linux/ipc/mqueue.c
<<
>>
Prefs
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *                          Manfred Spraul          (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47        struct ipc_namespace    *ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC    0x19800202
  51#define DIRENT_SIZE     20
  52#define FILENT_SIZE     80
  53
  54#define SEND            0
  55#define RECV            1
  56
  57#define STATE_NONE      0
  58#define STATE_READY     1
  59
  60struct posix_msg_tree_node {
  61        struct rb_node          rb_node;
  62        struct list_head        msg_list;
  63        int                     priority;
  64};
  65
  66/*
  67 * Locking:
  68 *
  69 * Accesses to a message queue are synchronized by acquiring info->lock.
  70 *
  71 * There are two notable exceptions:
  72 * - The actual wakeup of a sleeping task is performed using the wake_q
  73 *   framework. info->lock is already released when wake_up_q is called.
  74 * - The exit codepaths after sleeping check ext_wait_queue->state without
  75 *   any locks. If it is STATE_READY, then the syscall is completed without
  76 *   acquiring info->lock.
  77 *
  78 * MQ_BARRIER:
  79 * To achieve proper release/acquire memory barrier pairing, the state is set to
  80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
  81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
  82 *
  83 * This prevents the following races:
  84 *
  85 * 1) With the simple wake_q_add(), the task could be gone already before
  86 *    the increase of the reference happens
  87 * Thread A
  88 *                              Thread B
  89 * WRITE_ONCE(wait.state, STATE_NONE);
  90 * schedule_hrtimeout()
  91 *                              wake_q_add(A)
  92 *                              if (cmpxchg()) // success
  93 *                                 ->state = STATE_READY (reordered)
  94 * <timeout returns>
  95 * if (wait.state == STATE_READY) return;
  96 * sysret to user space
  97 * sys_exit()
  98 *                              get_task_struct() // UaF
  99 *
 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
 101 * the smp_store_release() that does ->state = STATE_READY.
 102 *
 103 * 2) Without proper _release/_acquire barriers, the woken up task
 104 *    could read stale data
 105 *
 106 * Thread A
 107 *                              Thread B
 108 * do_mq_timedreceive
 109 * WRITE_ONCE(wait.state, STATE_NONE);
 110 * schedule_hrtimeout()
 111 *                              state = STATE_READY;
 112 * <timeout returns>
 113 * if (wait.state == STATE_READY) return;
 114 * msg_ptr = wait.msg;          // Access to stale data!
 115 *                              receiver->msg = message; (reordered)
 116 *
 117 * Solution: use _release and _acquire barriers.
 118 *
 119 * 3) There is intentionally no barrier when setting current->state
 120 *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
 121 *    release memory barrier, and the wakeup is triggered when holding
 122 *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
 123 *    acquire memory barrier.
 124 */
 125
 126struct ext_wait_queue {         /* queue of sleeping tasks */
 127        struct task_struct *task;
 128        struct list_head list;
 129        struct msg_msg *msg;    /* ptr of loaded message */
 130        int state;              /* one of STATE_* values */
 131};
 132
 133struct mqueue_inode_info {
 134        spinlock_t lock;
 135        struct inode vfs_inode;
 136        wait_queue_head_t wait_q;
 137
 138        struct rb_root msg_tree;
 139        struct rb_node *msg_tree_rightmost;
 140        struct posix_msg_tree_node *node_cache;
 141        struct mq_attr attr;
 142
 143        struct sigevent notify;
 144        struct pid *notify_owner;
 145        u32 notify_self_exec_id;
 146        struct user_namespace *notify_user_ns;
 147        struct ucounts *ucounts;        /* user who created, for accounting */
 148        struct sock *notify_sock;
 149        struct sk_buff *notify_cookie;
 150
 151        /* for tasks waiting for free space and messages, respectively */
 152        struct ext_wait_queue e_wait_q[2];
 153
 154        unsigned long qsize; /* size of queue in memory (sum of all msgs) */
 155};
 156
 157static struct file_system_type mqueue_fs_type;
 158static const struct inode_operations mqueue_dir_inode_operations;
 159static const struct file_operations mqueue_file_operations;
 160static const struct super_operations mqueue_super_ops;
 161static const struct fs_context_operations mqueue_fs_context_ops;
 162static void remove_notification(struct mqueue_inode_info *info);
 163
 164static struct kmem_cache *mqueue_inode_cachep;
 165
 166static struct ctl_table_header *mq_sysctl_table;
 167
 168static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 169{
 170        return container_of(inode, struct mqueue_inode_info, vfs_inode);
 171}
 172
 173/*
 174 * This routine should be called with the mq_lock held.
 175 */
 176static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 177{
 178        return get_ipc_ns(inode->i_sb->s_fs_info);
 179}
 180
 181static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 182{
 183        struct ipc_namespace *ns;
 184
 185        spin_lock(&mq_lock);
 186        ns = __get_ns_from_inode(inode);
 187        spin_unlock(&mq_lock);
 188        return ns;
 189}
 190
 191/* Auxiliary functions to manipulate messages' list */
 192static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 193{
 194        struct rb_node **p, *parent = NULL;
 195        struct posix_msg_tree_node *leaf;
 196        bool rightmost = true;
 197
 198        p = &info->msg_tree.rb_node;
 199        while (*p) {
 200                parent = *p;
 201                leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 202
 203                if (likely(leaf->priority == msg->m_type))
 204                        goto insert_msg;
 205                else if (msg->m_type < leaf->priority) {
 206                        p = &(*p)->rb_left;
 207                        rightmost = false;
 208                } else
 209                        p = &(*p)->rb_right;
 210        }
 211        if (info->node_cache) {
 212                leaf = info->node_cache;
 213                info->node_cache = NULL;
 214        } else {
 215                leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 216                if (!leaf)
 217                        return -ENOMEM;
 218                INIT_LIST_HEAD(&leaf->msg_list);
 219        }
 220        leaf->priority = msg->m_type;
 221
 222        if (rightmost)
 223                info->msg_tree_rightmost = &leaf->rb_node;
 224
 225        rb_link_node(&leaf->rb_node, parent, p);
 226        rb_insert_color(&leaf->rb_node, &info->msg_tree);
 227insert_msg:
 228        info->attr.mq_curmsgs++;
 229        info->qsize += msg->m_ts;
 230        list_add_tail(&msg->m_list, &leaf->msg_list);
 231        return 0;
 232}
 233
 234static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 235                                  struct mqueue_inode_info *info)
 236{
 237        struct rb_node *node = &leaf->rb_node;
 238
 239        if (info->msg_tree_rightmost == node)
 240                info->msg_tree_rightmost = rb_prev(node);
 241
 242        rb_erase(node, &info->msg_tree);
 243        if (info->node_cache)
 244                kfree(leaf);
 245        else
 246                info->node_cache = leaf;
 247}
 248
 249static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 250{
 251        struct rb_node *parent = NULL;
 252        struct posix_msg_tree_node *leaf;
 253        struct msg_msg *msg;
 254
 255try_again:
 256        /*
 257         * During insert, low priorities go to the left and high to the
 258         * right.  On receive, we want the highest priorities first, so
 259         * walk all the way to the right.
 260         */
 261        parent = info->msg_tree_rightmost;
 262        if (!parent) {
 263                if (info->attr.mq_curmsgs) {
 264                        pr_warn_once("Inconsistency in POSIX message queue, "
 265                                     "no tree element, but supposedly messages "
 266                                     "should exist!\n");
 267                        info->attr.mq_curmsgs = 0;
 268                }
 269                return NULL;
 270        }
 271        leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 272        if (unlikely(list_empty(&leaf->msg_list))) {
 273                pr_warn_once("Inconsistency in POSIX message queue, "
 274                             "empty leaf node but we haven't implemented "
 275                             "lazy leaf delete!\n");
 276                msg_tree_erase(leaf, info);
 277                goto try_again;
 278        } else {
 279                msg = list_first_entry(&leaf->msg_list,
 280                                       struct msg_msg, m_list);
 281                list_del(&msg->m_list);
 282                if (list_empty(&leaf->msg_list)) {
 283                        msg_tree_erase(leaf, info);
 284                }
 285        }
 286        info->attr.mq_curmsgs--;
 287        info->qsize -= msg->m_ts;
 288        return msg;
 289}
 290
 291static struct inode *mqueue_get_inode(struct super_block *sb,
 292                struct ipc_namespace *ipc_ns, umode_t mode,
 293                struct mq_attr *attr)
 294{
 295        struct inode *inode;
 296        int ret = -ENOMEM;
 297
 298        inode = new_inode(sb);
 299        if (!inode)
 300                goto err;
 301
 302        inode->i_ino = get_next_ino();
 303        inode->i_mode = mode;
 304        inode->i_uid = current_fsuid();
 305        inode->i_gid = current_fsgid();
 306        inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 307
 308        if (S_ISREG(mode)) {
 309                struct mqueue_inode_info *info;
 310                unsigned long mq_bytes, mq_treesize;
 311
 312                inode->i_fop = &mqueue_file_operations;
 313                inode->i_size = FILENT_SIZE;
 314                /* mqueue specific info */
 315                info = MQUEUE_I(inode);
 316                spin_lock_init(&info->lock);
 317                init_waitqueue_head(&info->wait_q);
 318                INIT_LIST_HEAD(&info->e_wait_q[0].list);
 319                INIT_LIST_HEAD(&info->e_wait_q[1].list);
 320                info->notify_owner = NULL;
 321                info->notify_user_ns = NULL;
 322                info->qsize = 0;
 323                info->ucounts = NULL;   /* set when all is ok */
 324                info->msg_tree = RB_ROOT;
 325                info->msg_tree_rightmost = NULL;
 326                info->node_cache = NULL;
 327                memset(&info->attr, 0, sizeof(info->attr));
 328                info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 329                                           ipc_ns->mq_msg_default);
 330                info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 331                                            ipc_ns->mq_msgsize_default);
 332                if (attr) {
 333                        info->attr.mq_maxmsg = attr->mq_maxmsg;
 334                        info->attr.mq_msgsize = attr->mq_msgsize;
 335                }
 336                /*
 337                 * We used to allocate a static array of pointers and account
 338                 * the size of that array as well as one msg_msg struct per
 339                 * possible message into the queue size. That's no longer
 340                 * accurate as the queue is now an rbtree and will grow and
 341                 * shrink depending on usage patterns.  We can, however, still
 342                 * account one msg_msg struct per message, but the nodes are
 343                 * allocated depending on priority usage, and most programs
 344                 * only use one, or a handful, of priorities.  However, since
 345                 * this is pinned memory, we need to assume worst case, so
 346                 * that means the min(mq_maxmsg, max_priorities) * struct
 347                 * posix_msg_tree_node.
 348                 */
 349
 350                ret = -EINVAL;
 351                if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 352                        goto out_inode;
 353                if (capable(CAP_SYS_RESOURCE)) {
 354                        if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 355                            info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 356                                goto out_inode;
 357                } else {
 358                        if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 359                                        info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 360                                goto out_inode;
 361                }
 362                ret = -EOVERFLOW;
 363                /* check for overflow */
 364                if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 365                        goto out_inode;
 366                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 367                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 368                        sizeof(struct posix_msg_tree_node);
 369                mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 370                if (mq_bytes + mq_treesize < mq_bytes)
 371                        goto out_inode;
 372                mq_bytes += mq_treesize;
 373                info->ucounts = get_ucounts(current_ucounts());
 374                if (info->ucounts) {
 375                        long msgqueue;
 376
 377                        spin_lock(&mq_lock);
 378                        msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 379                        if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
 380                                dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 381                                spin_unlock(&mq_lock);
 382                                put_ucounts(info->ucounts);
 383                                info->ucounts = NULL;
 384                                /* mqueue_evict_inode() releases info->messages */
 385                                ret = -EMFILE;
 386                                goto out_inode;
 387                        }
 388                        spin_unlock(&mq_lock);
 389                }
 390        } else if (S_ISDIR(mode)) {
 391                inc_nlink(inode);
 392                /* Some things misbehave if size == 0 on a directory */
 393                inode->i_size = 2 * DIRENT_SIZE;
 394                inode->i_op = &mqueue_dir_inode_operations;
 395                inode->i_fop = &simple_dir_operations;
 396        }
 397
 398        return inode;
 399out_inode:
 400        iput(inode);
 401err:
 402        return ERR_PTR(ret);
 403}
 404
 405static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 406{
 407        struct inode *inode;
 408        struct ipc_namespace *ns = sb->s_fs_info;
 409
 410        sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 411        sb->s_blocksize = PAGE_SIZE;
 412        sb->s_blocksize_bits = PAGE_SHIFT;
 413        sb->s_magic = MQUEUE_MAGIC;
 414        sb->s_op = &mqueue_super_ops;
 415
 416        inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 417        if (IS_ERR(inode))
 418                return PTR_ERR(inode);
 419
 420        sb->s_root = d_make_root(inode);
 421        if (!sb->s_root)
 422                return -ENOMEM;
 423        return 0;
 424}
 425
 426static int mqueue_get_tree(struct fs_context *fc)
 427{
 428        struct mqueue_fs_context *ctx = fc->fs_private;
 429
 430        return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 431}
 432
 433static void mqueue_fs_context_free(struct fs_context *fc)
 434{
 435        struct mqueue_fs_context *ctx = fc->fs_private;
 436
 437        put_ipc_ns(ctx->ipc_ns);
 438        kfree(ctx);
 439}
 440
 441static int mqueue_init_fs_context(struct fs_context *fc)
 442{
 443        struct mqueue_fs_context *ctx;
 444
 445        ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 446        if (!ctx)
 447                return -ENOMEM;
 448
 449        ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 450        put_user_ns(fc->user_ns);
 451        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 452        fc->fs_private = ctx;
 453        fc->ops = &mqueue_fs_context_ops;
 454        return 0;
 455}
 456
 457static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 458{
 459        struct mqueue_fs_context *ctx;
 460        struct fs_context *fc;
 461        struct vfsmount *mnt;
 462
 463        fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 464        if (IS_ERR(fc))
 465                return ERR_CAST(fc);
 466
 467        ctx = fc->fs_private;
 468        put_ipc_ns(ctx->ipc_ns);
 469        ctx->ipc_ns = get_ipc_ns(ns);
 470        put_user_ns(fc->user_ns);
 471        fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 472
 473        mnt = fc_mount(fc);
 474        put_fs_context(fc);
 475        return mnt;
 476}
 477
 478static void init_once(void *foo)
 479{
 480        struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 481
 482        inode_init_once(&p->vfs_inode);
 483}
 484
 485static struct inode *mqueue_alloc_inode(struct super_block *sb)
 486{
 487        struct mqueue_inode_info *ei;
 488
 489        ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 490        if (!ei)
 491                return NULL;
 492        return &ei->vfs_inode;
 493}
 494
 495static void mqueue_free_inode(struct inode *inode)
 496{
 497        kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 498}
 499
 500static void mqueue_evict_inode(struct inode *inode)
 501{
 502        struct mqueue_inode_info *info;
 503        struct ipc_namespace *ipc_ns;
 504        struct msg_msg *msg, *nmsg;
 505        LIST_HEAD(tmp_msg);
 506
 507        clear_inode(inode);
 508
 509        if (S_ISDIR(inode->i_mode))
 510                return;
 511
 512        ipc_ns = get_ns_from_inode(inode);
 513        info = MQUEUE_I(inode);
 514        spin_lock(&info->lock);
 515        while ((msg = msg_get(info)) != NULL)
 516                list_add_tail(&msg->m_list, &tmp_msg);
 517        kfree(info->node_cache);
 518        spin_unlock(&info->lock);
 519
 520        list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 521                list_del(&msg->m_list);
 522                free_msg(msg);
 523        }
 524
 525        if (info->ucounts) {
 526                unsigned long mq_bytes, mq_treesize;
 527
 528                /* Total amount of bytes accounted for the mqueue */
 529                mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 530                        min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 531                        sizeof(struct posix_msg_tree_node);
 532
 533                mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 534                                          info->attr.mq_msgsize);
 535
 536                spin_lock(&mq_lock);
 537                dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 538                /*
 539                 * get_ns_from_inode() ensures that the
 540                 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 541                 * to which we now hold a reference, or it is NULL.
 542                 * We can't put it here under mq_lock, though.
 543                 */
 544                if (ipc_ns)
 545                        ipc_ns->mq_queues_count--;
 546                spin_unlock(&mq_lock);
 547                put_ucounts(info->ucounts);
 548                info->ucounts = NULL;
 549        }
 550        if (ipc_ns)
 551                put_ipc_ns(ipc_ns);
 552}
 553
 554static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 555{
 556        struct inode *dir = dentry->d_parent->d_inode;
 557        struct inode *inode;
 558        struct mq_attr *attr = arg;
 559        int error;
 560        struct ipc_namespace *ipc_ns;
 561
 562        spin_lock(&mq_lock);
 563        ipc_ns = __get_ns_from_inode(dir);
 564        if (!ipc_ns) {
 565                error = -EACCES;
 566                goto out_unlock;
 567        }
 568
 569        if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 570            !capable(CAP_SYS_RESOURCE)) {
 571                error = -ENOSPC;
 572                goto out_unlock;
 573        }
 574        ipc_ns->mq_queues_count++;
 575        spin_unlock(&mq_lock);
 576
 577        inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 578        if (IS_ERR(inode)) {
 579                error = PTR_ERR(inode);
 580                spin_lock(&mq_lock);
 581                ipc_ns->mq_queues_count--;
 582                goto out_unlock;
 583        }
 584
 585        put_ipc_ns(ipc_ns);
 586        dir->i_size += DIRENT_SIZE;
 587        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 588
 589        d_instantiate(dentry, inode);
 590        dget(dentry);
 591        return 0;
 592out_unlock:
 593        spin_unlock(&mq_lock);
 594        if (ipc_ns)
 595                put_ipc_ns(ipc_ns);
 596        return error;
 597}
 598
 599static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
 600                         struct dentry *dentry, umode_t mode, bool excl)
 601{
 602        return mqueue_create_attr(dentry, mode, NULL);
 603}
 604
 605static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 606{
 607        struct inode *inode = d_inode(dentry);
 608
 609        dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 610        dir->i_size -= DIRENT_SIZE;
 611        drop_nlink(inode);
 612        dput(dentry);
 613        return 0;
 614}
 615
 616/*
 617*       This is routine for system read from queue file.
 618*       To avoid mess with doing here some sort of mq_receive we allow
 619*       to read only queue size & notification info (the only values
 620*       that are interesting from user point of view and aren't accessible
 621*       through std routines)
 622*/
 623static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 624                                size_t count, loff_t *off)
 625{
 626        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 627        char buffer[FILENT_SIZE];
 628        ssize_t ret;
 629
 630        spin_lock(&info->lock);
 631        snprintf(buffer, sizeof(buffer),
 632                        "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 633                        info->qsize,
 634                        info->notify_owner ? info->notify.sigev_notify : 0,
 635                        (info->notify_owner &&
 636                         info->notify.sigev_notify == SIGEV_SIGNAL) ?
 637                                info->notify.sigev_signo : 0,
 638                        pid_vnr(info->notify_owner));
 639        spin_unlock(&info->lock);
 640        buffer[sizeof(buffer)-1] = '\0';
 641
 642        ret = simple_read_from_buffer(u_data, count, off, buffer,
 643                                strlen(buffer));
 644        if (ret <= 0)
 645                return ret;
 646
 647        file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 648        return ret;
 649}
 650
 651static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 652{
 653        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 654
 655        spin_lock(&info->lock);
 656        if (task_tgid(current) == info->notify_owner)
 657                remove_notification(info);
 658
 659        spin_unlock(&info->lock);
 660        return 0;
 661}
 662
 663static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 664{
 665        struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 666        __poll_t retval = 0;
 667
 668        poll_wait(filp, &info->wait_q, poll_tab);
 669
 670        spin_lock(&info->lock);
 671        if (info->attr.mq_curmsgs)
 672                retval = EPOLLIN | EPOLLRDNORM;
 673
 674        if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 675                retval |= EPOLLOUT | EPOLLWRNORM;
 676        spin_unlock(&info->lock);
 677
 678        return retval;
 679}
 680
 681/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 682static void wq_add(struct mqueue_inode_info *info, int sr,
 683                        struct ext_wait_queue *ewp)
 684{
 685        struct ext_wait_queue *walk;
 686
 687        list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 688                if (walk->task->prio <= current->prio) {
 689                        list_add_tail(&ewp->list, &walk->list);
 690                        return;
 691                }
 692        }
 693        list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 694}
 695
 696/*
 697 * Puts current task to sleep. Caller must hold queue lock. After return
 698 * lock isn't held.
 699 * sr: SEND or RECV
 700 */
 701static int wq_sleep(struct mqueue_inode_info *info, int sr,
 702                    ktime_t *timeout, struct ext_wait_queue *ewp)
 703        __releases(&info->lock)
 704{
 705        int retval;
 706        signed long time;
 707
 708        wq_add(info, sr, ewp);
 709
 710        for (;;) {
 711                /* memory barrier not required, we hold info->lock */
 712                __set_current_state(TASK_INTERRUPTIBLE);
 713
 714                spin_unlock(&info->lock);
 715                time = schedule_hrtimeout_range_clock(timeout, 0,
 716                        HRTIMER_MODE_ABS, CLOCK_REALTIME);
 717
 718                if (READ_ONCE(ewp->state) == STATE_READY) {
 719                        /* see MQ_BARRIER for purpose/pairing */
 720                        smp_acquire__after_ctrl_dep();
 721                        retval = 0;
 722                        goto out;
 723                }
 724                spin_lock(&info->lock);
 725
 726                /* we hold info->lock, so no memory barrier required */
 727                if (READ_ONCE(ewp->state) == STATE_READY) {
 728                        retval = 0;
 729                        goto out_unlock;
 730                }
 731                if (signal_pending(current)) {
 732                        retval = -ERESTARTSYS;
 733                        break;
 734                }
 735                if (time == 0) {
 736                        retval = -ETIMEDOUT;
 737                        break;
 738                }
 739        }
 740        list_del(&ewp->list);
 741out_unlock:
 742        spin_unlock(&info->lock);
 743out:
 744        return retval;
 745}
 746
 747/*
 748 * Returns waiting task that should be serviced first or NULL if none exists
 749 */
 750static struct ext_wait_queue *wq_get_first_waiter(
 751                struct mqueue_inode_info *info, int sr)
 752{
 753        struct list_head *ptr;
 754
 755        ptr = info->e_wait_q[sr].list.prev;
 756        if (ptr == &info->e_wait_q[sr].list)
 757                return NULL;
 758        return list_entry(ptr, struct ext_wait_queue, list);
 759}
 760
 761
 762static inline void set_cookie(struct sk_buff *skb, char code)
 763{
 764        ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 765}
 766
 767/*
 768 * The next function is only to split too long sys_mq_timedsend
 769 */
 770static void __do_notify(struct mqueue_inode_info *info)
 771{
 772        /* notification
 773         * invoked when there is registered process and there isn't process
 774         * waiting synchronously for message AND state of queue changed from
 775         * empty to not empty. Here we are sure that no one is waiting
 776         * synchronously. */
 777        if (info->notify_owner &&
 778            info->attr.mq_curmsgs == 1) {
 779                switch (info->notify.sigev_notify) {
 780                case SIGEV_NONE:
 781                        break;
 782                case SIGEV_SIGNAL: {
 783                        struct kernel_siginfo sig_i;
 784                        struct task_struct *task;
 785
 786                        /* do_mq_notify() accepts sigev_signo == 0, why?? */
 787                        if (!info->notify.sigev_signo)
 788                                break;
 789
 790                        clear_siginfo(&sig_i);
 791                        sig_i.si_signo = info->notify.sigev_signo;
 792                        sig_i.si_errno = 0;
 793                        sig_i.si_code = SI_MESGQ;
 794                        sig_i.si_value = info->notify.sigev_value;
 795                        rcu_read_lock();
 796                        /* map current pid/uid into info->owner's namespaces */
 797                        sig_i.si_pid = task_tgid_nr_ns(current,
 798                                                ns_of_pid(info->notify_owner));
 799                        sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
 800                                                current_uid());
 801                        /*
 802                         * We can't use kill_pid_info(), this signal should
 803                         * bypass check_kill_permission(). It is from kernel
 804                         * but si_fromuser() can't know this.
 805                         * We do check the self_exec_id, to avoid sending
 806                         * signals to programs that don't expect them.
 807                         */
 808                        task = pid_task(info->notify_owner, PIDTYPE_TGID);
 809                        if (task && task->self_exec_id ==
 810                                                info->notify_self_exec_id) {
 811                                do_send_sig_info(info->notify.sigev_signo,
 812                                                &sig_i, task, PIDTYPE_TGID);
 813                        }
 814                        rcu_read_unlock();
 815                        break;
 816                }
 817                case SIGEV_THREAD:
 818                        set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 819                        netlink_sendskb(info->notify_sock, info->notify_cookie);
 820                        break;
 821                }
 822                /* after notification unregisters process */
 823                put_pid(info->notify_owner);
 824                put_user_ns(info->notify_user_ns);
 825                info->notify_owner = NULL;
 826                info->notify_user_ns = NULL;
 827        }
 828        wake_up(&info->wait_q);
 829}
 830
 831static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 832                           struct timespec64 *ts)
 833{
 834        if (get_timespec64(ts, u_abs_timeout))
 835                return -EFAULT;
 836        if (!timespec64_valid(ts))
 837                return -EINVAL;
 838        return 0;
 839}
 840
 841static void remove_notification(struct mqueue_inode_info *info)
 842{
 843        if (info->notify_owner != NULL &&
 844            info->notify.sigev_notify == SIGEV_THREAD) {
 845                set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 846                netlink_sendskb(info->notify_sock, info->notify_cookie);
 847        }
 848        put_pid(info->notify_owner);
 849        put_user_ns(info->notify_user_ns);
 850        info->notify_owner = NULL;
 851        info->notify_user_ns = NULL;
 852}
 853
 854static int prepare_open(struct dentry *dentry, int oflag, int ro,
 855                        umode_t mode, struct filename *name,
 856                        struct mq_attr *attr)
 857{
 858        static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 859                                                  MAY_READ | MAY_WRITE };
 860        int acc;
 861
 862        if (d_really_is_negative(dentry)) {
 863                if (!(oflag & O_CREAT))
 864                        return -ENOENT;
 865                if (ro)
 866                        return ro;
 867                audit_inode_parent_hidden(name, dentry->d_parent);
 868                return vfs_mkobj(dentry, mode & ~current_umask(),
 869                                  mqueue_create_attr, attr);
 870        }
 871        /* it already existed */
 872        audit_inode(name, dentry, 0);
 873        if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 874                return -EEXIST;
 875        if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 876                return -EINVAL;
 877        acc = oflag2acc[oflag & O_ACCMODE];
 878        return inode_permission(&init_user_ns, d_inode(dentry), acc);
 879}
 880
 881static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 882                      struct mq_attr *attr)
 883{
 884        struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 885        struct dentry *root = mnt->mnt_root;
 886        struct filename *name;
 887        struct path path;
 888        int fd, error;
 889        int ro;
 890
 891        audit_mq_open(oflag, mode, attr);
 892
 893        if (IS_ERR(name = getname(u_name)))
 894                return PTR_ERR(name);
 895
 896        fd = get_unused_fd_flags(O_CLOEXEC);
 897        if (fd < 0)
 898                goto out_putname;
 899
 900        ro = mnt_want_write(mnt);       /* we'll drop it in any case */
 901        inode_lock(d_inode(root));
 902        path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 903        if (IS_ERR(path.dentry)) {
 904                error = PTR_ERR(path.dentry);
 905                goto out_putfd;
 906        }
 907        path.mnt = mntget(mnt);
 908        error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 909        if (!error) {
 910                struct file *file = dentry_open(&path, oflag, current_cred());
 911                if (!IS_ERR(file))
 912                        fd_install(fd, file);
 913                else
 914                        error = PTR_ERR(file);
 915        }
 916        path_put(&path);
 917out_putfd:
 918        if (error) {
 919                put_unused_fd(fd);
 920                fd = error;
 921        }
 922        inode_unlock(d_inode(root));
 923        if (!ro)
 924                mnt_drop_write(mnt);
 925out_putname:
 926        putname(name);
 927        return fd;
 928}
 929
 930SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 931                struct mq_attr __user *, u_attr)
 932{
 933        struct mq_attr attr;
 934        if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 935                return -EFAULT;
 936
 937        return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 938}
 939
 940SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 941{
 942        int err;
 943        struct filename *name;
 944        struct dentry *dentry;
 945        struct inode *inode = NULL;
 946        struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 947        struct vfsmount *mnt = ipc_ns->mq_mnt;
 948
 949        name = getname(u_name);
 950        if (IS_ERR(name))
 951                return PTR_ERR(name);
 952
 953        audit_inode_parent_hidden(name, mnt->mnt_root);
 954        err = mnt_want_write(mnt);
 955        if (err)
 956                goto out_name;
 957        inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 958        dentry = lookup_one_len(name->name, mnt->mnt_root,
 959                                strlen(name->name));
 960        if (IS_ERR(dentry)) {
 961                err = PTR_ERR(dentry);
 962                goto out_unlock;
 963        }
 964
 965        inode = d_inode(dentry);
 966        if (!inode) {
 967                err = -ENOENT;
 968        } else {
 969                ihold(inode);
 970                err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
 971                                 dentry, NULL);
 972        }
 973        dput(dentry);
 974
 975out_unlock:
 976        inode_unlock(d_inode(mnt->mnt_root));
 977        if (inode)
 978                iput(inode);
 979        mnt_drop_write(mnt);
 980out_name:
 981        putname(name);
 982
 983        return err;
 984}
 985
 986/* Pipelined send and receive functions.
 987 *
 988 * If a receiver finds no waiting message, then it registers itself in the
 989 * list of waiting receivers. A sender checks that list before adding the new
 990 * message into the message array. If there is a waiting receiver, then it
 991 * bypasses the message array and directly hands the message over to the
 992 * receiver. The receiver accepts the message and returns without grabbing the
 993 * queue spinlock:
 994 *
 995 * - Set pointer to message.
 996 * - Queue the receiver task for later wakeup (without the info->lock).
 997 * - Update its state to STATE_READY. Now the receiver can continue.
 998 * - Wake up the process after the lock is dropped. Should the process wake up
 999 *   before this wakeup (due to a timeout or a signal) it will either see
1000 *   STATE_READY and continue or acquire the lock to check the state again.
1001 *
1002 * The same algorithm is used for senders.
1003 */
1004
1005static inline void __pipelined_op(struct wake_q_head *wake_q,
1006                                  struct mqueue_inode_info *info,
1007                                  struct ext_wait_queue *this)
1008{
1009        struct task_struct *task;
1010
1011        list_del(&this->list);
1012        task = get_task_struct(this->task);
1013
1014        /* see MQ_BARRIER for purpose/pairing */
1015        smp_store_release(&this->state, STATE_READY);
1016        wake_q_add_safe(wake_q, task);
1017}
1018
1019/* pipelined_send() - send a message directly to the task waiting in
1020 * sys_mq_timedreceive() (without inserting message into a queue).
1021 */
1022static inline void pipelined_send(struct wake_q_head *wake_q,
1023                                  struct mqueue_inode_info *info,
1024                                  struct msg_msg *message,
1025                                  struct ext_wait_queue *receiver)
1026{
1027        receiver->msg = message;
1028        __pipelined_op(wake_q, info, receiver);
1029}
1030
1031/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1032 * gets its message and put to the queue (we have one free place for sure). */
1033static inline void pipelined_receive(struct wake_q_head *wake_q,
1034                                     struct mqueue_inode_info *info)
1035{
1036        struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1037
1038        if (!sender) {
1039                /* for poll */
1040                wake_up_interruptible(&info->wait_q);
1041                return;
1042        }
1043        if (msg_insert(sender->msg, info))
1044                return;
1045
1046        __pipelined_op(wake_q, info, sender);
1047}
1048
1049static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1050                size_t msg_len, unsigned int msg_prio,
1051                struct timespec64 *ts)
1052{
1053        struct fd f;
1054        struct inode *inode;
1055        struct ext_wait_queue wait;
1056        struct ext_wait_queue *receiver;
1057        struct msg_msg *msg_ptr;
1058        struct mqueue_inode_info *info;
1059        ktime_t expires, *timeout = NULL;
1060        struct posix_msg_tree_node *new_leaf = NULL;
1061        int ret = 0;
1062        DEFINE_WAKE_Q(wake_q);
1063
1064        if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1065                return -EINVAL;
1066
1067        if (ts) {
1068                expires = timespec64_to_ktime(*ts);
1069                timeout = &expires;
1070        }
1071
1072        audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1073
1074        f = fdget(mqdes);
1075        if (unlikely(!f.file)) {
1076                ret = -EBADF;
1077                goto out;
1078        }
1079
1080        inode = file_inode(f.file);
1081        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1082                ret = -EBADF;
1083                goto out_fput;
1084        }
1085        info = MQUEUE_I(inode);
1086        audit_file(f.file);
1087
1088        if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1089                ret = -EBADF;
1090                goto out_fput;
1091        }
1092
1093        if (unlikely(msg_len > info->attr.mq_msgsize)) {
1094                ret = -EMSGSIZE;
1095                goto out_fput;
1096        }
1097
1098        /* First try to allocate memory, before doing anything with
1099         * existing queues. */
1100        msg_ptr = load_msg(u_msg_ptr, msg_len);
1101        if (IS_ERR(msg_ptr)) {
1102                ret = PTR_ERR(msg_ptr);
1103                goto out_fput;
1104        }
1105        msg_ptr->m_ts = msg_len;
1106        msg_ptr->m_type = msg_prio;
1107
1108        /*
1109         * msg_insert really wants us to have a valid, spare node struct so
1110         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1111         * fall back to that if necessary.
1112         */
1113        if (!info->node_cache)
1114                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1115
1116        spin_lock(&info->lock);
1117
1118        if (!info->node_cache && new_leaf) {
1119                /* Save our speculative allocation into the cache */
1120                INIT_LIST_HEAD(&new_leaf->msg_list);
1121                info->node_cache = new_leaf;
1122                new_leaf = NULL;
1123        } else {
1124                kfree(new_leaf);
1125        }
1126
1127        if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1128                if (f.file->f_flags & O_NONBLOCK) {
1129                        ret = -EAGAIN;
1130                } else {
1131                        wait.task = current;
1132                        wait.msg = (void *) msg_ptr;
1133
1134                        /* memory barrier not required, we hold info->lock */
1135                        WRITE_ONCE(wait.state, STATE_NONE);
1136                        ret = wq_sleep(info, SEND, timeout, &wait);
1137                        /*
1138                         * wq_sleep must be called with info->lock held, and
1139                         * returns with the lock released
1140                         */
1141                        goto out_free;
1142                }
1143        } else {
1144                receiver = wq_get_first_waiter(info, RECV);
1145                if (receiver) {
1146                        pipelined_send(&wake_q, info, msg_ptr, receiver);
1147                } else {
1148                        /* adds message to the queue */
1149                        ret = msg_insert(msg_ptr, info);
1150                        if (ret)
1151                                goto out_unlock;
1152                        __do_notify(info);
1153                }
1154                inode->i_atime = inode->i_mtime = inode->i_ctime =
1155                                current_time(inode);
1156        }
1157out_unlock:
1158        spin_unlock(&info->lock);
1159        wake_up_q(&wake_q);
1160out_free:
1161        if (ret)
1162                free_msg(msg_ptr);
1163out_fput:
1164        fdput(f);
1165out:
1166        return ret;
1167}
1168
1169static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1170                size_t msg_len, unsigned int __user *u_msg_prio,
1171                struct timespec64 *ts)
1172{
1173        ssize_t ret;
1174        struct msg_msg *msg_ptr;
1175        struct fd f;
1176        struct inode *inode;
1177        struct mqueue_inode_info *info;
1178        struct ext_wait_queue wait;
1179        ktime_t expires, *timeout = NULL;
1180        struct posix_msg_tree_node *new_leaf = NULL;
1181
1182        if (ts) {
1183                expires = timespec64_to_ktime(*ts);
1184                timeout = &expires;
1185        }
1186
1187        audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1188
1189        f = fdget(mqdes);
1190        if (unlikely(!f.file)) {
1191                ret = -EBADF;
1192                goto out;
1193        }
1194
1195        inode = file_inode(f.file);
1196        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1197                ret = -EBADF;
1198                goto out_fput;
1199        }
1200        info = MQUEUE_I(inode);
1201        audit_file(f.file);
1202
1203        if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1204                ret = -EBADF;
1205                goto out_fput;
1206        }
1207
1208        /* checks if buffer is big enough */
1209        if (unlikely(msg_len < info->attr.mq_msgsize)) {
1210                ret = -EMSGSIZE;
1211                goto out_fput;
1212        }
1213
1214        /*
1215         * msg_insert really wants us to have a valid, spare node struct so
1216         * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1217         * fall back to that if necessary.
1218         */
1219        if (!info->node_cache)
1220                new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1221
1222        spin_lock(&info->lock);
1223
1224        if (!info->node_cache && new_leaf) {
1225                /* Save our speculative allocation into the cache */
1226                INIT_LIST_HEAD(&new_leaf->msg_list);
1227                info->node_cache = new_leaf;
1228        } else {
1229                kfree(new_leaf);
1230        }
1231
1232        if (info->attr.mq_curmsgs == 0) {
1233                if (f.file->f_flags & O_NONBLOCK) {
1234                        spin_unlock(&info->lock);
1235                        ret = -EAGAIN;
1236                } else {
1237                        wait.task = current;
1238
1239                        /* memory barrier not required, we hold info->lock */
1240                        WRITE_ONCE(wait.state, STATE_NONE);
1241                        ret = wq_sleep(info, RECV, timeout, &wait);
1242                        msg_ptr = wait.msg;
1243                }
1244        } else {
1245                DEFINE_WAKE_Q(wake_q);
1246
1247                msg_ptr = msg_get(info);
1248
1249                inode->i_atime = inode->i_mtime = inode->i_ctime =
1250                                current_time(inode);
1251
1252                /* There is now free space in queue. */
1253                pipelined_receive(&wake_q, info);
1254                spin_unlock(&info->lock);
1255                wake_up_q(&wake_q);
1256                ret = 0;
1257        }
1258        if (ret == 0) {
1259                ret = msg_ptr->m_ts;
1260
1261                if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1262                        store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1263                        ret = -EFAULT;
1264                }
1265                free_msg(msg_ptr);
1266        }
1267out_fput:
1268        fdput(f);
1269out:
1270        return ret;
1271}
1272
1273SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1274                size_t, msg_len, unsigned int, msg_prio,
1275                const struct __kernel_timespec __user *, u_abs_timeout)
1276{
1277        struct timespec64 ts, *p = NULL;
1278        if (u_abs_timeout) {
1279                int res = prepare_timeout(u_abs_timeout, &ts);
1280                if (res)
1281                        return res;
1282                p = &ts;
1283        }
1284        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1285}
1286
1287SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1288                size_t, msg_len, unsigned int __user *, u_msg_prio,
1289                const struct __kernel_timespec __user *, u_abs_timeout)
1290{
1291        struct timespec64 ts, *p = NULL;
1292        if (u_abs_timeout) {
1293                int res = prepare_timeout(u_abs_timeout, &ts);
1294                if (res)
1295                        return res;
1296                p = &ts;
1297        }
1298        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1299}
1300
1301/*
1302 * Notes: the case when user wants us to deregister (with NULL as pointer)
1303 * and he isn't currently owner of notification, will be silently discarded.
1304 * It isn't explicitly defined in the POSIX.
1305 */
1306static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1307{
1308        int ret;
1309        struct fd f;
1310        struct sock *sock;
1311        struct inode *inode;
1312        struct mqueue_inode_info *info;
1313        struct sk_buff *nc;
1314
1315        audit_mq_notify(mqdes, notification);
1316
1317        nc = NULL;
1318        sock = NULL;
1319        if (notification != NULL) {
1320                if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1321                             notification->sigev_notify != SIGEV_SIGNAL &&
1322                             notification->sigev_notify != SIGEV_THREAD))
1323                        return -EINVAL;
1324                if (notification->sigev_notify == SIGEV_SIGNAL &&
1325                        !valid_signal(notification->sigev_signo)) {
1326                        return -EINVAL;
1327                }
1328                if (notification->sigev_notify == SIGEV_THREAD) {
1329                        long timeo;
1330
1331                        /* create the notify skb */
1332                        nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1333                        if (!nc)
1334                                return -ENOMEM;
1335
1336                        if (copy_from_user(nc->data,
1337                                        notification->sigev_value.sival_ptr,
1338                                        NOTIFY_COOKIE_LEN)) {
1339                                ret = -EFAULT;
1340                                goto free_skb;
1341                        }
1342
1343                        /* TODO: add a header? */
1344                        skb_put(nc, NOTIFY_COOKIE_LEN);
1345                        /* and attach it to the socket */
1346retry:
1347                        f = fdget(notification->sigev_signo);
1348                        if (!f.file) {
1349                                ret = -EBADF;
1350                                goto out;
1351                        }
1352                        sock = netlink_getsockbyfilp(f.file);
1353                        fdput(f);
1354                        if (IS_ERR(sock)) {
1355                                ret = PTR_ERR(sock);
1356                                goto free_skb;
1357                        }
1358
1359                        timeo = MAX_SCHEDULE_TIMEOUT;
1360                        ret = netlink_attachskb(sock, nc, &timeo, NULL);
1361                        if (ret == 1) {
1362                                sock = NULL;
1363                                goto retry;
1364                        }
1365                        if (ret)
1366                                return ret;
1367                }
1368        }
1369
1370        f = fdget(mqdes);
1371        if (!f.file) {
1372                ret = -EBADF;
1373                goto out;
1374        }
1375
1376        inode = file_inode(f.file);
1377        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1378                ret = -EBADF;
1379                goto out_fput;
1380        }
1381        info = MQUEUE_I(inode);
1382
1383        ret = 0;
1384        spin_lock(&info->lock);
1385        if (notification == NULL) {
1386                if (info->notify_owner == task_tgid(current)) {
1387                        remove_notification(info);
1388                        inode->i_atime = inode->i_ctime = current_time(inode);
1389                }
1390        } else if (info->notify_owner != NULL) {
1391                ret = -EBUSY;
1392        } else {
1393                switch (notification->sigev_notify) {
1394                case SIGEV_NONE:
1395                        info->notify.sigev_notify = SIGEV_NONE;
1396                        break;
1397                case SIGEV_THREAD:
1398                        info->notify_sock = sock;
1399                        info->notify_cookie = nc;
1400                        sock = NULL;
1401                        nc = NULL;
1402                        info->notify.sigev_notify = SIGEV_THREAD;
1403                        break;
1404                case SIGEV_SIGNAL:
1405                        info->notify.sigev_signo = notification->sigev_signo;
1406                        info->notify.sigev_value = notification->sigev_value;
1407                        info->notify.sigev_notify = SIGEV_SIGNAL;
1408                        info->notify_self_exec_id = current->self_exec_id;
1409                        break;
1410                }
1411
1412                info->notify_owner = get_pid(task_tgid(current));
1413                info->notify_user_ns = get_user_ns(current_user_ns());
1414                inode->i_atime = inode->i_ctime = current_time(inode);
1415        }
1416        spin_unlock(&info->lock);
1417out_fput:
1418        fdput(f);
1419out:
1420        if (sock)
1421                netlink_detachskb(sock, nc);
1422        else
1423free_skb:
1424                dev_kfree_skb(nc);
1425
1426        return ret;
1427}
1428
1429SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1430                const struct sigevent __user *, u_notification)
1431{
1432        struct sigevent n, *p = NULL;
1433        if (u_notification) {
1434                if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1435                        return -EFAULT;
1436                p = &n;
1437        }
1438        return do_mq_notify(mqdes, p);
1439}
1440
1441static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1442{
1443        struct fd f;
1444        struct inode *inode;
1445        struct mqueue_inode_info *info;
1446
1447        if (new && (new->mq_flags & (~O_NONBLOCK)))
1448                return -EINVAL;
1449
1450        f = fdget(mqdes);
1451        if (!f.file)
1452                return -EBADF;
1453
1454        if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1455                fdput(f);
1456                return -EBADF;
1457        }
1458
1459        inode = file_inode(f.file);
1460        info = MQUEUE_I(inode);
1461
1462        spin_lock(&info->lock);
1463
1464        if (old) {
1465                *old = info->attr;
1466                old->mq_flags = f.file->f_flags & O_NONBLOCK;
1467        }
1468        if (new) {
1469                audit_mq_getsetattr(mqdes, new);
1470                spin_lock(&f.file->f_lock);
1471                if (new->mq_flags & O_NONBLOCK)
1472                        f.file->f_flags |= O_NONBLOCK;
1473                else
1474                        f.file->f_flags &= ~O_NONBLOCK;
1475                spin_unlock(&f.file->f_lock);
1476
1477                inode->i_atime = inode->i_ctime = current_time(inode);
1478        }
1479
1480        spin_unlock(&info->lock);
1481        fdput(f);
1482        return 0;
1483}
1484
1485SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1486                const struct mq_attr __user *, u_mqstat,
1487                struct mq_attr __user *, u_omqstat)
1488{
1489        int ret;
1490        struct mq_attr mqstat, omqstat;
1491        struct mq_attr *new = NULL, *old = NULL;
1492
1493        if (u_mqstat) {
1494                new = &mqstat;
1495                if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1496                        return -EFAULT;
1497        }
1498        if (u_omqstat)
1499                old = &omqstat;
1500
1501        ret = do_mq_getsetattr(mqdes, new, old);
1502        if (ret || !old)
1503                return ret;
1504
1505        if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1506                return -EFAULT;
1507        return 0;
1508}
1509
1510#ifdef CONFIG_COMPAT
1511
1512struct compat_mq_attr {
1513        compat_long_t mq_flags;      /* message queue flags                  */
1514        compat_long_t mq_maxmsg;     /* maximum number of messages           */
1515        compat_long_t mq_msgsize;    /* maximum message size                 */
1516        compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1517        compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1518};
1519
1520static inline int get_compat_mq_attr(struct mq_attr *attr,
1521                        const struct compat_mq_attr __user *uattr)
1522{
1523        struct compat_mq_attr v;
1524
1525        if (copy_from_user(&v, uattr, sizeof(*uattr)))
1526                return -EFAULT;
1527
1528        memset(attr, 0, sizeof(*attr));
1529        attr->mq_flags = v.mq_flags;
1530        attr->mq_maxmsg = v.mq_maxmsg;
1531        attr->mq_msgsize = v.mq_msgsize;
1532        attr->mq_curmsgs = v.mq_curmsgs;
1533        return 0;
1534}
1535
1536static inline int put_compat_mq_attr(const struct mq_attr *attr,
1537                        struct compat_mq_attr __user *uattr)
1538{
1539        struct compat_mq_attr v;
1540
1541        memset(&v, 0, sizeof(v));
1542        v.mq_flags = attr->mq_flags;
1543        v.mq_maxmsg = attr->mq_maxmsg;
1544        v.mq_msgsize = attr->mq_msgsize;
1545        v.mq_curmsgs = attr->mq_curmsgs;
1546        if (copy_to_user(uattr, &v, sizeof(*uattr)))
1547                return -EFAULT;
1548        return 0;
1549}
1550
1551COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1552                       int, oflag, compat_mode_t, mode,
1553                       struct compat_mq_attr __user *, u_attr)
1554{
1555        struct mq_attr attr, *p = NULL;
1556        if (u_attr && oflag & O_CREAT) {
1557                p = &attr;
1558                if (get_compat_mq_attr(&attr, u_attr))
1559                        return -EFAULT;
1560        }
1561        return do_mq_open(u_name, oflag, mode, p);
1562}
1563
1564COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1565                       const struct compat_sigevent __user *, u_notification)
1566{
1567        struct sigevent n, *p = NULL;
1568        if (u_notification) {
1569                if (get_compat_sigevent(&n, u_notification))
1570                        return -EFAULT;
1571                if (n.sigev_notify == SIGEV_THREAD)
1572                        n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1573                p = &n;
1574        }
1575        return do_mq_notify(mqdes, p);
1576}
1577
1578COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1579                       const struct compat_mq_attr __user *, u_mqstat,
1580                       struct compat_mq_attr __user *, u_omqstat)
1581{
1582        int ret;
1583        struct mq_attr mqstat, omqstat;
1584        struct mq_attr *new = NULL, *old = NULL;
1585
1586        if (u_mqstat) {
1587                new = &mqstat;
1588                if (get_compat_mq_attr(new, u_mqstat))
1589                        return -EFAULT;
1590        }
1591        if (u_omqstat)
1592                old = &omqstat;
1593
1594        ret = do_mq_getsetattr(mqdes, new, old);
1595        if (ret || !old)
1596                return ret;
1597
1598        if (put_compat_mq_attr(old, u_omqstat))
1599                return -EFAULT;
1600        return 0;
1601}
1602#endif
1603
1604#ifdef CONFIG_COMPAT_32BIT_TIME
1605static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1606                                   struct timespec64 *ts)
1607{
1608        if (get_old_timespec32(ts, p))
1609                return -EFAULT;
1610        if (!timespec64_valid(ts))
1611                return -EINVAL;
1612        return 0;
1613}
1614
1615SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1616                const char __user *, u_msg_ptr,
1617                unsigned int, msg_len, unsigned int, msg_prio,
1618                const struct old_timespec32 __user *, u_abs_timeout)
1619{
1620        struct timespec64 ts, *p = NULL;
1621        if (u_abs_timeout) {
1622                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1623                if (res)
1624                        return res;
1625                p = &ts;
1626        }
1627        return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1628}
1629
1630SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1631                char __user *, u_msg_ptr,
1632                unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1633                const struct old_timespec32 __user *, u_abs_timeout)
1634{
1635        struct timespec64 ts, *p = NULL;
1636        if (u_abs_timeout) {
1637                int res = compat_prepare_timeout(u_abs_timeout, &ts);
1638                if (res)
1639                        return res;
1640                p = &ts;
1641        }
1642        return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1643}
1644#endif
1645
1646static const struct inode_operations mqueue_dir_inode_operations = {
1647        .lookup = simple_lookup,
1648        .create = mqueue_create,
1649        .unlink = mqueue_unlink,
1650};
1651
1652static const struct file_operations mqueue_file_operations = {
1653        .flush = mqueue_flush_file,
1654        .poll = mqueue_poll_file,
1655        .read = mqueue_read_file,
1656        .llseek = default_llseek,
1657};
1658
1659static const struct super_operations mqueue_super_ops = {
1660        .alloc_inode = mqueue_alloc_inode,
1661        .free_inode = mqueue_free_inode,
1662        .evict_inode = mqueue_evict_inode,
1663        .statfs = simple_statfs,
1664};
1665
1666static const struct fs_context_operations mqueue_fs_context_ops = {
1667        .free           = mqueue_fs_context_free,
1668        .get_tree       = mqueue_get_tree,
1669};
1670
1671static struct file_system_type mqueue_fs_type = {
1672        .name                   = "mqueue",
1673        .init_fs_context        = mqueue_init_fs_context,
1674        .kill_sb                = kill_litter_super,
1675        .fs_flags               = FS_USERNS_MOUNT,
1676};
1677
1678int mq_init_ns(struct ipc_namespace *ns)
1679{
1680        struct vfsmount *m;
1681
1682        ns->mq_queues_count  = 0;
1683        ns->mq_queues_max    = DFLT_QUEUESMAX;
1684        ns->mq_msg_max       = DFLT_MSGMAX;
1685        ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1686        ns->mq_msg_default   = DFLT_MSG;
1687        ns->mq_msgsize_default  = DFLT_MSGSIZE;
1688
1689        m = mq_create_mount(ns);
1690        if (IS_ERR(m))
1691                return PTR_ERR(m);
1692        ns->mq_mnt = m;
1693        return 0;
1694}
1695
1696void mq_clear_sbinfo(struct ipc_namespace *ns)
1697{
1698        ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1699}
1700
1701void mq_put_mnt(struct ipc_namespace *ns)
1702{
1703        kern_unmount(ns->mq_mnt);
1704}
1705
1706static int __init init_mqueue_fs(void)
1707{
1708        int error;
1709
1710        mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1711                                sizeof(struct mqueue_inode_info), 0,
1712                                SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1713        if (mqueue_inode_cachep == NULL)
1714                return -ENOMEM;
1715
1716        /* ignore failures - they are not fatal */
1717        mq_sysctl_table = mq_register_sysctl_table();
1718
1719        error = register_filesystem(&mqueue_fs_type);
1720        if (error)
1721                goto out_sysctl;
1722
1723        spin_lock_init(&mq_lock);
1724
1725        error = mq_init_ns(&init_ipc_ns);
1726        if (error)
1727                goto out_filesystem;
1728
1729        return 0;
1730
1731out_filesystem:
1732        unregister_filesystem(&mqueue_fs_type);
1733out_sysctl:
1734        if (mq_sysctl_table)
1735                unregister_sysctl_table(mq_sysctl_table);
1736        kmem_cache_destroy(mqueue_inode_cachep);
1737        return error;
1738}
1739
1740device_initcall(init_mqueue_fs);
1741