linux/kernel/dma/direct.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018-2020 Christoph Hellwig.
   4 *
   5 * DMA operations that map physical memory directly without using an IOMMU.
   6 */
   7#include <linux/memblock.h> /* for max_pfn */
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/dma-map-ops.h>
  11#include <linux/scatterlist.h>
  12#include <linux/pfn.h>
  13#include <linux/vmalloc.h>
  14#include <linux/set_memory.h>
  15#include <linux/slab.h>
  16#include "direct.h"
  17
  18/*
  19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
  20 * it for entirely different regions. In that case the arch code needs to
  21 * override the variable below for dma-direct to work properly.
  22 */
  23unsigned int zone_dma_bits __ro_after_init = 24;
  24
  25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
  26                phys_addr_t phys)
  27{
  28        if (force_dma_unencrypted(dev))
  29                return phys_to_dma_unencrypted(dev, phys);
  30        return phys_to_dma(dev, phys);
  31}
  32
  33static inline struct page *dma_direct_to_page(struct device *dev,
  34                dma_addr_t dma_addr)
  35{
  36        return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
  37}
  38
  39u64 dma_direct_get_required_mask(struct device *dev)
  40{
  41        phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
  42        u64 max_dma = phys_to_dma_direct(dev, phys);
  43
  44        return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
  45}
  46
  47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
  48                                  u64 *phys_limit)
  49{
  50        u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
  51
  52        /*
  53         * Optimistically try the zone that the physical address mask falls
  54         * into first.  If that returns memory that isn't actually addressable
  55         * we will fallback to the next lower zone and try again.
  56         *
  57         * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
  58         * zones.
  59         */
  60        *phys_limit = dma_to_phys(dev, dma_limit);
  61        if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
  62                return GFP_DMA;
  63        if (*phys_limit <= DMA_BIT_MASK(32))
  64                return GFP_DMA32;
  65        return 0;
  66}
  67
  68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
  69{
  70        dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
  71
  72        if (dma_addr == DMA_MAPPING_ERROR)
  73                return false;
  74        return dma_addr + size - 1 <=
  75                min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
  76}
  77
  78static void __dma_direct_free_pages(struct device *dev, struct page *page,
  79                                    size_t size)
  80{
  81        if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
  82            swiotlb_free(dev, page, size))
  83                return;
  84        dma_free_contiguous(dev, page, size);
  85}
  86
  87static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
  88                gfp_t gfp)
  89{
  90        int node = dev_to_node(dev);
  91        struct page *page = NULL;
  92        u64 phys_limit;
  93
  94        WARN_ON_ONCE(!PAGE_ALIGNED(size));
  95
  96        gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
  97                                           &phys_limit);
  98        if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
  99            is_swiotlb_for_alloc(dev)) {
 100                page = swiotlb_alloc(dev, size);
 101                if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 102                        __dma_direct_free_pages(dev, page, size);
 103                        return NULL;
 104                }
 105                return page;
 106        }
 107
 108        page = dma_alloc_contiguous(dev, size, gfp);
 109        if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 110                dma_free_contiguous(dev, page, size);
 111                page = NULL;
 112        }
 113again:
 114        if (!page)
 115                page = alloc_pages_node(node, gfp, get_order(size));
 116        if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 117                dma_free_contiguous(dev, page, size);
 118                page = NULL;
 119
 120                if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
 121                    phys_limit < DMA_BIT_MASK(64) &&
 122                    !(gfp & (GFP_DMA32 | GFP_DMA))) {
 123                        gfp |= GFP_DMA32;
 124                        goto again;
 125                }
 126
 127                if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
 128                        gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
 129                        goto again;
 130                }
 131        }
 132
 133        return page;
 134}
 135
 136static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
 137                dma_addr_t *dma_handle, gfp_t gfp)
 138{
 139        struct page *page;
 140        u64 phys_mask;
 141        void *ret;
 142
 143        gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
 144                                           &phys_mask);
 145        page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
 146        if (!page)
 147                return NULL;
 148        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 149        return ret;
 150}
 151
 152void *dma_direct_alloc(struct device *dev, size_t size,
 153                dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 154{
 155        struct page *page;
 156        void *ret;
 157        int err;
 158
 159        size = PAGE_ALIGN(size);
 160        if (attrs & DMA_ATTR_NO_WARN)
 161                gfp |= __GFP_NOWARN;
 162
 163        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
 164            !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
 165                page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
 166                if (!page)
 167                        return NULL;
 168                /* remove any dirty cache lines on the kernel alias */
 169                if (!PageHighMem(page))
 170                        arch_dma_prep_coherent(page, size);
 171                *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 172                /* return the page pointer as the opaque cookie */
 173                return page;
 174        }
 175
 176        if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 177            !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 178            !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 179            !dev_is_dma_coherent(dev) &&
 180            !is_swiotlb_for_alloc(dev))
 181                return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
 182
 183        if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 184            !dev_is_dma_coherent(dev))
 185                return dma_alloc_from_global_coherent(dev, size, dma_handle);
 186
 187        /*
 188         * Remapping or decrypting memory may block. If either is required and
 189         * we can't block, allocate the memory from the atomic pools.
 190         * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
 191         * set up another device coherent pool by shared-dma-pool and use
 192         * dma_alloc_from_dev_coherent instead.
 193         */
 194        if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 195            !gfpflags_allow_blocking(gfp) &&
 196            (force_dma_unencrypted(dev) ||
 197             (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 198              !dev_is_dma_coherent(dev))) &&
 199            !is_swiotlb_for_alloc(dev))
 200                return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
 201
 202        /* we always manually zero the memory once we are done */
 203        page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
 204        if (!page)
 205                return NULL;
 206
 207        if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 208             !dev_is_dma_coherent(dev)) ||
 209            (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
 210                /* remove any dirty cache lines on the kernel alias */
 211                arch_dma_prep_coherent(page, size);
 212
 213                /* create a coherent mapping */
 214                ret = dma_common_contiguous_remap(page, size,
 215                                dma_pgprot(dev, PAGE_KERNEL, attrs),
 216                                __builtin_return_address(0));
 217                if (!ret)
 218                        goto out_free_pages;
 219                if (force_dma_unencrypted(dev)) {
 220                        err = set_memory_decrypted((unsigned long)ret,
 221                                                   1 << get_order(size));
 222                        if (err)
 223                                goto out_free_pages;
 224                }
 225                memset(ret, 0, size);
 226                goto done;
 227        }
 228
 229        if (PageHighMem(page)) {
 230                /*
 231                 * Depending on the cma= arguments and per-arch setup
 232                 * dma_alloc_contiguous could return highmem pages.
 233                 * Without remapping there is no way to return them here,
 234                 * so log an error and fail.
 235                 */
 236                dev_info(dev, "Rejecting highmem page from CMA.\n");
 237                goto out_free_pages;
 238        }
 239
 240        ret = page_address(page);
 241        if (force_dma_unencrypted(dev)) {
 242                err = set_memory_decrypted((unsigned long)ret,
 243                                           1 << get_order(size));
 244                if (err)
 245                        goto out_free_pages;
 246        }
 247
 248        memset(ret, 0, size);
 249
 250        if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 251            !dev_is_dma_coherent(dev)) {
 252                arch_dma_prep_coherent(page, size);
 253                ret = arch_dma_set_uncached(ret, size);
 254                if (IS_ERR(ret))
 255                        goto out_encrypt_pages;
 256        }
 257done:
 258        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 259        return ret;
 260
 261out_encrypt_pages:
 262        if (force_dma_unencrypted(dev)) {
 263                err = set_memory_encrypted((unsigned long)page_address(page),
 264                                           1 << get_order(size));
 265                /* If memory cannot be re-encrypted, it must be leaked */
 266                if (err)
 267                        return NULL;
 268        }
 269out_free_pages:
 270        __dma_direct_free_pages(dev, page, size);
 271        return NULL;
 272}
 273
 274void dma_direct_free(struct device *dev, size_t size,
 275                void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
 276{
 277        unsigned int page_order = get_order(size);
 278
 279        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
 280            !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
 281                /* cpu_addr is a struct page cookie, not a kernel address */
 282                dma_free_contiguous(dev, cpu_addr, size);
 283                return;
 284        }
 285
 286        if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 287            !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 288            !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 289            !dev_is_dma_coherent(dev) &&
 290            !is_swiotlb_for_alloc(dev)) {
 291                arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
 292                return;
 293        }
 294
 295        if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
 296            !dev_is_dma_coherent(dev)) {
 297                if (!dma_release_from_global_coherent(page_order, cpu_addr))
 298                        WARN_ON_ONCE(1);
 299                return;
 300        }
 301
 302        /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
 303        if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 304            dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
 305                return;
 306
 307        if (force_dma_unencrypted(dev))
 308                set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
 309
 310        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
 311                vunmap(cpu_addr);
 312        else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
 313                arch_dma_clear_uncached(cpu_addr, size);
 314
 315        __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
 316}
 317
 318struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
 319                dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
 320{
 321        struct page *page;
 322        void *ret;
 323
 324        if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 325            force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
 326            !is_swiotlb_for_alloc(dev))
 327                return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
 328
 329        page = __dma_direct_alloc_pages(dev, size, gfp);
 330        if (!page)
 331                return NULL;
 332        if (PageHighMem(page)) {
 333                /*
 334                 * Depending on the cma= arguments and per-arch setup
 335                 * dma_alloc_contiguous could return highmem pages.
 336                 * Without remapping there is no way to return them here,
 337                 * so log an error and fail.
 338                 */
 339                dev_info(dev, "Rejecting highmem page from CMA.\n");
 340                goto out_free_pages;
 341        }
 342
 343        ret = page_address(page);
 344        if (force_dma_unencrypted(dev)) {
 345                if (set_memory_decrypted((unsigned long)ret,
 346                                1 << get_order(size)))
 347                        goto out_free_pages;
 348        }
 349        memset(ret, 0, size);
 350        *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
 351        return page;
 352out_free_pages:
 353        __dma_direct_free_pages(dev, page, size);
 354        return NULL;
 355}
 356
 357void dma_direct_free_pages(struct device *dev, size_t size,
 358                struct page *page, dma_addr_t dma_addr,
 359                enum dma_data_direction dir)
 360{
 361        unsigned int page_order = get_order(size);
 362        void *vaddr = page_address(page);
 363
 364        /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
 365        if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
 366            dma_free_from_pool(dev, vaddr, size))
 367                return;
 368
 369        if (force_dma_unencrypted(dev))
 370                set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
 371
 372        __dma_direct_free_pages(dev, page, size);
 373}
 374
 375#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 376    defined(CONFIG_SWIOTLB)
 377void dma_direct_sync_sg_for_device(struct device *dev,
 378                struct scatterlist *sgl, int nents, enum dma_data_direction dir)
 379{
 380        struct scatterlist *sg;
 381        int i;
 382
 383        for_each_sg(sgl, sg, nents, i) {
 384                phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
 385
 386                if (unlikely(is_swiotlb_buffer(dev, paddr)))
 387                        swiotlb_sync_single_for_device(dev, paddr, sg->length,
 388                                                       dir);
 389
 390                if (!dev_is_dma_coherent(dev))
 391                        arch_sync_dma_for_device(paddr, sg->length,
 392                                        dir);
 393        }
 394}
 395#endif
 396
 397#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 398    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
 399    defined(CONFIG_SWIOTLB)
 400void dma_direct_sync_sg_for_cpu(struct device *dev,
 401                struct scatterlist *sgl, int nents, enum dma_data_direction dir)
 402{
 403        struct scatterlist *sg;
 404        int i;
 405
 406        for_each_sg(sgl, sg, nents, i) {
 407                phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
 408
 409                if (!dev_is_dma_coherent(dev))
 410                        arch_sync_dma_for_cpu(paddr, sg->length, dir);
 411
 412                if (unlikely(is_swiotlb_buffer(dev, paddr)))
 413                        swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
 414                                                    dir);
 415
 416                if (dir == DMA_FROM_DEVICE)
 417                        arch_dma_mark_clean(paddr, sg->length);
 418        }
 419
 420        if (!dev_is_dma_coherent(dev))
 421                arch_sync_dma_for_cpu_all();
 422}
 423
 424void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
 425                int nents, enum dma_data_direction dir, unsigned long attrs)
 426{
 427        struct scatterlist *sg;
 428        int i;
 429
 430        for_each_sg(sgl, sg, nents, i)
 431                dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
 432                             attrs);
 433}
 434#endif
 435
 436int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
 437                enum dma_data_direction dir, unsigned long attrs)
 438{
 439        int i;
 440        struct scatterlist *sg;
 441
 442        for_each_sg(sgl, sg, nents, i) {
 443                sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
 444                                sg->offset, sg->length, dir, attrs);
 445                if (sg->dma_address == DMA_MAPPING_ERROR)
 446                        goto out_unmap;
 447                sg_dma_len(sg) = sg->length;
 448        }
 449
 450        return nents;
 451
 452out_unmap:
 453        dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 454        return -EIO;
 455}
 456
 457dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
 458                size_t size, enum dma_data_direction dir, unsigned long attrs)
 459{
 460        dma_addr_t dma_addr = paddr;
 461
 462        if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
 463                dev_err_once(dev,
 464                             "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
 465                             &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
 466                WARN_ON_ONCE(1);
 467                return DMA_MAPPING_ERROR;
 468        }
 469
 470        return dma_addr;
 471}
 472
 473int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
 474                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 475                unsigned long attrs)
 476{
 477        struct page *page = dma_direct_to_page(dev, dma_addr);
 478        int ret;
 479
 480        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 481        if (!ret)
 482                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 483        return ret;
 484}
 485
 486bool dma_direct_can_mmap(struct device *dev)
 487{
 488        return dev_is_dma_coherent(dev) ||
 489                IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
 490}
 491
 492int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
 493                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 494                unsigned long attrs)
 495{
 496        unsigned long user_count = vma_pages(vma);
 497        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 498        unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
 499        int ret = -ENXIO;
 500
 501        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
 502
 503        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 504                return ret;
 505        if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
 506                return ret;
 507
 508        if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
 509                return -ENXIO;
 510        return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
 511                        user_count << PAGE_SHIFT, vma->vm_page_prot);
 512}
 513
 514int dma_direct_supported(struct device *dev, u64 mask)
 515{
 516        u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
 517
 518        /*
 519         * Because 32-bit DMA masks are so common we expect every architecture
 520         * to be able to satisfy them - either by not supporting more physical
 521         * memory, or by providing a ZONE_DMA32.  If neither is the case, the
 522         * architecture needs to use an IOMMU instead of the direct mapping.
 523         */
 524        if (mask >= DMA_BIT_MASK(32))
 525                return 1;
 526
 527        /*
 528         * This check needs to be against the actual bit mask value, so use
 529         * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
 530         * part of the check.
 531         */
 532        if (IS_ENABLED(CONFIG_ZONE_DMA))
 533                min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
 534        return mask >= phys_to_dma_unencrypted(dev, min_mask);
 535}
 536
 537size_t dma_direct_max_mapping_size(struct device *dev)
 538{
 539        /* If SWIOTLB is active, use its maximum mapping size */
 540        if (is_swiotlb_active(dev) &&
 541            (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
 542                return swiotlb_max_mapping_size(dev);
 543        return SIZE_MAX;
 544}
 545
 546bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
 547{
 548        return !dev_is_dma_coherent(dev) ||
 549               is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
 550}
 551
 552/**
 553 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
 554 * @dev:        device pointer; needed to "own" the alloced memory.
 555 * @cpu_start:  beginning of memory region covered by this offset.
 556 * @dma_start:  beginning of DMA/PCI region covered by this offset.
 557 * @size:       size of the region.
 558 *
 559 * This is for the simple case of a uniform offset which cannot
 560 * be discovered by "dma-ranges".
 561 *
 562 * It returns -ENOMEM if out of memory, -EINVAL if a map
 563 * already exists, 0 otherwise.
 564 *
 565 * Note: any call to this from a driver is a bug.  The mapping needs
 566 * to be described by the device tree or other firmware interfaces.
 567 */
 568int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
 569                         dma_addr_t dma_start, u64 size)
 570{
 571        struct bus_dma_region *map;
 572        u64 offset = (u64)cpu_start - (u64)dma_start;
 573
 574        if (dev->dma_range_map) {
 575                dev_err(dev, "attempt to add DMA range to existing map\n");
 576                return -EINVAL;
 577        }
 578
 579        if (!offset)
 580                return 0;
 581
 582        map = kcalloc(2, sizeof(*map), GFP_KERNEL);
 583        if (!map)
 584                return -ENOMEM;
 585        map[0].cpu_start = cpu_start;
 586        map[0].dma_start = dma_start;
 587        map[0].offset = offset;
 588        map[0].size = size;
 589        dev->dma_range_map = map;
 590        return 0;
 591}
 592