linux/kernel/cgroup/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/fs_context.h>
  43#include <linux/namei.h>
  44#include <linux/pagemap.h>
  45#include <linux/proc_fs.h>
  46#include <linux/rcupdate.h>
  47#include <linux/sched.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/seq_file.h>
  52#include <linux/security.h>
  53#include <linux/slab.h>
  54#include <linux/spinlock.h>
  55#include <linux/stat.h>
  56#include <linux/string.h>
  57#include <linux/time.h>
  58#include <linux/time64.h>
  59#include <linux/backing-dev.h>
  60#include <linux/sort.h>
  61#include <linux/oom.h>
  62#include <linux/sched/isolation.h>
  63#include <linux/uaccess.h>
  64#include <linux/atomic.h>
  65#include <linux/mutex.h>
  66#include <linux/cgroup.h>
  67#include <linux/wait.h>
  68
  69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  71
  72/*
  73 * There could be abnormal cpuset configurations for cpu or memory
  74 * node binding, add this key to provide a quick low-cost judgement
  75 * of the situation.
  76 */
  77DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
  78
  79/* See "Frequency meter" comments, below. */
  80
  81struct fmeter {
  82        int cnt;                /* unprocessed events count */
  83        int val;                /* most recent output value */
  84        time64_t time;          /* clock (secs) when val computed */
  85        spinlock_t lock;        /* guards read or write of above */
  86};
  87
  88struct cpuset {
  89        struct cgroup_subsys_state css;
  90
  91        unsigned long flags;            /* "unsigned long" so bitops work */
  92
  93        /*
  94         * On default hierarchy:
  95         *
  96         * The user-configured masks can only be changed by writing to
  97         * cpuset.cpus and cpuset.mems, and won't be limited by the
  98         * parent masks.
  99         *
 100         * The effective masks is the real masks that apply to the tasks
 101         * in the cpuset. They may be changed if the configured masks are
 102         * changed or hotplug happens.
 103         *
 104         * effective_mask == configured_mask & parent's effective_mask,
 105         * and if it ends up empty, it will inherit the parent's mask.
 106         *
 107         *
 108         * On legacy hierarchy:
 109         *
 110         * The user-configured masks are always the same with effective masks.
 111         */
 112
 113        /* user-configured CPUs and Memory Nodes allow to tasks */
 114        cpumask_var_t cpus_allowed;
 115        nodemask_t mems_allowed;
 116
 117        /* effective CPUs and Memory Nodes allow to tasks */
 118        cpumask_var_t effective_cpus;
 119        nodemask_t effective_mems;
 120
 121        /*
 122         * CPUs allocated to child sub-partitions (default hierarchy only)
 123         * - CPUs granted by the parent = effective_cpus U subparts_cpus
 124         * - effective_cpus and subparts_cpus are mutually exclusive.
 125         *
 126         * effective_cpus contains only onlined CPUs, but subparts_cpus
 127         * may have offlined ones.
 128         */
 129        cpumask_var_t subparts_cpus;
 130
 131        /*
 132         * This is old Memory Nodes tasks took on.
 133         *
 134         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 135         * - A new cpuset's old_mems_allowed is initialized when some
 136         *   task is moved into it.
 137         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 138         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 139         *   then old_mems_allowed is updated to mems_allowed.
 140         */
 141        nodemask_t old_mems_allowed;
 142
 143        struct fmeter fmeter;           /* memory_pressure filter */
 144
 145        /*
 146         * Tasks are being attached to this cpuset.  Used to prevent
 147         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 148         */
 149        int attach_in_progress;
 150
 151        /* partition number for rebuild_sched_domains() */
 152        int pn;
 153
 154        /* for custom sched domain */
 155        int relax_domain_level;
 156
 157        /* number of CPUs in subparts_cpus */
 158        int nr_subparts_cpus;
 159
 160        /* partition root state */
 161        int partition_root_state;
 162
 163        /*
 164         * Default hierarchy only:
 165         * use_parent_ecpus - set if using parent's effective_cpus
 166         * child_ecpus_count - # of children with use_parent_ecpus set
 167         */
 168        int use_parent_ecpus;
 169        int child_ecpus_count;
 170
 171        /* Handle for cpuset.cpus.partition */
 172        struct cgroup_file partition_file;
 173};
 174
 175/*
 176 * Partition root states:
 177 *
 178 *   0 - not a partition root
 179 *
 180 *   1 - partition root
 181 *
 182 *  -1 - invalid partition root
 183 *       None of the cpus in cpus_allowed can be put into the parent's
 184 *       subparts_cpus. In this case, the cpuset is not a real partition
 185 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 186 *       and the cpuset can be restored back to a partition root if the
 187 *       parent cpuset can give more CPUs back to this child cpuset.
 188 */
 189#define PRS_DISABLED            0
 190#define PRS_ENABLED             1
 191#define PRS_ERROR               -1
 192
 193/*
 194 * Temporary cpumasks for working with partitions that are passed among
 195 * functions to avoid memory allocation in inner functions.
 196 */
 197struct tmpmasks {
 198        cpumask_var_t addmask, delmask; /* For partition root */
 199        cpumask_var_t new_cpus;         /* For update_cpumasks_hier() */
 200};
 201
 202static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 203{
 204        return css ? container_of(css, struct cpuset, css) : NULL;
 205}
 206
 207/* Retrieve the cpuset for a task */
 208static inline struct cpuset *task_cs(struct task_struct *task)
 209{
 210        return css_cs(task_css(task, cpuset_cgrp_id));
 211}
 212
 213static inline struct cpuset *parent_cs(struct cpuset *cs)
 214{
 215        return css_cs(cs->css.parent);
 216}
 217
 218/* bits in struct cpuset flags field */
 219typedef enum {
 220        CS_ONLINE,
 221        CS_CPU_EXCLUSIVE,
 222        CS_MEM_EXCLUSIVE,
 223        CS_MEM_HARDWALL,
 224        CS_MEMORY_MIGRATE,
 225        CS_SCHED_LOAD_BALANCE,
 226        CS_SPREAD_PAGE,
 227        CS_SPREAD_SLAB,
 228} cpuset_flagbits_t;
 229
 230/* convenient tests for these bits */
 231static inline bool is_cpuset_online(struct cpuset *cs)
 232{
 233        return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
 234}
 235
 236static inline int is_cpu_exclusive(const struct cpuset *cs)
 237{
 238        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 239}
 240
 241static inline int is_mem_exclusive(const struct cpuset *cs)
 242{
 243        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 244}
 245
 246static inline int is_mem_hardwall(const struct cpuset *cs)
 247{
 248        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 249}
 250
 251static inline int is_sched_load_balance(const struct cpuset *cs)
 252{
 253        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 254}
 255
 256static inline int is_memory_migrate(const struct cpuset *cs)
 257{
 258        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 259}
 260
 261static inline int is_spread_page(const struct cpuset *cs)
 262{
 263        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 264}
 265
 266static inline int is_spread_slab(const struct cpuset *cs)
 267{
 268        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 269}
 270
 271static inline int is_partition_root(const struct cpuset *cs)
 272{
 273        return cs->partition_root_state > 0;
 274}
 275
 276/*
 277 * Send notification event of whenever partition_root_state changes.
 278 */
 279static inline void notify_partition_change(struct cpuset *cs,
 280                                           int old_prs, int new_prs)
 281{
 282        if (old_prs != new_prs)
 283                cgroup_file_notify(&cs->partition_file);
 284}
 285
 286static struct cpuset top_cpuset = {
 287        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 288                  (1 << CS_MEM_EXCLUSIVE)),
 289        .partition_root_state = PRS_ENABLED,
 290};
 291
 292/**
 293 * cpuset_for_each_child - traverse online children of a cpuset
 294 * @child_cs: loop cursor pointing to the current child
 295 * @pos_css: used for iteration
 296 * @parent_cs: target cpuset to walk children of
 297 *
 298 * Walk @child_cs through the online children of @parent_cs.  Must be used
 299 * with RCU read locked.
 300 */
 301#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 302        css_for_each_child((pos_css), &(parent_cs)->css)                \
 303                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 304
 305/**
 306 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 307 * @des_cs: loop cursor pointing to the current descendant
 308 * @pos_css: used for iteration
 309 * @root_cs: target cpuset to walk ancestor of
 310 *
 311 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 312 * with RCU read locked.  The caller may modify @pos_css by calling
 313 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 314 * iteration and the first node to be visited.
 315 */
 316#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 317        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 318                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 319
 320/*
 321 * There are two global locks guarding cpuset structures - cpuset_rwsem and
 322 * callback_lock. We also require taking task_lock() when dereferencing a
 323 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 324 * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
 325 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
 326 * prevent change to cpuset structures.
 327 *
 328 * A task must hold both locks to modify cpusets.  If a task holds
 329 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
 330 * is the only task able to also acquire callback_lock and be able to
 331 * modify cpusets.  It can perform various checks on the cpuset structure
 332 * first, knowing nothing will change.  It can also allocate memory while
 333 * just holding cpuset_rwsem.  While it is performing these checks, various
 334 * callback routines can briefly acquire callback_lock to query cpusets.
 335 * Once it is ready to make the changes, it takes callback_lock, blocking
 336 * everyone else.
 337 *
 338 * Calls to the kernel memory allocator can not be made while holding
 339 * callback_lock, as that would risk double tripping on callback_lock
 340 * from one of the callbacks into the cpuset code from within
 341 * __alloc_pages().
 342 *
 343 * If a task is only holding callback_lock, then it has read-only
 344 * access to cpusets.
 345 *
 346 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 347 * by other task, we use alloc_lock in the task_struct fields to protect
 348 * them.
 349 *
 350 * The cpuset_common_file_read() handlers only hold callback_lock across
 351 * small pieces of code, such as when reading out possibly multi-word
 352 * cpumasks and nodemasks.
 353 *
 354 * Accessing a task's cpuset should be done in accordance with the
 355 * guidelines for accessing subsystem state in kernel/cgroup.c
 356 */
 357
 358DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
 359
 360void cpuset_read_lock(void)
 361{
 362        percpu_down_read(&cpuset_rwsem);
 363}
 364
 365void cpuset_read_unlock(void)
 366{
 367        percpu_up_read(&cpuset_rwsem);
 368}
 369
 370static DEFINE_SPINLOCK(callback_lock);
 371
 372static struct workqueue_struct *cpuset_migrate_mm_wq;
 373
 374/*
 375 * CPU / memory hotplug is handled asynchronously.
 376 */
 377static void cpuset_hotplug_workfn(struct work_struct *work);
 378static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 379
 380static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 381
 382static inline void check_insane_mems_config(nodemask_t *nodes)
 383{
 384        if (!cpusets_insane_config() &&
 385                movable_only_nodes(nodes)) {
 386                static_branch_enable(&cpusets_insane_config_key);
 387                pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
 388                        "Cpuset allocations might fail even with a lot of memory available.\n",
 389                        nodemask_pr_args(nodes));
 390        }
 391}
 392
 393/*
 394 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 395 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 396 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 397 * With v2 behavior, "cpus" and "mems" are always what the users have
 398 * requested and won't be changed by hotplug events. Only the effective
 399 * cpus or mems will be affected.
 400 */
 401static inline bool is_in_v2_mode(void)
 402{
 403        return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
 404              (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 405}
 406
 407/*
 408 * Return in pmask the portion of a task's cpusets's cpus_allowed that
 409 * are online and are capable of running the task.  If none are found,
 410 * walk up the cpuset hierarchy until we find one that does have some
 411 * appropriate cpus.
 412 *
 413 * One way or another, we guarantee to return some non-empty subset
 414 * of cpu_online_mask.
 415 *
 416 * Call with callback_lock or cpuset_rwsem held.
 417 */
 418static void guarantee_online_cpus(struct task_struct *tsk,
 419                                  struct cpumask *pmask)
 420{
 421        const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
 422        struct cpuset *cs;
 423
 424        if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
 425                cpumask_copy(pmask, cpu_online_mask);
 426
 427        rcu_read_lock();
 428        cs = task_cs(tsk);
 429
 430        while (!cpumask_intersects(cs->effective_cpus, pmask)) {
 431                cs = parent_cs(cs);
 432                if (unlikely(!cs)) {
 433                        /*
 434                         * The top cpuset doesn't have any online cpu as a
 435                         * consequence of a race between cpuset_hotplug_work
 436                         * and cpu hotplug notifier.  But we know the top
 437                         * cpuset's effective_cpus is on its way to be
 438                         * identical to cpu_online_mask.
 439                         */
 440                        goto out_unlock;
 441                }
 442        }
 443        cpumask_and(pmask, pmask, cs->effective_cpus);
 444
 445out_unlock:
 446        rcu_read_unlock();
 447}
 448
 449/*
 450 * Return in *pmask the portion of a cpusets's mems_allowed that
 451 * are online, with memory.  If none are online with memory, walk
 452 * up the cpuset hierarchy until we find one that does have some
 453 * online mems.  The top cpuset always has some mems online.
 454 *
 455 * One way or another, we guarantee to return some non-empty subset
 456 * of node_states[N_MEMORY].
 457 *
 458 * Call with callback_lock or cpuset_rwsem held.
 459 */
 460static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 461{
 462        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 463                cs = parent_cs(cs);
 464        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 465}
 466
 467/*
 468 * update task's spread flag if cpuset's page/slab spread flag is set
 469 *
 470 * Call with callback_lock or cpuset_rwsem held.
 471 */
 472static void cpuset_update_task_spread_flag(struct cpuset *cs,
 473                                        struct task_struct *tsk)
 474{
 475        if (is_spread_page(cs))
 476                task_set_spread_page(tsk);
 477        else
 478                task_clear_spread_page(tsk);
 479
 480        if (is_spread_slab(cs))
 481                task_set_spread_slab(tsk);
 482        else
 483                task_clear_spread_slab(tsk);
 484}
 485
 486/*
 487 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 488 *
 489 * One cpuset is a subset of another if all its allowed CPUs and
 490 * Memory Nodes are a subset of the other, and its exclusive flags
 491 * are only set if the other's are set.  Call holding cpuset_rwsem.
 492 */
 493
 494static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 495{
 496        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 497                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 498                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 499                is_mem_exclusive(p) <= is_mem_exclusive(q);
 500}
 501
 502/**
 503 * alloc_cpumasks - allocate three cpumasks for cpuset
 504 * @cs:  the cpuset that have cpumasks to be allocated.
 505 * @tmp: the tmpmasks structure pointer
 506 * Return: 0 if successful, -ENOMEM otherwise.
 507 *
 508 * Only one of the two input arguments should be non-NULL.
 509 */
 510static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 511{
 512        cpumask_var_t *pmask1, *pmask2, *pmask3;
 513
 514        if (cs) {
 515                pmask1 = &cs->cpus_allowed;
 516                pmask2 = &cs->effective_cpus;
 517                pmask3 = &cs->subparts_cpus;
 518        } else {
 519                pmask1 = &tmp->new_cpus;
 520                pmask2 = &tmp->addmask;
 521                pmask3 = &tmp->delmask;
 522        }
 523
 524        if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 525                return -ENOMEM;
 526
 527        if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 528                goto free_one;
 529
 530        if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 531                goto free_two;
 532
 533        return 0;
 534
 535free_two:
 536        free_cpumask_var(*pmask2);
 537free_one:
 538        free_cpumask_var(*pmask1);
 539        return -ENOMEM;
 540}
 541
 542/**
 543 * free_cpumasks - free cpumasks in a tmpmasks structure
 544 * @cs:  the cpuset that have cpumasks to be free.
 545 * @tmp: the tmpmasks structure pointer
 546 */
 547static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 548{
 549        if (cs) {
 550                free_cpumask_var(cs->cpus_allowed);
 551                free_cpumask_var(cs->effective_cpus);
 552                free_cpumask_var(cs->subparts_cpus);
 553        }
 554        if (tmp) {
 555                free_cpumask_var(tmp->new_cpus);
 556                free_cpumask_var(tmp->addmask);
 557                free_cpumask_var(tmp->delmask);
 558        }
 559}
 560
 561/**
 562 * alloc_trial_cpuset - allocate a trial cpuset
 563 * @cs: the cpuset that the trial cpuset duplicates
 564 */
 565static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 566{
 567        struct cpuset *trial;
 568
 569        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 570        if (!trial)
 571                return NULL;
 572
 573        if (alloc_cpumasks(trial, NULL)) {
 574                kfree(trial);
 575                return NULL;
 576        }
 577
 578        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 579        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 580        return trial;
 581}
 582
 583/**
 584 * free_cpuset - free the cpuset
 585 * @cs: the cpuset to be freed
 586 */
 587static inline void free_cpuset(struct cpuset *cs)
 588{
 589        free_cpumasks(cs, NULL);
 590        kfree(cs);
 591}
 592
 593/*
 594 * validate_change() - Used to validate that any proposed cpuset change
 595 *                     follows the structural rules for cpusets.
 596 *
 597 * If we replaced the flag and mask values of the current cpuset
 598 * (cur) with those values in the trial cpuset (trial), would
 599 * our various subset and exclusive rules still be valid?  Presumes
 600 * cpuset_rwsem held.
 601 *
 602 * 'cur' is the address of an actual, in-use cpuset.  Operations
 603 * such as list traversal that depend on the actual address of the
 604 * cpuset in the list must use cur below, not trial.
 605 *
 606 * 'trial' is the address of bulk structure copy of cur, with
 607 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 608 * or flags changed to new, trial values.
 609 *
 610 * Return 0 if valid, -errno if not.
 611 */
 612
 613static int validate_change(struct cpuset *cur, struct cpuset *trial)
 614{
 615        struct cgroup_subsys_state *css;
 616        struct cpuset *c, *par;
 617        int ret;
 618
 619        rcu_read_lock();
 620
 621        /* Each of our child cpusets must be a subset of us */
 622        ret = -EBUSY;
 623        cpuset_for_each_child(c, css, cur)
 624                if (!is_cpuset_subset(c, trial))
 625                        goto out;
 626
 627        /* Remaining checks don't apply to root cpuset */
 628        ret = 0;
 629        if (cur == &top_cpuset)
 630                goto out;
 631
 632        par = parent_cs(cur);
 633
 634        /* On legacy hierarchy, we must be a subset of our parent cpuset. */
 635        ret = -EACCES;
 636        if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
 637                goto out;
 638
 639        /*
 640         * If either I or some sibling (!= me) is exclusive, we can't
 641         * overlap
 642         */
 643        ret = -EINVAL;
 644        cpuset_for_each_child(c, css, par) {
 645                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 646                    c != cur &&
 647                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 648                        goto out;
 649                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 650                    c != cur &&
 651                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 652                        goto out;
 653        }
 654
 655        /*
 656         * Cpusets with tasks - existing or newly being attached - can't
 657         * be changed to have empty cpus_allowed or mems_allowed.
 658         */
 659        ret = -ENOSPC;
 660        if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 661                if (!cpumask_empty(cur->cpus_allowed) &&
 662                    cpumask_empty(trial->cpus_allowed))
 663                        goto out;
 664                if (!nodes_empty(cur->mems_allowed) &&
 665                    nodes_empty(trial->mems_allowed))
 666                        goto out;
 667        }
 668
 669        /*
 670         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 671         * tasks.
 672         */
 673        ret = -EBUSY;
 674        if (is_cpu_exclusive(cur) &&
 675            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 676                                       trial->cpus_allowed))
 677                goto out;
 678
 679        ret = 0;
 680out:
 681        rcu_read_unlock();
 682        return ret;
 683}
 684
 685#ifdef CONFIG_SMP
 686/*
 687 * Helper routine for generate_sched_domains().
 688 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 689 */
 690static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 691{
 692        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 693}
 694
 695static void
 696update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 697{
 698        if (dattr->relax_domain_level < c->relax_domain_level)
 699                dattr->relax_domain_level = c->relax_domain_level;
 700        return;
 701}
 702
 703static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 704                                    struct cpuset *root_cs)
 705{
 706        struct cpuset *cp;
 707        struct cgroup_subsys_state *pos_css;
 708
 709        rcu_read_lock();
 710        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 711                /* skip the whole subtree if @cp doesn't have any CPU */
 712                if (cpumask_empty(cp->cpus_allowed)) {
 713                        pos_css = css_rightmost_descendant(pos_css);
 714                        continue;
 715                }
 716
 717                if (is_sched_load_balance(cp))
 718                        update_domain_attr(dattr, cp);
 719        }
 720        rcu_read_unlock();
 721}
 722
 723/* Must be called with cpuset_rwsem held.  */
 724static inline int nr_cpusets(void)
 725{
 726        /* jump label reference count + the top-level cpuset */
 727        return static_key_count(&cpusets_enabled_key.key) + 1;
 728}
 729
 730/*
 731 * generate_sched_domains()
 732 *
 733 * This function builds a partial partition of the systems CPUs
 734 * A 'partial partition' is a set of non-overlapping subsets whose
 735 * union is a subset of that set.
 736 * The output of this function needs to be passed to kernel/sched/core.c
 737 * partition_sched_domains() routine, which will rebuild the scheduler's
 738 * load balancing domains (sched domains) as specified by that partial
 739 * partition.
 740 *
 741 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 742 * for a background explanation of this.
 743 *
 744 * Does not return errors, on the theory that the callers of this
 745 * routine would rather not worry about failures to rebuild sched
 746 * domains when operating in the severe memory shortage situations
 747 * that could cause allocation failures below.
 748 *
 749 * Must be called with cpuset_rwsem held.
 750 *
 751 * The three key local variables below are:
 752 *    cp - cpuset pointer, used (together with pos_css) to perform a
 753 *         top-down scan of all cpusets. For our purposes, rebuilding
 754 *         the schedulers sched domains, we can ignore !is_sched_load_
 755 *         balance cpusets.
 756 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 757 *         that need to be load balanced, for convenient iterative
 758 *         access by the subsequent code that finds the best partition,
 759 *         i.e the set of domains (subsets) of CPUs such that the
 760 *         cpus_allowed of every cpuset marked is_sched_load_balance
 761 *         is a subset of one of these domains, while there are as
 762 *         many such domains as possible, each as small as possible.
 763 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 764 *         the kernel/sched/core.c routine partition_sched_domains() in a
 765 *         convenient format, that can be easily compared to the prior
 766 *         value to determine what partition elements (sched domains)
 767 *         were changed (added or removed.)
 768 *
 769 * Finding the best partition (set of domains):
 770 *      The triple nested loops below over i, j, k scan over the
 771 *      load balanced cpusets (using the array of cpuset pointers in
 772 *      csa[]) looking for pairs of cpusets that have overlapping
 773 *      cpus_allowed, but which don't have the same 'pn' partition
 774 *      number and gives them in the same partition number.  It keeps
 775 *      looping on the 'restart' label until it can no longer find
 776 *      any such pairs.
 777 *
 778 *      The union of the cpus_allowed masks from the set of
 779 *      all cpusets having the same 'pn' value then form the one
 780 *      element of the partition (one sched domain) to be passed to
 781 *      partition_sched_domains().
 782 */
 783static int generate_sched_domains(cpumask_var_t **domains,
 784                        struct sched_domain_attr **attributes)
 785{
 786        struct cpuset *cp;      /* top-down scan of cpusets */
 787        struct cpuset **csa;    /* array of all cpuset ptrs */
 788        int csn;                /* how many cpuset ptrs in csa so far */
 789        int i, j, k;            /* indices for partition finding loops */
 790        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 791        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 792        int ndoms = 0;          /* number of sched domains in result */
 793        int nslot;              /* next empty doms[] struct cpumask slot */
 794        struct cgroup_subsys_state *pos_css;
 795        bool root_load_balance = is_sched_load_balance(&top_cpuset);
 796
 797        doms = NULL;
 798        dattr = NULL;
 799        csa = NULL;
 800
 801        /* Special case for the 99% of systems with one, full, sched domain */
 802        if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
 803                ndoms = 1;
 804                doms = alloc_sched_domains(ndoms);
 805                if (!doms)
 806                        goto done;
 807
 808                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 809                if (dattr) {
 810                        *dattr = SD_ATTR_INIT;
 811                        update_domain_attr_tree(dattr, &top_cpuset);
 812                }
 813                cpumask_and(doms[0], top_cpuset.effective_cpus,
 814                            housekeeping_cpumask(HK_FLAG_DOMAIN));
 815
 816                goto done;
 817        }
 818
 819        csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 820        if (!csa)
 821                goto done;
 822        csn = 0;
 823
 824        rcu_read_lock();
 825        if (root_load_balance)
 826                csa[csn++] = &top_cpuset;
 827        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 828                if (cp == &top_cpuset)
 829                        continue;
 830                /*
 831                 * Continue traversing beyond @cp iff @cp has some CPUs and
 832                 * isn't load balancing.  The former is obvious.  The
 833                 * latter: All child cpusets contain a subset of the
 834                 * parent's cpus, so just skip them, and then we call
 835                 * update_domain_attr_tree() to calc relax_domain_level of
 836                 * the corresponding sched domain.
 837                 *
 838                 * If root is load-balancing, we can skip @cp if it
 839                 * is a subset of the root's effective_cpus.
 840                 */
 841                if (!cpumask_empty(cp->cpus_allowed) &&
 842                    !(is_sched_load_balance(cp) &&
 843                      cpumask_intersects(cp->cpus_allowed,
 844                                         housekeeping_cpumask(HK_FLAG_DOMAIN))))
 845                        continue;
 846
 847                if (root_load_balance &&
 848                    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
 849                        continue;
 850
 851                if (is_sched_load_balance(cp) &&
 852                    !cpumask_empty(cp->effective_cpus))
 853                        csa[csn++] = cp;
 854
 855                /* skip @cp's subtree if not a partition root */
 856                if (!is_partition_root(cp))
 857                        pos_css = css_rightmost_descendant(pos_css);
 858        }
 859        rcu_read_unlock();
 860
 861        for (i = 0; i < csn; i++)
 862                csa[i]->pn = i;
 863        ndoms = csn;
 864
 865restart:
 866        /* Find the best partition (set of sched domains) */
 867        for (i = 0; i < csn; i++) {
 868                struct cpuset *a = csa[i];
 869                int apn = a->pn;
 870
 871                for (j = 0; j < csn; j++) {
 872                        struct cpuset *b = csa[j];
 873                        int bpn = b->pn;
 874
 875                        if (apn != bpn && cpusets_overlap(a, b)) {
 876                                for (k = 0; k < csn; k++) {
 877                                        struct cpuset *c = csa[k];
 878
 879                                        if (c->pn == bpn)
 880                                                c->pn = apn;
 881                                }
 882                                ndoms--;        /* one less element */
 883                                goto restart;
 884                        }
 885                }
 886        }
 887
 888        /*
 889         * Now we know how many domains to create.
 890         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 891         */
 892        doms = alloc_sched_domains(ndoms);
 893        if (!doms)
 894                goto done;
 895
 896        /*
 897         * The rest of the code, including the scheduler, can deal with
 898         * dattr==NULL case. No need to abort if alloc fails.
 899         */
 900        dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 901                              GFP_KERNEL);
 902
 903        for (nslot = 0, i = 0; i < csn; i++) {
 904                struct cpuset *a = csa[i];
 905                struct cpumask *dp;
 906                int apn = a->pn;
 907
 908                if (apn < 0) {
 909                        /* Skip completed partitions */
 910                        continue;
 911                }
 912
 913                dp = doms[nslot];
 914
 915                if (nslot == ndoms) {
 916                        static int warnings = 10;
 917                        if (warnings) {
 918                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 919                                        nslot, ndoms, csn, i, apn);
 920                                warnings--;
 921                        }
 922                        continue;
 923                }
 924
 925                cpumask_clear(dp);
 926                if (dattr)
 927                        *(dattr + nslot) = SD_ATTR_INIT;
 928                for (j = i; j < csn; j++) {
 929                        struct cpuset *b = csa[j];
 930
 931                        if (apn == b->pn) {
 932                                cpumask_or(dp, dp, b->effective_cpus);
 933                                cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
 934                                if (dattr)
 935                                        update_domain_attr_tree(dattr + nslot, b);
 936
 937                                /* Done with this partition */
 938                                b->pn = -1;
 939                        }
 940                }
 941                nslot++;
 942        }
 943        BUG_ON(nslot != ndoms);
 944
 945done:
 946        kfree(csa);
 947
 948        /*
 949         * Fallback to the default domain if kmalloc() failed.
 950         * See comments in partition_sched_domains().
 951         */
 952        if (doms == NULL)
 953                ndoms = 1;
 954
 955        *domains    = doms;
 956        *attributes = dattr;
 957        return ndoms;
 958}
 959
 960static void update_tasks_root_domain(struct cpuset *cs)
 961{
 962        struct css_task_iter it;
 963        struct task_struct *task;
 964
 965        css_task_iter_start(&cs->css, 0, &it);
 966
 967        while ((task = css_task_iter_next(&it)))
 968                dl_add_task_root_domain(task);
 969
 970        css_task_iter_end(&it);
 971}
 972
 973static void rebuild_root_domains(void)
 974{
 975        struct cpuset *cs = NULL;
 976        struct cgroup_subsys_state *pos_css;
 977
 978        percpu_rwsem_assert_held(&cpuset_rwsem);
 979        lockdep_assert_cpus_held();
 980        lockdep_assert_held(&sched_domains_mutex);
 981
 982        rcu_read_lock();
 983
 984        /*
 985         * Clear default root domain DL accounting, it will be computed again
 986         * if a task belongs to it.
 987         */
 988        dl_clear_root_domain(&def_root_domain);
 989
 990        cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 991
 992                if (cpumask_empty(cs->effective_cpus)) {
 993                        pos_css = css_rightmost_descendant(pos_css);
 994                        continue;
 995                }
 996
 997                css_get(&cs->css);
 998
 999                rcu_read_unlock();
1000
1001                update_tasks_root_domain(cs);
1002
1003                rcu_read_lock();
1004                css_put(&cs->css);
1005        }
1006        rcu_read_unlock();
1007}
1008
1009static void
1010partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1011                                    struct sched_domain_attr *dattr_new)
1012{
1013        mutex_lock(&sched_domains_mutex);
1014        partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1015        rebuild_root_domains();
1016        mutex_unlock(&sched_domains_mutex);
1017}
1018
1019/*
1020 * Rebuild scheduler domains.
1021 *
1022 * If the flag 'sched_load_balance' of any cpuset with non-empty
1023 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1024 * which has that flag enabled, or if any cpuset with a non-empty
1025 * 'cpus' is removed, then call this routine to rebuild the
1026 * scheduler's dynamic sched domains.
1027 *
1028 * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1029 */
1030static void rebuild_sched_domains_locked(void)
1031{
1032        struct cgroup_subsys_state *pos_css;
1033        struct sched_domain_attr *attr;
1034        cpumask_var_t *doms;
1035        struct cpuset *cs;
1036        int ndoms;
1037
1038        lockdep_assert_cpus_held();
1039        percpu_rwsem_assert_held(&cpuset_rwsem);
1040
1041        /*
1042         * If we have raced with CPU hotplug, return early to avoid
1043         * passing doms with offlined cpu to partition_sched_domains().
1044         * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1045         *
1046         * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1047         * should be the same as the active CPUs, so checking only top_cpuset
1048         * is enough to detect racing CPU offlines.
1049         */
1050        if (!top_cpuset.nr_subparts_cpus &&
1051            !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1052                return;
1053
1054        /*
1055         * With subpartition CPUs, however, the effective CPUs of a partition
1056         * root should be only a subset of the active CPUs.  Since a CPU in any
1057         * partition root could be offlined, all must be checked.
1058         */
1059        if (top_cpuset.nr_subparts_cpus) {
1060                rcu_read_lock();
1061                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1062                        if (!is_partition_root(cs)) {
1063                                pos_css = css_rightmost_descendant(pos_css);
1064                                continue;
1065                        }
1066                        if (!cpumask_subset(cs->effective_cpus,
1067                                            cpu_active_mask)) {
1068                                rcu_read_unlock();
1069                                return;
1070                        }
1071                }
1072                rcu_read_unlock();
1073        }
1074
1075        /* Generate domain masks and attrs */
1076        ndoms = generate_sched_domains(&doms, &attr);
1077
1078        /* Have scheduler rebuild the domains */
1079        partition_and_rebuild_sched_domains(ndoms, doms, attr);
1080}
1081#else /* !CONFIG_SMP */
1082static void rebuild_sched_domains_locked(void)
1083{
1084}
1085#endif /* CONFIG_SMP */
1086
1087void rebuild_sched_domains(void)
1088{
1089        cpus_read_lock();
1090        percpu_down_write(&cpuset_rwsem);
1091        rebuild_sched_domains_locked();
1092        percpu_up_write(&cpuset_rwsem);
1093        cpus_read_unlock();
1094}
1095
1096/**
1097 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1098 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1099 *
1100 * Iterate through each task of @cs updating its cpus_allowed to the
1101 * effective cpuset's.  As this function is called with cpuset_rwsem held,
1102 * cpuset membership stays stable.
1103 */
1104static void update_tasks_cpumask(struct cpuset *cs)
1105{
1106        struct css_task_iter it;
1107        struct task_struct *task;
1108
1109        css_task_iter_start(&cs->css, 0, &it);
1110        while ((task = css_task_iter_next(&it)))
1111                set_cpus_allowed_ptr(task, cs->effective_cpus);
1112        css_task_iter_end(&it);
1113}
1114
1115/**
1116 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1117 * @new_cpus: the temp variable for the new effective_cpus mask
1118 * @cs: the cpuset the need to recompute the new effective_cpus mask
1119 * @parent: the parent cpuset
1120 *
1121 * If the parent has subpartition CPUs, include them in the list of
1122 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1123 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1124 * to mask those out.
1125 */
1126static void compute_effective_cpumask(struct cpumask *new_cpus,
1127                                      struct cpuset *cs, struct cpuset *parent)
1128{
1129        if (parent->nr_subparts_cpus) {
1130                cpumask_or(new_cpus, parent->effective_cpus,
1131                           parent->subparts_cpus);
1132                cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1133                cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1134        } else {
1135                cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1136        }
1137}
1138
1139/*
1140 * Commands for update_parent_subparts_cpumask
1141 */
1142enum subparts_cmd {
1143        partcmd_enable,         /* Enable partition root         */
1144        partcmd_disable,        /* Disable partition root        */
1145        partcmd_update,         /* Update parent's subparts_cpus */
1146};
1147
1148/**
1149 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1150 * @cpuset:  The cpuset that requests change in partition root state
1151 * @cmd:     Partition root state change command
1152 * @newmask: Optional new cpumask for partcmd_update
1153 * @tmp:     Temporary addmask and delmask
1154 * Return:   0, 1 or an error code
1155 *
1156 * For partcmd_enable, the cpuset is being transformed from a non-partition
1157 * root to a partition root. The cpus_allowed mask of the given cpuset will
1158 * be put into parent's subparts_cpus and taken away from parent's
1159 * effective_cpus. The function will return 0 if all the CPUs listed in
1160 * cpus_allowed can be granted or an error code will be returned.
1161 *
1162 * For partcmd_disable, the cpuset is being transofrmed from a partition
1163 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1164 * parent's subparts_cpus will be taken away from that cpumask and put back
1165 * into parent's effective_cpus. 0 should always be returned.
1166 *
1167 * For partcmd_update, if the optional newmask is specified, the cpu
1168 * list is to be changed from cpus_allowed to newmask. Otherwise,
1169 * cpus_allowed is assumed to remain the same. The cpuset should either
1170 * be a partition root or an invalid partition root. The partition root
1171 * state may change if newmask is NULL and none of the requested CPUs can
1172 * be granted by the parent. The function will return 1 if changes to
1173 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1174 * Error code should only be returned when newmask is non-NULL.
1175 *
1176 * The partcmd_enable and partcmd_disable commands are used by
1177 * update_prstate(). The partcmd_update command is used by
1178 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1179 * newmask set.
1180 *
1181 * The checking is more strict when enabling partition root than the
1182 * other two commands.
1183 *
1184 * Because of the implicit cpu exclusive nature of a partition root,
1185 * cpumask changes that violates the cpu exclusivity rule will not be
1186 * permitted when checked by validate_change(). The validate_change()
1187 * function will also prevent any changes to the cpu list if it is not
1188 * a superset of children's cpu lists.
1189 */
1190static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1191                                          struct cpumask *newmask,
1192                                          struct tmpmasks *tmp)
1193{
1194        struct cpuset *parent = parent_cs(cpuset);
1195        int adding;     /* Moving cpus from effective_cpus to subparts_cpus */
1196        int deleting;   /* Moving cpus from subparts_cpus to effective_cpus */
1197        int old_prs, new_prs;
1198        bool part_error = false;        /* Partition error? */
1199
1200        percpu_rwsem_assert_held(&cpuset_rwsem);
1201
1202        /*
1203         * The parent must be a partition root.
1204         * The new cpumask, if present, or the current cpus_allowed must
1205         * not be empty.
1206         */
1207        if (!is_partition_root(parent) ||
1208           (newmask && cpumask_empty(newmask)) ||
1209           (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1210                return -EINVAL;
1211
1212        /*
1213         * Enabling/disabling partition root is not allowed if there are
1214         * online children.
1215         */
1216        if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1217                return -EBUSY;
1218
1219        /*
1220         * Enabling partition root is not allowed if not all the CPUs
1221         * can be granted from parent's effective_cpus or at least one
1222         * CPU will be left after that.
1223         */
1224        if ((cmd == partcmd_enable) &&
1225           (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1226             cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1227                return -EINVAL;
1228
1229        /*
1230         * A cpumask update cannot make parent's effective_cpus become empty.
1231         */
1232        adding = deleting = false;
1233        old_prs = new_prs = cpuset->partition_root_state;
1234        if (cmd == partcmd_enable) {
1235                cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1236                adding = true;
1237        } else if (cmd == partcmd_disable) {
1238                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1239                                       parent->subparts_cpus);
1240        } else if (newmask) {
1241                /*
1242                 * partcmd_update with newmask:
1243                 *
1244                 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1245                 * addmask = newmask & parent->effective_cpus
1246                 *                   & ~parent->subparts_cpus
1247                 */
1248                cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1249                deleting = cpumask_and(tmp->delmask, tmp->delmask,
1250                                       parent->subparts_cpus);
1251
1252                cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1253                adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1254                                        parent->subparts_cpus);
1255                /*
1256                 * Return error if the new effective_cpus could become empty.
1257                 */
1258                if (adding &&
1259                    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1260                        if (!deleting)
1261                                return -EINVAL;
1262                        /*
1263                         * As some of the CPUs in subparts_cpus might have
1264                         * been offlined, we need to compute the real delmask
1265                         * to confirm that.
1266                         */
1267                        if (!cpumask_and(tmp->addmask, tmp->delmask,
1268                                         cpu_active_mask))
1269                                return -EINVAL;
1270                        cpumask_copy(tmp->addmask, parent->effective_cpus);
1271                }
1272        } else {
1273                /*
1274                 * partcmd_update w/o newmask:
1275                 *
1276                 * addmask = cpus_allowed & parent->effective_cpus
1277                 *
1278                 * Note that parent's subparts_cpus may have been
1279                 * pre-shrunk in case there is a change in the cpu list.
1280                 * So no deletion is needed.
1281                 */
1282                adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1283                                     parent->effective_cpus);
1284                part_error = cpumask_equal(tmp->addmask,
1285                                           parent->effective_cpus);
1286        }
1287
1288        if (cmd == partcmd_update) {
1289                int prev_prs = cpuset->partition_root_state;
1290
1291                /*
1292                 * Check for possible transition between PRS_ENABLED
1293                 * and PRS_ERROR.
1294                 */
1295                switch (cpuset->partition_root_state) {
1296                case PRS_ENABLED:
1297                        if (part_error)
1298                                new_prs = PRS_ERROR;
1299                        break;
1300                case PRS_ERROR:
1301                        if (!part_error)
1302                                new_prs = PRS_ENABLED;
1303                        break;
1304                }
1305                /*
1306                 * Set part_error if previously in invalid state.
1307                 */
1308                part_error = (prev_prs == PRS_ERROR);
1309        }
1310
1311        if (!part_error && (new_prs == PRS_ERROR))
1312                return 0;       /* Nothing need to be done */
1313
1314        if (new_prs == PRS_ERROR) {
1315                /*
1316                 * Remove all its cpus from parent's subparts_cpus.
1317                 */
1318                adding = false;
1319                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1320                                       parent->subparts_cpus);
1321        }
1322
1323        if (!adding && !deleting && (new_prs == old_prs))
1324                return 0;
1325
1326        /*
1327         * Change the parent's subparts_cpus.
1328         * Newly added CPUs will be removed from effective_cpus and
1329         * newly deleted ones will be added back to effective_cpus.
1330         */
1331        spin_lock_irq(&callback_lock);
1332        if (adding) {
1333                cpumask_or(parent->subparts_cpus,
1334                           parent->subparts_cpus, tmp->addmask);
1335                cpumask_andnot(parent->effective_cpus,
1336                               parent->effective_cpus, tmp->addmask);
1337        }
1338        if (deleting) {
1339                cpumask_andnot(parent->subparts_cpus,
1340                               parent->subparts_cpus, tmp->delmask);
1341                /*
1342                 * Some of the CPUs in subparts_cpus might have been offlined.
1343                 */
1344                cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1345                cpumask_or(parent->effective_cpus,
1346                           parent->effective_cpus, tmp->delmask);
1347        }
1348
1349        parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1350
1351        if (old_prs != new_prs)
1352                cpuset->partition_root_state = new_prs;
1353
1354        spin_unlock_irq(&callback_lock);
1355        notify_partition_change(cpuset, old_prs, new_prs);
1356
1357        return cmd == partcmd_update;
1358}
1359
1360/*
1361 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1362 * @cs:  the cpuset to consider
1363 * @tmp: temp variables for calculating effective_cpus & partition setup
1364 *
1365 * When configured cpumask is changed, the effective cpumasks of this cpuset
1366 * and all its descendants need to be updated.
1367 *
1368 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1369 *
1370 * Called with cpuset_rwsem held
1371 */
1372static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1373{
1374        struct cpuset *cp;
1375        struct cgroup_subsys_state *pos_css;
1376        bool need_rebuild_sched_domains = false;
1377        int old_prs, new_prs;
1378
1379        rcu_read_lock();
1380        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1381                struct cpuset *parent = parent_cs(cp);
1382
1383                compute_effective_cpumask(tmp->new_cpus, cp, parent);
1384
1385                /*
1386                 * If it becomes empty, inherit the effective mask of the
1387                 * parent, which is guaranteed to have some CPUs.
1388                 */
1389                if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1390                        cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1391                        if (!cp->use_parent_ecpus) {
1392                                cp->use_parent_ecpus = true;
1393                                parent->child_ecpus_count++;
1394                        }
1395                } else if (cp->use_parent_ecpus) {
1396                        cp->use_parent_ecpus = false;
1397                        WARN_ON_ONCE(!parent->child_ecpus_count);
1398                        parent->child_ecpus_count--;
1399                }
1400
1401                /*
1402                 * Skip the whole subtree if the cpumask remains the same
1403                 * and has no partition root state.
1404                 */
1405                if (!cp->partition_root_state &&
1406                    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1407                        pos_css = css_rightmost_descendant(pos_css);
1408                        continue;
1409                }
1410
1411                /*
1412                 * update_parent_subparts_cpumask() should have been called
1413                 * for cs already in update_cpumask(). We should also call
1414                 * update_tasks_cpumask() again for tasks in the parent
1415                 * cpuset if the parent's subparts_cpus changes.
1416                 */
1417                old_prs = new_prs = cp->partition_root_state;
1418                if ((cp != cs) && old_prs) {
1419                        switch (parent->partition_root_state) {
1420                        case PRS_DISABLED:
1421                                /*
1422                                 * If parent is not a partition root or an
1423                                 * invalid partition root, clear its state
1424                                 * and its CS_CPU_EXCLUSIVE flag.
1425                                 */
1426                                WARN_ON_ONCE(cp->partition_root_state
1427                                             != PRS_ERROR);
1428                                new_prs = PRS_DISABLED;
1429
1430                                /*
1431                                 * clear_bit() is an atomic operation and
1432                                 * readers aren't interested in the state
1433                                 * of CS_CPU_EXCLUSIVE anyway. So we can
1434                                 * just update the flag without holding
1435                                 * the callback_lock.
1436                                 */
1437                                clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1438                                break;
1439
1440                        case PRS_ENABLED:
1441                                if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1442                                        update_tasks_cpumask(parent);
1443                                break;
1444
1445                        case PRS_ERROR:
1446                                /*
1447                                 * When parent is invalid, it has to be too.
1448                                 */
1449                                new_prs = PRS_ERROR;
1450                                break;
1451                        }
1452                }
1453
1454                if (!css_tryget_online(&cp->css))
1455                        continue;
1456                rcu_read_unlock();
1457
1458                spin_lock_irq(&callback_lock);
1459
1460                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1461                if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1462                        cp->nr_subparts_cpus = 0;
1463                        cpumask_clear(cp->subparts_cpus);
1464                } else if (cp->nr_subparts_cpus) {
1465                        /*
1466                         * Make sure that effective_cpus & subparts_cpus
1467                         * are mutually exclusive.
1468                         *
1469                         * In the unlikely event that effective_cpus
1470                         * becomes empty. we clear cp->nr_subparts_cpus and
1471                         * let its child partition roots to compete for
1472                         * CPUs again.
1473                         */
1474                        cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1475                                       cp->subparts_cpus);
1476                        if (cpumask_empty(cp->effective_cpus)) {
1477                                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1478                                cpumask_clear(cp->subparts_cpus);
1479                                cp->nr_subparts_cpus = 0;
1480                        } else if (!cpumask_subset(cp->subparts_cpus,
1481                                                   tmp->new_cpus)) {
1482                                cpumask_andnot(cp->subparts_cpus,
1483                                        cp->subparts_cpus, tmp->new_cpus);
1484                                cp->nr_subparts_cpus
1485                                        = cpumask_weight(cp->subparts_cpus);
1486                        }
1487                }
1488
1489                if (new_prs != old_prs)
1490                        cp->partition_root_state = new_prs;
1491
1492                spin_unlock_irq(&callback_lock);
1493                notify_partition_change(cp, old_prs, new_prs);
1494
1495                WARN_ON(!is_in_v2_mode() &&
1496                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1497
1498                update_tasks_cpumask(cp);
1499
1500                /*
1501                 * On legacy hierarchy, if the effective cpumask of any non-
1502                 * empty cpuset is changed, we need to rebuild sched domains.
1503                 * On default hierarchy, the cpuset needs to be a partition
1504                 * root as well.
1505                 */
1506                if (!cpumask_empty(cp->cpus_allowed) &&
1507                    is_sched_load_balance(cp) &&
1508                   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1509                    is_partition_root(cp)))
1510                        need_rebuild_sched_domains = true;
1511
1512                rcu_read_lock();
1513                css_put(&cp->css);
1514        }
1515        rcu_read_unlock();
1516
1517        if (need_rebuild_sched_domains)
1518                rebuild_sched_domains_locked();
1519}
1520
1521/**
1522 * update_sibling_cpumasks - Update siblings cpumasks
1523 * @parent:  Parent cpuset
1524 * @cs:      Current cpuset
1525 * @tmp:     Temp variables
1526 */
1527static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1528                                    struct tmpmasks *tmp)
1529{
1530        struct cpuset *sibling;
1531        struct cgroup_subsys_state *pos_css;
1532
1533        /*
1534         * Check all its siblings and call update_cpumasks_hier()
1535         * if their use_parent_ecpus flag is set in order for them
1536         * to use the right effective_cpus value.
1537         */
1538        rcu_read_lock();
1539        cpuset_for_each_child(sibling, pos_css, parent) {
1540                if (sibling == cs)
1541                        continue;
1542                if (!sibling->use_parent_ecpus)
1543                        continue;
1544
1545                update_cpumasks_hier(sibling, tmp);
1546        }
1547        rcu_read_unlock();
1548}
1549
1550/**
1551 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1552 * @cs: the cpuset to consider
1553 * @trialcs: trial cpuset
1554 * @buf: buffer of cpu numbers written to this cpuset
1555 */
1556static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1557                          const char *buf)
1558{
1559        int retval;
1560        struct tmpmasks tmp;
1561
1562        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1563        if (cs == &top_cpuset)
1564                return -EACCES;
1565
1566        /*
1567         * An empty cpus_allowed is ok only if the cpuset has no tasks.
1568         * Since cpulist_parse() fails on an empty mask, we special case
1569         * that parsing.  The validate_change() call ensures that cpusets
1570         * with tasks have cpus.
1571         */
1572        if (!*buf) {
1573                cpumask_clear(trialcs->cpus_allowed);
1574        } else {
1575                retval = cpulist_parse(buf, trialcs->cpus_allowed);
1576                if (retval < 0)
1577                        return retval;
1578
1579                if (!cpumask_subset(trialcs->cpus_allowed,
1580                                    top_cpuset.cpus_allowed))
1581                        return -EINVAL;
1582        }
1583
1584        /* Nothing to do if the cpus didn't change */
1585        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1586                return 0;
1587
1588        retval = validate_change(cs, trialcs);
1589        if (retval < 0)
1590                return retval;
1591
1592#ifdef CONFIG_CPUMASK_OFFSTACK
1593        /*
1594         * Use the cpumasks in trialcs for tmpmasks when they are pointers
1595         * to allocated cpumasks.
1596         */
1597        tmp.addmask  = trialcs->subparts_cpus;
1598        tmp.delmask  = trialcs->effective_cpus;
1599        tmp.new_cpus = trialcs->cpus_allowed;
1600#endif
1601
1602        if (cs->partition_root_state) {
1603                /* Cpumask of a partition root cannot be empty */
1604                if (cpumask_empty(trialcs->cpus_allowed))
1605                        return -EINVAL;
1606                if (update_parent_subparts_cpumask(cs, partcmd_update,
1607                                        trialcs->cpus_allowed, &tmp) < 0)
1608                        return -EINVAL;
1609        }
1610
1611        spin_lock_irq(&callback_lock);
1612        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1613
1614        /*
1615         * Make sure that subparts_cpus is a subset of cpus_allowed.
1616         */
1617        if (cs->nr_subparts_cpus) {
1618                cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1619                               cs->cpus_allowed);
1620                cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1621        }
1622        spin_unlock_irq(&callback_lock);
1623
1624        update_cpumasks_hier(cs, &tmp);
1625
1626        if (cs->partition_root_state) {
1627                struct cpuset *parent = parent_cs(cs);
1628
1629                /*
1630                 * For partition root, update the cpumasks of sibling
1631                 * cpusets if they use parent's effective_cpus.
1632                 */
1633                if (parent->child_ecpus_count)
1634                        update_sibling_cpumasks(parent, cs, &tmp);
1635        }
1636        return 0;
1637}
1638
1639/*
1640 * Migrate memory region from one set of nodes to another.  This is
1641 * performed asynchronously as it can be called from process migration path
1642 * holding locks involved in process management.  All mm migrations are
1643 * performed in the queued order and can be waited for by flushing
1644 * cpuset_migrate_mm_wq.
1645 */
1646
1647struct cpuset_migrate_mm_work {
1648        struct work_struct      work;
1649        struct mm_struct        *mm;
1650        nodemask_t              from;
1651        nodemask_t              to;
1652};
1653
1654static void cpuset_migrate_mm_workfn(struct work_struct *work)
1655{
1656        struct cpuset_migrate_mm_work *mwork =
1657                container_of(work, struct cpuset_migrate_mm_work, work);
1658
1659        /* on a wq worker, no need to worry about %current's mems_allowed */
1660        do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1661        mmput(mwork->mm);
1662        kfree(mwork);
1663}
1664
1665static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1666                                                        const nodemask_t *to)
1667{
1668        struct cpuset_migrate_mm_work *mwork;
1669
1670        if (nodes_equal(*from, *to)) {
1671                mmput(mm);
1672                return;
1673        }
1674
1675        mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1676        if (mwork) {
1677                mwork->mm = mm;
1678                mwork->from = *from;
1679                mwork->to = *to;
1680                INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1681                queue_work(cpuset_migrate_mm_wq, &mwork->work);
1682        } else {
1683                mmput(mm);
1684        }
1685}
1686
1687static void cpuset_post_attach(void)
1688{
1689        flush_workqueue(cpuset_migrate_mm_wq);
1690}
1691
1692/*
1693 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1694 * @tsk: the task to change
1695 * @newmems: new nodes that the task will be set
1696 *
1697 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1698 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1699 * parallel, it might temporarily see an empty intersection, which results in
1700 * a seqlock check and retry before OOM or allocation failure.
1701 */
1702static void cpuset_change_task_nodemask(struct task_struct *tsk,
1703                                        nodemask_t *newmems)
1704{
1705        task_lock(tsk);
1706
1707        local_irq_disable();
1708        write_seqcount_begin(&tsk->mems_allowed_seq);
1709
1710        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1711        mpol_rebind_task(tsk, newmems);
1712        tsk->mems_allowed = *newmems;
1713
1714        write_seqcount_end(&tsk->mems_allowed_seq);
1715        local_irq_enable();
1716
1717        task_unlock(tsk);
1718}
1719
1720static void *cpuset_being_rebound;
1721
1722/**
1723 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1724 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1725 *
1726 * Iterate through each task of @cs updating its mems_allowed to the
1727 * effective cpuset's.  As this function is called with cpuset_rwsem held,
1728 * cpuset membership stays stable.
1729 */
1730static void update_tasks_nodemask(struct cpuset *cs)
1731{
1732        static nodemask_t newmems;      /* protected by cpuset_rwsem */
1733        struct css_task_iter it;
1734        struct task_struct *task;
1735
1736        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1737
1738        guarantee_online_mems(cs, &newmems);
1739
1740        /*
1741         * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1742         * take while holding tasklist_lock.  Forks can happen - the
1743         * mpol_dup() cpuset_being_rebound check will catch such forks,
1744         * and rebind their vma mempolicies too.  Because we still hold
1745         * the global cpuset_rwsem, we know that no other rebind effort
1746         * will be contending for the global variable cpuset_being_rebound.
1747         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1748         * is idempotent.  Also migrate pages in each mm to new nodes.
1749         */
1750        css_task_iter_start(&cs->css, 0, &it);
1751        while ((task = css_task_iter_next(&it))) {
1752                struct mm_struct *mm;
1753                bool migrate;
1754
1755                cpuset_change_task_nodemask(task, &newmems);
1756
1757                mm = get_task_mm(task);
1758                if (!mm)
1759                        continue;
1760
1761                migrate = is_memory_migrate(cs);
1762
1763                mpol_rebind_mm(mm, &cs->mems_allowed);
1764                if (migrate)
1765                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1766                else
1767                        mmput(mm);
1768        }
1769        css_task_iter_end(&it);
1770
1771        /*
1772         * All the tasks' nodemasks have been updated, update
1773         * cs->old_mems_allowed.
1774         */
1775        cs->old_mems_allowed = newmems;
1776
1777        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1778        cpuset_being_rebound = NULL;
1779}
1780
1781/*
1782 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1783 * @cs: the cpuset to consider
1784 * @new_mems: a temp variable for calculating new effective_mems
1785 *
1786 * When configured nodemask is changed, the effective nodemasks of this cpuset
1787 * and all its descendants need to be updated.
1788 *
1789 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1790 *
1791 * Called with cpuset_rwsem held
1792 */
1793static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1794{
1795        struct cpuset *cp;
1796        struct cgroup_subsys_state *pos_css;
1797
1798        rcu_read_lock();
1799        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1800                struct cpuset *parent = parent_cs(cp);
1801
1802                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1803
1804                /*
1805                 * If it becomes empty, inherit the effective mask of the
1806                 * parent, which is guaranteed to have some MEMs.
1807                 */
1808                if (is_in_v2_mode() && nodes_empty(*new_mems))
1809                        *new_mems = parent->effective_mems;
1810
1811                /* Skip the whole subtree if the nodemask remains the same. */
1812                if (nodes_equal(*new_mems, cp->effective_mems)) {
1813                        pos_css = css_rightmost_descendant(pos_css);
1814                        continue;
1815                }
1816
1817                if (!css_tryget_online(&cp->css))
1818                        continue;
1819                rcu_read_unlock();
1820
1821                spin_lock_irq(&callback_lock);
1822                cp->effective_mems = *new_mems;
1823                spin_unlock_irq(&callback_lock);
1824
1825                WARN_ON(!is_in_v2_mode() &&
1826                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1827
1828                update_tasks_nodemask(cp);
1829
1830                rcu_read_lock();
1831                css_put(&cp->css);
1832        }
1833        rcu_read_unlock();
1834}
1835
1836/*
1837 * Handle user request to change the 'mems' memory placement
1838 * of a cpuset.  Needs to validate the request, update the
1839 * cpusets mems_allowed, and for each task in the cpuset,
1840 * update mems_allowed and rebind task's mempolicy and any vma
1841 * mempolicies and if the cpuset is marked 'memory_migrate',
1842 * migrate the tasks pages to the new memory.
1843 *
1844 * Call with cpuset_rwsem held. May take callback_lock during call.
1845 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1846 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1847 * their mempolicies to the cpusets new mems_allowed.
1848 */
1849static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1850                           const char *buf)
1851{
1852        int retval;
1853
1854        /*
1855         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1856         * it's read-only
1857         */
1858        if (cs == &top_cpuset) {
1859                retval = -EACCES;
1860                goto done;
1861        }
1862
1863        /*
1864         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1865         * Since nodelist_parse() fails on an empty mask, we special case
1866         * that parsing.  The validate_change() call ensures that cpusets
1867         * with tasks have memory.
1868         */
1869        if (!*buf) {
1870                nodes_clear(trialcs->mems_allowed);
1871        } else {
1872                retval = nodelist_parse(buf, trialcs->mems_allowed);
1873                if (retval < 0)
1874                        goto done;
1875
1876                if (!nodes_subset(trialcs->mems_allowed,
1877                                  top_cpuset.mems_allowed)) {
1878                        retval = -EINVAL;
1879                        goto done;
1880                }
1881        }
1882
1883        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1884                retval = 0;             /* Too easy - nothing to do */
1885                goto done;
1886        }
1887        retval = validate_change(cs, trialcs);
1888        if (retval < 0)
1889                goto done;
1890
1891        check_insane_mems_config(&trialcs->mems_allowed);
1892
1893        spin_lock_irq(&callback_lock);
1894        cs->mems_allowed = trialcs->mems_allowed;
1895        spin_unlock_irq(&callback_lock);
1896
1897        /* use trialcs->mems_allowed as a temp variable */
1898        update_nodemasks_hier(cs, &trialcs->mems_allowed);
1899done:
1900        return retval;
1901}
1902
1903bool current_cpuset_is_being_rebound(void)
1904{
1905        bool ret;
1906
1907        rcu_read_lock();
1908        ret = task_cs(current) == cpuset_being_rebound;
1909        rcu_read_unlock();
1910
1911        return ret;
1912}
1913
1914static int update_relax_domain_level(struct cpuset *cs, s64 val)
1915{
1916#ifdef CONFIG_SMP
1917        if (val < -1 || val >= sched_domain_level_max)
1918                return -EINVAL;
1919#endif
1920
1921        if (val != cs->relax_domain_level) {
1922                cs->relax_domain_level = val;
1923                if (!cpumask_empty(cs->cpus_allowed) &&
1924                    is_sched_load_balance(cs))
1925                        rebuild_sched_domains_locked();
1926        }
1927
1928        return 0;
1929}
1930
1931/**
1932 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1933 * @cs: the cpuset in which each task's spread flags needs to be changed
1934 *
1935 * Iterate through each task of @cs updating its spread flags.  As this
1936 * function is called with cpuset_rwsem held, cpuset membership stays
1937 * stable.
1938 */
1939static void update_tasks_flags(struct cpuset *cs)
1940{
1941        struct css_task_iter it;
1942        struct task_struct *task;
1943
1944        css_task_iter_start(&cs->css, 0, &it);
1945        while ((task = css_task_iter_next(&it)))
1946                cpuset_update_task_spread_flag(cs, task);
1947        css_task_iter_end(&it);
1948}
1949
1950/*
1951 * update_flag - read a 0 or a 1 in a file and update associated flag
1952 * bit:         the bit to update (see cpuset_flagbits_t)
1953 * cs:          the cpuset to update
1954 * turning_on:  whether the flag is being set or cleared
1955 *
1956 * Call with cpuset_rwsem held.
1957 */
1958
1959static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1960                       int turning_on)
1961{
1962        struct cpuset *trialcs;
1963        int balance_flag_changed;
1964        int spread_flag_changed;
1965        int err;
1966
1967        trialcs = alloc_trial_cpuset(cs);
1968        if (!trialcs)
1969                return -ENOMEM;
1970
1971        if (turning_on)
1972                set_bit(bit, &trialcs->flags);
1973        else
1974                clear_bit(bit, &trialcs->flags);
1975
1976        err = validate_change(cs, trialcs);
1977        if (err < 0)
1978                goto out;
1979
1980        balance_flag_changed = (is_sched_load_balance(cs) !=
1981                                is_sched_load_balance(trialcs));
1982
1983        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1984                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1985
1986        spin_lock_irq(&callback_lock);
1987        cs->flags = trialcs->flags;
1988        spin_unlock_irq(&callback_lock);
1989
1990        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1991                rebuild_sched_domains_locked();
1992
1993        if (spread_flag_changed)
1994                update_tasks_flags(cs);
1995out:
1996        free_cpuset(trialcs);
1997        return err;
1998}
1999
2000/*
2001 * update_prstate - update partititon_root_state
2002 * cs: the cpuset to update
2003 * new_prs: new partition root state
2004 *
2005 * Call with cpuset_rwsem held.
2006 */
2007static int update_prstate(struct cpuset *cs, int new_prs)
2008{
2009        int err, old_prs = cs->partition_root_state;
2010        struct cpuset *parent = parent_cs(cs);
2011        struct tmpmasks tmpmask;
2012
2013        if (old_prs == new_prs)
2014                return 0;
2015
2016        /*
2017         * Cannot force a partial or invalid partition root to a full
2018         * partition root.
2019         */
2020        if (new_prs && (old_prs == PRS_ERROR))
2021                return -EINVAL;
2022
2023        if (alloc_cpumasks(NULL, &tmpmask))
2024                return -ENOMEM;
2025
2026        err = -EINVAL;
2027        if (!old_prs) {
2028                /*
2029                 * Turning on partition root requires setting the
2030                 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2031                 * cannot be NULL.
2032                 */
2033                if (cpumask_empty(cs->cpus_allowed))
2034                        goto out;
2035
2036                err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2037                if (err)
2038                        goto out;
2039
2040                err = update_parent_subparts_cpumask(cs, partcmd_enable,
2041                                                     NULL, &tmpmask);
2042                if (err) {
2043                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2044                        goto out;
2045                }
2046        } else {
2047                /*
2048                 * Turning off partition root will clear the
2049                 * CS_CPU_EXCLUSIVE bit.
2050                 */
2051                if (old_prs == PRS_ERROR) {
2052                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2053                        err = 0;
2054                        goto out;
2055                }
2056
2057                err = update_parent_subparts_cpumask(cs, partcmd_disable,
2058                                                     NULL, &tmpmask);
2059                if (err)
2060                        goto out;
2061
2062                /* Turning off CS_CPU_EXCLUSIVE will not return error */
2063                update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2064        }
2065
2066        /*
2067         * Update cpumask of parent's tasks except when it is the top
2068         * cpuset as some system daemons cannot be mapped to other CPUs.
2069         */
2070        if (parent != &top_cpuset)
2071                update_tasks_cpumask(parent);
2072
2073        if (parent->child_ecpus_count)
2074                update_sibling_cpumasks(parent, cs, &tmpmask);
2075
2076        rebuild_sched_domains_locked();
2077out:
2078        if (!err) {
2079                spin_lock_irq(&callback_lock);
2080                cs->partition_root_state = new_prs;
2081                spin_unlock_irq(&callback_lock);
2082                notify_partition_change(cs, old_prs, new_prs);
2083        }
2084
2085        free_cpumasks(NULL, &tmpmask);
2086        return err;
2087}
2088
2089/*
2090 * Frequency meter - How fast is some event occurring?
2091 *
2092 * These routines manage a digitally filtered, constant time based,
2093 * event frequency meter.  There are four routines:
2094 *   fmeter_init() - initialize a frequency meter.
2095 *   fmeter_markevent() - called each time the event happens.
2096 *   fmeter_getrate() - returns the recent rate of such events.
2097 *   fmeter_update() - internal routine used to update fmeter.
2098 *
2099 * A common data structure is passed to each of these routines,
2100 * which is used to keep track of the state required to manage the
2101 * frequency meter and its digital filter.
2102 *
2103 * The filter works on the number of events marked per unit time.
2104 * The filter is single-pole low-pass recursive (IIR).  The time unit
2105 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2106 * simulate 3 decimal digits of precision (multiplied by 1000).
2107 *
2108 * With an FM_COEF of 933, and a time base of 1 second, the filter
2109 * has a half-life of 10 seconds, meaning that if the events quit
2110 * happening, then the rate returned from the fmeter_getrate()
2111 * will be cut in half each 10 seconds, until it converges to zero.
2112 *
2113 * It is not worth doing a real infinitely recursive filter.  If more
2114 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2115 * just compute FM_MAXTICKS ticks worth, by which point the level
2116 * will be stable.
2117 *
2118 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2119 * arithmetic overflow in the fmeter_update() routine.
2120 *
2121 * Given the simple 32 bit integer arithmetic used, this meter works
2122 * best for reporting rates between one per millisecond (msec) and
2123 * one per 32 (approx) seconds.  At constant rates faster than one
2124 * per msec it maxes out at values just under 1,000,000.  At constant
2125 * rates between one per msec, and one per second it will stabilize
2126 * to a value N*1000, where N is the rate of events per second.
2127 * At constant rates between one per second and one per 32 seconds,
2128 * it will be choppy, moving up on the seconds that have an event,
2129 * and then decaying until the next event.  At rates slower than
2130 * about one in 32 seconds, it decays all the way back to zero between
2131 * each event.
2132 */
2133
2134#define FM_COEF 933             /* coefficient for half-life of 10 secs */
2135#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2136#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
2137#define FM_SCALE 1000           /* faux fixed point scale */
2138
2139/* Initialize a frequency meter */
2140static void fmeter_init(struct fmeter *fmp)
2141{
2142        fmp->cnt = 0;
2143        fmp->val = 0;
2144        fmp->time = 0;
2145        spin_lock_init(&fmp->lock);
2146}
2147
2148/* Internal meter update - process cnt events and update value */
2149static void fmeter_update(struct fmeter *fmp)
2150{
2151        time64_t now;
2152        u32 ticks;
2153
2154        now = ktime_get_seconds();
2155        ticks = now - fmp->time;
2156
2157        if (ticks == 0)
2158                return;
2159
2160        ticks = min(FM_MAXTICKS, ticks);
2161        while (ticks-- > 0)
2162                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2163        fmp->time = now;
2164
2165        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2166        fmp->cnt = 0;
2167}
2168
2169/* Process any previous ticks, then bump cnt by one (times scale). */
2170static void fmeter_markevent(struct fmeter *fmp)
2171{
2172        spin_lock(&fmp->lock);
2173        fmeter_update(fmp);
2174        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2175        spin_unlock(&fmp->lock);
2176}
2177
2178/* Process any previous ticks, then return current value. */
2179static int fmeter_getrate(struct fmeter *fmp)
2180{
2181        int val;
2182
2183        spin_lock(&fmp->lock);
2184        fmeter_update(fmp);
2185        val = fmp->val;
2186        spin_unlock(&fmp->lock);
2187        return val;
2188}
2189
2190static struct cpuset *cpuset_attach_old_cs;
2191
2192/* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2193static int cpuset_can_attach(struct cgroup_taskset *tset)
2194{
2195        struct cgroup_subsys_state *css;
2196        struct cpuset *cs;
2197        struct task_struct *task;
2198        int ret;
2199
2200        /* used later by cpuset_attach() */
2201        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2202        cs = css_cs(css);
2203
2204        percpu_down_write(&cpuset_rwsem);
2205
2206        /* allow moving tasks into an empty cpuset if on default hierarchy */
2207        ret = -ENOSPC;
2208        if (!is_in_v2_mode() &&
2209            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2210                goto out_unlock;
2211
2212        cgroup_taskset_for_each(task, css, tset) {
2213                ret = task_can_attach(task, cs->cpus_allowed);
2214                if (ret)
2215                        goto out_unlock;
2216                ret = security_task_setscheduler(task);
2217                if (ret)
2218                        goto out_unlock;
2219        }
2220
2221        /*
2222         * Mark attach is in progress.  This makes validate_change() fail
2223         * changes which zero cpus/mems_allowed.
2224         */
2225        cs->attach_in_progress++;
2226        ret = 0;
2227out_unlock:
2228        percpu_up_write(&cpuset_rwsem);
2229        return ret;
2230}
2231
2232static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2233{
2234        struct cgroup_subsys_state *css;
2235
2236        cgroup_taskset_first(tset, &css);
2237
2238        percpu_down_write(&cpuset_rwsem);
2239        css_cs(css)->attach_in_progress--;
2240        percpu_up_write(&cpuset_rwsem);
2241}
2242
2243/*
2244 * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2245 * but we can't allocate it dynamically there.  Define it global and
2246 * allocate from cpuset_init().
2247 */
2248static cpumask_var_t cpus_attach;
2249
2250static void cpuset_attach(struct cgroup_taskset *tset)
2251{
2252        /* static buf protected by cpuset_rwsem */
2253        static nodemask_t cpuset_attach_nodemask_to;
2254        struct task_struct *task;
2255        struct task_struct *leader;
2256        struct cgroup_subsys_state *css;
2257        struct cpuset *cs;
2258        struct cpuset *oldcs = cpuset_attach_old_cs;
2259
2260        cgroup_taskset_first(tset, &css);
2261        cs = css_cs(css);
2262
2263        percpu_down_write(&cpuset_rwsem);
2264
2265        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2266
2267        cgroup_taskset_for_each(task, css, tset) {
2268                if (cs != &top_cpuset)
2269                        guarantee_online_cpus(task, cpus_attach);
2270                else
2271                        cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2272                /*
2273                 * can_attach beforehand should guarantee that this doesn't
2274                 * fail.  TODO: have a better way to handle failure here
2275                 */
2276                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2277
2278                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2279                cpuset_update_task_spread_flag(cs, task);
2280        }
2281
2282        /*
2283         * Change mm for all threadgroup leaders. This is expensive and may
2284         * sleep and should be moved outside migration path proper.
2285         */
2286        cpuset_attach_nodemask_to = cs->effective_mems;
2287        cgroup_taskset_for_each_leader(leader, css, tset) {
2288                struct mm_struct *mm = get_task_mm(leader);
2289
2290                if (mm) {
2291                        mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2292
2293                        /*
2294                         * old_mems_allowed is the same with mems_allowed
2295                         * here, except if this task is being moved
2296                         * automatically due to hotplug.  In that case
2297                         * @mems_allowed has been updated and is empty, so
2298                         * @old_mems_allowed is the right nodesets that we
2299                         * migrate mm from.
2300                         */
2301                        if (is_memory_migrate(cs))
2302                                cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2303                                                  &cpuset_attach_nodemask_to);
2304                        else
2305                                mmput(mm);
2306                }
2307        }
2308
2309        cs->old_mems_allowed = cpuset_attach_nodemask_to;
2310
2311        cs->attach_in_progress--;
2312        if (!cs->attach_in_progress)
2313                wake_up(&cpuset_attach_wq);
2314
2315        percpu_up_write(&cpuset_rwsem);
2316}
2317
2318/* The various types of files and directories in a cpuset file system */
2319
2320typedef enum {
2321        FILE_MEMORY_MIGRATE,
2322        FILE_CPULIST,
2323        FILE_MEMLIST,
2324        FILE_EFFECTIVE_CPULIST,
2325        FILE_EFFECTIVE_MEMLIST,
2326        FILE_SUBPARTS_CPULIST,
2327        FILE_CPU_EXCLUSIVE,
2328        FILE_MEM_EXCLUSIVE,
2329        FILE_MEM_HARDWALL,
2330        FILE_SCHED_LOAD_BALANCE,
2331        FILE_PARTITION_ROOT,
2332        FILE_SCHED_RELAX_DOMAIN_LEVEL,
2333        FILE_MEMORY_PRESSURE_ENABLED,
2334        FILE_MEMORY_PRESSURE,
2335        FILE_SPREAD_PAGE,
2336        FILE_SPREAD_SLAB,
2337} cpuset_filetype_t;
2338
2339static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2340                            u64 val)
2341{
2342        struct cpuset *cs = css_cs(css);
2343        cpuset_filetype_t type = cft->private;
2344        int retval = 0;
2345
2346        cpus_read_lock();
2347        percpu_down_write(&cpuset_rwsem);
2348        if (!is_cpuset_online(cs)) {
2349                retval = -ENODEV;
2350                goto out_unlock;
2351        }
2352
2353        switch (type) {
2354        case FILE_CPU_EXCLUSIVE:
2355                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2356                break;
2357        case FILE_MEM_EXCLUSIVE:
2358                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2359                break;
2360        case FILE_MEM_HARDWALL:
2361                retval = update_flag(CS_MEM_HARDWALL, cs, val);
2362                break;
2363        case FILE_SCHED_LOAD_BALANCE:
2364                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2365                break;
2366        case FILE_MEMORY_MIGRATE:
2367                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2368                break;
2369        case FILE_MEMORY_PRESSURE_ENABLED:
2370                cpuset_memory_pressure_enabled = !!val;
2371                break;
2372        case FILE_SPREAD_PAGE:
2373                retval = update_flag(CS_SPREAD_PAGE, cs, val);
2374                break;
2375        case FILE_SPREAD_SLAB:
2376                retval = update_flag(CS_SPREAD_SLAB, cs, val);
2377                break;
2378        default:
2379                retval = -EINVAL;
2380                break;
2381        }
2382out_unlock:
2383        percpu_up_write(&cpuset_rwsem);
2384        cpus_read_unlock();
2385        return retval;
2386}
2387
2388static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2389                            s64 val)
2390{
2391        struct cpuset *cs = css_cs(css);
2392        cpuset_filetype_t type = cft->private;
2393        int retval = -ENODEV;
2394
2395        cpus_read_lock();
2396        percpu_down_write(&cpuset_rwsem);
2397        if (!is_cpuset_online(cs))
2398                goto out_unlock;
2399
2400        switch (type) {
2401        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2402                retval = update_relax_domain_level(cs, val);
2403                break;
2404        default:
2405                retval = -EINVAL;
2406                break;
2407        }
2408out_unlock:
2409        percpu_up_write(&cpuset_rwsem);
2410        cpus_read_unlock();
2411        return retval;
2412}
2413
2414/*
2415 * Common handling for a write to a "cpus" or "mems" file.
2416 */
2417static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2418                                    char *buf, size_t nbytes, loff_t off)
2419{
2420        struct cpuset *cs = css_cs(of_css(of));
2421        struct cpuset *trialcs;
2422        int retval = -ENODEV;
2423
2424        buf = strstrip(buf);
2425
2426        /*
2427         * CPU or memory hotunplug may leave @cs w/o any execution
2428         * resources, in which case the hotplug code asynchronously updates
2429         * configuration and transfers all tasks to the nearest ancestor
2430         * which can execute.
2431         *
2432         * As writes to "cpus" or "mems" may restore @cs's execution
2433         * resources, wait for the previously scheduled operations before
2434         * proceeding, so that we don't end up keep removing tasks added
2435         * after execution capability is restored.
2436         *
2437         * cpuset_hotplug_work calls back into cgroup core via
2438         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2439         * operation like this one can lead to a deadlock through kernfs
2440         * active_ref protection.  Let's break the protection.  Losing the
2441         * protection is okay as we check whether @cs is online after
2442         * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2443         * hierarchies.
2444         */
2445        css_get(&cs->css);
2446        kernfs_break_active_protection(of->kn);
2447        flush_work(&cpuset_hotplug_work);
2448
2449        cpus_read_lock();
2450        percpu_down_write(&cpuset_rwsem);
2451        if (!is_cpuset_online(cs))
2452                goto out_unlock;
2453
2454        trialcs = alloc_trial_cpuset(cs);
2455        if (!trialcs) {
2456                retval = -ENOMEM;
2457                goto out_unlock;
2458        }
2459
2460        switch (of_cft(of)->private) {
2461        case FILE_CPULIST:
2462                retval = update_cpumask(cs, trialcs, buf);
2463                break;
2464        case FILE_MEMLIST:
2465                retval = update_nodemask(cs, trialcs, buf);
2466                break;
2467        default:
2468                retval = -EINVAL;
2469                break;
2470        }
2471
2472        free_cpuset(trialcs);
2473out_unlock:
2474        percpu_up_write(&cpuset_rwsem);
2475        cpus_read_unlock();
2476        kernfs_unbreak_active_protection(of->kn);
2477        css_put(&cs->css);
2478        flush_workqueue(cpuset_migrate_mm_wq);
2479        return retval ?: nbytes;
2480}
2481
2482/*
2483 * These ascii lists should be read in a single call, by using a user
2484 * buffer large enough to hold the entire map.  If read in smaller
2485 * chunks, there is no guarantee of atomicity.  Since the display format
2486 * used, list of ranges of sequential numbers, is variable length,
2487 * and since these maps can change value dynamically, one could read
2488 * gibberish by doing partial reads while a list was changing.
2489 */
2490static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2491{
2492        struct cpuset *cs = css_cs(seq_css(sf));
2493        cpuset_filetype_t type = seq_cft(sf)->private;
2494        int ret = 0;
2495
2496        spin_lock_irq(&callback_lock);
2497
2498        switch (type) {
2499        case FILE_CPULIST:
2500                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2501                break;
2502        case FILE_MEMLIST:
2503                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2504                break;
2505        case FILE_EFFECTIVE_CPULIST:
2506                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2507                break;
2508        case FILE_EFFECTIVE_MEMLIST:
2509                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2510                break;
2511        case FILE_SUBPARTS_CPULIST:
2512                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2513                break;
2514        default:
2515                ret = -EINVAL;
2516        }
2517
2518        spin_unlock_irq(&callback_lock);
2519        return ret;
2520}
2521
2522static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2523{
2524        struct cpuset *cs = css_cs(css);
2525        cpuset_filetype_t type = cft->private;
2526        switch (type) {
2527        case FILE_CPU_EXCLUSIVE:
2528                return is_cpu_exclusive(cs);
2529        case FILE_MEM_EXCLUSIVE:
2530                return is_mem_exclusive(cs);
2531        case FILE_MEM_HARDWALL:
2532                return is_mem_hardwall(cs);
2533        case FILE_SCHED_LOAD_BALANCE:
2534                return is_sched_load_balance(cs);
2535        case FILE_MEMORY_MIGRATE:
2536                return is_memory_migrate(cs);
2537        case FILE_MEMORY_PRESSURE_ENABLED:
2538                return cpuset_memory_pressure_enabled;
2539        case FILE_MEMORY_PRESSURE:
2540                return fmeter_getrate(&cs->fmeter);
2541        case FILE_SPREAD_PAGE:
2542                return is_spread_page(cs);
2543        case FILE_SPREAD_SLAB:
2544                return is_spread_slab(cs);
2545        default:
2546                BUG();
2547        }
2548
2549        /* Unreachable but makes gcc happy */
2550        return 0;
2551}
2552
2553static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2554{
2555        struct cpuset *cs = css_cs(css);
2556        cpuset_filetype_t type = cft->private;
2557        switch (type) {
2558        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2559                return cs->relax_domain_level;
2560        default:
2561                BUG();
2562        }
2563
2564        /* Unreachable but makes gcc happy */
2565        return 0;
2566}
2567
2568static int sched_partition_show(struct seq_file *seq, void *v)
2569{
2570        struct cpuset *cs = css_cs(seq_css(seq));
2571
2572        switch (cs->partition_root_state) {
2573        case PRS_ENABLED:
2574                seq_puts(seq, "root\n");
2575                break;
2576        case PRS_DISABLED:
2577                seq_puts(seq, "member\n");
2578                break;
2579        case PRS_ERROR:
2580                seq_puts(seq, "root invalid\n");
2581                break;
2582        }
2583        return 0;
2584}
2585
2586static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2587                                     size_t nbytes, loff_t off)
2588{
2589        struct cpuset *cs = css_cs(of_css(of));
2590        int val;
2591        int retval = -ENODEV;
2592
2593        buf = strstrip(buf);
2594
2595        /*
2596         * Convert "root" to ENABLED, and convert "member" to DISABLED.
2597         */
2598        if (!strcmp(buf, "root"))
2599                val = PRS_ENABLED;
2600        else if (!strcmp(buf, "member"))
2601                val = PRS_DISABLED;
2602        else
2603                return -EINVAL;
2604
2605        css_get(&cs->css);
2606        cpus_read_lock();
2607        percpu_down_write(&cpuset_rwsem);
2608        if (!is_cpuset_online(cs))
2609                goto out_unlock;
2610
2611        retval = update_prstate(cs, val);
2612out_unlock:
2613        percpu_up_write(&cpuset_rwsem);
2614        cpus_read_unlock();
2615        css_put(&cs->css);
2616        return retval ?: nbytes;
2617}
2618
2619/*
2620 * for the common functions, 'private' gives the type of file
2621 */
2622
2623static struct cftype legacy_files[] = {
2624        {
2625                .name = "cpus",
2626                .seq_show = cpuset_common_seq_show,
2627                .write = cpuset_write_resmask,
2628                .max_write_len = (100U + 6 * NR_CPUS),
2629                .private = FILE_CPULIST,
2630        },
2631
2632        {
2633                .name = "mems",
2634                .seq_show = cpuset_common_seq_show,
2635                .write = cpuset_write_resmask,
2636                .max_write_len = (100U + 6 * MAX_NUMNODES),
2637                .private = FILE_MEMLIST,
2638        },
2639
2640        {
2641                .name = "effective_cpus",
2642                .seq_show = cpuset_common_seq_show,
2643                .private = FILE_EFFECTIVE_CPULIST,
2644        },
2645
2646        {
2647                .name = "effective_mems",
2648                .seq_show = cpuset_common_seq_show,
2649                .private = FILE_EFFECTIVE_MEMLIST,
2650        },
2651
2652        {
2653                .name = "cpu_exclusive",
2654                .read_u64 = cpuset_read_u64,
2655                .write_u64 = cpuset_write_u64,
2656                .private = FILE_CPU_EXCLUSIVE,
2657        },
2658
2659        {
2660                .name = "mem_exclusive",
2661                .read_u64 = cpuset_read_u64,
2662                .write_u64 = cpuset_write_u64,
2663                .private = FILE_MEM_EXCLUSIVE,
2664        },
2665
2666        {
2667                .name = "mem_hardwall",
2668                .read_u64 = cpuset_read_u64,
2669                .write_u64 = cpuset_write_u64,
2670                .private = FILE_MEM_HARDWALL,
2671        },
2672
2673        {
2674                .name = "sched_load_balance",
2675                .read_u64 = cpuset_read_u64,
2676                .write_u64 = cpuset_write_u64,
2677                .private = FILE_SCHED_LOAD_BALANCE,
2678        },
2679
2680        {
2681                .name = "sched_relax_domain_level",
2682                .read_s64 = cpuset_read_s64,
2683                .write_s64 = cpuset_write_s64,
2684                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2685        },
2686
2687        {
2688                .name = "memory_migrate",
2689                .read_u64 = cpuset_read_u64,
2690                .write_u64 = cpuset_write_u64,
2691                .private = FILE_MEMORY_MIGRATE,
2692        },
2693
2694        {
2695                .name = "memory_pressure",
2696                .read_u64 = cpuset_read_u64,
2697                .private = FILE_MEMORY_PRESSURE,
2698        },
2699
2700        {
2701                .name = "memory_spread_page",
2702                .read_u64 = cpuset_read_u64,
2703                .write_u64 = cpuset_write_u64,
2704                .private = FILE_SPREAD_PAGE,
2705        },
2706
2707        {
2708                .name = "memory_spread_slab",
2709                .read_u64 = cpuset_read_u64,
2710                .write_u64 = cpuset_write_u64,
2711                .private = FILE_SPREAD_SLAB,
2712        },
2713
2714        {
2715                .name = "memory_pressure_enabled",
2716                .flags = CFTYPE_ONLY_ON_ROOT,
2717                .read_u64 = cpuset_read_u64,
2718                .write_u64 = cpuset_write_u64,
2719                .private = FILE_MEMORY_PRESSURE_ENABLED,
2720        },
2721
2722        { }     /* terminate */
2723};
2724
2725/*
2726 * This is currently a minimal set for the default hierarchy. It can be
2727 * expanded later on by migrating more features and control files from v1.
2728 */
2729static struct cftype dfl_files[] = {
2730        {
2731                .name = "cpus",
2732                .seq_show = cpuset_common_seq_show,
2733                .write = cpuset_write_resmask,
2734                .max_write_len = (100U + 6 * NR_CPUS),
2735                .private = FILE_CPULIST,
2736                .flags = CFTYPE_NOT_ON_ROOT,
2737        },
2738
2739        {
2740                .name = "mems",
2741                .seq_show = cpuset_common_seq_show,
2742                .write = cpuset_write_resmask,
2743                .max_write_len = (100U + 6 * MAX_NUMNODES),
2744                .private = FILE_MEMLIST,
2745                .flags = CFTYPE_NOT_ON_ROOT,
2746        },
2747
2748        {
2749                .name = "cpus.effective",
2750                .seq_show = cpuset_common_seq_show,
2751                .private = FILE_EFFECTIVE_CPULIST,
2752        },
2753
2754        {
2755                .name = "mems.effective",
2756                .seq_show = cpuset_common_seq_show,
2757                .private = FILE_EFFECTIVE_MEMLIST,
2758        },
2759
2760        {
2761                .name = "cpus.partition",
2762                .seq_show = sched_partition_show,
2763                .write = sched_partition_write,
2764                .private = FILE_PARTITION_ROOT,
2765                .flags = CFTYPE_NOT_ON_ROOT,
2766                .file_offset = offsetof(struct cpuset, partition_file),
2767        },
2768
2769        {
2770                .name = "cpus.subpartitions",
2771                .seq_show = cpuset_common_seq_show,
2772                .private = FILE_SUBPARTS_CPULIST,
2773                .flags = CFTYPE_DEBUG,
2774        },
2775
2776        { }     /* terminate */
2777};
2778
2779
2780/*
2781 *      cpuset_css_alloc - allocate a cpuset css
2782 *      cgrp:   control group that the new cpuset will be part of
2783 */
2784
2785static struct cgroup_subsys_state *
2786cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2787{
2788        struct cpuset *cs;
2789
2790        if (!parent_css)
2791                return &top_cpuset.css;
2792
2793        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2794        if (!cs)
2795                return ERR_PTR(-ENOMEM);
2796
2797        if (alloc_cpumasks(cs, NULL)) {
2798                kfree(cs);
2799                return ERR_PTR(-ENOMEM);
2800        }
2801
2802        __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2803        nodes_clear(cs->mems_allowed);
2804        nodes_clear(cs->effective_mems);
2805        fmeter_init(&cs->fmeter);
2806        cs->relax_domain_level = -1;
2807
2808        /* Set CS_MEMORY_MIGRATE for default hierarchy */
2809        if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2810                __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2811
2812        return &cs->css;
2813}
2814
2815static int cpuset_css_online(struct cgroup_subsys_state *css)
2816{
2817        struct cpuset *cs = css_cs(css);
2818        struct cpuset *parent = parent_cs(cs);
2819        struct cpuset *tmp_cs;
2820        struct cgroup_subsys_state *pos_css;
2821
2822        if (!parent)
2823                return 0;
2824
2825        cpus_read_lock();
2826        percpu_down_write(&cpuset_rwsem);
2827
2828        set_bit(CS_ONLINE, &cs->flags);
2829        if (is_spread_page(parent))
2830                set_bit(CS_SPREAD_PAGE, &cs->flags);
2831        if (is_spread_slab(parent))
2832                set_bit(CS_SPREAD_SLAB, &cs->flags);
2833
2834        cpuset_inc();
2835
2836        spin_lock_irq(&callback_lock);
2837        if (is_in_v2_mode()) {
2838                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2839                cs->effective_mems = parent->effective_mems;
2840                cs->use_parent_ecpus = true;
2841                parent->child_ecpus_count++;
2842        }
2843        spin_unlock_irq(&callback_lock);
2844
2845        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2846                goto out_unlock;
2847
2848        /*
2849         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2850         * set.  This flag handling is implemented in cgroup core for
2851         * histrical reasons - the flag may be specified during mount.
2852         *
2853         * Currently, if any sibling cpusets have exclusive cpus or mem, we
2854         * refuse to clone the configuration - thereby refusing the task to
2855         * be entered, and as a result refusing the sys_unshare() or
2856         * clone() which initiated it.  If this becomes a problem for some
2857         * users who wish to allow that scenario, then this could be
2858         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2859         * (and likewise for mems) to the new cgroup.
2860         */
2861        rcu_read_lock();
2862        cpuset_for_each_child(tmp_cs, pos_css, parent) {
2863                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2864                        rcu_read_unlock();
2865                        goto out_unlock;
2866                }
2867        }
2868        rcu_read_unlock();
2869
2870        spin_lock_irq(&callback_lock);
2871        cs->mems_allowed = parent->mems_allowed;
2872        cs->effective_mems = parent->mems_allowed;
2873        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2874        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2875        spin_unlock_irq(&callback_lock);
2876out_unlock:
2877        percpu_up_write(&cpuset_rwsem);
2878        cpus_read_unlock();
2879        return 0;
2880}
2881
2882/*
2883 * If the cpuset being removed has its flag 'sched_load_balance'
2884 * enabled, then simulate turning sched_load_balance off, which
2885 * will call rebuild_sched_domains_locked(). That is not needed
2886 * in the default hierarchy where only changes in partition
2887 * will cause repartitioning.
2888 *
2889 * If the cpuset has the 'sched.partition' flag enabled, simulate
2890 * turning 'sched.partition" off.
2891 */
2892
2893static void cpuset_css_offline(struct cgroup_subsys_state *css)
2894{
2895        struct cpuset *cs = css_cs(css);
2896
2897        cpus_read_lock();
2898        percpu_down_write(&cpuset_rwsem);
2899
2900        if (is_partition_root(cs))
2901                update_prstate(cs, 0);
2902
2903        if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2904            is_sched_load_balance(cs))
2905                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2906
2907        if (cs->use_parent_ecpus) {
2908                struct cpuset *parent = parent_cs(cs);
2909
2910                cs->use_parent_ecpus = false;
2911                parent->child_ecpus_count--;
2912        }
2913
2914        cpuset_dec();
2915        clear_bit(CS_ONLINE, &cs->flags);
2916
2917        percpu_up_write(&cpuset_rwsem);
2918        cpus_read_unlock();
2919}
2920
2921static void cpuset_css_free(struct cgroup_subsys_state *css)
2922{
2923        struct cpuset *cs = css_cs(css);
2924
2925        free_cpuset(cs);
2926}
2927
2928static void cpuset_bind(struct cgroup_subsys_state *root_css)
2929{
2930        percpu_down_write(&cpuset_rwsem);
2931        spin_lock_irq(&callback_lock);
2932
2933        if (is_in_v2_mode()) {
2934                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2935                top_cpuset.mems_allowed = node_possible_map;
2936        } else {
2937                cpumask_copy(top_cpuset.cpus_allowed,
2938                             top_cpuset.effective_cpus);
2939                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2940        }
2941
2942        spin_unlock_irq(&callback_lock);
2943        percpu_up_write(&cpuset_rwsem);
2944}
2945
2946/*
2947 * Make sure the new task conform to the current state of its parent,
2948 * which could have been changed by cpuset just after it inherits the
2949 * state from the parent and before it sits on the cgroup's task list.
2950 */
2951static void cpuset_fork(struct task_struct *task)
2952{
2953        if (task_css_is_root(task, cpuset_cgrp_id))
2954                return;
2955
2956        set_cpus_allowed_ptr(task, current->cpus_ptr);
2957        task->mems_allowed = current->mems_allowed;
2958}
2959
2960struct cgroup_subsys cpuset_cgrp_subsys = {
2961        .css_alloc      = cpuset_css_alloc,
2962        .css_online     = cpuset_css_online,
2963        .css_offline    = cpuset_css_offline,
2964        .css_free       = cpuset_css_free,
2965        .can_attach     = cpuset_can_attach,
2966        .cancel_attach  = cpuset_cancel_attach,
2967        .attach         = cpuset_attach,
2968        .post_attach    = cpuset_post_attach,
2969        .bind           = cpuset_bind,
2970        .fork           = cpuset_fork,
2971        .legacy_cftypes = legacy_files,
2972        .dfl_cftypes    = dfl_files,
2973        .early_init     = true,
2974        .threaded       = true,
2975};
2976
2977/**
2978 * cpuset_init - initialize cpusets at system boot
2979 *
2980 * Description: Initialize top_cpuset
2981 **/
2982
2983int __init cpuset_init(void)
2984{
2985        BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2986
2987        BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2988        BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2989        BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2990
2991        cpumask_setall(top_cpuset.cpus_allowed);
2992        nodes_setall(top_cpuset.mems_allowed);
2993        cpumask_setall(top_cpuset.effective_cpus);
2994        nodes_setall(top_cpuset.effective_mems);
2995
2996        fmeter_init(&top_cpuset.fmeter);
2997        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2998        top_cpuset.relax_domain_level = -1;
2999
3000        BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3001
3002        return 0;
3003}
3004
3005/*
3006 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3007 * or memory nodes, we need to walk over the cpuset hierarchy,
3008 * removing that CPU or node from all cpusets.  If this removes the
3009 * last CPU or node from a cpuset, then move the tasks in the empty
3010 * cpuset to its next-highest non-empty parent.
3011 */
3012static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3013{
3014        struct cpuset *parent;
3015
3016        /*
3017         * Find its next-highest non-empty parent, (top cpuset
3018         * has online cpus, so can't be empty).
3019         */
3020        parent = parent_cs(cs);
3021        while (cpumask_empty(parent->cpus_allowed) ||
3022                        nodes_empty(parent->mems_allowed))
3023                parent = parent_cs(parent);
3024
3025        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3026                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3027                pr_cont_cgroup_name(cs->css.cgroup);
3028                pr_cont("\n");
3029        }
3030}
3031
3032static void
3033hotplug_update_tasks_legacy(struct cpuset *cs,
3034                            struct cpumask *new_cpus, nodemask_t *new_mems,
3035                            bool cpus_updated, bool mems_updated)
3036{
3037        bool is_empty;
3038
3039        spin_lock_irq(&callback_lock);
3040        cpumask_copy(cs->cpus_allowed, new_cpus);
3041        cpumask_copy(cs->effective_cpus, new_cpus);
3042        cs->mems_allowed = *new_mems;
3043        cs->effective_mems = *new_mems;
3044        spin_unlock_irq(&callback_lock);
3045
3046        /*
3047         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3048         * as the tasks will be migratecd to an ancestor.
3049         */
3050        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3051                update_tasks_cpumask(cs);
3052        if (mems_updated && !nodes_empty(cs->mems_allowed))
3053                update_tasks_nodemask(cs);
3054
3055        is_empty = cpumask_empty(cs->cpus_allowed) ||
3056                   nodes_empty(cs->mems_allowed);
3057
3058        percpu_up_write(&cpuset_rwsem);
3059
3060        /*
3061         * Move tasks to the nearest ancestor with execution resources,
3062         * This is full cgroup operation which will also call back into
3063         * cpuset. Should be done outside any lock.
3064         */
3065        if (is_empty)
3066                remove_tasks_in_empty_cpuset(cs);
3067
3068        percpu_down_write(&cpuset_rwsem);
3069}
3070
3071static void
3072hotplug_update_tasks(struct cpuset *cs,
3073                     struct cpumask *new_cpus, nodemask_t *new_mems,
3074                     bool cpus_updated, bool mems_updated)
3075{
3076        if (cpumask_empty(new_cpus))
3077                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3078        if (nodes_empty(*new_mems))
3079                *new_mems = parent_cs(cs)->effective_mems;
3080
3081        spin_lock_irq(&callback_lock);
3082        cpumask_copy(cs->effective_cpus, new_cpus);
3083        cs->effective_mems = *new_mems;
3084        spin_unlock_irq(&callback_lock);
3085
3086        if (cpus_updated)
3087                update_tasks_cpumask(cs);
3088        if (mems_updated)
3089                update_tasks_nodemask(cs);
3090}
3091
3092static bool force_rebuild;
3093
3094void cpuset_force_rebuild(void)
3095{
3096        force_rebuild = true;
3097}
3098
3099/**
3100 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3101 * @cs: cpuset in interest
3102 * @tmp: the tmpmasks structure pointer
3103 *
3104 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3105 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3106 * all its tasks are moved to the nearest ancestor with both resources.
3107 */
3108static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3109{
3110        static cpumask_t new_cpus;
3111        static nodemask_t new_mems;
3112        bool cpus_updated;
3113        bool mems_updated;
3114        struct cpuset *parent;
3115retry:
3116        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3117
3118        percpu_down_write(&cpuset_rwsem);
3119
3120        /*
3121         * We have raced with task attaching. We wait until attaching
3122         * is finished, so we won't attach a task to an empty cpuset.
3123         */
3124        if (cs->attach_in_progress) {
3125                percpu_up_write(&cpuset_rwsem);
3126                goto retry;
3127        }
3128
3129        parent = parent_cs(cs);
3130        compute_effective_cpumask(&new_cpus, cs, parent);
3131        nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3132
3133        if (cs->nr_subparts_cpus)
3134                /*
3135                 * Make sure that CPUs allocated to child partitions
3136                 * do not show up in effective_cpus.
3137                 */
3138                cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3139
3140        if (!tmp || !cs->partition_root_state)
3141                goto update_tasks;
3142
3143        /*
3144         * In the unlikely event that a partition root has empty
3145         * effective_cpus or its parent becomes erroneous, we have to
3146         * transition it to the erroneous state.
3147         */
3148        if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3149           (parent->partition_root_state == PRS_ERROR))) {
3150                if (cs->nr_subparts_cpus) {
3151                        spin_lock_irq(&callback_lock);
3152                        cs->nr_subparts_cpus = 0;
3153                        cpumask_clear(cs->subparts_cpus);
3154                        spin_unlock_irq(&callback_lock);
3155                        compute_effective_cpumask(&new_cpus, cs, parent);
3156                }
3157
3158                /*
3159                 * If the effective_cpus is empty because the child
3160                 * partitions take away all the CPUs, we can keep
3161                 * the current partition and let the child partitions
3162                 * fight for available CPUs.
3163                 */
3164                if ((parent->partition_root_state == PRS_ERROR) ||
3165                     cpumask_empty(&new_cpus)) {
3166                        int old_prs;
3167
3168                        update_parent_subparts_cpumask(cs, partcmd_disable,
3169                                                       NULL, tmp);
3170                        old_prs = cs->partition_root_state;
3171                        if (old_prs != PRS_ERROR) {
3172                                spin_lock_irq(&callback_lock);
3173                                cs->partition_root_state = PRS_ERROR;
3174                                spin_unlock_irq(&callback_lock);
3175                                notify_partition_change(cs, old_prs, PRS_ERROR);
3176                        }
3177                }
3178                cpuset_force_rebuild();
3179        }
3180
3181        /*
3182         * On the other hand, an erroneous partition root may be transitioned
3183         * back to a regular one or a partition root with no CPU allocated
3184         * from the parent may change to erroneous.
3185         */
3186        if (is_partition_root(parent) &&
3187           ((cs->partition_root_state == PRS_ERROR) ||
3188            !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3189             update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3190                cpuset_force_rebuild();
3191
3192update_tasks:
3193        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3194        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3195
3196        if (mems_updated)
3197                check_insane_mems_config(&new_mems);
3198
3199        if (is_in_v2_mode())
3200                hotplug_update_tasks(cs, &new_cpus, &new_mems,
3201                                     cpus_updated, mems_updated);
3202        else
3203                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3204                                            cpus_updated, mems_updated);
3205
3206        percpu_up_write(&cpuset_rwsem);
3207}
3208
3209/**
3210 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3211 *
3212 * This function is called after either CPU or memory configuration has
3213 * changed and updates cpuset accordingly.  The top_cpuset is always
3214 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3215 * order to make cpusets transparent (of no affect) on systems that are
3216 * actively using CPU hotplug but making no active use of cpusets.
3217 *
3218 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3219 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3220 * all descendants.
3221 *
3222 * Note that CPU offlining during suspend is ignored.  We don't modify
3223 * cpusets across suspend/resume cycles at all.
3224 */
3225static void cpuset_hotplug_workfn(struct work_struct *work)
3226{
3227        static cpumask_t new_cpus;
3228        static nodemask_t new_mems;
3229        bool cpus_updated, mems_updated;
3230        bool on_dfl = is_in_v2_mode();
3231        struct tmpmasks tmp, *ptmp = NULL;
3232
3233        if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3234                ptmp = &tmp;
3235
3236        percpu_down_write(&cpuset_rwsem);
3237
3238        /* fetch the available cpus/mems and find out which changed how */
3239        cpumask_copy(&new_cpus, cpu_active_mask);
3240        new_mems = node_states[N_MEMORY];
3241
3242        /*
3243         * If subparts_cpus is populated, it is likely that the check below
3244         * will produce a false positive on cpus_updated when the cpu list
3245         * isn't changed. It is extra work, but it is better to be safe.
3246         */
3247        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3248        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3249
3250        /*
3251         * In the rare case that hotplug removes all the cpus in subparts_cpus,
3252         * we assumed that cpus are updated.
3253         */
3254        if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3255                cpus_updated = true;
3256
3257        /* synchronize cpus_allowed to cpu_active_mask */
3258        if (cpus_updated) {
3259                spin_lock_irq(&callback_lock);
3260                if (!on_dfl)
3261                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3262                /*
3263                 * Make sure that CPUs allocated to child partitions
3264                 * do not show up in effective_cpus. If no CPU is left,
3265                 * we clear the subparts_cpus & let the child partitions
3266                 * fight for the CPUs again.
3267                 */
3268                if (top_cpuset.nr_subparts_cpus) {
3269                        if (cpumask_subset(&new_cpus,
3270                                           top_cpuset.subparts_cpus)) {
3271                                top_cpuset.nr_subparts_cpus = 0;
3272                                cpumask_clear(top_cpuset.subparts_cpus);
3273                        } else {
3274                                cpumask_andnot(&new_cpus, &new_cpus,
3275                                               top_cpuset.subparts_cpus);
3276                        }
3277                }
3278                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3279                spin_unlock_irq(&callback_lock);
3280                /* we don't mess with cpumasks of tasks in top_cpuset */
3281        }
3282
3283        /* synchronize mems_allowed to N_MEMORY */
3284        if (mems_updated) {
3285                spin_lock_irq(&callback_lock);
3286                if (!on_dfl)
3287                        top_cpuset.mems_allowed = new_mems;
3288                top_cpuset.effective_mems = new_mems;
3289                spin_unlock_irq(&callback_lock);
3290                update_tasks_nodemask(&top_cpuset);
3291        }
3292
3293        percpu_up_write(&cpuset_rwsem);
3294
3295        /* if cpus or mems changed, we need to propagate to descendants */
3296        if (cpus_updated || mems_updated) {
3297                struct cpuset *cs;
3298                struct cgroup_subsys_state *pos_css;
3299
3300                rcu_read_lock();
3301                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3302                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3303                                continue;
3304                        rcu_read_unlock();
3305
3306                        cpuset_hotplug_update_tasks(cs, ptmp);
3307
3308                        rcu_read_lock();
3309                        css_put(&cs->css);
3310                }
3311                rcu_read_unlock();
3312        }
3313
3314        /* rebuild sched domains if cpus_allowed has changed */
3315        if (cpus_updated || force_rebuild) {
3316                force_rebuild = false;
3317                rebuild_sched_domains();
3318        }
3319
3320        free_cpumasks(NULL, ptmp);
3321}
3322
3323void cpuset_update_active_cpus(void)
3324{
3325        /*
3326         * We're inside cpu hotplug critical region which usually nests
3327         * inside cgroup synchronization.  Bounce actual hotplug processing
3328         * to a work item to avoid reverse locking order.
3329         */
3330        schedule_work(&cpuset_hotplug_work);
3331}
3332
3333void cpuset_wait_for_hotplug(void)
3334{
3335        flush_work(&cpuset_hotplug_work);
3336}
3337
3338/*
3339 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3340 * Call this routine anytime after node_states[N_MEMORY] changes.
3341 * See cpuset_update_active_cpus() for CPU hotplug handling.
3342 */
3343static int cpuset_track_online_nodes(struct notifier_block *self,
3344                                unsigned long action, void *arg)
3345{
3346        schedule_work(&cpuset_hotplug_work);
3347        return NOTIFY_OK;
3348}
3349
3350static struct notifier_block cpuset_track_online_nodes_nb = {
3351        .notifier_call = cpuset_track_online_nodes,
3352        .priority = 10,         /* ??! */
3353};
3354
3355/**
3356 * cpuset_init_smp - initialize cpus_allowed
3357 *
3358 * Description: Finish top cpuset after cpu, node maps are initialized
3359 */
3360void __init cpuset_init_smp(void)
3361{
3362        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3363        top_cpuset.mems_allowed = node_states[N_MEMORY];
3364        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3365
3366        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3367        top_cpuset.effective_mems = node_states[N_MEMORY];
3368
3369        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3370
3371        cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3372        BUG_ON(!cpuset_migrate_mm_wq);
3373}
3374
3375/**
3376 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3377 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3378 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3379 *
3380 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3381 * attached to the specified @tsk.  Guaranteed to return some non-empty
3382 * subset of cpu_online_mask, even if this means going outside the
3383 * tasks cpuset.
3384 **/
3385
3386void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3387{
3388        unsigned long flags;
3389
3390        spin_lock_irqsave(&callback_lock, flags);
3391        guarantee_online_cpus(tsk, pmask);
3392        spin_unlock_irqrestore(&callback_lock, flags);
3393}
3394
3395/**
3396 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3397 * @tsk: pointer to task_struct with which the scheduler is struggling
3398 *
3399 * Description: In the case that the scheduler cannot find an allowed cpu in
3400 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3401 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3402 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3403 * This is the absolute last resort for the scheduler and it is only used if
3404 * _every_ other avenue has been traveled.
3405 *
3406 * Returns true if the affinity of @tsk was changed, false otherwise.
3407 **/
3408
3409bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3410{
3411        const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3412        const struct cpumask *cs_mask;
3413        bool changed = false;
3414
3415        rcu_read_lock();
3416        cs_mask = task_cs(tsk)->cpus_allowed;
3417        if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3418                do_set_cpus_allowed(tsk, cs_mask);
3419                changed = true;
3420        }
3421        rcu_read_unlock();
3422
3423        /*
3424         * We own tsk->cpus_allowed, nobody can change it under us.
3425         *
3426         * But we used cs && cs->cpus_allowed lockless and thus can
3427         * race with cgroup_attach_task() or update_cpumask() and get
3428         * the wrong tsk->cpus_allowed. However, both cases imply the
3429         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3430         * which takes task_rq_lock().
3431         *
3432         * If we are called after it dropped the lock we must see all
3433         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3434         * set any mask even if it is not right from task_cs() pov,
3435         * the pending set_cpus_allowed_ptr() will fix things.
3436         *
3437         * select_fallback_rq() will fix things ups and set cpu_possible_mask
3438         * if required.
3439         */
3440        return changed;
3441}
3442
3443void __init cpuset_init_current_mems_allowed(void)
3444{
3445        nodes_setall(current->mems_allowed);
3446}
3447
3448/**
3449 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3450 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3451 *
3452 * Description: Returns the nodemask_t mems_allowed of the cpuset
3453 * attached to the specified @tsk.  Guaranteed to return some non-empty
3454 * subset of node_states[N_MEMORY], even if this means going outside the
3455 * tasks cpuset.
3456 **/
3457
3458nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3459{
3460        nodemask_t mask;
3461        unsigned long flags;
3462
3463        spin_lock_irqsave(&callback_lock, flags);
3464        rcu_read_lock();
3465        guarantee_online_mems(task_cs(tsk), &mask);
3466        rcu_read_unlock();
3467        spin_unlock_irqrestore(&callback_lock, flags);
3468
3469        return mask;
3470}
3471
3472/**
3473 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3474 * @nodemask: the nodemask to be checked
3475 *
3476 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3477 */
3478int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3479{
3480        return nodes_intersects(*nodemask, current->mems_allowed);
3481}
3482
3483/*
3484 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3485 * mem_hardwall ancestor to the specified cpuset.  Call holding
3486 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3487 * (an unusual configuration), then returns the root cpuset.
3488 */
3489static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3490{
3491        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3492                cs = parent_cs(cs);
3493        return cs;
3494}
3495
3496/**
3497 * cpuset_node_allowed - Can we allocate on a memory node?
3498 * @node: is this an allowed node?
3499 * @gfp_mask: memory allocation flags
3500 *
3501 * If we're in interrupt, yes, we can always allocate.  If @node is set in
3502 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3503 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3504 * yes.  If current has access to memory reserves as an oom victim, yes.
3505 * Otherwise, no.
3506 *
3507 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3508 * and do not allow allocations outside the current tasks cpuset
3509 * unless the task has been OOM killed.
3510 * GFP_KERNEL allocations are not so marked, so can escape to the
3511 * nearest enclosing hardwalled ancestor cpuset.
3512 *
3513 * Scanning up parent cpusets requires callback_lock.  The
3514 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3515 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3516 * current tasks mems_allowed came up empty on the first pass over
3517 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3518 * cpuset are short of memory, might require taking the callback_lock.
3519 *
3520 * The first call here from mm/page_alloc:get_page_from_freelist()
3521 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3522 * so no allocation on a node outside the cpuset is allowed (unless
3523 * in interrupt, of course).
3524 *
3525 * The second pass through get_page_from_freelist() doesn't even call
3526 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3527 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3528 * in alloc_flags.  That logic and the checks below have the combined
3529 * affect that:
3530 *      in_interrupt - any node ok (current task context irrelevant)
3531 *      GFP_ATOMIC   - any node ok
3532 *      tsk_is_oom_victim   - any node ok
3533 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3534 *      GFP_USER     - only nodes in current tasks mems allowed ok.
3535 */
3536bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3537{
3538        struct cpuset *cs;              /* current cpuset ancestors */
3539        int allowed;                    /* is allocation in zone z allowed? */
3540        unsigned long flags;
3541
3542        if (in_interrupt())
3543                return true;
3544        if (node_isset(node, current->mems_allowed))
3545                return true;
3546        /*
3547         * Allow tasks that have access to memory reserves because they have
3548         * been OOM killed to get memory anywhere.
3549         */
3550        if (unlikely(tsk_is_oom_victim(current)))
3551                return true;
3552        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
3553                return false;
3554
3555        if (current->flags & PF_EXITING) /* Let dying task have memory */
3556                return true;
3557
3558        /* Not hardwall and node outside mems_allowed: scan up cpusets */
3559        spin_lock_irqsave(&callback_lock, flags);
3560
3561        rcu_read_lock();
3562        cs = nearest_hardwall_ancestor(task_cs(current));
3563        allowed = node_isset(node, cs->mems_allowed);
3564        rcu_read_unlock();
3565
3566        spin_unlock_irqrestore(&callback_lock, flags);
3567        return allowed;
3568}
3569
3570/**
3571 * cpuset_mem_spread_node() - On which node to begin search for a file page
3572 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3573 *
3574 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3575 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3576 * and if the memory allocation used cpuset_mem_spread_node()
3577 * to determine on which node to start looking, as it will for
3578 * certain page cache or slab cache pages such as used for file
3579 * system buffers and inode caches, then instead of starting on the
3580 * local node to look for a free page, rather spread the starting
3581 * node around the tasks mems_allowed nodes.
3582 *
3583 * We don't have to worry about the returned node being offline
3584 * because "it can't happen", and even if it did, it would be ok.
3585 *
3586 * The routines calling guarantee_online_mems() are careful to
3587 * only set nodes in task->mems_allowed that are online.  So it
3588 * should not be possible for the following code to return an
3589 * offline node.  But if it did, that would be ok, as this routine
3590 * is not returning the node where the allocation must be, only
3591 * the node where the search should start.  The zonelist passed to
3592 * __alloc_pages() will include all nodes.  If the slab allocator
3593 * is passed an offline node, it will fall back to the local node.
3594 * See kmem_cache_alloc_node().
3595 */
3596
3597static int cpuset_spread_node(int *rotor)
3598{
3599        return *rotor = next_node_in(*rotor, current->mems_allowed);
3600}
3601
3602int cpuset_mem_spread_node(void)
3603{
3604        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3605                current->cpuset_mem_spread_rotor =
3606                        node_random(&current->mems_allowed);
3607
3608        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3609}
3610
3611int cpuset_slab_spread_node(void)
3612{
3613        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3614                current->cpuset_slab_spread_rotor =
3615                        node_random(&current->mems_allowed);
3616
3617        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3618}
3619
3620EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3621
3622/**
3623 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3624 * @tsk1: pointer to task_struct of some task.
3625 * @tsk2: pointer to task_struct of some other task.
3626 *
3627 * Description: Return true if @tsk1's mems_allowed intersects the
3628 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3629 * one of the task's memory usage might impact the memory available
3630 * to the other.
3631 **/
3632
3633int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3634                                   const struct task_struct *tsk2)
3635{
3636        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3637}
3638
3639/**
3640 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3641 *
3642 * Description: Prints current's name, cpuset name, and cached copy of its
3643 * mems_allowed to the kernel log.
3644 */
3645void cpuset_print_current_mems_allowed(void)
3646{
3647        struct cgroup *cgrp;
3648
3649        rcu_read_lock();
3650
3651        cgrp = task_cs(current)->css.cgroup;
3652        pr_cont(",cpuset=");
3653        pr_cont_cgroup_name(cgrp);
3654        pr_cont(",mems_allowed=%*pbl",
3655                nodemask_pr_args(&current->mems_allowed));
3656
3657        rcu_read_unlock();
3658}
3659
3660/*
3661 * Collection of memory_pressure is suppressed unless
3662 * this flag is enabled by writing "1" to the special
3663 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3664 */
3665
3666int cpuset_memory_pressure_enabled __read_mostly;
3667
3668/**
3669 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3670 *
3671 * Keep a running average of the rate of synchronous (direct)
3672 * page reclaim efforts initiated by tasks in each cpuset.
3673 *
3674 * This represents the rate at which some task in the cpuset
3675 * ran low on memory on all nodes it was allowed to use, and
3676 * had to enter the kernels page reclaim code in an effort to
3677 * create more free memory by tossing clean pages or swapping
3678 * or writing dirty pages.
3679 *
3680 * Display to user space in the per-cpuset read-only file
3681 * "memory_pressure".  Value displayed is an integer
3682 * representing the recent rate of entry into the synchronous
3683 * (direct) page reclaim by any task attached to the cpuset.
3684 **/
3685
3686void __cpuset_memory_pressure_bump(void)
3687{
3688        rcu_read_lock();
3689        fmeter_markevent(&task_cs(current)->fmeter);
3690        rcu_read_unlock();
3691}
3692
3693#ifdef CONFIG_PROC_PID_CPUSET
3694/*
3695 * proc_cpuset_show()
3696 *  - Print tasks cpuset path into seq_file.
3697 *  - Used for /proc/<pid>/cpuset.
3698 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3699 *    doesn't really matter if tsk->cpuset changes after we read it,
3700 *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3701 *    anyway.
3702 */
3703int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3704                     struct pid *pid, struct task_struct *tsk)
3705{
3706        char *buf;
3707        struct cgroup_subsys_state *css;
3708        int retval;
3709
3710        retval = -ENOMEM;
3711        buf = kmalloc(PATH_MAX, GFP_KERNEL);
3712        if (!buf)
3713                goto out;
3714
3715        css = task_get_css(tsk, cpuset_cgrp_id);
3716        retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3717                                current->nsproxy->cgroup_ns);
3718        css_put(css);
3719        if (retval >= PATH_MAX)
3720                retval = -ENAMETOOLONG;
3721        if (retval < 0)
3722                goto out_free;
3723        seq_puts(m, buf);
3724        seq_putc(m, '\n');
3725        retval = 0;
3726out_free:
3727        kfree(buf);
3728out:
3729        return retval;
3730}
3731#endif /* CONFIG_PROC_PID_CPUSET */
3732
3733/* Display task mems_allowed in /proc/<pid>/status file. */
3734void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3735{
3736        seq_printf(m, "Mems_allowed:\t%*pb\n",
3737                   nodemask_pr_args(&task->mems_allowed));
3738        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3739                   nodemask_pr_args(&task->mems_allowed));
3740}
3741