int how, int band)
2410{
2411        if (sock_flag(sk, SOCK_FASYNC)) {
2412                rcu_read_lock();
2413                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2414                rcu_read_unlock();
2415        }
2416}
2417
2418/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2419 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2420 * Note: for send buffers, TCP works better if we can build two skbs at
2421 * minimum.
2422 */
2423#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2424
2425#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2426#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2427
2428static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2429{
2430        u32 val;
2431
2432        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2433                return;
2434
2435        val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2436        val = max_t(u32, val, sk_unused_reserved_mem(sk));
2437
2438        WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2439}
2440
2441/**
2442 * sk_page_frag - return an appropriate page_frag
2443 * @sk: socket
2444 *
2445 * Use the per task page_frag instead of the per socket one for
2446 * optimization when we know that we're in process context and own
2447 * everything that's associated with %current.
2448 *
2449 * Both direct reclaim and page faults can nest inside other
2450 * socket operations and end up recursing into sk_page_frag()
2451 * while it's already in use: explicitly avoid task page_frag
2452 * usage if the caller is potentially doing any of them.
2453 * This assumes that page fault handlers use the GFP_NOFS flags.
2454 *
2455 * Return: a per task page_frag if context allows that,
2456 * otherwise a per socket one.
2457 */
2458static inline struct page_frag *sk_page_frag(struct sock *sk)
2459{
2460        if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2461            (__GFP_DIRECT_RECLAIM | __GFP_FS))
2462                return &current->task_frag;
2463
2464        return &sk->sk_frag;
2465}
2466
2467bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2468
2469/*
2470 *      Default write policy as shown to user space via poll/select/SIGIO
2471 */
2472static inline bool sock_writeable(const struct sock *sk)
2473{
2474        return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2475}
2476
2477static inline gfp_t gfp_any(void)
2478{
2479        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2480}
2481
2482static inline gfp_t gfp_memcg_charge(void)
2483{
2484        return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2485}
2486
2487static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2488{
2489        return noblock ? 0 : sk->sk_rcvtimeo;
2490}
2491
2492static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2493{
2494        return noblock ? 0 : sk->sk_sndtimeo;
2495}
2496
2497static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2498{
2499        int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2500
2501        return v ?: 1;
2502}
2503
2504/* Alas, with timeout socket operations are not restartable.
2505 * Compare this to poll().
2506 */
2507static inline int sock_intr_errno(long timeo)
2508{
2509        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2510}
2511
2512struct sock_skb_cb {
2513        u32 dropcount;
2514};
2515
2516/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2517 * using skb->cb[] would keep using it directly and utilize its
2518 * alignement guarantee.
2519 */
2520#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2521                            sizeof(struct sock_skb_cb)))
2522
2523#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2524                            SOCK_SKB_CB_OFFSET))
2525
2526#define sock_skb_cb_check_size(size) \
2527        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2528
2529static inline void
2530sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2531{
2532        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2533                                                atomic_read(&sk->sk_drops) : 0;
2534}
2535
2536static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2537{
2538        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2539
2540        atomic_add(segs, &sk->sk_drops);
2541}
2542
2543static inline ktime_t sock_read_timestamp(struct sock *sk)
2544{
2545#if BITS_PER_LONG==32
2546        unsigned int seq;
2547        ktime_t kt;
2548
2549        do {
2550                seq = read_seqbegin(&sk->sk_stamp_seq);
2551                kt = sk->sk_stamp;
2552        } while (read_seqretry(&sk->sk_stamp_seq, seq));
2553
2554        return kt;
2555#else
2556        return READ_ONCE(sk->sk_stamp);
2557#endif
2558}
2559
2560static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2561{
2562#if BITS_PER_LONG==32
2563        write_seqlock(&sk->sk_stamp_seq);
2564        sk->sk_stamp = kt;
2565        write_sequnlock(&sk->sk_stamp_seq);
2566#else
2567        WRITE_ONCE(sk->sk_stamp, kt);
2568#endif
2569}
2570
2571void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2572                           struct sk_buff *skb);
2573void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2574                             struct sk_buff *skb);
2575
2576static inline void
2577sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2578{
2579        ktime_t kt = skb->tstamp;
2580        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2581
2582        /*
2583         * generate control messages if
2584         * - receive time stamping in software requested
2585         * - software time stamp available and wanted
2586         * - hardware time stamps available and wanted
2587         */
2588        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2589            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2590            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2591            (hwtstamps->hwtstamp &&
2592             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2593                __sock_recv_timestamp(msg, sk, skb);
2594        else
2595                sock_write_timestamp(sk, kt);
2596
2597        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2598                __sock_recv_wifi_status(msg, sk, skb);
2599}
2600
2601void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2602                              struct sk_buff *skb);
2603
2604#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2605static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2606                                          struct sk_buff *skb)
2607{
2608#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2609                           (1UL << SOCK_RCVTSTAMP))
2610#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2611                           SOF_TIMESTAMPING_RAW_HARDWARE)
2612
2613        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2614                __sock_recv_ts_and_drops(msg, sk, skb);
2615        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2616                sock_write_timestamp(sk, skb->tstamp);
2617        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2618                sock_write_timestamp(sk, 0);
2619}
2620
2621void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2622
2623/**
2624 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2625 * @sk:         socket sending this packet
2626 * @tsflags:    timestamping flags to use
2627 * @tx_flags:   completed with instructions for time stamping
2628 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2629 *
2630 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2631 */
2632static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2633                                      __u8 *tx_flags, __u32 *tskey)
2634{
2635        if (unlikely(tsflags)) {
2636                __sock_tx_timestamp(tsflags, tx_flags);
2637                if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2638                    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2639                        *tskey = sk->sk_tskey++;
2640        }
2641        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2642                *tx_flags |= SKBTX_WIFI_STATUS;
2643}
2644
2645static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2646                                     __u8 *tx_flags)
2647{
2648        _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2649}
2650
2651static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2652{
2653        _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2654                           &skb_shinfo(skb)->tskey);
2655}
2656
2657/**
2658 * sk_eat_skb - Release a skb if it is no longer needed
2659 * @sk: socket to eat this skb from
2660 * @skb: socket buffer to eat
2661 *
2662 * This routine must be called with interrupts disabled or with the socket
2663 * locked so that the sk_buff queue operation is ok.
2664*/
2665static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2666{
2667        __skb_unlink(skb, &sk->sk_receive_queue);
2668        __kfree_skb(skb);
2669}
2670
2671static inline
2672struct net *sock_net(const struct sock *sk)
2673{
2674        return read_pnet(&sk->sk_net);
2675}
2676
2677static inline
2678void sock_net_set(struct sock *sk, struct net *net)
2679{
2680        write_pnet(&sk->sk_net, net);
2681}
2682
2683static inline bool
2684skb_sk_is_prefetched(struct sk_buff *skb)
2685{
2686#ifdef CONFIG_INET
2687        return skb->destructor == sock_pfree;
2688#else
2689        return false;
2690#endif /* CONFIG_INET */
2691}
2692
2693/* This helper checks if a socket is a full socket,
2694 * ie _not_ a timewait or request socket.
2695 */
2696static inline bool sk_fullsock(const struct sock *sk)
2697{
2698        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2699}
2700
2701static inline bool
2702sk_is_refcounted(struct sock *sk)
2703{
2704        /* Only full sockets have sk->sk_flags. */
2705        return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2706}
2707
2708/**
2709 * skb_steal_sock - steal a socket from an sk_buff
2710 * @skb: sk_buff to steal the socket from
2711 * @refcounted: is set to true if the socket is reference-counted
2712 */
2713static inline struct sock *
2714skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2715{
2716        if (skb->sk) {
2717                struct sock *sk = skb->sk;
2718
2719                *refcounted = true;
2720                if (skb_sk_is_prefetched(skb))
2721                        *refcounted = sk_is_refcounted(sk);
2722                skb->destructor = NULL;
2723                skb->sk = NULL;
2724                return sk;
2725        }
2726        *refcounted = false;
2727        return NULL;
2728}
2729
2730/* Checks if this SKB belongs to an HW offloaded socket
2731 * and whether any SW fallbacks are required based on dev.
2732 * Check decrypted mark in case skb_orphan() cleared socket.
2733 */
2734static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2735                                                   struct net_device *dev)
2736{
2737#ifdef CONFIG_SOCK_VALIDATE_XMIT
2738        struct sock *sk = skb->sk;
2739
2740        if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2741                skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2742#ifdef CONFIG_TLS_DEVICE
2743        } else if (unlikely(skb->decrypted)) {
2744                pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2745                kfree_skb(skb);
2746                skb = NULL;
2747#endif
2748        }
2749#endif
2750
2751        return skb;
2752}
2753
2754/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2755 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2756 */
2757static inline bool sk_listener(const struct sock *sk)
2758{
2759        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2760}
2761
2762void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2763int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2764                       int type);
2765
2766bool sk_ns_capable(const struct sock *sk,
2767                   struct user_namespace *user_ns, int cap);
2768bool sk_capable(const struct sock *sk, int cap);
2769bool sk_net_capable(const struct sock *sk, int cap);
2770
2771void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2772
2773/* Take into consideration the size of the struct sk_buff overhead in the
2774 * determination of these values, since that is non-constant across
2775 * platforms.  This makes socket queueing behavior and performance
2776 * not depend upon such differences.
2777 */
2778#define _SK_MEM_PACKETS         256
2779#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2780#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2781#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2782
2783extern __u32 sysctl_wmem_max;
2784extern __u32 sysctl_rmem_max;
2785
2786extern int sysctl_tstamp_allow_data;
2787extern int sysctl_optmem_max;
2788
2789extern __u32 sysctl_wmem_default;
2790extern __u32 sysctl_rmem_default;
2791
2792#define SKB_FRAG_PAGE_ORDER     get_order(32768)
2793DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2794
2795static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2796{
2797        /* Does this proto have per netns sysctl_wmem ? */
2798        if (proto->sysctl_wmem_offset)
2799                return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2800
2801        return *proto->sysctl_wmem;
2802}
2803
2804static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2805{
2806        /* Does this proto have per netns sysctl_rmem ? */
2807        if (proto->sysctl_rmem_offset)
2808                return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2809
2810        return *proto->sysctl_rmem;
2811}
2812
2813/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2814 * Some wifi drivers need to tweak it to get more chunks.
2815 * They can use this helper from their ndo_start_xmit()
2816 */
2817static inline void sk_pacing_shift_update(struct sock *sk, int val)
2818{
2819        if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2820                return;
2821        WRITE_ONCE(sk->sk_pacing_shift, val);
2822}
2823
2824/* if a socket is bound to a device, check that the given device
2825 * index is either the same or that the socket is bound to an L3
2826 * master device and the given device index is also enslaved to
2827 * that L3 master
2828 */
2829static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2830{
2831        int mdif;
2832
2833        if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2834                return true;
2835
2836        mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2837        if (mdif && mdif == sk->sk_bound_dev_if)
2838                return true;
2839
2840        return false;
2841}
2842
2843void sock_def_readable(struct sock *sk);
2844
2845int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2846void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2847int sock_set_timestamping(struct sock *sk, int optname,
2848                          struct so_timestamping timestamping);
2849
2850void sock_enable_timestamps(struct sock *sk);
2851void sock_no_linger(struct sock *sk);
2852void sock_set_keepalive(struct sock *sk);
2853void sock_set_priority(struct sock *sk, u32 priority);
2854void sock_set_rcvbuf(struct sock *sk, int val);
2855void sock_set_mark(struct sock *sk, u32 val);
2856void sock_set_reuseaddr(struct sock *sk);
2857void sock_set_reuseport(struct sock *sk);
2858void sock_set_sndtimeo(struct sock *sk, s64 secs);
2859
2860int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2861
2862int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2863int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2864                           sockptr_t optval, int optlen, bool old_timeval);
2865
2866static inline bool sk_is_readable(struct sock *sk)
2867{
2868        if (sk->sk_prot->sock_is_readable)
2869                return sk->sk_prot->sock_is_readable(sk);
2870        return false;
2871}
2872#endif  /* _SOCK_H */
2873