1
2
3
4
5
6
7#include <linux/memblock.h>
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/dma-map-ops.h>
11#include <linux/scatterlist.h>
12#include <linux/pfn.h>
13#include <linux/vmalloc.h>
14#include <linux/set_memory.h>
15#include <linux/slab.h>
16#include "direct.h"
17
18
19
20
21
22
23unsigned int zone_dma_bits __ro_after_init = 24;
24
25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27{
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31}
32
33static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35{
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37}
38
39u64 dma_direct_get_required_mask(struct device *dev)
40{
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45}
46
47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 u64 *phys_limit)
49{
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52
53
54
55
56
57
58
59
60 *phys_limit = dma_to_phys(dev, dma_limit);
61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 return GFP_DMA;
63 if (*phys_limit <= DMA_BIT_MASK(32))
64 return GFP_DMA32;
65 return 0;
66}
67
68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69{
70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72 if (dma_addr == DMA_MAPPING_ERROR)
73 return false;
74 return dma_addr + size - 1 <=
75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76}
77
78static void __dma_direct_free_pages(struct device *dev, struct page *page,
79 size_t size)
80{
81 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
82 swiotlb_free(dev, page, size))
83 return;
84 dma_free_contiguous(dev, page, size);
85}
86
87static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
88 gfp_t gfp)
89{
90 int node = dev_to_node(dev);
91 struct page *page = NULL;
92 u64 phys_limit;
93
94 WARN_ON_ONCE(!PAGE_ALIGNED(size));
95
96 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
97 &phys_limit);
98 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
99 is_swiotlb_for_alloc(dev)) {
100 page = swiotlb_alloc(dev, size);
101 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 __dma_direct_free_pages(dev, page, size);
103 return NULL;
104 }
105 return page;
106 }
107
108 page = dma_alloc_contiguous(dev, size, gfp);
109 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110 dma_free_contiguous(dev, page, size);
111 page = NULL;
112 }
113again:
114 if (!page)
115 page = alloc_pages_node(node, gfp, get_order(size));
116 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117 dma_free_contiguous(dev, page, size);
118 page = NULL;
119
120 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
121 phys_limit < DMA_BIT_MASK(64) &&
122 !(gfp & (GFP_DMA32 | GFP_DMA))) {
123 gfp |= GFP_DMA32;
124 goto again;
125 }
126
127 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
128 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
129 goto again;
130 }
131 }
132
133 return page;
134}
135
136static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
137 dma_addr_t *dma_handle, gfp_t gfp)
138{
139 struct page *page;
140 u64 phys_mask;
141 void *ret;
142
143 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
144 &phys_mask);
145 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
146 if (!page)
147 return NULL;
148 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
149 return ret;
150}
151
152void *dma_direct_alloc(struct device *dev, size_t size,
153 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
154{
155 struct page *page;
156 void *ret;
157 int err;
158
159 size = PAGE_ALIGN(size);
160 if (attrs & DMA_ATTR_NO_WARN)
161 gfp |= __GFP_NOWARN;
162
163 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
164 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
165 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
166 if (!page)
167 return NULL;
168
169 if (!PageHighMem(page))
170 arch_dma_prep_coherent(page, size);
171 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
172
173 return page;
174 }
175
176 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
177 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
179 !dev_is_dma_coherent(dev) &&
180 !is_swiotlb_for_alloc(dev))
181 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
182
183 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
184 !dev_is_dma_coherent(dev))
185 return dma_alloc_from_global_coherent(dev, size, dma_handle);
186
187
188
189
190
191
192
193
194 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
195 !gfpflags_allow_blocking(gfp) &&
196 (force_dma_unencrypted(dev) ||
197 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
198 !dev_is_dma_coherent(dev))) &&
199 !is_swiotlb_for_alloc(dev))
200 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
201
202
203 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
204 if (!page)
205 return NULL;
206
207 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
208 !dev_is_dma_coherent(dev)) ||
209 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
210
211 arch_dma_prep_coherent(page, size);
212
213
214 ret = dma_common_contiguous_remap(page, size,
215 dma_pgprot(dev, PAGE_KERNEL, attrs),
216 __builtin_return_address(0));
217 if (!ret)
218 goto out_free_pages;
219 if (force_dma_unencrypted(dev)) {
220 err = set_memory_decrypted((unsigned long)ret,
221 1 << get_order(size));
222 if (err)
223 goto out_free_pages;
224 }
225 memset(ret, 0, size);
226 goto done;
227 }
228
229 if (PageHighMem(page)) {
230
231
232
233
234
235
236 dev_info(dev, "Rejecting highmem page from CMA.\n");
237 goto out_free_pages;
238 }
239
240 ret = page_address(page);
241 if (force_dma_unencrypted(dev)) {
242 err = set_memory_decrypted((unsigned long)ret,
243 1 << get_order(size));
244 if (err)
245 goto out_free_pages;
246 }
247
248 memset(ret, 0, size);
249
250 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
251 !dev_is_dma_coherent(dev)) {
252 arch_dma_prep_coherent(page, size);
253 ret = arch_dma_set_uncached(ret, size);
254 if (IS_ERR(ret))
255 goto out_encrypt_pages;
256 }
257done:
258 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
259 return ret;
260
261out_encrypt_pages:
262 if (force_dma_unencrypted(dev)) {
263 err = set_memory_encrypted((unsigned long)page_address(page),
264 1 << get_order(size));
265
266 if (err)
267 return NULL;
268 }
269out_free_pages:
270 __dma_direct_free_pages(dev, page, size);
271 return NULL;
272}
273
274void dma_direct_free(struct device *dev, size_t size,
275 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
276{
277 unsigned int page_order = get_order(size);
278
279 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
280 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
281
282 dma_free_contiguous(dev, cpu_addr, size);
283 return;
284 }
285
286 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
287 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
288 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
289 !dev_is_dma_coherent(dev) &&
290 !is_swiotlb_for_alloc(dev)) {
291 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
292 return;
293 }
294
295 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
296 !dev_is_dma_coherent(dev)) {
297 if (!dma_release_from_global_coherent(page_order, cpu_addr))
298 WARN_ON_ONCE(1);
299 return;
300 }
301
302
303 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
304 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
305 return;
306
307 if (force_dma_unencrypted(dev))
308 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
309
310 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
311 vunmap(cpu_addr);
312 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
313 arch_dma_clear_uncached(cpu_addr, size);
314
315 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
316}
317
318struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
319 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
320{
321 struct page *page;
322 void *ret;
323
324 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
325 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
326 !is_swiotlb_for_alloc(dev))
327 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
328
329 page = __dma_direct_alloc_pages(dev, size, gfp);
330 if (!page)
331 return NULL;
332 if (PageHighMem(page)) {
333
334
335
336
337
338
339 dev_info(dev, "Rejecting highmem page from CMA.\n");
340 goto out_free_pages;
341 }
342
343 ret = page_address(page);
344 if (force_dma_unencrypted(dev)) {
345 if (set_memory_decrypted((unsigned long)ret,
346 1 << get_order(size)))
347 goto out_free_pages;
348 }
349 memset(ret, 0, size);
350 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
351 return page;
352out_free_pages:
353 __dma_direct_free_pages(dev, page, size);
354 return NULL;
355}
356
357void dma_direct_free_pages(struct device *dev, size_t size,
358 struct page *page, dma_addr_t dma_addr,
359 enum dma_data_direction dir)
360{
361 unsigned int page_order = get_order(size);
362 void *vaddr = page_address(page);
363
364
365 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
366 dma_free_from_pool(dev, vaddr, size))
367 return;
368
369 if (force_dma_unencrypted(dev))
370 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
371
372 __dma_direct_free_pages(dev, page, size);
373}
374
375#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
376 defined(CONFIG_SWIOTLB)
377void dma_direct_sync_sg_for_device(struct device *dev,
378 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
379{
380 struct scatterlist *sg;
381 int i;
382
383 for_each_sg(sgl, sg, nents, i) {
384 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
385
386 if (unlikely(is_swiotlb_buffer(dev, paddr)))
387 swiotlb_sync_single_for_device(dev, paddr, sg->length,
388 dir);
389
390 if (!dev_is_dma_coherent(dev))
391 arch_sync_dma_for_device(paddr, sg->length,
392 dir);
393 }
394}
395#endif
396
397#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
398 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
399 defined(CONFIG_SWIOTLB)
400void dma_direct_sync_sg_for_cpu(struct device *dev,
401 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
402{
403 struct scatterlist *sg;
404 int i;
405
406 for_each_sg(sgl, sg, nents, i) {
407 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
408
409 if (!dev_is_dma_coherent(dev))
410 arch_sync_dma_for_cpu(paddr, sg->length, dir);
411
412 if (unlikely(is_swiotlb_buffer(dev, paddr)))
413 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
414 dir);
415
416 if (dir == DMA_FROM_DEVICE)
417 arch_dma_mark_clean(paddr, sg->length);
418 }
419
420 if (!dev_is_dma_coherent(dev))
421 arch_sync_dma_for_cpu_all();
422}
423
424void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
425 int nents, enum dma_data_direction dir, unsigned long attrs)
426{
427 struct scatterlist *sg;
428 int i;
429
430 for_each_sg(sgl, sg, nents, i)
431 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
432 attrs);
433}
434#endif
435
436int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
437 enum dma_data_direction dir, unsigned long attrs)
438{
439 int i;
440 struct scatterlist *sg;
441
442 for_each_sg(sgl, sg, nents, i) {
443 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
444 sg->offset, sg->length, dir, attrs);
445 if (sg->dma_address == DMA_MAPPING_ERROR)
446 goto out_unmap;
447 sg_dma_len(sg) = sg->length;
448 }
449
450 return nents;
451
452out_unmap:
453 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
454 return -EIO;
455}
456
457dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
458 size_t size, enum dma_data_direction dir, unsigned long attrs)
459{
460 dma_addr_t dma_addr = paddr;
461
462 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
463 dev_err_once(dev,
464 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
465 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
466 WARN_ON_ONCE(1);
467 return DMA_MAPPING_ERROR;
468 }
469
470 return dma_addr;
471}
472
473int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
474 void *cpu_addr, dma_addr_t dma_addr, size_t size,
475 unsigned long attrs)
476{
477 struct page *page = dma_direct_to_page(dev, dma_addr);
478 int ret;
479
480 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
481 if (!ret)
482 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
483 return ret;
484}
485
486bool dma_direct_can_mmap(struct device *dev)
487{
488 return dev_is_dma_coherent(dev) ||
489 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
490}
491
492int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
493 void *cpu_addr, dma_addr_t dma_addr, size_t size,
494 unsigned long attrs)
495{
496 unsigned long user_count = vma_pages(vma);
497 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
498 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
499 int ret = -ENXIO;
500
501 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
502
503 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
504 return ret;
505 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
506 return ret;
507
508 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
509 return -ENXIO;
510 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
511 user_count << PAGE_SHIFT, vma->vm_page_prot);
512}
513
514int dma_direct_supported(struct device *dev, u64 mask)
515{
516 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
517
518
519
520
521
522
523
524 if (mask >= DMA_BIT_MASK(32))
525 return 1;
526
527
528
529
530
531
532 if (IS_ENABLED(CONFIG_ZONE_DMA))
533 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
534 return mask >= phys_to_dma_unencrypted(dev, min_mask);
535}
536
537size_t dma_direct_max_mapping_size(struct device *dev)
538{
539
540 if (is_swiotlb_active(dev) &&
541 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
542 return swiotlb_max_mapping_size(dev);
543 return SIZE_MAX;
544}
545
546bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
547{
548 return !dev_is_dma_coherent(dev) ||
549 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
550}
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
569 dma_addr_t dma_start, u64 size)
570{
571 struct bus_dma_region *map;
572 u64 offset = (u64)cpu_start - (u64)dma_start;
573
574 if (dev->dma_range_map) {
575 dev_err(dev, "attempt to add DMA range to existing map\n");
576 return -EINVAL;
577 }
578
579 if (!offset)
580 return 0;
581
582 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
583 if (!map)
584 return -ENOMEM;
585 map[0].cpu_start = cpu_start;
586 map[0].dma_start = dma_start;
587 map[0].offset = offset;
588 map[0].size = size;
589 dev->dma_range_map = map;
590 return 0;
591}
592