linux/kernel/events/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Performance events core code:
   4 *
   5 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   7 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   8 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/mm.h>
  13#include <linux/cpu.h>
  14#include <linux/smp.h>
  15#include <linux/idr.h>
  16#include <linux/file.h>
  17#include <linux/poll.h>
  18#include <linux/slab.h>
  19#include <linux/hash.h>
  20#include <linux/tick.h>
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
  28#include <linux/export.h>
  29#include <linux/vmalloc.h>
  30#include <linux/hardirq.h>
  31#include <linux/hugetlb.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47#include <linux/namei.h>
  48#include <linux/parser.h>
  49#include <linux/sched/clock.h>
  50#include <linux/sched/mm.h>
  51#include <linux/proc_ns.h>
  52#include <linux/mount.h>
  53#include <linux/min_heap.h>
  54#include <linux/highmem.h>
  55#include <linux/pgtable.h>
  56#include <linux/buildid.h>
  57
  58#include "internal.h"
  59
  60#include <asm/irq_regs.h>
  61
  62typedef int (*remote_function_f)(void *);
  63
  64struct remote_function_call {
  65        struct task_struct      *p;
  66        remote_function_f       func;
  67        void                    *info;
  68        int                     ret;
  69};
  70
  71static void remote_function(void *data)
  72{
  73        struct remote_function_call *tfc = data;
  74        struct task_struct *p = tfc->p;
  75
  76        if (p) {
  77                /* -EAGAIN */
  78                if (task_cpu(p) != smp_processor_id())
  79                        return;
  80
  81                /*
  82                 * Now that we're on right CPU with IRQs disabled, we can test
  83                 * if we hit the right task without races.
  84                 */
  85
  86                tfc->ret = -ESRCH; /* No such (running) process */
  87                if (p != current)
  88                        return;
  89        }
  90
  91        tfc->ret = tfc->func(tfc->info);
  92}
  93
  94/**
  95 * task_function_call - call a function on the cpu on which a task runs
  96 * @p:          the task to evaluate
  97 * @func:       the function to be called
  98 * @info:       the function call argument
  99 *
 100 * Calls the function @func when the task is currently running. This might
 101 * be on the current CPU, which just calls the function directly.  This will
 102 * retry due to any failures in smp_call_function_single(), such as if the
 103 * task_cpu() goes offline concurrently.
 104 *
 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
 106 */
 107static int
 108task_function_call(struct task_struct *p, remote_function_f func, void *info)
 109{
 110        struct remote_function_call data = {
 111                .p      = p,
 112                .func   = func,
 113                .info   = info,
 114                .ret    = -EAGAIN,
 115        };
 116        int ret;
 117
 118        for (;;) {
 119                ret = smp_call_function_single(task_cpu(p), remote_function,
 120                                               &data, 1);
 121                if (!ret)
 122                        ret = data.ret;
 123
 124                if (ret != -EAGAIN)
 125                        break;
 126
 127                cond_resched();
 128        }
 129
 130        return ret;
 131}
 132
 133/**
 134 * cpu_function_call - call a function on the cpu
 135 * @cpu:        target cpu to queue this function
 136 * @func:       the function to be called
 137 * @info:       the function call argument
 138 *
 139 * Calls the function @func on the remote cpu.
 140 *
 141 * returns: @func return value or -ENXIO when the cpu is offline
 142 */
 143static int cpu_function_call(int cpu, remote_function_f func, void *info)
 144{
 145        struct remote_function_call data = {
 146                .p      = NULL,
 147                .func   = func,
 148                .info   = info,
 149                .ret    = -ENXIO, /* No such CPU */
 150        };
 151
 152        smp_call_function_single(cpu, remote_function, &data, 1);
 153
 154        return data.ret;
 155}
 156
 157static inline struct perf_cpu_context *
 158__get_cpu_context(struct perf_event_context *ctx)
 159{
 160        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 161}
 162
 163static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 164                          struct perf_event_context *ctx)
 165{
 166        raw_spin_lock(&cpuctx->ctx.lock);
 167        if (ctx)
 168                raw_spin_lock(&ctx->lock);
 169}
 170
 171static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 172                            struct perf_event_context *ctx)
 173{
 174        if (ctx)
 175                raw_spin_unlock(&ctx->lock);
 176        raw_spin_unlock(&cpuctx->ctx.lock);
 177}
 178
 179#define TASK_TOMBSTONE ((void *)-1L)
 180
 181static bool is_kernel_event(struct perf_event *event)
 182{
 183        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 184}
 185
 186/*
 187 * On task ctx scheduling...
 188 *
 189 * When !ctx->nr_events a task context will not be scheduled. This means
 190 * we can disable the scheduler hooks (for performance) without leaving
 191 * pending task ctx state.
 192 *
 193 * This however results in two special cases:
 194 *
 195 *  - removing the last event from a task ctx; this is relatively straight
 196 *    forward and is done in __perf_remove_from_context.
 197 *
 198 *  - adding the first event to a task ctx; this is tricky because we cannot
 199 *    rely on ctx->is_active and therefore cannot use event_function_call().
 200 *    See perf_install_in_context().
 201 *
 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 203 */
 204
 205typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 206                        struct perf_event_context *, void *);
 207
 208struct event_function_struct {
 209        struct perf_event *event;
 210        event_f func;
 211        void *data;
 212};
 213
 214static int event_function(void *info)
 215{
 216        struct event_function_struct *efs = info;
 217        struct perf_event *event = efs->event;
 218        struct perf_event_context *ctx = event->ctx;
 219        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 220        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 221        int ret = 0;
 222
 223        lockdep_assert_irqs_disabled();
 224
 225        perf_ctx_lock(cpuctx, task_ctx);
 226        /*
 227         * Since we do the IPI call without holding ctx->lock things can have
 228         * changed, double check we hit the task we set out to hit.
 229         */
 230        if (ctx->task) {
 231                if (ctx->task != current) {
 232                        ret = -ESRCH;
 233                        goto unlock;
 234                }
 235
 236                /*
 237                 * We only use event_function_call() on established contexts,
 238                 * and event_function() is only ever called when active (or
 239                 * rather, we'll have bailed in task_function_call() or the
 240                 * above ctx->task != current test), therefore we must have
 241                 * ctx->is_active here.
 242                 */
 243                WARN_ON_ONCE(!ctx->is_active);
 244                /*
 245                 * And since we have ctx->is_active, cpuctx->task_ctx must
 246                 * match.
 247                 */
 248                WARN_ON_ONCE(task_ctx != ctx);
 249        } else {
 250                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 251        }
 252
 253        efs->func(event, cpuctx, ctx, efs->data);
 254unlock:
 255        perf_ctx_unlock(cpuctx, task_ctx);
 256
 257        return ret;
 258}
 259
 260static void event_function_call(struct perf_event *event, event_f func, void *data)
 261{
 262        struct perf_event_context *ctx = event->ctx;
 263        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 264        struct event_function_struct efs = {
 265                .event = event,
 266                .func = func,
 267                .data = data,
 268        };
 269
 270        if (!event->parent) {
 271                /*
 272                 * If this is a !child event, we must hold ctx::mutex to
 273                 * stabilize the event->ctx relation. See
 274                 * perf_event_ctx_lock().
 275                 */
 276                lockdep_assert_held(&ctx->mutex);
 277        }
 278
 279        if (!task) {
 280                cpu_function_call(event->cpu, event_function, &efs);
 281                return;
 282        }
 283
 284        if (task == TASK_TOMBSTONE)
 285                return;
 286
 287again:
 288        if (!task_function_call(task, event_function, &efs))
 289                return;
 290
 291        raw_spin_lock_irq(&ctx->lock);
 292        /*
 293         * Reload the task pointer, it might have been changed by
 294         * a concurrent perf_event_context_sched_out().
 295         */
 296        task = ctx->task;
 297        if (task == TASK_TOMBSTONE) {
 298                raw_spin_unlock_irq(&ctx->lock);
 299                return;
 300        }
 301        if (ctx->is_active) {
 302                raw_spin_unlock_irq(&ctx->lock);
 303                goto again;
 304        }
 305        func(event, NULL, ctx, data);
 306        raw_spin_unlock_irq(&ctx->lock);
 307}
 308
 309/*
 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 311 * are already disabled and we're on the right CPU.
 312 */
 313static void event_function_local(struct perf_event *event, event_f func, void *data)
 314{
 315        struct perf_event_context *ctx = event->ctx;
 316        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 317        struct task_struct *task = READ_ONCE(ctx->task);
 318        struct perf_event_context *task_ctx = NULL;
 319
 320        lockdep_assert_irqs_disabled();
 321
 322        if (task) {
 323                if (task == TASK_TOMBSTONE)
 324                        return;
 325
 326                task_ctx = ctx;
 327        }
 328
 329        perf_ctx_lock(cpuctx, task_ctx);
 330
 331        task = ctx->task;
 332        if (task == TASK_TOMBSTONE)
 333                goto unlock;
 334
 335        if (task) {
 336                /*
 337                 * We must be either inactive or active and the right task,
 338                 * otherwise we're screwed, since we cannot IPI to somewhere
 339                 * else.
 340                 */
 341                if (ctx->is_active) {
 342                        if (WARN_ON_ONCE(task != current))
 343                                goto unlock;
 344
 345                        if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 346                                goto unlock;
 347                }
 348        } else {
 349                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 350        }
 351
 352        func(event, cpuctx, ctx, data);
 353unlock:
 354        perf_ctx_unlock(cpuctx, task_ctx);
 355}
 356
 357#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 358                       PERF_FLAG_FD_OUTPUT  |\
 359                       PERF_FLAG_PID_CGROUP |\
 360                       PERF_FLAG_FD_CLOEXEC)
 361
 362/*
 363 * branch priv levels that need permission checks
 364 */
 365#define PERF_SAMPLE_BRANCH_PERM_PLM \
 366        (PERF_SAMPLE_BRANCH_KERNEL |\
 367         PERF_SAMPLE_BRANCH_HV)
 368
 369enum event_type_t {
 370        EVENT_FLEXIBLE = 0x1,
 371        EVENT_PINNED = 0x2,
 372        EVENT_TIME = 0x4,
 373        /* see ctx_resched() for details */
 374        EVENT_CPU = 0x8,
 375        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 376};
 377
 378/*
 379 * perf_sched_events : >0 events exist
 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 381 */
 382
 383static void perf_sched_delayed(struct work_struct *work);
 384DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 385static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 386static DEFINE_MUTEX(perf_sched_mutex);
 387static atomic_t perf_sched_count;
 388
 389static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 390static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 391static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 392
 393static atomic_t nr_mmap_events __read_mostly;
 394static atomic_t nr_comm_events __read_mostly;
 395static atomic_t nr_namespaces_events __read_mostly;
 396static atomic_t nr_task_events __read_mostly;
 397static atomic_t nr_freq_events __read_mostly;
 398static atomic_t nr_switch_events __read_mostly;
 399static atomic_t nr_ksymbol_events __read_mostly;
 400static atomic_t nr_bpf_events __read_mostly;
 401static atomic_t nr_cgroup_events __read_mostly;
 402static atomic_t nr_text_poke_events __read_mostly;
 403static atomic_t nr_build_id_events __read_mostly;
 404
 405static LIST_HEAD(pmus);
 406static DEFINE_MUTEX(pmus_lock);
 407static struct srcu_struct pmus_srcu;
 408static cpumask_var_t perf_online_mask;
 409static struct kmem_cache *perf_event_cache;
 410
 411/*
 412 * perf event paranoia level:
 413 *  -1 - not paranoid at all
 414 *   0 - disallow raw tracepoint access for unpriv
 415 *   1 - disallow cpu events for unpriv
 416 *   2 - disallow kernel profiling for unpriv
 417 */
 418int sysctl_perf_event_paranoid __read_mostly = 2;
 419
 420/* Minimum for 512 kiB + 1 user control page */
 421int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 422
 423/*
 424 * max perf event sample rate
 425 */
 426#define DEFAULT_MAX_SAMPLE_RATE         100000
 427#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 428#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 429
 430int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 431
 432static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 433static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 434
 435static int perf_sample_allowed_ns __read_mostly =
 436        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 437
 438static void update_perf_cpu_limits(void)
 439{
 440        u64 tmp = perf_sample_period_ns;
 441
 442        tmp *= sysctl_perf_cpu_time_max_percent;
 443        tmp = div_u64(tmp, 100);
 444        if (!tmp)
 445                tmp = 1;
 446
 447        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 448}
 449
 450static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
 451
 452int perf_proc_update_handler(struct ctl_table *table, int write,
 453                void *buffer, size_t *lenp, loff_t *ppos)
 454{
 455        int ret;
 456        int perf_cpu = sysctl_perf_cpu_time_max_percent;
 457        /*
 458         * If throttling is disabled don't allow the write:
 459         */
 460        if (write && (perf_cpu == 100 || perf_cpu == 0))
 461                return -EINVAL;
 462
 463        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 464        if (ret || !write)
 465                return ret;
 466
 467        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 468        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 469        update_perf_cpu_limits();
 470
 471        return 0;
 472}
 473
 474int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 475
 476int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 477                void *buffer, size_t *lenp, loff_t *ppos)
 478{
 479        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 480
 481        if (ret || !write)
 482                return ret;
 483
 484        if (sysctl_perf_cpu_time_max_percent == 100 ||
 485            sysctl_perf_cpu_time_max_percent == 0) {
 486                printk(KERN_WARNING
 487                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 488                WRITE_ONCE(perf_sample_allowed_ns, 0);
 489        } else {
 490                update_perf_cpu_limits();
 491        }
 492
 493        return 0;
 494}
 495
 496/*
 497 * perf samples are done in some very critical code paths (NMIs).
 498 * If they take too much CPU time, the system can lock up and not
 499 * get any real work done.  This will drop the sample rate when
 500 * we detect that events are taking too long.
 501 */
 502#define NR_ACCUMULATED_SAMPLES 128
 503static DEFINE_PER_CPU(u64, running_sample_length);
 504
 505static u64 __report_avg;
 506static u64 __report_allowed;
 507
 508static void perf_duration_warn(struct irq_work *w)
 509{
 510        printk_ratelimited(KERN_INFO
 511                "perf: interrupt took too long (%lld > %lld), lowering "
 512                "kernel.perf_event_max_sample_rate to %d\n",
 513                __report_avg, __report_allowed,
 514                sysctl_perf_event_sample_rate);
 515}
 516
 517static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 518
 519void perf_sample_event_took(u64 sample_len_ns)
 520{
 521        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 522        u64 running_len;
 523        u64 avg_len;
 524        u32 max;
 525
 526        if (max_len == 0)
 527                return;
 528
 529        /* Decay the counter by 1 average sample. */
 530        running_len = __this_cpu_read(running_sample_length);
 531        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 532        running_len += sample_len_ns;
 533        __this_cpu_write(running_sample_length, running_len);
 534
 535        /*
 536         * Note: this will be biased artifically low until we have
 537         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 538         * from having to maintain a count.
 539         */
 540        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 541        if (avg_len <= max_len)
 542                return;
 543
 544        __report_avg = avg_len;
 545        __report_allowed = max_len;
 546
 547        /*
 548         * Compute a throttle threshold 25% below the current duration.
 549         */
 550        avg_len += avg_len / 4;
 551        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 552        if (avg_len < max)
 553                max /= (u32)avg_len;
 554        else
 555                max = 1;
 556
 557        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 558        WRITE_ONCE(max_samples_per_tick, max);
 559
 560        sysctl_perf_event_sample_rate = max * HZ;
 561        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 562
 563        if (!irq_work_queue(&perf_duration_work)) {
 564                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 565                             "kernel.perf_event_max_sample_rate to %d\n",
 566                             __report_avg, __report_allowed,
 567                             sysctl_perf_event_sample_rate);
 568        }
 569}
 570
 571static atomic64_t perf_event_id;
 572
 573static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 574                              enum event_type_t event_type);
 575
 576static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 577                             enum event_type_t event_type,
 578                             struct task_struct *task);
 579
 580static void update_context_time(struct perf_event_context *ctx);
 581static u64 perf_event_time(struct perf_event *event);
 582
 583void __weak perf_event_print_debug(void)        { }
 584
 585static inline u64 perf_clock(void)
 586{
 587        return local_clock();
 588}
 589
 590static inline u64 perf_event_clock(struct perf_event *event)
 591{
 592        return event->clock();
 593}
 594
 595/*
 596 * State based event timekeeping...
 597 *
 598 * The basic idea is to use event->state to determine which (if any) time
 599 * fields to increment with the current delta. This means we only need to
 600 * update timestamps when we change state or when they are explicitly requested
 601 * (read).
 602 *
 603 * Event groups make things a little more complicated, but not terribly so. The
 604 * rules for a group are that if the group leader is OFF the entire group is
 605 * OFF, irrespecive of what the group member states are. This results in
 606 * __perf_effective_state().
 607 *
 608 * A futher ramification is that when a group leader flips between OFF and
 609 * !OFF, we need to update all group member times.
 610 *
 611 *
 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 613 * need to make sure the relevant context time is updated before we try and
 614 * update our timestamps.
 615 */
 616
 617static __always_inline enum perf_event_state
 618__perf_effective_state(struct perf_event *event)
 619{
 620        struct perf_event *leader = event->group_leader;
 621
 622        if (leader->state <= PERF_EVENT_STATE_OFF)
 623                return leader->state;
 624
 625        return event->state;
 626}
 627
 628static __always_inline void
 629__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
 630{
 631        enum perf_event_state state = __perf_effective_state(event);
 632        u64 delta = now - event->tstamp;
 633
 634        *enabled = event->total_time_enabled;
 635        if (state >= PERF_EVENT_STATE_INACTIVE)
 636                *enabled += delta;
 637
 638        *running = event->total_time_running;
 639        if (state >= PERF_EVENT_STATE_ACTIVE)
 640                *running += delta;
 641}
 642
 643static void perf_event_update_time(struct perf_event *event)
 644{
 645        u64 now = perf_event_time(event);
 646
 647        __perf_update_times(event, now, &event->total_time_enabled,
 648                                        &event->total_time_running);
 649        event->tstamp = now;
 650}
 651
 652static void perf_event_update_sibling_time(struct perf_event *leader)
 653{
 654        struct perf_event *sibling;
 655
 656        for_each_sibling_event(sibling, leader)
 657                perf_event_update_time(sibling);
 658}
 659
 660static void
 661perf_event_set_state(struct perf_event *event, enum perf_event_state state)
 662{
 663        if (event->state == state)
 664                return;
 665
 666        perf_event_update_time(event);
 667        /*
 668         * If a group leader gets enabled/disabled all its siblings
 669         * are affected too.
 670         */
 671        if ((event->state < 0) ^ (state < 0))
 672                perf_event_update_sibling_time(event);
 673
 674        WRITE_ONCE(event->state, state);
 675}
 676
 677#ifdef CONFIG_CGROUP_PERF
 678
 679static inline bool
 680perf_cgroup_match(struct perf_event *event)
 681{
 682        struct perf_event_context *ctx = event->ctx;
 683        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 684
 685        /* @event doesn't care about cgroup */
 686        if (!event->cgrp)
 687                return true;
 688
 689        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 690        if (!cpuctx->cgrp)
 691                return false;
 692
 693        /*
 694         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 695         * also enabled for all its descendant cgroups.  If @cpuctx's
 696         * cgroup is a descendant of @event's (the test covers identity
 697         * case), it's a match.
 698         */
 699        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 700                                    event->cgrp->css.cgroup);
 701}
 702
 703static inline void perf_detach_cgroup(struct perf_event *event)
 704{
 705        css_put(&event->cgrp->css);
 706        event->cgrp = NULL;
 707}
 708
 709static inline int is_cgroup_event(struct perf_event *event)
 710{
 711        return event->cgrp != NULL;
 712}
 713
 714static inline u64 perf_cgroup_event_time(struct perf_event *event)
 715{
 716        struct perf_cgroup_info *t;
 717
 718        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 719        return t->time;
 720}
 721
 722static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 723{
 724        struct perf_cgroup_info *info;
 725        u64 now;
 726
 727        now = perf_clock();
 728
 729        info = this_cpu_ptr(cgrp->info);
 730
 731        info->time += now - info->timestamp;
 732        info->timestamp = now;
 733}
 734
 735static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 736{
 737        struct perf_cgroup *cgrp = cpuctx->cgrp;
 738        struct cgroup_subsys_state *css;
 739
 740        if (cgrp) {
 741                for (css = &cgrp->css; css; css = css->parent) {
 742                        cgrp = container_of(css, struct perf_cgroup, css);
 743                        __update_cgrp_time(cgrp);
 744                }
 745        }
 746}
 747
 748static inline void update_cgrp_time_from_event(struct perf_event *event)
 749{
 750        struct perf_cgroup *cgrp;
 751
 752        /*
 753         * ensure we access cgroup data only when needed and
 754         * when we know the cgroup is pinned (css_get)
 755         */
 756        if (!is_cgroup_event(event))
 757                return;
 758
 759        cgrp = perf_cgroup_from_task(current, event->ctx);
 760        /*
 761         * Do not update time when cgroup is not active
 762         */
 763        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 764                __update_cgrp_time(event->cgrp);
 765}
 766
 767static inline void
 768perf_cgroup_set_timestamp(struct task_struct *task,
 769                          struct perf_event_context *ctx)
 770{
 771        struct perf_cgroup *cgrp;
 772        struct perf_cgroup_info *info;
 773        struct cgroup_subsys_state *css;
 774
 775        /*
 776         * ctx->lock held by caller
 777         * ensure we do not access cgroup data
 778         * unless we have the cgroup pinned (css_get)
 779         */
 780        if (!task || !ctx->nr_cgroups)
 781                return;
 782
 783        cgrp = perf_cgroup_from_task(task, ctx);
 784
 785        for (css = &cgrp->css; css; css = css->parent) {
 786                cgrp = container_of(css, struct perf_cgroup, css);
 787                info = this_cpu_ptr(cgrp->info);
 788                info->timestamp = ctx->timestamp;
 789        }
 790}
 791
 792static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
 793
 794#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 795#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 796
 797/*
 798 * reschedule events based on the cgroup constraint of task.
 799 *
 800 * mode SWOUT : schedule out everything
 801 * mode SWIN : schedule in based on cgroup for next
 802 */
 803static void perf_cgroup_switch(struct task_struct *task, int mode)
 804{
 805        struct perf_cpu_context *cpuctx;
 806        struct list_head *list;
 807        unsigned long flags;
 808
 809        /*
 810         * Disable interrupts and preemption to avoid this CPU's
 811         * cgrp_cpuctx_entry to change under us.
 812         */
 813        local_irq_save(flags);
 814
 815        list = this_cpu_ptr(&cgrp_cpuctx_list);
 816        list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
 817                WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 818
 819                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 820                perf_pmu_disable(cpuctx->ctx.pmu);
 821
 822                if (mode & PERF_CGROUP_SWOUT) {
 823                        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 824                        /*
 825                         * must not be done before ctxswout due
 826                         * to event_filter_match() in event_sched_out()
 827                         */
 828                        cpuctx->cgrp = NULL;
 829                }
 830
 831                if (mode & PERF_CGROUP_SWIN) {
 832                        WARN_ON_ONCE(cpuctx->cgrp);
 833                        /*
 834                         * set cgrp before ctxsw in to allow
 835                         * event_filter_match() to not have to pass
 836                         * task around
 837                         * we pass the cpuctx->ctx to perf_cgroup_from_task()
 838                         * because cgorup events are only per-cpu
 839                         */
 840                        cpuctx->cgrp = perf_cgroup_from_task(task,
 841                                                             &cpuctx->ctx);
 842                        cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 843                }
 844                perf_pmu_enable(cpuctx->ctx.pmu);
 845                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 846        }
 847
 848        local_irq_restore(flags);
 849}
 850
 851static inline void perf_cgroup_sched_out(struct task_struct *task,
 852                                         struct task_struct *next)
 853{
 854        struct perf_cgroup *cgrp1;
 855        struct perf_cgroup *cgrp2 = NULL;
 856
 857        rcu_read_lock();
 858        /*
 859         * we come here when we know perf_cgroup_events > 0
 860         * we do not need to pass the ctx here because we know
 861         * we are holding the rcu lock
 862         */
 863        cgrp1 = perf_cgroup_from_task(task, NULL);
 864        cgrp2 = perf_cgroup_from_task(next, NULL);
 865
 866        /*
 867         * only schedule out current cgroup events if we know
 868         * that we are switching to a different cgroup. Otherwise,
 869         * do no touch the cgroup events.
 870         */
 871        if (cgrp1 != cgrp2)
 872                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 873
 874        rcu_read_unlock();
 875}
 876
 877static inline void perf_cgroup_sched_in(struct task_struct *prev,
 878                                        struct task_struct *task)
 879{
 880        struct perf_cgroup *cgrp1;
 881        struct perf_cgroup *cgrp2 = NULL;
 882
 883        rcu_read_lock();
 884        /*
 885         * we come here when we know perf_cgroup_events > 0
 886         * we do not need to pass the ctx here because we know
 887         * we are holding the rcu lock
 888         */
 889        cgrp1 = perf_cgroup_from_task(task, NULL);
 890        cgrp2 = perf_cgroup_from_task(prev, NULL);
 891
 892        /*
 893         * only need to schedule in cgroup events if we are changing
 894         * cgroup during ctxsw. Cgroup events were not scheduled
 895         * out of ctxsw out if that was not the case.
 896         */
 897        if (cgrp1 != cgrp2)
 898                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 899
 900        rcu_read_unlock();
 901}
 902
 903static int perf_cgroup_ensure_storage(struct perf_event *event,
 904                                struct cgroup_subsys_state *css)
 905{
 906        struct perf_cpu_context *cpuctx;
 907        struct perf_event **storage;
 908        int cpu, heap_size, ret = 0;
 909
 910        /*
 911         * Allow storage to have sufficent space for an iterator for each
 912         * possibly nested cgroup plus an iterator for events with no cgroup.
 913         */
 914        for (heap_size = 1; css; css = css->parent)
 915                heap_size++;
 916
 917        for_each_possible_cpu(cpu) {
 918                cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
 919                if (heap_size <= cpuctx->heap_size)
 920                        continue;
 921
 922                storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
 923                                       GFP_KERNEL, cpu_to_node(cpu));
 924                if (!storage) {
 925                        ret = -ENOMEM;
 926                        break;
 927                }
 928
 929                raw_spin_lock_irq(&cpuctx->ctx.lock);
 930                if (cpuctx->heap_size < heap_size) {
 931                        swap(cpuctx->heap, storage);
 932                        if (storage == cpuctx->heap_default)
 933                                storage = NULL;
 934                        cpuctx->heap_size = heap_size;
 935                }
 936                raw_spin_unlock_irq(&cpuctx->ctx.lock);
 937
 938                kfree(storage);
 939        }
 940
 941        return ret;
 942}
 943
 944static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 945                                      struct perf_event_attr *attr,
 946                                      struct perf_event *group_leader)
 947{
 948        struct perf_cgroup *cgrp;
 949        struct cgroup_subsys_state *css;
 950        struct fd f = fdget(fd);
 951        int ret = 0;
 952
 953        if (!f.file)
 954                return -EBADF;
 955
 956        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 957                                         &perf_event_cgrp_subsys);
 958        if (IS_ERR(css)) {
 959                ret = PTR_ERR(css);
 960                goto out;
 961        }
 962
 963        ret = perf_cgroup_ensure_storage(event, css);
 964        if (ret)
 965                goto out;
 966
 967        cgrp = container_of(css, struct perf_cgroup, css);
 968        event->cgrp = cgrp;
 969
 970        /*
 971         * all events in a group must monitor
 972         * the same cgroup because a task belongs
 973         * to only one perf cgroup at a time
 974         */
 975        if (group_leader && group_leader->cgrp != cgrp) {
 976                perf_detach_cgroup(event);
 977                ret = -EINVAL;
 978        }
 979out:
 980        fdput(f);
 981        return ret;
 982}
 983
 984static inline void
 985perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 986{
 987        struct perf_cgroup_info *t;
 988        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 989        event->shadow_ctx_time = now - t->timestamp;
 990}
 991
 992static inline void
 993perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
 994{
 995        struct perf_cpu_context *cpuctx;
 996
 997        if (!is_cgroup_event(event))
 998                return;
 999
1000        /*
1001         * Because cgroup events are always per-cpu events,
1002         * @ctx == &cpuctx->ctx.
1003         */
1004        cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006        /*
1007         * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008         * matching the event's cgroup, we must do this for every new event,
1009         * because if the first would mismatch, the second would not try again
1010         * and we would leave cpuctx->cgrp unset.
1011         */
1012        if (ctx->is_active && !cpuctx->cgrp) {
1013                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                        cpuctx->cgrp = cgrp;
1017        }
1018
1019        if (ctx->nr_cgroups++)
1020                return;
1021
1022        list_add(&cpuctx->cgrp_cpuctx_entry,
1023                        per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024}
1025
1026static inline void
1027perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028{
1029        struct perf_cpu_context *cpuctx;
1030
1031        if (!is_cgroup_event(event))
1032                return;
1033
1034        /*
1035         * Because cgroup events are always per-cpu events,
1036         * @ctx == &cpuctx->ctx.
1037         */
1038        cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040        if (--ctx->nr_cgroups)
1041                return;
1042
1043        if (ctx->is_active && cpuctx->cgrp)
1044                cpuctx->cgrp = NULL;
1045
1046        list_del(&cpuctx->cgrp_cpuctx_entry);
1047}
1048
1049#else /* !CONFIG_CGROUP_PERF */
1050
1051static inline bool
1052perf_cgroup_match(struct perf_event *event)
1053{
1054        return true;
1055}
1056
1057static inline void perf_detach_cgroup(struct perf_event *event)
1058{}
1059
1060static inline int is_cgroup_event(struct perf_event *event)
1061{
1062        return 0;
1063}
1064
1065static inline void update_cgrp_time_from_event(struct perf_event *event)
1066{
1067}
1068
1069static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070{
1071}
1072
1073static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                         struct task_struct *next)
1075{
1076}
1077
1078static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                        struct task_struct *task)
1080{
1081}
1082
1083static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                      struct perf_event_attr *attr,
1085                                      struct perf_event *group_leader)
1086{
1087        return -EINVAL;
1088}
1089
1090static inline void
1091perf_cgroup_set_timestamp(struct task_struct *task,
1092                          struct perf_event_context *ctx)
1093{
1094}
1095
1096static inline void
1097perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098{
1099}
1100
1101static inline void
1102perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103{
1104}
1105
1106static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107{
1108        return 0;
1109}
1110
1111static inline void
1112perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113{
1114}
1115
1116static inline void
1117perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118{
1119}
1120#endif
1121
1122/*
1123 * set default to be dependent on timer tick just
1124 * like original code
1125 */
1126#define PERF_CPU_HRTIMER (1000 / HZ)
1127/*
1128 * function must be called with interrupts disabled
1129 */
1130static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131{
1132        struct perf_cpu_context *cpuctx;
1133        bool rotations;
1134
1135        lockdep_assert_irqs_disabled();
1136
1137        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138        rotations = perf_rotate_context(cpuctx);
1139
1140        raw_spin_lock(&cpuctx->hrtimer_lock);
1141        if (rotations)
1142                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143        else
1144                cpuctx->hrtimer_active = 0;
1145        raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148}
1149
1150static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151{
1152        struct hrtimer *timer = &cpuctx->hrtimer;
1153        struct pmu *pmu = cpuctx->ctx.pmu;
1154        u64 interval;
1155
1156        /* no multiplexing needed for SW PMU */
1157        if (pmu->task_ctx_nr == perf_sw_context)
1158                return;
1159
1160        /*
1161         * check default is sane, if not set then force to
1162         * default interval (1/tick)
1163         */
1164        interval = pmu->hrtimer_interval_ms;
1165        if (interval < 1)
1166                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170        raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172        timer->function = perf_mux_hrtimer_handler;
1173}
1174
1175static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176{
1177        struct hrtimer *timer = &cpuctx->hrtimer;
1178        struct pmu *pmu = cpuctx->ctx.pmu;
1179        unsigned long flags;
1180
1181        /* not for SW PMU */
1182        if (pmu->task_ctx_nr == perf_sw_context)
1183                return 0;
1184
1185        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186        if (!cpuctx->hrtimer_active) {
1187                cpuctx->hrtimer_active = 1;
1188                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190        }
1191        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193        return 0;
1194}
1195
1196void perf_pmu_disable(struct pmu *pmu)
1197{
1198        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199        if (!(*count)++)
1200                pmu->pmu_disable(pmu);
1201}
1202
1203void perf_pmu_enable(struct pmu *pmu)
1204{
1205        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206        if (!--(*count))
1207                pmu->pmu_enable(pmu);
1208}
1209
1210static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212/*
1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214 * perf_event_task_tick() are fully serialized because they're strictly cpu
1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216 * disabled, while perf_event_task_tick is called from IRQ context.
1217 */
1218static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219{
1220        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222        lockdep_assert_irqs_disabled();
1223
1224        WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226        list_add(&ctx->active_ctx_list, head);
1227}
1228
1229static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230{
1231        lockdep_assert_irqs_disabled();
1232
1233        WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235        list_del_init(&ctx->active_ctx_list);
1236}
1237
1238static void get_ctx(struct perf_event_context *ctx)
1239{
1240        refcount_inc(&ctx->refcount);
1241}
1242
1243static void *alloc_task_ctx_data(struct pmu *pmu)
1244{
1245        if (pmu->task_ctx_cache)
1246                return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248        return NULL;
1249}
1250
1251static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252{
1253        if (pmu->task_ctx_cache && task_ctx_data)
1254                kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255}
1256
1257static void free_ctx(struct rcu_head *head)
1258{
1259        struct perf_event_context *ctx;
1260
1261        ctx = container_of(head, struct perf_event_context, rcu_head);
1262        free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263        kfree(ctx);
1264}
1265
1266static void put_ctx(struct perf_event_context *ctx)
1267{
1268        if (refcount_dec_and_test(&ctx->refcount)) {
1269                if (ctx->parent_ctx)
1270                        put_ctx(ctx->parent_ctx);
1271                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                        put_task_struct(ctx->task);
1273                call_rcu(&ctx->rcu_head, free_ctx);
1274        }
1275}
1276
1277/*
1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279 * perf_pmu_migrate_context() we need some magic.
1280 *
1281 * Those places that change perf_event::ctx will hold both
1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283 *
1284 * Lock ordering is by mutex address. There are two other sites where
1285 * perf_event_context::mutex nests and those are:
1286 *
1287 *  - perf_event_exit_task_context()    [ child , 0 ]
1288 *      perf_event_exit_event()
1289 *        put_event()                   [ parent, 1 ]
1290 *
1291 *  - perf_event_init_context()         [ parent, 0 ]
1292 *      inherit_task_group()
1293 *        inherit_group()
1294 *          inherit_event()
1295 *            perf_event_alloc()
1296 *              perf_init_event()
1297 *                perf_try_init_event() [ child , 1 ]
1298 *
1299 * While it appears there is an obvious deadlock here -- the parent and child
1300 * nesting levels are inverted between the two. This is in fact safe because
1301 * life-time rules separate them. That is an exiting task cannot fork, and a
1302 * spawning task cannot (yet) exit.
1303 *
1304 * But remember that these are parent<->child context relations, and
1305 * migration does not affect children, therefore these two orderings should not
1306 * interact.
1307 *
1308 * The change in perf_event::ctx does not affect children (as claimed above)
1309 * because the sys_perf_event_open() case will install a new event and break
1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311 * concerned with cpuctx and that doesn't have children.
1312 *
1313 * The places that change perf_event::ctx will issue:
1314 *
1315 *   perf_remove_from_context();
1316 *   synchronize_rcu();
1317 *   perf_install_in_context();
1318 *
1319 * to affect the change. The remove_from_context() + synchronize_rcu() should
1320 * quiesce the event, after which we can install it in the new location. This
1321 * means that only external vectors (perf_fops, prctl) can perturb the event
1322 * while in transit. Therefore all such accessors should also acquire
1323 * perf_event_context::mutex to serialize against this.
1324 *
1325 * However; because event->ctx can change while we're waiting to acquire
1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327 * function.
1328 *
1329 * Lock order:
1330 *    exec_update_lock
1331 *      task_struct::perf_event_mutex
1332 *        perf_event_context::mutex
1333 *          perf_event::child_mutex;
1334 *            perf_event_context::lock
1335 *          perf_event::mmap_mutex
1336 *          mmap_lock
1337 *            perf_addr_filters_head::lock
1338 *
1339 *    cpu_hotplug_lock
1340 *      pmus_lock
1341 *        cpuctx->mutex / perf_event_context::mutex
1342 */
1343static struct perf_event_context *
1344perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345{
1346        struct perf_event_context *ctx;
1347
1348again:
1349        rcu_read_lock();
1350        ctx = READ_ONCE(event->ctx);
1351        if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                rcu_read_unlock();
1353                goto again;
1354        }
1355        rcu_read_unlock();
1356
1357        mutex_lock_nested(&ctx->mutex, nesting);
1358        if (event->ctx != ctx) {
1359                mutex_unlock(&ctx->mutex);
1360                put_ctx(ctx);
1361                goto again;
1362        }
1363
1364        return ctx;
1365}
1366
1367static inline struct perf_event_context *
1368perf_event_ctx_lock(struct perf_event *event)
1369{
1370        return perf_event_ctx_lock_nested(event, 0);
1371}
1372
1373static void perf_event_ctx_unlock(struct perf_event *event,
1374                                  struct perf_event_context *ctx)
1375{
1376        mutex_unlock(&ctx->mutex);
1377        put_ctx(ctx);
1378}
1379
1380/*
1381 * This must be done under the ctx->lock, such as to serialize against
1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383 * calling scheduler related locks and ctx->lock nests inside those.
1384 */
1385static __must_check struct perf_event_context *
1386unclone_ctx(struct perf_event_context *ctx)
1387{
1388        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390        lockdep_assert_held(&ctx->lock);
1391
1392        if (parent_ctx)
1393                ctx->parent_ctx = NULL;
1394        ctx->generation++;
1395
1396        return parent_ctx;
1397}
1398
1399static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                enum pid_type type)
1401{
1402        u32 nr;
1403        /*
1404         * only top level events have the pid namespace they were created in
1405         */
1406        if (event->parent)
1407                event = event->parent;
1408
1409        nr = __task_pid_nr_ns(p, type, event->ns);
1410        /* avoid -1 if it is idle thread or runs in another ns */
1411        if (!nr && !pid_alive(p))
1412                nr = -1;
1413        return nr;
1414}
1415
1416static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417{
1418        return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419}
1420
1421static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422{
1423        return perf_event_pid_type(event, p, PIDTYPE_PID);
1424}
1425
1426/*
1427 * If we inherit events we want to return the parent event id
1428 * to userspace.
1429 */
1430static u64 primary_event_id(struct perf_event *event)
1431{
1432        u64 id = event->id;
1433
1434        if (event->parent)
1435                id = event->parent->id;
1436
1437        return id;
1438}
1439
1440/*
1441 * Get the perf_event_context for a task and lock it.
1442 *
1443 * This has to cope with the fact that until it is locked,
1444 * the context could get moved to another task.
1445 */
1446static struct perf_event_context *
1447perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448{
1449        struct perf_event_context *ctx;
1450
1451retry:
1452        /*
1453         * One of the few rules of preemptible RCU is that one cannot do
1454         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455         * part of the read side critical section was irqs-enabled -- see
1456         * rcu_read_unlock_special().
1457         *
1458         * Since ctx->lock nests under rq->lock we must ensure the entire read
1459         * side critical section has interrupts disabled.
1460         */
1461        local_irq_save(*flags);
1462        rcu_read_lock();
1463        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464        if (ctx) {
1465                /*
1466                 * If this context is a clone of another, it might
1467                 * get swapped for another underneath us by
1468                 * perf_event_task_sched_out, though the
1469                 * rcu_read_lock() protects us from any context
1470                 * getting freed.  Lock the context and check if it
1471                 * got swapped before we could get the lock, and retry
1472                 * if so.  If we locked the right context, then it
1473                 * can't get swapped on us any more.
1474                 */
1475                raw_spin_lock(&ctx->lock);
1476                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                        raw_spin_unlock(&ctx->lock);
1478                        rcu_read_unlock();
1479                        local_irq_restore(*flags);
1480                        goto retry;
1481                }
1482
1483                if (ctx->task == TASK_TOMBSTONE ||
1484                    !refcount_inc_not_zero(&ctx->refcount)) {
1485                        raw_spin_unlock(&ctx->lock);
1486                        ctx = NULL;
1487                } else {
1488                        WARN_ON_ONCE(ctx->task != task);
1489                }
1490        }
1491        rcu_read_unlock();
1492        if (!ctx)
1493                local_irq_restore(*flags);
1494        return ctx;
1495}
1496
1497/*
1498 * Get the context for a task and increment its pin_count so it
1499 * can't get swapped to another task.  This also increments its
1500 * reference count so that the context can't get freed.
1501 */
1502static struct perf_event_context *
1503perf_pin_task_context(struct task_struct *task, int ctxn)
1504{
1505        struct perf_event_context *ctx;
1506        unsigned long flags;
1507
1508        ctx = perf_lock_task_context(task, ctxn, &flags);
1509        if (ctx) {
1510                ++ctx->pin_count;
1511                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512        }
1513        return ctx;
1514}
1515
1516static void perf_unpin_context(struct perf_event_context *ctx)
1517{
1518        unsigned long flags;
1519
1520        raw_spin_lock_irqsave(&ctx->lock, flags);
1521        --ctx->pin_count;
1522        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523}
1524
1525/*
1526 * Update the record of the current time in a context.
1527 */
1528static void update_context_time(struct perf_event_context *ctx)
1529{
1530        u64 now = perf_clock();
1531
1532        ctx->time += now - ctx->timestamp;
1533        ctx->timestamp = now;
1534}
1535
1536static u64 perf_event_time(struct perf_event *event)
1537{
1538        struct perf_event_context *ctx = event->ctx;
1539
1540        if (is_cgroup_event(event))
1541                return perf_cgroup_event_time(event);
1542
1543        return ctx ? ctx->time : 0;
1544}
1545
1546static enum event_type_t get_event_type(struct perf_event *event)
1547{
1548        struct perf_event_context *ctx = event->ctx;
1549        enum event_type_t event_type;
1550
1551        lockdep_assert_held(&ctx->lock);
1552
1553        /*
1554         * It's 'group type', really, because if our group leader is
1555         * pinned, so are we.
1556         */
1557        if (event->group_leader != event)
1558                event = event->group_leader;
1559
1560        event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561        if (!ctx->task)
1562                event_type |= EVENT_CPU;
1563
1564        return event_type;
1565}
1566
1567/*
1568 * Helper function to initialize event group nodes.
1569 */
1570static void init_event_group(struct perf_event *event)
1571{
1572        RB_CLEAR_NODE(&event->group_node);
1573        event->group_index = 0;
1574}
1575
1576/*
1577 * Extract pinned or flexible groups from the context
1578 * based on event attrs bits.
1579 */
1580static struct perf_event_groups *
1581get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582{
1583        if (event->attr.pinned)
1584                return &ctx->pinned_groups;
1585        else
1586                return &ctx->flexible_groups;
1587}
1588
1589/*
1590 * Helper function to initializes perf_event_group trees.
1591 */
1592static void perf_event_groups_init(struct perf_event_groups *groups)
1593{
1594        groups->tree = RB_ROOT;
1595        groups->index = 0;
1596}
1597
1598static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599{
1600        struct cgroup *cgroup = NULL;
1601
1602#ifdef CONFIG_CGROUP_PERF
1603        if (event->cgrp)
1604                cgroup = event->cgrp->css.cgroup;
1605#endif
1606
1607        return cgroup;
1608}
1609
1610/*
1611 * Compare function for event groups;
1612 *
1613 * Implements complex key that first sorts by CPU and then by virtual index
1614 * which provides ordering when rotating groups for the same CPU.
1615 */
1616static __always_inline int
1617perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                      const u64 left_group_index, const struct perf_event *right)
1619{
1620        if (left_cpu < right->cpu)
1621                return -1;
1622        if (left_cpu > right->cpu)
1623                return 1;
1624
1625#ifdef CONFIG_CGROUP_PERF
1626        {
1627                const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                if (left_cgroup != right_cgroup) {
1630                        if (!left_cgroup) {
1631                                /*
1632                                 * Left has no cgroup but right does, no
1633                                 * cgroups come first.
1634                                 */
1635                                return -1;
1636                        }
1637                        if (!right_cgroup) {
1638                                /*
1639                                 * Right has no cgroup but left does, no
1640                                 * cgroups come first.
1641                                 */
1642                                return 1;
1643                        }
1644                        /* Two dissimilar cgroups, order by id. */
1645                        if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                return -1;
1647
1648                        return 1;
1649                }
1650        }
1651#endif
1652
1653        if (left_group_index < right->group_index)
1654                return -1;
1655        if (left_group_index > right->group_index)
1656                return 1;
1657
1658        return 0;
1659}
1660
1661#define __node_2_pe(node) \
1662        rb_entry((node), struct perf_event, group_node)
1663
1664static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665{
1666        struct perf_event *e = __node_2_pe(a);
1667        return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                     __node_2_pe(b)) < 0;
1669}
1670
1671struct __group_key {
1672        int cpu;
1673        struct cgroup *cgroup;
1674};
1675
1676static inline int __group_cmp(const void *key, const struct rb_node *node)
1677{
1678        const struct __group_key *a = key;
1679        const struct perf_event *b = __node_2_pe(node);
1680
1681        /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682        return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683}
1684
1685/*
1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687 * key (see perf_event_groups_less). This places it last inside the CPU
1688 * subtree.
1689 */
1690static void
1691perf_event_groups_insert(struct perf_event_groups *groups,
1692                         struct perf_event *event)
1693{
1694        event->group_index = ++groups->index;
1695
1696        rb_add(&event->group_node, &groups->tree, __group_less);
1697}
1698
1699/*
1700 * Helper function to insert event into the pinned or flexible groups.
1701 */
1702static void
1703add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704{
1705        struct perf_event_groups *groups;
1706
1707        groups = get_event_groups(event, ctx);
1708        perf_event_groups_insert(groups, event);
1709}
1710
1711/*
1712 * Delete a group from a tree.
1713 */
1714static void
1715perf_event_groups_delete(struct perf_event_groups *groups,
1716                         struct perf_event *event)
1717{
1718        WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                     RB_EMPTY_ROOT(&groups->tree));
1720
1721        rb_erase(&event->group_node, &groups->tree);
1722        init_event_group(event);
1723}
1724
1725/*
1726 * Helper function to delete event from its groups.
1727 */
1728static void
1729del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730{
1731        struct perf_event_groups *groups;
1732
1733        groups = get_event_groups(event, ctx);
1734        perf_event_groups_delete(groups, event);
1735}
1736
1737/*
1738 * Get the leftmost event in the cpu/cgroup subtree.
1739 */
1740static struct perf_event *
1741perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                        struct cgroup *cgrp)
1743{
1744        struct __group_key key = {
1745                .cpu = cpu,
1746                .cgroup = cgrp,
1747        };
1748        struct rb_node *node;
1749
1750        node = rb_find_first(&key, &groups->tree, __group_cmp);
1751        if (node)
1752                return __node_2_pe(node);
1753
1754        return NULL;
1755}
1756
1757/*
1758 * Like rb_entry_next_safe() for the @cpu subtree.
1759 */
1760static struct perf_event *
1761perf_event_groups_next(struct perf_event *event)
1762{
1763        struct __group_key key = {
1764                .cpu = event->cpu,
1765                .cgroup = event_cgroup(event),
1766        };
1767        struct rb_node *next;
1768
1769        next = rb_next_match(&key, &event->group_node, __group_cmp);
1770        if (next)
1771                return __node_2_pe(next);
1772
1773        return NULL;
1774}
1775
1776/*
1777 * Iterate through the whole groups tree.
1778 */
1779#define perf_event_groups_for_each(event, groups)                       \
1780        for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                typeof(*event), group_node); event;     \
1782                event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                typeof(*event), group_node))
1784
1785/*
1786 * Add an event from the lists for its context.
1787 * Must be called with ctx->mutex and ctx->lock held.
1788 */
1789static void
1790list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791{
1792        lockdep_assert_held(&ctx->lock);
1793
1794        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795        event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797        event->tstamp = perf_event_time(event);
1798
1799        /*
1800         * If we're a stand alone event or group leader, we go to the context
1801         * list, group events are kept attached to the group so that
1802         * perf_group_detach can, at all times, locate all siblings.
1803         */
1804        if (event->group_leader == event) {
1805                event->group_caps = event->event_caps;
1806                add_event_to_groups(event, ctx);
1807        }
1808
1809        list_add_rcu(&event->event_entry, &ctx->event_list);
1810        ctx->nr_events++;
1811        if (event->attr.inherit_stat)
1812                ctx->nr_stat++;
1813
1814        if (event->state > PERF_EVENT_STATE_OFF)
1815                perf_cgroup_event_enable(event, ctx);
1816
1817        ctx->generation++;
1818}
1819
1820/*
1821 * Initialize event state based on the perf_event_attr::disabled.
1822 */
1823static inline void perf_event__state_init(struct perf_event *event)
1824{
1825        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                              PERF_EVENT_STATE_INACTIVE;
1827}
1828
1829static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830{
1831        int entry = sizeof(u64); /* value */
1832        int size = 0;
1833        int nr = 1;
1834
1835        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                size += sizeof(u64);
1837
1838        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                size += sizeof(u64);
1840
1841        if (event->attr.read_format & PERF_FORMAT_ID)
1842                entry += sizeof(u64);
1843
1844        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                nr += nr_siblings;
1846                size += sizeof(u64);
1847        }
1848
1849        size += entry * nr;
1850        event->read_size = size;
1851}
1852
1853static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854{
1855        struct perf_sample_data *data;
1856        u16 size = 0;
1857
1858        if (sample_type & PERF_SAMPLE_IP)
1859                size += sizeof(data->ip);
1860
1861        if (sample_type & PERF_SAMPLE_ADDR)
1862                size += sizeof(data->addr);
1863
1864        if (sample_type & PERF_SAMPLE_PERIOD)
1865                size += sizeof(data->period);
1866
1867        if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                size += sizeof(data->weight.full);
1869
1870        if (sample_type & PERF_SAMPLE_READ)
1871                size += event->read_size;
1872
1873        if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                size += sizeof(data->data_src.val);
1875
1876        if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                size += sizeof(data->txn);
1878
1879        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                size += sizeof(data->phys_addr);
1881
1882        if (sample_type & PERF_SAMPLE_CGROUP)
1883                size += sizeof(data->cgroup);
1884
1885        if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                size += sizeof(data->data_page_size);
1887
1888        if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                size += sizeof(data->code_page_size);
1890
1891        event->header_size = size;
1892}
1893
1894/*
1895 * Called at perf_event creation and when events are attached/detached from a
1896 * group.
1897 */
1898static void perf_event__header_size(struct perf_event *event)
1899{
1900        __perf_event_read_size(event,
1901                               event->group_leader->nr_siblings);
1902        __perf_event_header_size(event, event->attr.sample_type);
1903}
1904
1905static void perf_event__id_header_size(struct perf_event *event)
1906{
1907        struct perf_sample_data *data;
1908        u64 sample_type = event->attr.sample_type;
1909        u16 size = 0;
1910
1911        if (sample_type & PERF_SAMPLE_TID)
1912                size += sizeof(data->tid_entry);
1913
1914        if (sample_type & PERF_SAMPLE_TIME)
1915                size += sizeof(data->time);
1916
1917        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                size += sizeof(data->id);
1919
1920        if (sample_type & PERF_SAMPLE_ID)
1921                size += sizeof(data->id);
1922
1923        if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                size += sizeof(data->stream_id);
1925
1926        if (sample_type & PERF_SAMPLE_CPU)
1927                size += sizeof(data->cpu_entry);
1928
1929        event->id_header_size = size;
1930}
1931
1932static bool perf_event_validate_size(struct perf_event *event)
1933{
1934        /*
1935         * The values computed here will be over-written when we actually
1936         * attach the event.
1937         */
1938        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940        perf_event__id_header_size(event);
1941
1942        /*
1943         * Sum the lot; should not exceed the 64k limit we have on records.
1944         * Conservative limit to allow for callchains and other variable fields.
1945         */
1946        if (event->read_size + event->header_size +
1947            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                return false;
1949
1950        return true;
1951}
1952
1953static void perf_group_attach(struct perf_event *event)
1954{
1955        struct perf_event *group_leader = event->group_leader, *pos;
1956
1957        lockdep_assert_held(&event->ctx->lock);
1958
1959        /*
1960         * We can have double attach due to group movement in perf_event_open.
1961         */
1962        if (event->attach_state & PERF_ATTACH_GROUP)
1963                return;
1964
1965        event->attach_state |= PERF_ATTACH_GROUP;
1966
1967        if (group_leader == event)
1968                return;
1969
1970        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972        group_leader->group_caps &= event->event_caps;
1973
1974        list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975        group_leader->nr_siblings++;
1976
1977        perf_event__header_size(group_leader);
1978
1979        for_each_sibling_event(pos, group_leader)
1980                perf_event__header_size(pos);
1981}
1982
1983/*
1984 * Remove an event from the lists for its context.
1985 * Must be called with ctx->mutex and ctx->lock held.
1986 */
1987static void
1988list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989{
1990        WARN_ON_ONCE(event->ctx != ctx);
1991        lockdep_assert_held(&ctx->lock);
1992
1993        /*
1994         * We can have double detach due to exit/hot-unplug + close.
1995         */
1996        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                return;
1998
1999        event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001        ctx->nr_events--;
2002        if (event->attr.inherit_stat)
2003                ctx->nr_stat--;
2004
2005        list_del_rcu(&event->event_entry);
2006
2007        if (event->group_leader == event)
2008                del_event_from_groups(event, ctx);
2009
2010        /*
2011         * If event was in error state, then keep it
2012         * that way, otherwise bogus counts will be
2013         * returned on read(). The only way to get out
2014         * of error state is by explicit re-enabling
2015         * of the event
2016         */
2017        if (event->state > PERF_EVENT_STATE_OFF) {
2018                perf_cgroup_event_disable(event, ctx);
2019                perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020        }
2021
2022        ctx->generation++;
2023}
2024
2025static int
2026perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027{
2028        if (!has_aux(aux_event))
2029                return 0;
2030
2031        if (!event->pmu->aux_output_match)
2032                return 0;
2033
2034        return event->pmu->aux_output_match(aux_event);
2035}
2036
2037static void put_event(struct perf_event *event);
2038static void event_sched_out(struct perf_event *event,
2039                            struct perf_cpu_context *cpuctx,
2040                            struct perf_event_context *ctx);
2041
2042static void perf_put_aux_event(struct perf_event *event)
2043{
2044        struct perf_event_context *ctx = event->ctx;
2045        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046        struct perf_event *iter;
2047
2048        /*
2049         * If event uses aux_event tear down the link
2050         */
2051        if (event->aux_event) {
2052                iter = event->aux_event;
2053                event->aux_event = NULL;
2054                put_event(iter);
2055                return;
2056        }
2057
2058        /*
2059         * If the event is an aux_event, tear down all links to
2060         * it from other events.
2061         */
2062        for_each_sibling_event(iter, event->group_leader) {
2063                if (iter->aux_event != event)
2064                        continue;
2065
2066                iter->aux_event = NULL;
2067                put_event(event);
2068
2069                /*
2070                 * If it's ACTIVE, schedule it out and put it into ERROR
2071                 * state so that we don't try to schedule it again. Note
2072                 * that perf_event_enable() will clear the ERROR status.
2073                 */
2074                event_sched_out(iter, cpuctx, ctx);
2075                perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076        }
2077}
2078
2079static bool perf_need_aux_event(struct perf_event *event)
2080{
2081        return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082}
2083
2084static int perf_get_aux_event(struct perf_event *event,
2085                              struct perf_event *group_leader)
2086{
2087        /*
2088         * Our group leader must be an aux event if we want to be
2089         * an aux_output. This way, the aux event will precede its
2090         * aux_output events in the group, and therefore will always
2091         * schedule first.
2092         */
2093        if (!group_leader)
2094                return 0;
2095
2096        /*
2097         * aux_output and aux_sample_size are mutually exclusive.
2098         */
2099        if (event->attr.aux_output && event->attr.aux_sample_size)
2100                return 0;
2101
2102        if (event->attr.aux_output &&
2103            !perf_aux_output_match(event, group_leader))
2104                return 0;
2105
2106        if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                return 0;
2108
2109        if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                return 0;
2111
2112        /*
2113         * Link aux_outputs to their aux event; this is undone in
2114         * perf_group_detach() by perf_put_aux_event(). When the
2115         * group in torn down, the aux_output events loose their
2116         * link to the aux_event and can't schedule any more.
2117         */
2118        event->aux_event = group_leader;
2119
2120        return 1;
2121}
2122
2123static inline struct list_head *get_event_list(struct perf_event *event)
2124{
2125        struct perf_event_context *ctx = event->ctx;
2126        return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127}
2128
2129/*
2130 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131 * cannot exist on their own, schedule them out and move them into the ERROR
2132 * state. Also see _perf_event_enable(), it will not be able to recover
2133 * this ERROR state.
2134 */
2135static inline void perf_remove_sibling_event(struct perf_event *event)
2136{
2137        struct perf_event_context *ctx = event->ctx;
2138        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140        event_sched_out(event, cpuctx, ctx);
2141        perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142}
2143
2144static void perf_group_detach(struct perf_event *event)
2145{
2146        struct perf_event *leader = event->group_leader;
2147        struct perf_event *sibling, *tmp;
2148        struct perf_event_context *ctx = event->ctx;
2149
2150        lockdep_assert_held(&ctx->lock);
2151
2152        /*
2153         * We can have double detach due to exit/hot-unplug + close.
2154         */
2155        if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                return;
2157
2158        event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160        perf_put_aux_event(event);
2161
2162        /*
2163         * If this is a sibling, remove it from its group.
2164         */
2165        if (leader != event) {
2166                list_del_init(&event->sibling_list);
2167                event->group_leader->nr_siblings--;
2168                goto out;
2169        }
2170
2171        /*
2172         * If this was a group event with sibling events then
2173         * upgrade the siblings to singleton events by adding them
2174         * to whatever list we are on.
2175         */
2176        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                        perf_remove_sibling_event(sibling);
2180
2181                sibling->group_leader = sibling;
2182                list_del_init(&sibling->sibling_list);
2183
2184                /* Inherit group flags from the previous leader */
2185                sibling->group_caps = event->group_caps;
2186
2187                if (!RB_EMPTY_NODE(&event->group_node)) {
2188                        add_event_to_groups(sibling, event->ctx);
2189
2190                        if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                }
2193
2194                WARN_ON_ONCE(sibling->ctx != event->ctx);
2195        }
2196
2197out:
2198        for_each_sibling_event(tmp, leader)
2199                perf_event__header_size(tmp);
2200
2201        perf_event__header_size(leader);
2202}
2203
2204static void sync_child_event(struct perf_event *child_event);
2205
2206static void perf_child_detach(struct perf_event *event)
2207{
2208        struct perf_event *parent_event = event->parent;
2209
2210        if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                return;
2212
2213        event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215        if (WARN_ON_ONCE(!parent_event))
2216                return;
2217
2218        lockdep_assert_held(&parent_event->child_mutex);
2219
2220        sync_child_event(event);
2221        list_del_init(&event->child_list);
2222}
2223
2224static bool is_orphaned_event(struct perf_event *event)
2225{
2226        return event->state == PERF_EVENT_STATE_DEAD;
2227}
2228
2229static inline int __pmu_filter_match(struct perf_event *event)
2230{
2231        struct pmu *pmu = event->pmu;
2232        return pmu->filter_match ? pmu->filter_match(event) : 1;
2233}
2234
2235/*
2236 * Check whether we should attempt to schedule an event group based on
2237 * PMU-specific filtering. An event group can consist of HW and SW events,
2238 * potentially with a SW leader, so we must check all the filters, to
2239 * determine whether a group is schedulable:
2240 */
2241static inline int pmu_filter_match(struct perf_event *event)
2242{
2243        struct perf_event *sibling;
2244
2245        if (!__pmu_filter_match(event))
2246                return 0;
2247
2248        for_each_sibling_event(sibling, event) {
2249                if (!__pmu_filter_match(sibling))
2250                        return 0;
2251        }
2252
2253        return 1;
2254}
2255
2256static inline int
2257event_filter_match(struct perf_event *event)
2258{
2259        return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260               perf_cgroup_match(event) && pmu_filter_match(event);
2261}
2262
2263static void
2264event_sched_out(struct perf_event *event,
2265                  struct perf_cpu_context *cpuctx,
2266                  struct perf_event_context *ctx)
2267{
2268        enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270        WARN_ON_ONCE(event->ctx != ctx);
2271        lockdep_assert_held(&ctx->lock);
2272
2273        if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                return;
2275
2276        /*
2277         * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278         * we can schedule events _OUT_ individually through things like
2279         * __perf_remove_from_context().
2280         */
2281        list_del_init(&event->active_list);
2282
2283        perf_pmu_disable(event->pmu);
2284
2285        event->pmu->del(event, 0);
2286        event->oncpu = -1;
2287
2288        if (READ_ONCE(event->pending_disable) >= 0) {
2289                WRITE_ONCE(event->pending_disable, -1);
2290                perf_cgroup_event_disable(event, ctx);
2291                state = PERF_EVENT_STATE_OFF;
2292        }
2293        perf_event_set_state(event, state);
2294
2295        if (!is_software_event(event))
2296                cpuctx->active_oncpu--;
2297        if (!--ctx->nr_active)
2298                perf_event_ctx_deactivate(ctx);
2299        if (event->attr.freq && event->attr.sample_freq)
2300                ctx->nr_freq--;
2301        if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                cpuctx->exclusive = 0;
2303
2304        perf_pmu_enable(event->pmu);
2305}
2306
2307static void
2308group_sched_out(struct perf_event *group_event,
2309                struct perf_cpu_context *cpuctx,
2310                struct perf_event_context *ctx)
2311{
2312        struct perf_event *event;
2313
2314        if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                return;
2316
2317        perf_pmu_disable(ctx->pmu);
2318
2319        event_sched_out(group_event, cpuctx, ctx);
2320
2321        /*
2322         * Schedule out siblings (if any):
2323         */
2324        for_each_sibling_event(event, group_event)
2325                event_sched_out(event, cpuctx, ctx);
2326
2327        perf_pmu_enable(ctx->pmu);
2328}
2329
2330#define DETACH_GROUP    0x01UL
2331#define DETACH_CHILD    0x02UL
2332
2333/*
2334 * Cross CPU call to remove a performance event
2335 *
2336 * We disable the event on the hardware level first. After that we
2337 * remove it from the context list.
2338 */
2339static void
2340__perf_remove_from_context(struct perf_event *event,
2341                           struct perf_cpu_context *cpuctx,
2342                           struct perf_event_context *ctx,
2343                           void *info)
2344{
2345        unsigned long flags = (unsigned long)info;
2346
2347        if (ctx->is_active & EVENT_TIME) {
2348                update_context_time(ctx);
2349                update_cgrp_time_from_cpuctx(cpuctx);
2350        }
2351
2352        event_sched_out(event, cpuctx, ctx);
2353        if (flags & DETACH_GROUP)
2354                perf_group_detach(event);
2355        if (flags & DETACH_CHILD)
2356                perf_child_detach(event);
2357        list_del_event(event, ctx);
2358
2359        if (!ctx->nr_events && ctx->is_active) {
2360                ctx->is_active = 0;
2361                ctx->rotate_necessary = 0;
2362                if (ctx->task) {
2363                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                        cpuctx->task_ctx = NULL;
2365                }
2366        }
2367}
2368
2369/*
2370 * Remove the event from a task's (or a CPU's) list of events.
2371 *
2372 * If event->ctx is a cloned context, callers must make sure that
2373 * every task struct that event->ctx->task could possibly point to
2374 * remains valid.  This is OK when called from perf_release since
2375 * that only calls us on the top-level context, which can't be a clone.
2376 * When called from perf_event_exit_task, it's OK because the
2377 * context has been detached from its task.
2378 */
2379static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380{
2381        struct perf_event_context *ctx = event->ctx;
2382
2383        lockdep_assert_held(&ctx->mutex);
2384
2385        /*
2386         * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387         * to work in the face of TASK_TOMBSTONE, unlike every other
2388         * event_function_call() user.
2389         */
2390        raw_spin_lock_irq(&ctx->lock);
2391        if (!ctx->is_active) {
2392                __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                           ctx, (void *)flags);
2394                raw_spin_unlock_irq(&ctx->lock);
2395                return;
2396        }
2397        raw_spin_unlock_irq(&ctx->lock);
2398
2399        event_function_call(event, __perf_remove_from_context, (void *)flags);
2400}
2401
2402/*
2403 * Cross CPU call to disable a performance event
2404 */
2405static void __perf_event_disable(struct perf_event *event,
2406                                 struct perf_cpu_context *cpuctx,
2407                                 struct perf_event_context *ctx,
2408                                 void *info)
2409{
2410        if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                return;
2412
2413        if (ctx->is_active & EVENT_TIME) {
2414                update_context_time(ctx);
2415                update_cgrp_time_from_event(event);
2416        }
2417
2418        if (event == event->group_leader)
2419                group_sched_out(event, cpuctx, ctx);
2420        else
2421                event_sched_out(event, cpuctx, ctx);
2422
2423        perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424        perf_cgroup_event_disable(event, ctx);
2425}
2426
2427/*
2428 * Disable an event.
2429 *
2430 * If event->ctx is a cloned context, callers must make sure that
2431 * every task struct that event->ctx->task could possibly point to
2432 * remains valid.  This condition is satisfied when called through
2433 * perf_event_for_each_child or perf_event_for_each because they
2434 * hold the top-level event's child_mutex, so any descendant that
2435 * goes to exit will block in perf_event_exit_event().
2436 *
2437 * When called from perf_pending_event it's OK because event->ctx
2438 * is the current context on this CPU and preemption is disabled,
2439 * hence we can't get into perf_event_task_sched_out for this context.
2440 */
2441static void _perf_event_disable(struct perf_event *event)
2442{
2443        struct perf_event_context *ctx = event->ctx;
2444
2445        raw_spin_lock_irq(&ctx->lock);
2446        if (event->state <= PERF_EVENT_STATE_OFF) {
2447                raw_spin_unlock_irq(&ctx->lock);
2448                return;
2449        }
2450        raw_spin_unlock_irq(&ctx->lock);
2451
2452        event_function_call(event, __perf_event_disable, NULL);
2453}
2454
2455void perf_event_disable_local(struct perf_event *event)
2456{
2457        event_function_local(event, __perf_event_disable, NULL);
2458}
2459
2460/*
2461 * Strictly speaking kernel users cannot create groups and therefore this
2462 * interface does not need the perf_event_ctx_lock() magic.
2463 */
2464void perf_event_disable(struct perf_event *event)
2465{
2466        struct perf_event_context *ctx;
2467
2468        ctx = perf_event_ctx_lock(event);
2469        _perf_event_disable(event);
2470        perf_event_ctx_unlock(event, ctx);
2471}
2472EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474void perf_event_disable_inatomic(struct perf_event *event)
2475{
2476        WRITE_ONCE(event->pending_disable, smp_processor_id());
2477        /* can fail, see perf_pending_event_disable() */
2478        irq_work_queue(&event->pending);
2479}
2480
2481static void perf_set_shadow_time(struct perf_event *event,
2482                                 struct perf_event_context *ctx)
2483{
2484        /*
2485         * use the correct time source for the time snapshot
2486         *
2487         * We could get by without this by leveraging the
2488         * fact that to get to this function, the caller
2489         * has most likely already called update_context_time()
2490         * and update_cgrp_time_xx() and thus both timestamp
2491         * are identical (or very close). Given that tstamp is,
2492         * already adjusted for cgroup, we could say that:
2493         *    tstamp - ctx->timestamp
2494         * is equivalent to
2495         *    tstamp - cgrp->timestamp.
2496         *
2497         * Then, in perf_output_read(), the calculation would
2498         * work with no changes because:
2499         * - event is guaranteed scheduled in
2500         * - no scheduled out in between
2501         * - thus the timestamp would be the same
2502         *
2503         * But this is a bit hairy.
2504         *
2505         * So instead, we have an explicit cgroup call to remain
2506         * within the time source all along. We believe it
2507         * is cleaner and simpler to understand.
2508         */
2509        if (is_cgroup_event(event))
2510                perf_cgroup_set_shadow_time(event, event->tstamp);
2511        else
2512                event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513}
2514
2515#define MAX_INTERRUPTS (~0ULL)
2516
2517static void perf_log_throttle(struct perf_event *event, int enable);
2518static void perf_log_itrace_start(struct perf_event *event);
2519
2520static int
2521event_sched_in(struct perf_event *event,
2522                 struct perf_cpu_context *cpuctx,
2523                 struct perf_event_context *ctx)
2524{
2525        int ret = 0;
2526
2527        WARN_ON_ONCE(event->ctx != ctx);
2528
2529        lockdep_assert_held(&ctx->lock);
2530
2531        if (event->state <= PERF_EVENT_STATE_OFF)
2532                return 0;
2533
2534        WRITE_ONCE(event->oncpu, smp_processor_id());
2535        /*
2536         * Order event::oncpu write to happen before the ACTIVE state is
2537         * visible. This allows perf_event_{stop,read}() to observe the correct
2538         * ->oncpu if it sees ACTIVE.
2539         */
2540        smp_wmb();
2541        perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543        /*
2544         * Unthrottle events, since we scheduled we might have missed several
2545         * ticks already, also for a heavily scheduling task there is little
2546         * guarantee it'll get a tick in a timely manner.
2547         */
2548        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                perf_log_throttle(event, 1);
2550                event->hw.interrupts = 0;
2551        }
2552
2553        perf_pmu_disable(event->pmu);
2554
2555        perf_set_shadow_time(event, ctx);
2556
2557        perf_log_itrace_start(event);
2558
2559        if (event->pmu->add(event, PERF_EF_START)) {
2560                perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                event->oncpu = -1;
2562                ret = -EAGAIN;
2563                goto out;
2564        }
2565
2566        if (!is_software_event(event))
2567                cpuctx->active_oncpu++;
2568        if (!ctx->nr_active++)
2569                perf_event_ctx_activate(ctx);
2570        if (event->attr.freq && event->attr.sample_freq)
2571                ctx->nr_freq++;
2572
2573        if (event->attr.exclusive)
2574                cpuctx->exclusive = 1;
2575
2576out:
2577        perf_pmu_enable(event->pmu);
2578
2579        return ret;
2580}
2581
2582static int
2583group_sched_in(struct perf_event *group_event,
2584               struct perf_cpu_context *cpuctx,
2585               struct perf_event_context *ctx)
2586{
2587        struct perf_event *event, *partial_group = NULL;
2588        struct pmu *pmu = ctx->pmu;
2589
2590        if (group_event->state == PERF_EVENT_STATE_OFF)
2591                return 0;
2592
2593        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595        if (event_sched_in(group_event, cpuctx, ctx))
2596                goto error;
2597
2598        /*
2599         * Schedule in siblings as one group (if any):
2600         */
2601        for_each_sibling_event(event, group_event) {
2602                if (event_sched_in(event, cpuctx, ctx)) {
2603                        partial_group = event;
2604                        goto group_error;
2605                }
2606        }
2607
2608        if (!pmu->commit_txn(pmu))
2609                return 0;
2610
2611group_error:
2612        /*
2613         * Groups can be scheduled in as one unit only, so undo any
2614         * partial group before returning:
2615         * The events up to the failed event are scheduled out normally.
2616         */
2617        for_each_sibling_event(event, group_event) {
2618                if (event == partial_group)
2619                        break;
2620
2621                event_sched_out(event, cpuctx, ctx);
2622        }
2623        event_sched_out(group_event, cpuctx, ctx);
2624
2625error:
2626        pmu->cancel_txn(pmu);
2627        return -EAGAIN;
2628}
2629
2630/*
2631 * Work out whether we can put this event group on the CPU now.
2632 */
2633static int group_can_go_on(struct perf_event *event,
2634                           struct perf_cpu_context *cpuctx,
2635                           int can_add_hw)
2636{
2637        /*
2638         * Groups consisting entirely of software events can always go on.
2639         */
2640        if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                return 1;
2642        /*
2643         * If an exclusive group is already on, no other hardware
2644         * events can go on.
2645         */
2646        if (cpuctx->exclusive)
2647                return 0;
2648        /*
2649         * If this group is exclusive and there are already
2650         * events on the CPU, it can't go on.
2651         */
2652        if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                return 0;
2654        /*
2655         * Otherwise, try to add it if all previous groups were able
2656         * to go on.
2657         */
2658        return can_add_hw;
2659}
2660
2661static void add_event_to_ctx(struct perf_event *event,
2662                               struct perf_event_context *ctx)
2663{
2664        list_add_event(event, ctx);
2665        perf_group_attach(event);
2666}
2667
2668static void ctx_sched_out(struct perf_event_context *ctx,
2669                          struct perf_cpu_context *cpuctx,
2670                          enum event_type_t event_type);
2671static void
2672ctx_sched_in(struct perf_event_context *ctx,
2673             struct perf_cpu_context *cpuctx,
2674             enum event_type_t event_type,
2675             struct task_struct *task);
2676
2677static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                               struct perf_event_context *ctx,
2679                               enum event_type_t event_type)
2680{
2681        if (!cpuctx->task_ctx)
2682                return;
2683
2684        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                return;
2686
2687        ctx_sched_out(ctx, cpuctx, event_type);
2688}
2689
2690static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                struct perf_event_context *ctx,
2692                                struct task_struct *task)
2693{
2694        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695        if (ctx)
2696                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698        if (ctx)
2699                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700}
2701
2702/*
2703 * We want to maintain the following priority of scheduling:
2704 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705 *  - task pinned (EVENT_PINNED)
2706 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707 *  - task flexible (EVENT_FLEXIBLE).
2708 *
2709 * In order to avoid unscheduling and scheduling back in everything every
2710 * time an event is added, only do it for the groups of equal priority and
2711 * below.
2712 *
2713 * This can be called after a batch operation on task events, in which case
2714 * event_type is a bit mask of the types of events involved. For CPU events,
2715 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716 */
2717static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                        struct perf_event_context *task_ctx,
2719                        enum event_type_t event_type)
2720{
2721        enum event_type_t ctx_event_type;
2722        bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724        /*
2725         * If pinned groups are involved, flexible groups also need to be
2726         * scheduled out.
2727         */
2728        if (event_type & EVENT_PINNED)
2729                event_type |= EVENT_FLEXIBLE;
2730
2731        ctx_event_type = event_type & EVENT_ALL;
2732
2733        perf_pmu_disable(cpuctx->ctx.pmu);
2734        if (task_ctx)
2735                task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737        /*
2738         * Decide which cpu ctx groups to schedule out based on the types
2739         * of events that caused rescheduling:
2740         *  - EVENT_CPU: schedule out corresponding groups;
2741         *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742         *  - otherwise, do nothing more.
2743         */
2744        if (cpu_event)
2745                cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746        else if (ctx_event_type & EVENT_PINNED)
2747                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749        perf_event_sched_in(cpuctx, task_ctx, current);
2750        perf_pmu_enable(cpuctx->ctx.pmu);
2751}
2752
2753void perf_pmu_resched(struct pmu *pmu)
2754{
2755        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758        perf_ctx_lock(cpuctx, task_ctx);
2759        ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760        perf_ctx_unlock(cpuctx, task_ctx);
2761}
2762
2763/*
2764 * Cross CPU call to install and enable a performance event
2765 *
2766 * Very similar to remote_function() + event_function() but cannot assume that
2767 * things like ctx->is_active and cpuctx->task_ctx are set.
2768 */
2769static int  __perf_install_in_context(void *info)
2770{
2771        struct perf_event *event = info;
2772        struct perf_event_context *ctx = event->ctx;
2773        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775        bool reprogram = true;
2776        int ret = 0;
2777
2778        raw_spin_lock(&cpuctx->ctx.lock);
2779        if (ctx->task) {
2780                raw_spin_lock(&ctx->lock);
2781                task_ctx = ctx;
2782
2783                reprogram = (ctx->task == current);
2784
2785                /*
2786                 * If the task is running, it must be running on this CPU,
2787                 * otherwise we cannot reprogram things.
2788                 *
2789                 * If its not running, we don't care, ctx->lock will
2790                 * serialize against it becoming runnable.
2791                 */
2792                if (task_curr(ctx->task) && !reprogram) {
2793                        ret = -ESRCH;
2794                        goto unlock;
2795                }
2796
2797                WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798        } else if (task_ctx) {
2799                raw_spin_lock(&task_ctx->lock);
2800        }
2801
2802#ifdef CONFIG_CGROUP_PERF
2803        if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                /*
2805                 * If the current cgroup doesn't match the event's
2806                 * cgroup, we should not try to schedule it.
2807                 */
2808                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                        event->cgrp->css.cgroup);
2811        }
2812#endif
2813
2814        if (reprogram) {
2815                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                add_event_to_ctx(event, ctx);
2817                ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818        } else {
2819                add_event_to_ctx(event, ctx);
2820        }
2821
2822unlock:
2823        perf_ctx_unlock(cpuctx, task_ctx);
2824
2825        return ret;
2826}
2827
2828static bool exclusive_event_installable(struct perf_event *event,
2829                                        struct perf_event_context *ctx);
2830
2831/*
2832 * Attach a performance event to a context.
2833 *
2834 * Very similar to event_function_call, see comment there.
2835 */
2836static void
2837perf_install_in_context(struct perf_event_context *ctx,
2838                        struct perf_event *event,
2839                        int cpu)
2840{
2841        struct task_struct *task = READ_ONCE(ctx->task);
2842
2843        lockdep_assert_held(&ctx->mutex);
2844
2845        WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847        if (event->cpu != -1)
2848                event->cpu = cpu;
2849
2850        /*
2851         * Ensures that if we can observe event->ctx, both the event and ctx
2852         * will be 'complete'. See perf_iterate_sb_cpu().
2853         */
2854        smp_store_release(&event->ctx, ctx);
2855
2856        /*
2857         * perf_event_attr::disabled events will not run and can be initialized
2858         * without IPI. Except when this is the first event for the context, in
2859         * that case we need the magic of the IPI to set ctx->is_active.
2860         *
2861         * The IOC_ENABLE that is sure to follow the creation of a disabled
2862         * event will issue the IPI and reprogram the hardware.
2863         */
2864        if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                raw_spin_lock_irq(&ctx->lock);
2866                if (ctx->task == TASK_TOMBSTONE) {
2867                        raw_spin_unlock_irq(&ctx->lock);
2868                        return;
2869                }
2870                add_event_to_ctx(event, ctx);
2871                raw_spin_unlock_irq(&ctx->lock);
2872                return;
2873        }
2874
2875        if (!task) {
2876                cpu_function_call(cpu, __perf_install_in_context, event);
2877                return;
2878        }
2879
2880        /*
2881         * Should not happen, we validate the ctx is still alive before calling.
2882         */
2883        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                return;
2885
2886        /*
2887         * Installing events is tricky because we cannot rely on ctx->is_active
2888         * to be set in case this is the nr_events 0 -> 1 transition.
2889         *
2890         * Instead we use task_curr(), which tells us if the task is running.
2891         * However, since we use task_curr() outside of rq::lock, we can race
2892         * against the actual state. This means the result can be wrong.
2893         *
2894         * If we get a false positive, we retry, this is harmless.
2895         *
2896         * If we get a false negative, things are complicated. If we are after
2897         * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898         * value must be correct. If we're before, it doesn't matter since
2899         * perf_event_context_sched_in() will program the counter.
2900         *
2901         * However, this hinges on the remote context switch having observed
2902         * our task->perf_event_ctxp[] store, such that it will in fact take
2903         * ctx::lock in perf_event_context_sched_in().
2904         *
2905         * We do this by task_function_call(), if the IPI fails to hit the task
2906         * we know any future context switch of task must see the
2907         * perf_event_ctpx[] store.
2908         */
2909
2910        /*
2911         * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912         * task_cpu() load, such that if the IPI then does not find the task
2913         * running, a future context switch of that task must observe the
2914         * store.
2915         */
2916        smp_mb();
2917again:
2918        if (!task_function_call(task, __perf_install_in_context, event))
2919                return;
2920
2921        raw_spin_lock_irq(&ctx->lock);
2922        task = ctx->task;
2923        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                /*
2925                 * Cannot happen because we already checked above (which also
2926                 * cannot happen), and we hold ctx->mutex, which serializes us
2927                 * against perf_event_exit_task_context().
2928                 */
2929                raw_spin_unlock_irq(&ctx->lock);
2930                return;
2931        }
2932        /*
2933         * If the task is not running, ctx->lock will avoid it becoming so,
2934         * thus we can safely install the event.
2935         */
2936        if (task_curr(task)) {
2937                raw_spin_unlock_irq(&ctx->lock);
2938                goto again;
2939        }
2940        add_event_to_ctx(event, ctx);
2941        raw_spin_unlock_irq(&ctx->lock);
2942}
2943
2944/*
2945 * Cross CPU call to enable a performance event
2946 */
2947static void __perf_event_enable(struct perf_event *event,
2948                                struct perf_cpu_context *cpuctx,
2949                                struct perf_event_context *ctx,
2950                                void *info)
2951{
2952        struct perf_event *leader = event->group_leader;
2953        struct perf_event_context *task_ctx;
2954
2955        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956            event->state <= PERF_EVENT_STATE_ERROR)
2957                return;
2958
2959        if (ctx->is_active)
2960                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962        perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963        perf_cgroup_event_enable(event, ctx);
2964
2965        if (!ctx->is_active)
2966                return;
2967
2968        if (!event_filter_match(event)) {
2969                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                return;
2971        }
2972
2973        /*
2974         * If the event is in a group and isn't the group leader,
2975         * then don't put it on unless the group is on.
2976         */
2977        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                return;
2980        }
2981
2982        task_ctx = cpuctx->task_ctx;
2983        if (ctx->task)
2984                WARN_ON_ONCE(task_ctx != ctx);
2985
2986        ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987}
2988
2989/*
2990 * Enable an event.
2991 *
2992 * If event->ctx is a cloned context, callers must make sure that
2993 * every task struct that event->ctx->task could possibly point to
2994 * remains valid.  This condition is satisfied when called through
2995 * perf_event_for_each_child or perf_event_for_each as described
2996 * for perf_event_disable.
2997 */
2998static void _perf_event_enable(struct perf_event *event)
2999{
3000        struct perf_event_context *ctx = event->ctx;
3001
3002        raw_spin_lock_irq(&ctx->lock);
3003        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004            event->state <  PERF_EVENT_STATE_ERROR) {
3005out:
3006                raw_spin_unlock_irq(&ctx->lock);
3007                return;
3008        }
3009
3010        /*
3011         * If the event is in error state, clear that first.
3012         *
3013         * That way, if we see the event in error state below, we know that it
3014         * has gone back into error state, as distinct from the task having
3015         * been scheduled away before the cross-call arrived.
3016         */
3017        if (event->state == PERF_EVENT_STATE_ERROR) {
3018                /*
3019                 * Detached SIBLING events cannot leave ERROR state.
3020                 */
3021                if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                    event->group_leader == event)
3023                        goto out;
3024
3025                event->state = PERF_EVENT_STATE_OFF;
3026        }
3027        raw_spin_unlock_irq(&ctx->lock);
3028
3029        event_function_call(event, __perf_event_enable, NULL);
3030}
3031
3032/*
3033 * See perf_event_disable();
3034 */
3035void perf_event_enable(struct perf_event *event)
3036{
3037        struct perf_event_context *ctx;
3038
3039        ctx = perf_event_ctx_lock(event);
3040        _perf_event_enable(event);
3041        perf_event_ctx_unlock(event, ctx);
3042}
3043EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045struct stop_event_data {
3046        struct perf_event       *event;
3047        unsigned int            restart;
3048};
3049
3050static int __perf_event_stop(void *info)
3051{
3052        struct stop_event_data *sd = info;
3053        struct perf_event *event = sd->event;
3054
3055        /* if it's already INACTIVE, do nothing */
3056        if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                return 0;
3058
3059        /* matches smp_wmb() in event_sched_in() */
3060        smp_rmb();
3061
3062        /*
3063         * There is a window with interrupts enabled before we get here,
3064         * so we need to check again lest we try to stop another CPU's event.
3065         */
3066        if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                return -EAGAIN;
3068
3069        event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071        /*
3072         * May race with the actual stop (through perf_pmu_output_stop()),
3073         * but it is only used for events with AUX ring buffer, and such
3074         * events will refuse to restart because of rb::aux_mmap_count==0,
3075         * see comments in perf_aux_output_begin().
3076         *
3077         * Since this is happening on an event-local CPU, no trace is lost
3078         * while restarting.
3079         */
3080        if (sd->restart)
3081                event->pmu->start(event, 0);
3082
3083        return 0;
3084}
3085
3086static int perf_event_stop(struct perf_event *event, int restart)
3087{
3088        struct stop_event_data sd = {
3089                .event          = event,
3090                .restart        = restart,
3091        };
3092        int ret = 0;
3093
3094        do {
3095                if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                        return 0;
3097
3098                /* matches smp_wmb() in event_sched_in() */
3099                smp_rmb();
3100
3101                /*
3102                 * We only want to restart ACTIVE events, so if the event goes
3103                 * inactive here (event->oncpu==-1), there's nothing more to do;
3104                 * fall through with ret==-ENXIO.
3105                 */
3106                ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                        __perf_event_stop, &sd);
3108        } while (ret == -EAGAIN);
3109
3110        return ret;
3111}
3112
3113/*
3114 * In order to contain the amount of racy and tricky in the address filter
3115 * configuration management, it is a two part process:
3116 *
3117 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118 *      we update the addresses of corresponding vmas in
3119 *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120 * (p2) when an event is scheduled in (pmu::add), it calls
3121 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122 *      if the generation has changed since the previous call.
3123 *
3124 * If (p1) happens while the event is active, we restart it to force (p2).
3125 *
3126 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128 *     ioctl;
3129 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130 *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131 *     for reading;
3132 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133 *     of exec.
3134 */
3135void perf_event_addr_filters_sync(struct perf_event *event)
3136{
3137        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139        if (!has_addr_filter(event))
3140                return;
3141
3142        raw_spin_lock(&ifh->lock);
3143        if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                event->pmu->addr_filters_sync(event);
3145                event->hw.addr_filters_gen = event->addr_filters_gen;
3146        }
3147        raw_spin_unlock(&ifh->lock);
3148}
3149EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151static int _perf_event_refresh(struct perf_event *event, int refresh)
3152{
3153        /*
3154         * not supported on inherited events
3155         */
3156        if (event->attr.inherit || !is_sampling_event(event))
3157                return -EINVAL;
3158
3159        atomic_add(refresh, &event->event_limit);
3160        _perf_event_enable(event);
3161
3162        return 0;
3163}
3164
3165/*
3166 * See perf_event_disable()
3167 */
3168int perf_event_refresh(struct perf_event *event, int refresh)
3169{
3170        struct perf_event_context *ctx;
3171        int ret;
3172
3173        ctx = perf_event_ctx_lock(event);
3174        ret = _perf_event_refresh(event, refresh);
3175        perf_event_ctx_unlock(event, ctx);
3176
3177        return ret;
3178}
3179EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                         struct perf_event_attr *attr)
3183{
3184        int err;
3185
3186        _perf_event_disable(bp);
3187
3188        err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190        if (!bp->attr.disabled)
3191                _perf_event_enable(bp);
3192
3193        return err;
3194}
3195
3196static int perf_event_modify_attr(struct perf_event *event,
3197                                  struct perf_event_attr *attr)
3198{
3199        int (*func)(struct perf_event *, struct perf_event_attr *);
3200        struct perf_event *child;
3201        int err;
3202
3203        if (event->attr.type != attr->type)
3204                return -EINVAL;
3205
3206        switch (event->attr.type) {
3207        case PERF_TYPE_BREAKPOINT:
3208                func = perf_event_modify_breakpoint;
3209                break;
3210        default:
3211                /* Place holder for future additions. */
3212                return -EOPNOTSUPP;
3213        }
3214
3215        WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217        mutex_lock(&event->child_mutex);
3218        err = func(event, attr);
3219        if (err)
3220                goto out;
3221        list_for_each_entry(child, &event->child_list, child_list) {
3222                err = func(child, attr);
3223                if (err)
3224                        goto out;
3225        }
3226out:
3227        mutex_unlock(&event->child_mutex);
3228        return err;
3229}
3230
3231static void ctx_sched_out(struct perf_event_context *ctx,
3232                          struct perf_cpu_context *cpuctx,
3233                          enum event_type_t event_type)
3234{
3235        struct perf_event *event, *tmp;
3236        int is_active = ctx->is_active;
3237
3238        lockdep_assert_held(&ctx->lock);
3239
3240        if (likely(!ctx->nr_events)) {
3241                /*
3242                 * See __perf_remove_from_context().
3243                 */
3244                WARN_ON_ONCE(ctx->is_active);
3245                if (ctx->task)
3246                        WARN_ON_ONCE(cpuctx->task_ctx);
3247                return;
3248        }
3249
3250        ctx->is_active &= ~event_type;
3251        if (!(ctx->is_active & EVENT_ALL))
3252                ctx->is_active = 0;
3253
3254        if (ctx->task) {
3255                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                if (!ctx->is_active)
3257                        cpuctx->task_ctx = NULL;
3258        }
3259
3260        /*
3261         * Always update time if it was set; not only when it changes.
3262         * Otherwise we can 'forget' to update time for any but the last
3263         * context we sched out. For example:
3264         *
3265         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266         *   ctx_sched_out(.event_type = EVENT_PINNED)
3267         *
3268         * would only update time for the pinned events.
3269         */
3270        if (is_active & EVENT_TIME) {
3271                /* update (and stop) ctx time */
3272                update_context_time(ctx);
3273                update_cgrp_time_from_cpuctx(cpuctx);
3274        }
3275
3276        is_active ^= ctx->is_active; /* changed bits */
3277
3278        if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                return;
3280
3281        perf_pmu_disable(ctx->pmu);
3282        if (is_active & EVENT_PINNED) {
3283                list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                        group_sched_out(event, cpuctx, ctx);
3285        }
3286
3287        if (is_active & EVENT_FLEXIBLE) {
3288                list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                        group_sched_out(event, cpuctx, ctx);
3290
3291                /*
3292                 * Since we cleared EVENT_FLEXIBLE, also clear
3293                 * rotate_necessary, is will be reset by
3294                 * ctx_flexible_sched_in() when needed.
3295                 */
3296                ctx->rotate_necessary = 0;
3297        }
3298        perf_pmu_enable(ctx->pmu);
3299}
3300
3301/*
3302 * Test whether two contexts are equivalent, i.e. whether they have both been
3303 * cloned from the same version of the same context.
3304 *
3305 * Equivalence is measured using a generation number in the context that is
3306 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307 * and list_del_event().
3308 */
3309static int context_equiv(struct perf_event_context *ctx1,
3310                         struct perf_event_context *ctx2)
3311{
3312        lockdep_assert_held(&ctx1->lock);
3313        lockdep_assert_held(&ctx2->lock);
3314
3315        /* Pinning disables the swap optimization */
3316        if (ctx1->pin_count || ctx2->pin_count)
3317                return 0;
3318
3319        /* If ctx1 is the parent of ctx2 */
3320        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                return 1;
3322
3323        /* If ctx2 is the parent of ctx1 */
3324        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                return 1;
3326
3327        /*
3328         * If ctx1 and ctx2 have the same parent; we flatten the parent
3329         * hierarchy, see perf_event_init_context().
3330         */
3331        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                        ctx1->parent_gen == ctx2->parent_gen)
3333                return 1;
3334
3335        /* Unmatched */
3336        return 0;
3337}
3338
3339static void __perf_event_sync_stat(struct perf_event *event,
3340                                     struct perf_event *next_event)
3341{
3342        u64 value;
3343
3344        if (!event->attr.inherit_stat)
3345                return;
3346
3347        /*
3348         * Update the event value, we cannot use perf_event_read()
3349         * because we're in the middle of a context switch and have IRQs
3350         * disabled, which upsets smp_call_function_single(), however
3351         * we know the event must be on the current CPU, therefore we
3352         * don't need to use it.
3353         */
3354        if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                event->pmu->read(event);
3356
3357        perf_event_update_time(event);
3358
3359        /*
3360         * In order to keep per-task stats reliable we need to flip the event
3361         * values when we flip the contexts.
3362         */
3363        value = local64_read(&next_event->count);
3364        value = local64_xchg(&event->count, value);
3365        local64_set(&next_event->count, value);
3366
3367        swap(event->total_time_enabled, next_event->total_time_enabled);
3368        swap(event->total_time_running, next_event->total_time_running);
3369
3370        /*
3371         * Since we swizzled the values, update the user visible data too.
3372         */
3373        perf_event_update_userpage(event);
3374        perf_event_update_userpage(next_event);
3375}
3376
3377static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                   struct perf_event_context *next_ctx)
3379{
3380        struct perf_event *event, *next_event;
3381
3382        if (!ctx->nr_stat)
3383                return;
3384
3385        update_context_time(ctx);
3386
3387        event = list_first_entry(&ctx->event_list,
3388                                   struct perf_event, event_entry);
3389
3390        next_event = list_first_entry(&next_ctx->event_list,
3391                                        struct perf_event, event_entry);
3392
3393        while (&event->event_entry != &ctx->event_list &&
3394               &next_event->event_entry != &next_ctx->event_list) {
3395
3396                __perf_event_sync_stat(event, next_event);
3397
3398                event = list_next_entry(event, event_entry);
3399                next_event = list_next_entry(next_event, event_entry);
3400        }
3401}
3402
3403static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                         struct task_struct *next)
3405{
3406        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407        struct perf_event_context *next_ctx;
3408        struct perf_event_context *parent, *next_parent;
3409        struct perf_cpu_context *cpuctx;
3410        int do_switch = 1;
3411        struct pmu *pmu;
3412
3413        if (likely(!ctx))
3414                return;
3415
3416        pmu = ctx->pmu;
3417        cpuctx = __get_cpu_context(ctx);
3418        if (!cpuctx->task_ctx)
3419                return;
3420
3421        rcu_read_lock();
3422        next_ctx = next->perf_event_ctxp[ctxn];
3423        if (!next_ctx)
3424                goto unlock;
3425
3426        parent = rcu_dereference(ctx->parent_ctx);
3427        next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429        /* If neither context have a parent context; they cannot be clones. */
3430        if (!parent && !next_parent)
3431                goto unlock;
3432
3433        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                /*
3435                 * Looks like the two contexts are clones, so we might be
3436                 * able to optimize the context switch.  We lock both
3437                 * contexts and check that they are clones under the
3438                 * lock (including re-checking that neither has been
3439                 * uncloned in the meantime).  It doesn't matter which
3440                 * order we take the locks because no other cpu could
3441                 * be trying to lock both of these tasks.
3442                 */
3443                raw_spin_lock(&ctx->lock);
3444                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                if (context_equiv(ctx, next_ctx)) {
3446
3447                        WRITE_ONCE(ctx->task, next);
3448                        WRITE_ONCE(next_ctx->task, task);
3449
3450                        perf_pmu_disable(pmu);
3451
3452                        if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                pmu->sched_task(ctx, false);
3454
3455                        /*
3456                         * PMU specific parts of task perf context can require
3457                         * additional synchronization. As an example of such
3458                         * synchronization see implementation details of Intel
3459                         * LBR call stack data profiling;
3460                         */
3461                        if (pmu->swap_task_ctx)
3462                                pmu->swap_task_ctx(ctx, next_ctx);
3463                        else
3464                                swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                        perf_pmu_enable(pmu);
3467
3468                        /*
3469                         * RCU_INIT_POINTER here is safe because we've not
3470                         * modified the ctx and the above modification of
3471                         * ctx->task and ctx->task_ctx_data are immaterial
3472                         * since those values are always verified under
3473                         * ctx->lock which we're now holding.
3474                         */
3475                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                        do_switch = 0;
3479
3480                        perf_event_sync_stat(ctx, next_ctx);
3481                }
3482                raw_spin_unlock(&next_ctx->lock);
3483                raw_spin_unlock(&ctx->lock);
3484        }
3485unlock:
3486        rcu_read_unlock();
3487
3488        if (do_switch) {
3489                raw_spin_lock(&ctx->lock);
3490                perf_pmu_disable(pmu);
3491
3492                if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                        pmu->sched_task(ctx, false);
3494                task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                perf_pmu_enable(pmu);
3497                raw_spin_unlock(&ctx->lock);
3498        }
3499}
3500
3501static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503void perf_sched_cb_dec(struct pmu *pmu)
3504{
3505        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507        this_cpu_dec(perf_sched_cb_usages);
3508
3509        if (!--cpuctx->sched_cb_usage)
3510                list_del(&cpuctx->sched_cb_entry);
3511}
3512
3513
3514void perf_sched_cb_inc(struct pmu *pmu)
3515{
3516        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518        if (!cpuctx->sched_cb_usage++)
3519                list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521        this_cpu_inc(perf_sched_cb_usages);
3522}
3523
3524/*
3525 * This function provides the context switch callback to the lower code
3526 * layer. It is invoked ONLY when the context switch callback is enabled.
3527 *
3528 * This callback is relevant even to per-cpu events; for example multi event
3529 * PEBS requires this to provide PID/TID information. This requires we flush
3530 * all queued PEBS records before we context switch to a new task.
3531 */
3532static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533{
3534        struct pmu *pmu;
3535
3536        pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538        if (WARN_ON_ONCE(!pmu->sched_task))
3539                return;
3540
3541        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542        perf_pmu_disable(pmu);
3543
3544        pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546        perf_pmu_enable(pmu);
3547        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548}
3549
3550static void perf_pmu_sched_task(struct task_struct *prev,
3551                                struct task_struct *next,
3552                                bool sched_in)
3553{
3554        struct perf_cpu_context *cpuctx;
3555
3556        if (prev == next)
3557                return;
3558
3559        list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                /* will be handled in perf_event_context_sched_in/out */
3561                if (cpuctx->task_ctx)
3562                        continue;
3563
3564                __perf_pmu_sched_task(cpuctx, sched_in);
3565        }
3566}
3567
3568static void perf_event_switch(struct task_struct *task,
3569                              struct task_struct *next_prev, bool sched_in);
3570
3571#define for_each_task_context_nr(ctxn)                                  \
3572        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574/*
3575 * Called from scheduler to remove the events of the current task,
3576 * with interrupts disabled.
3577 *
3578 * We stop each event and update the event value in event->count.
3579 *
3580 * This does not protect us against NMI, but disable()
3581 * sets the disabled bit in the control field of event _before_
3582 * accessing the event control register. If a NMI hits, then it will
3583 * not restart the event.
3584 */
3585void __perf_event_task_sched_out(struct task_struct *task,
3586                                 struct task_struct *next)
3587{
3588        int ctxn;
3589
3590        if (__this_cpu_read(perf_sched_cb_usages))
3591                perf_pmu_sched_task(task, next, false);
3592
3593        if (atomic_read(&nr_switch_events))
3594                perf_event_switch(task, next, false);
3595
3596        for_each_task_context_nr(ctxn)
3597                perf_event_context_sched_out(task, ctxn, next);
3598
3599        /*
3600         * if cgroup events exist on this CPU, then we need
3601         * to check if we have to switch out PMU state.
3602         * cgroup event are system-wide mode only
3603         */
3604        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                perf_cgroup_sched_out(task, next);
3606}
3607
3608/*
3609 * Called with IRQs disabled
3610 */
3611static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                              enum event_type_t event_type)
3613{
3614        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615}
3616
3617static bool perf_less_group_idx(const void *l, const void *r)
3618{
3619        const struct perf_event *le = *(const struct perf_event **)l;
3620        const struct perf_event *re = *(const struct perf_event **)r;
3621
3622        return le->group_index < re->group_index;
3623}
3624
3625static void swap_ptr(void *l, void *r)
3626{
3627        void **lp = l, **rp = r;
3628
3629        swap(*lp, *rp);
3630}
3631
3632static const struct min_heap_callbacks perf_min_heap = {
3633        .elem_size = sizeof(struct perf_event *),
3634        .less = perf_less_group_idx,
3635        .swp = swap_ptr,
3636};
3637
3638static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639{
3640        struct perf_event **itrs = heap->data;
3641
3642        if (event) {
3643                itrs[heap->nr] = event;
3644                heap->nr++;
3645        }
3646}
3647
3648static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                struct perf_event_groups *groups, int cpu,
3650                                int (*func)(struct perf_event *, void *),
3651                                void *data)
3652{
3653#ifdef CONFIG_CGROUP_PERF
3654        struct cgroup_subsys_state *css = NULL;
3655#endif
3656        /* Space for per CPU and/or any CPU event iterators. */
3657        struct perf_event *itrs[2];
3658        struct min_heap event_heap;
3659        struct perf_event **evt;
3660        int ret;
3661
3662        if (cpuctx) {
3663                event_heap = (struct min_heap){
3664                        .data = cpuctx->heap,
3665                        .nr = 0,
3666                        .size = cpuctx->heap_size,
3667                };
3668
3669                lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671#ifdef CONFIG_CGROUP_PERF
3672                if (cpuctx->cgrp)
3673                        css = &cpuctx->cgrp->css;
3674#endif
3675        } else {
3676                event_heap = (struct min_heap){
3677                        .data = itrs,
3678                        .nr = 0,
3679                        .size = ARRAY_SIZE(itrs),
3680                };
3681                /* Events not within a CPU context may be on any CPU. */
3682                __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683        }
3684        evt = event_heap.data;
3685
3686        __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688#ifdef CONFIG_CGROUP_PERF
3689        for (; css; css = css->parent)
3690                __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691#endif
3692
3693        min_heapify_all(&event_heap, &perf_min_heap);
3694
3695        while (event_heap.nr) {
3696                ret = func(*evt, data);
3697                if (ret)
3698                        return ret;
3699
3700                *evt = perf_event_groups_next(*evt);
3701                if (*evt)
3702                        min_heapify(&event_heap, 0, &perf_min_heap);
3703                else
3704                        min_heap_pop(&event_heap, &perf_min_heap);
3705        }
3706
3707        return 0;
3708}
3709
3710static inline bool event_update_userpage(struct perf_event *event)
3711{
3712        if (likely(!atomic_read(&event->mmap_count)))
3713                return false;
3714
3715        perf_event_update_time(event);
3716        perf_set_shadow_time(event, event->ctx);
3717        perf_event_update_userpage(event);
3718
3719        return true;
3720}
3721
3722static inline void group_update_userpage(struct perf_event *group_event)
3723{
3724        struct perf_event *event;
3725
3726        if (!event_update_userpage(group_event))
3727                return;
3728
3729        for_each_sibling_event(event, group_event)
3730                event_update_userpage(event);
3731}
3732
3733static int merge_sched_in(struct perf_event *event, void *data)
3734{
3735        struct perf_event_context *ctx = event->ctx;
3736        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3737        int *can_add_hw = data;
3738
3739        if (event->state <= PERF_EVENT_STATE_OFF)
3740                return 0;
3741
3742        if (!event_filter_match(event))
3743                return 0;
3744
3745        if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3746                if (!group_sched_in(event, cpuctx, ctx))
3747                        list_add_tail(&event->active_list, get_event_list(event));
3748        }
3749
3750        if (event->state == PERF_EVENT_STATE_INACTIVE) {
3751                *can_add_hw = 0;
3752                if (event->attr.pinned) {
3753                        perf_cgroup_event_disable(event, ctx);
3754                        perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3755                } else {
3756                        ctx->rotate_necessary = 1;
3757                        perf_mux_hrtimer_restart(cpuctx);
3758                        group_update_userpage(event);
3759                }
3760        }
3761
3762        return 0;
3763}
3764
3765static void
3766ctx_pinned_sched_in(struct perf_event_context *ctx,
3767                    struct perf_cpu_context *cpuctx)
3768{
3769        int can_add_hw = 1;
3770
3771        if (ctx != &cpuctx->ctx)
3772                cpuctx = NULL;
3773
3774        visit_groups_merge(cpuctx, &ctx->pinned_groups,
3775                           smp_processor_id(),
3776                           merge_sched_in, &can_add_hw);
3777}
3778
3779static void
3780ctx_flexible_sched_in(struct perf_event_context *ctx,
3781                      struct perf_cpu_context *cpuctx)
3782{
3783        int can_add_hw = 1;
3784
3785        if (ctx != &cpuctx->ctx)
3786                cpuctx = NULL;
3787
3788        visit_groups_merge(cpuctx, &ctx->flexible_groups,
3789                           smp_processor_id(),
3790                           merge_sched_in, &can_add_hw);
3791}
3792
3793static void
3794ctx_sched_in(struct perf_event_context *ctx,
3795             struct perf_cpu_context *cpuctx,
3796             enum event_type_t event_type,
3797             struct task_struct *task)
3798{
3799        int is_active = ctx->is_active;
3800        u64 now;
3801
3802        lockdep_assert_held(&ctx->lock);
3803
3804        if (likely(!ctx->nr_events))
3805                return;
3806
3807        ctx->is_active |= (event_type | EVENT_TIME);
3808        if (ctx->task) {
3809                if (!is_active)
3810                        cpuctx->task_ctx = ctx;
3811                else
3812                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3813        }
3814
3815        is_active ^= ctx->is_active; /* changed bits */
3816
3817        if (is_active & EVENT_TIME) {
3818                /* start ctx time */
3819                now = perf_clock();
3820                ctx->timestamp = now;
3821                perf_cgroup_set_timestamp(task, ctx);
3822        }
3823
3824        /*
3825         * First go through the list and put on any pinned groups
3826         * in order to give them the best chance of going on.
3827         */
3828        if (is_active & EVENT_PINNED)
3829                ctx_pinned_sched_in(ctx, cpuctx);
3830
3831        /* Then walk through the lower prio flexible groups */
3832        if (is_active & EVENT_FLEXIBLE)
3833                ctx_flexible_sched_in(ctx, cpuctx);
3834}
3835
3836static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3837                             enum event_type_t event_type,
3838                             struct task_struct *task)
3839{
3840        struct perf_event_context *ctx = &cpuctx->ctx;
3841
3842        ctx_sched_in(ctx, cpuctx, event_type, task);
3843}
3844
3845static void perf_event_context_sched_in(struct perf_event_context *ctx,
3846                                        struct task_struct *task)
3847{
3848        struct perf_cpu_context *cpuctx;
3849        struct pmu *pmu;
3850
3851        cpuctx = __get_cpu_context(ctx);
3852
3853        /*
3854         * HACK: for HETEROGENEOUS the task context might have switched to a
3855         * different PMU, force (re)set the context,
3856         */
3857        pmu = ctx->pmu = cpuctx->ctx.pmu;
3858
3859        if (cpuctx->task_ctx == ctx) {
3860                if (cpuctx->sched_cb_usage)
3861                        __perf_pmu_sched_task(cpuctx, true);
3862                return;
3863        }
3864
3865        perf_ctx_lock(cpuctx, ctx);
3866        /*
3867         * We must check ctx->nr_events while holding ctx->lock, such
3868         * that we serialize against perf_install_in_context().
3869         */
3870        if (!ctx->nr_events)
3871                goto unlock;
3872
3873        perf_pmu_disable(pmu);
3874        /*
3875         * We want to keep the following priority order:
3876         * cpu pinned (that don't need to move), task pinned,
3877         * cpu flexible, task flexible.
3878         *
3879         * However, if task's ctx is not carrying any pinned
3880         * events, no need to flip the cpuctx's events around.
3881         */
3882        if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3883                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3884        perf_event_sched_in(cpuctx, ctx, task);
3885
3886        if (cpuctx->sched_cb_usage && pmu->sched_task)
3887                pmu->sched_task(cpuctx->task_ctx, true);
3888
3889        perf_pmu_enable(pmu);
3890
3891unlock:
3892        perf_ctx_unlock(cpuctx, ctx);
3893}
3894
3895/*
3896 * Called from scheduler to add the events of the current task
3897 * with interrupts disabled.
3898 *
3899 * We restore the event value and then enable it.
3900 *
3901 * This does not protect us against NMI, but enable()
3902 * sets the enabled bit in the control field of event _before_
3903 * accessing the event control register. If a NMI hits, then it will
3904 * keep the event running.
3905 */
3906void __perf_event_task_sched_in(struct task_struct *prev,
3907                                struct task_struct *task)
3908{
3909        struct perf_event_context *ctx;
3910        int ctxn;
3911
3912        /*
3913         * If cgroup events exist on this CPU, then we need to check if we have
3914         * to switch in PMU state; cgroup event are system-wide mode only.
3915         *
3916         * Since cgroup events are CPU events, we must schedule these in before
3917         * we schedule in the task events.
3918         */
3919        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3920                perf_cgroup_sched_in(prev, task);
3921
3922        for_each_task_context_nr(ctxn) {
3923                ctx = task->perf_event_ctxp[ctxn];
3924                if (likely(!ctx))
3925                        continue;
3926
3927                perf_event_context_sched_in(ctx, task);
3928        }
3929
3930        if (atomic_read(&nr_switch_events))
3931                perf_event_switch(task, prev, true);
3932
3933        if (__this_cpu_read(perf_sched_cb_usages))
3934                perf_pmu_sched_task(prev, task, true);
3935}
3936
3937static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3938{
3939        u64 frequency = event->attr.sample_freq;
3940        u64 sec = NSEC_PER_SEC;
3941        u64 divisor, dividend;
3942
3943        int count_fls, nsec_fls, frequency_fls, sec_fls;
3944
3945        count_fls = fls64(count);
3946        nsec_fls = fls64(nsec);
3947        frequency_fls = fls64(frequency);
3948        sec_fls = 30;
3949
3950        /*
3951         * We got @count in @nsec, with a target of sample_freq HZ
3952         * the target period becomes:
3953         *
3954         *             @count * 10^9
3955         * period = -------------------
3956         *          @nsec * sample_freq
3957         *
3958         */
3959
3960        /*
3961         * Reduce accuracy by one bit such that @a and @b converge
3962         * to a similar magnitude.
3963         */
3964#define REDUCE_FLS(a, b)                \
3965do {                                    \
3966        if (a##_fls > b##_fls) {        \
3967                a >>= 1;                \
3968                a##_fls--;              \
3969        } else {                        \
3970                b >>= 1;                \
3971                b##_fls--;              \
3972        }                               \
3973} while (0)
3974
3975        /*
3976         * Reduce accuracy until either term fits in a u64, then proceed with
3977         * the other, so that finally we can do a u64/u64 division.
3978         */
3979        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3980                REDUCE_FLS(nsec, frequency);
3981                REDUCE_FLS(sec, count);
3982        }
3983
3984        if (count_fls + sec_fls > 64) {
3985                divisor = nsec * frequency;
3986
3987                while (count_fls + sec_fls > 64) {
3988                        REDUCE_FLS(count, sec);
3989                        divisor >>= 1;
3990                }
3991
3992                dividend = count * sec;
3993        } else {
3994                dividend = count * sec;
3995
3996                while (nsec_fls + frequency_fls > 64) {
3997                        REDUCE_FLS(nsec, frequency);
3998                        dividend >>= 1;
3999                }
4000
4001                divisor = nsec * frequency;
4002        }
4003
4004        if (!divisor)
4005                return dividend;
4006
4007        return div64_u64(dividend, divisor);
4008}
4009
4010static DEFINE_PER_CPU(int, perf_throttled_count);
4011static DEFINE_PER_CPU(u64, perf_throttled_seq);
4012
4013static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4014{
4015        struct hw_perf_event *hwc = &event->hw;
4016        s64 period, sample_period;
4017        s64 delta;
4018
4019        period = perf_calculate_period(event, nsec, count);
4020
4021        delta = (s64)(period - hwc->sample_period);
4022        delta = (delta + 7) / 8; /* low pass filter */
4023
4024        sample_period = hwc->sample_period + delta;
4025
4026        if (!sample_period)
4027                sample_period = 1;
4028
4029        hwc->sample_period = sample_period;
4030
4031        if (local64_read(&hwc->period_left) > 8*sample_period) {
4032                if (disable)
4033                        event->pmu->stop(event, PERF_EF_UPDATE);
4034
4035                local64_set(&hwc->period_left, 0);
4036
4037                if (disable)
4038                        event->pmu->start(event, PERF_EF_RELOAD);
4039        }
4040}
4041
4042/*
4043 * combine freq adjustment with unthrottling to avoid two passes over the
4044 * events. At the same time, make sure, having freq events does not change
4045 * the rate of unthrottling as that would introduce bias.
4046 */
4047static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4048                                           int needs_unthr)
4049{
4050        struct perf_event *event;
4051        struct hw_perf_event *hwc;
4052        u64 now, period = TICK_NSEC;
4053        s64 delta;
4054
4055        /*
4056         * only need to iterate over all events iff:
4057         * - context have events in frequency mode (needs freq adjust)
4058         * - there are events to unthrottle on this cpu
4059         */
4060        if (!(ctx->nr_freq || needs_unthr))
4061                return;
4062
4063        raw_spin_lock(&ctx->lock);
4064        perf_pmu_disable(ctx->pmu);
4065
4066        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4067                if (event->state != PERF_EVENT_STATE_ACTIVE)
4068                        continue;
4069
4070                if (!event_filter_match(event))
4071                        continue;
4072
4073                perf_pmu_disable(event->pmu);
4074
4075                hwc = &event->hw;
4076
4077                if (hwc->interrupts == MAX_INTERRUPTS) {
4078                        hwc->interrupts = 0;
4079                        perf_log_throttle(event, 1);
4080                        event->pmu->start(event, 0);
4081                }
4082
4083                if (!event->attr.freq || !event->attr.sample_freq)
4084                        goto next;
4085
4086                /*
4087                 * stop the event and update event->count
4088                 */
4089                event->pmu->stop(event, PERF_EF_UPDATE);
4090
4091                now = local64_read(&event->count);
4092                delta = now - hwc->freq_count_stamp;
4093                hwc->freq_count_stamp = now;
4094
4095                /*
4096                 * restart the event
4097                 * reload only if value has changed
4098                 * we have stopped the event so tell that
4099                 * to perf_adjust_period() to avoid stopping it
4100                 * twice.
4101                 */
4102                if (delta > 0)
4103                        perf_adjust_period(event, period, delta, false);
4104
4105                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4106        next:
4107                perf_pmu_enable(event->pmu);
4108        }
4109
4110        perf_pmu_enable(ctx->pmu);
4111        raw_spin_unlock(&ctx->lock);
4112}
4113
4114/*
4115 * Move @event to the tail of the @ctx's elegible events.
4116 */
4117static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4118{
4119        /*
4120         * Rotate the first entry last of non-pinned groups. Rotation might be
4121         * disabled by the inheritance code.
4122         */
4123        if (ctx->rotate_disable)
4124                return;
4125
4126        perf_event_groups_delete(&ctx->flexible_groups, event);
4127        perf_event_groups_insert(&ctx->flexible_groups, event);
4128}
4129
4130/* pick an event from the flexible_groups to rotate */
4131static inline struct perf_event *
4132ctx_event_to_rotate(struct perf_event_context *ctx)
4133{
4134        struct perf_event *event;
4135
4136        /* pick the first active flexible event */
4137        event = list_first_entry_or_null(&ctx->flexible_active,
4138                                         struct perf_event, active_list);
4139
4140        /* if no active flexible event, pick the first event */
4141        if (!event) {
4142                event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4143                                      typeof(*event), group_node);
4144        }
4145
4146        /*
4147         * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4148         * finds there are unschedulable events, it will set it again.
4149         */
4150        ctx->rotate_necessary = 0;
4151
4152        return event;
4153}
4154
4155static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4156{
4157        struct perf_event *cpu_event = NULL, *task_event = NULL;
4158        struct perf_event_context *task_ctx = NULL;
4159        int cpu_rotate, task_rotate;
4160
4161        /*
4162         * Since we run this from IRQ context, nobody can install new
4163         * events, thus the event count values are stable.
4164         */
4165
4166        cpu_rotate = cpuctx->ctx.rotate_necessary;
4167        task_ctx = cpuctx->task_ctx;
4168        task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4169
4170        if (!(cpu_rotate || task_rotate))
4171                return false;
4172
4173        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4174        perf_pmu_disable(cpuctx->ctx.pmu);
4175
4176        if (task_rotate)
4177                task_event = ctx_event_to_rotate(task_ctx);
4178        if (cpu_rotate)
4179                cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4180
4181        /*
4182         * As per the order given at ctx_resched() first 'pop' task flexible
4183         * and then, if needed CPU flexible.
4184         */
4185        if (task_event || (task_ctx && cpu_event))
4186                ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4187        if (cpu_event)
4188                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4189
4190        if (task_event)
4191                rotate_ctx(task_ctx, task_event);
4192        if (cpu_event)
4193                rotate_ctx(&cpuctx->ctx, cpu_event);
4194
4195        perf_event_sched_in(cpuctx, task_ctx, current);
4196
4197        perf_pmu_enable(cpuctx->ctx.pmu);
4198        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4199
4200        return true;
4201}
4202
4203void perf_event_task_tick(void)
4204{
4205        struct list_head *head = this_cpu_ptr(&active_ctx_list);
4206        struct perf_event_context *ctx, *tmp;
4207        int throttled;
4208
4209        lockdep_assert_irqs_disabled();
4210
4211        __this_cpu_inc(perf_throttled_seq);
4212        throttled = __this_cpu_xchg(perf_throttled_count, 0);
4213        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4214
4215        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4216                perf_adjust_freq_unthr_context(ctx, throttled);
4217}
4218
4219static int event_enable_on_exec(struct perf_event *event,
4220                                struct perf_event_context *ctx)
4221{
4222        if (!event->attr.enable_on_exec)
4223                return 0;
4224
4225        event->attr.enable_on_exec = 0;
4226        if (event->state >= PERF_EVENT_STATE_INACTIVE)
4227                return 0;
4228
4229        perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4230
4231        return 1;
4232}
4233
4234/*
4235 * Enable all of a task's events that have been marked enable-on-exec.
4236 * This expects task == current.
4237 */
4238static void perf_event_enable_on_exec(int ctxn)
4239{
4240        struct perf_event_context *ctx, *clone_ctx = NULL;
4241        enum event_type_t event_type = 0;
4242        struct perf_cpu_context *cpuctx;
4243        struct perf_event *event;
4244        unsigned long flags;
4245        int enabled = 0;
4246
4247        local_irq_save(flags);
4248        ctx = current->perf_event_ctxp[ctxn];
4249        if (!ctx || !ctx->nr_events)
4250                goto out;
4251
4252        cpuctx = __get_cpu_context(ctx);
4253        perf_ctx_lock(cpuctx, ctx);
4254        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4255        list_for_each_entry(event, &ctx->event_list, event_entry) {
4256                enabled |= event_enable_on_exec(event, ctx);
4257                event_type |= get_event_type(event);
4258        }
4259
4260        /*
4261         * Unclone and reschedule this context if we enabled any event.
4262         */
4263        if (enabled) {
4264                clone_ctx = unclone_ctx(ctx);
4265                ctx_resched(cpuctx, ctx, event_type);
4266        } else {
4267                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4268        }
4269        perf_ctx_unlock(cpuctx, ctx);
4270
4271out:
4272        local_irq_restore(flags);
4273
4274        if (clone_ctx)
4275                put_ctx(clone_ctx);
4276}
4277
4278static void perf_remove_from_owner(struct perf_event *event);
4279static void perf_event_exit_event(struct perf_event *event,
4280                                  struct perf_event_context *ctx);
4281
4282/*
4283 * Removes all events from the current task that have been marked
4284 * remove-on-exec, and feeds their values back to parent events.
4285 */
4286static void perf_event_remove_on_exec(int ctxn)
4287{
4288        struct perf_event_context *ctx, *clone_ctx = NULL;
4289        struct perf_event *event, *next;
4290        LIST_HEAD(free_list);
4291        unsigned long flags;
4292        bool modified = false;
4293
4294        ctx = perf_pin_task_context(current, ctxn);
4295        if (!ctx)
4296                return;
4297
4298        mutex_lock(&ctx->mutex);
4299
4300        if (WARN_ON_ONCE(ctx->task != current))
4301                goto unlock;
4302
4303        list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4304                if (!event->attr.remove_on_exec)
4305                        continue;
4306
4307                if (!is_kernel_event(event))
4308                        perf_remove_from_owner(event);
4309
4310                modified = true;
4311
4312                perf_event_exit_event(event, ctx);
4313        }
4314
4315        raw_spin_lock_irqsave(&ctx->lock, flags);
4316        if (modified)
4317                clone_ctx = unclone_ctx(ctx);
4318        --ctx->pin_count;
4319        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4320
4321unlock:
4322        mutex_unlock(&ctx->mutex);
4323
4324        put_ctx(ctx);
4325        if (clone_ctx)
4326                put_ctx(clone_ctx);
4327}
4328
4329struct perf_read_data {
4330        struct perf_event *event;
4331        bool group;
4332        int ret;
4333};
4334
4335static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4336{
4337        u16 local_pkg, event_pkg;
4338
4339        if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4340                int local_cpu = smp_processor_id();
4341
4342                event_pkg = topology_physical_package_id(event_cpu);
4343                local_pkg = topology_physical_package_id(local_cpu);
4344
4345                if (event_pkg == local_pkg)
4346                        return local_cpu;
4347        }
4348
4349        return event_cpu;
4350}
4351
4352/*
4353 * Cross CPU call to read the hardware event
4354 */
4355static void __perf_event_read(void *info)
4356{
4357        struct perf_read_data *data = info;
4358        struct perf_event *sub, *event = data->event;
4359        struct perf_event_context *ctx = event->ctx;
4360        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4361        struct pmu *pmu = event->pmu;
4362
4363        /*
4364         * If this is a task context, we need to check whether it is
4365         * the current task context of this cpu.  If not it has been
4366         * scheduled out before the smp call arrived.  In that case
4367         * event->count would have been updated to a recent sample
4368         * when the event was scheduled out.
4369         */
4370        if (ctx->task && cpuctx->task_ctx != ctx)
4371                return;
4372
4373        raw_spin_lock(&ctx->lock);
4374        if (ctx->is_active & EVENT_TIME) {
4375                update_context_time(ctx);
4376                update_cgrp_time_from_event(event);
4377        }
4378
4379        perf_event_update_time(event);
4380        if (data->group)
4381                perf_event_update_sibling_time(event);
4382
4383        if (event->state != PERF_EVENT_STATE_ACTIVE)
4384                goto unlock;
4385
4386        if (!data->group) {
4387                pmu->read(event);
4388                data->ret = 0;
4389                goto unlock;
4390        }
4391
4392        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4393
4394        pmu->read(event);
4395
4396        for_each_sibling_event(sub, event) {
4397                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4398                        /*
4399                         * Use sibling's PMU rather than @event's since
4400                         * sibling could be on different (eg: software) PMU.
4401                         */
4402                        sub->pmu->read(sub);
4403                }
4404        }
4405
4406        data->ret = pmu->commit_txn(pmu);
4407
4408unlock:
4409        raw_spin_unlock(&ctx->lock);
4410}
4411
4412static inline u64 perf_event_count(struct perf_event *event)
4413{
4414        return local64_read(&event->count) + atomic64_read(&event->child_count);
4415}
4416
4417/*
4418 * NMI-safe method to read a local event, that is an event that
4419 * is:
4420 *   - either for the current task, or for this CPU
4421 *   - does not have inherit set, for inherited task events
4422 *     will not be local and we cannot read them atomically
4423 *   - must not have a pmu::count method
4424 */
4425int perf_event_read_local(struct perf_event *event, u64 *value,
4426                          u64 *enabled, u64 *running)
4427{
4428        unsigned long flags;
4429        int ret = 0;
4430
4431        /*
4432         * Disabling interrupts avoids all counter scheduling (context
4433         * switches, timer based rotation and IPIs).
4434         */
4435        local_irq_save(flags);
4436
4437        /*
4438         * It must not be an event with inherit set, we cannot read
4439         * all child counters from atomic context.
4440         */
4441        if (event->attr.inherit) {
4442                ret = -EOPNOTSUPP;
4443                goto out;
4444        }
4445
4446        /* If this is a per-task event, it must be for current */
4447        if ((event->attach_state & PERF_ATTACH_TASK) &&
4448            event->hw.target != current) {
4449                ret = -EINVAL;
4450                goto out;
4451        }
4452
4453        /* If this is a per-CPU event, it must be for this CPU */
4454        if (!(event->attach_state & PERF_ATTACH_TASK) &&
4455            event->cpu != smp_processor_id()) {
4456                ret = -EINVAL;
4457                goto out;
4458        }
4459
4460        /* If this is a pinned event it must be running on this CPU */
4461        if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4462                ret = -EBUSY;
4463                goto out;
4464        }
4465
4466        /*
4467         * If the event is currently on this CPU, its either a per-task event,
4468         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4469         * oncpu == -1).
4470         */
4471        if (event->oncpu == smp_processor_id())
4472                event->pmu->read(event);
4473
4474        *value = local64_read(&event->count);
4475        if (enabled || running) {
4476                u64 now = event->shadow_ctx_time + perf_clock();
4477                u64 __enabled, __running;
4478
4479                __perf_update_times(event, now, &__enabled, &__running);
4480                if (enabled)
4481                        *enabled = __enabled;
4482                if (running)
4483                        *running = __running;
4484        }
4485out:
4486        local_irq_restore(flags);
4487
4488        return ret;
4489}
4490
4491static int perf_event_read(struct perf_event *event, bool group)
4492{
4493        enum perf_event_state state = READ_ONCE(event->state);
4494        int event_cpu, ret = 0;
4495
4496        /*
4497         * If event is enabled and currently active on a CPU, update the
4498         * value in the event structure:
4499         */
4500again:
4501        if (state == PERF_EVENT_STATE_ACTIVE) {
4502                struct perf_read_data data;
4503
4504                /*
4505                 * Orders the ->state and ->oncpu loads such that if we see
4506                 * ACTIVE we must also see the right ->oncpu.
4507                 *
4508                 * Matches the smp_wmb() from event_sched_in().
4509                 */
4510                smp_rmb();
4511
4512                event_cpu = READ_ONCE(event->oncpu);
4513                if ((unsigned)event_cpu >= nr_cpu_ids)
4514                        return 0;
4515
4516                data = (struct perf_read_data){
4517                        .event = event,
4518                        .group = group,
4519                        .ret = 0,
4520                };
4521
4522                preempt_disable();
4523                event_cpu = __perf_event_read_cpu(event, event_cpu);
4524
4525                /*
4526                 * Purposely ignore the smp_call_function_single() return
4527                 * value.
4528                 *
4529                 * If event_cpu isn't a valid CPU it means the event got
4530                 * scheduled out and that will have updated the event count.
4531                 *
4532                 * Therefore, either way, we'll have an up-to-date event count
4533                 * after this.
4534                 */
4535                (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4536                preempt_enable();
4537                ret = data.ret;
4538
4539        } else if (state == PERF_EVENT_STATE_INACTIVE) {
4540                struct perf_event_context *ctx = event->ctx;
4541                unsigned long flags;
4542
4543                raw_spin_lock_irqsave(&ctx->lock, flags);
4544                state = event->state;
4545                if (state != PERF_EVENT_STATE_INACTIVE) {
4546                        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4547                        goto again;
4548                }
4549
4550                /*
4551                 * May read while context is not active (e.g., thread is
4552                 * blocked), in that case we cannot update context time
4553                 */
4554                if (ctx->is_active & EVENT_TIME) {
4555                        update_context_time(ctx);
4556                        update_cgrp_time_from_event(event);
4557                }
4558
4559                perf_event_update_time(event);
4560                if (group)
4561                        perf_event_update_sibling_time(event);
4562                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4563        }
4564
4565        return ret;
4566}
4567
4568/*
4569 * Initialize the perf_event context in a task_struct:
4570 */
4571static void __perf_event_init_context(struct perf_event_context *ctx)
4572{
4573        raw_spin_lock_init(&ctx->lock);
4574        mutex_init(&ctx->mutex);
4575        INIT_LIST_HEAD(&ctx->active_ctx_list);
4576        perf_event_groups_init(&ctx->pinned_groups);
4577        perf_event_groups_init(&ctx->flexible_groups);
4578        INIT_LIST_HEAD(&ctx->event_list);
4579        INIT_LIST_HEAD(&ctx->pinned_active);
4580        INIT_LIST_HEAD(&ctx->flexible_active);
4581        refcount_set(&ctx->refcount, 1);
4582}
4583
4584static struct perf_event_context *
4585alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4586{
4587        struct perf_event_context *ctx;
4588
4589        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4590        if (!ctx)
4591                return NULL;
4592
4593        __perf_event_init_context(ctx);
4594        if (task)
4595                ctx->task = get_task_struct(task);
4596        ctx->pmu = pmu;
4597
4598        return ctx;
4599}
4600
4601static struct task_struct *
4602find_lively_task_by_vpid(pid_t vpid)
4603{
4604        struct task_struct *task;
4605
4606        rcu_read_lock();
4607        if (!vpid)
4608                task = current;
4609        else
4610                task = find_task_by_vpid(vpid);
4611        if (task)
4612                get_task_struct(task);
4613        rcu_read_unlock();
4614
4615        if (!task)
4616                return ERR_PTR(-ESRCH);
4617
4618        return task;
4619}
4620
4621/*
4622 * Returns a matching context with refcount and pincount.
4623 */
4624static struct perf_event_context *
4625find_get_context(struct pmu *pmu, struct task_struct *task,
4626                struct perf_event *event)
4627{
4628        struct perf_event_context *ctx, *clone_ctx = NULL;
4629        struct perf_cpu_context *cpuctx;
4630        void *task_ctx_data = NULL;
4631        unsigned long flags;
4632        int ctxn, err;
4633        int cpu = event->cpu;
4634
4635        if (!task) {
4636                /* Must be root to operate on a CPU event: */
4637                err = perf_allow_cpu(&event->attr);
4638                if (err)
4639                        return ERR_PTR(err);
4640
4641                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4642                ctx = &cpuctx->ctx;
4643                get_ctx(ctx);
4644                raw_spin_lock_irqsave(&ctx->lock, flags);
4645                ++ctx->pin_count;
4646                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4647
4648                return ctx;
4649        }
4650
4651        err = -EINVAL;
4652        ctxn = pmu->task_ctx_nr;
4653        if (ctxn < 0)
4654                goto errout;
4655
4656        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4657                task_ctx_data = alloc_task_ctx_data(pmu);
4658                if (!task_ctx_data) {
4659                        err = -ENOMEM;
4660                        goto errout;
4661                }
4662        }
4663
4664retry:
4665        ctx = perf_lock_task_context(task, ctxn, &flags);
4666        if (ctx) {
4667                clone_ctx = unclone_ctx(ctx);
4668                ++ctx->pin_count;
4669
4670                if (task_ctx_data && !ctx->task_ctx_data) {
4671                        ctx->task_ctx_data = task_ctx_data;
4672                        task_ctx_data = NULL;
4673                }
4674                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4675
4676                if (clone_ctx)
4677                        put_ctx(clone_ctx);
4678        } else {
4679                ctx = alloc_perf_context(pmu, task);
4680                err = -ENOMEM;
4681                if (!ctx)
4682                        goto errout;
4683
4684                if (task_ctx_data) {
4685                        ctx->task_ctx_data = task_ctx_data;
4686                        task_ctx_data = NULL;
4687                }
4688
4689                err = 0;
4690                mutex_lock(&task->perf_event_mutex);
4691                /*
4692                 * If it has already passed perf_event_exit_task().
4693                 * we must see PF_EXITING, it takes this mutex too.
4694                 */
4695                if (task->flags & PF_EXITING)
4696                        err = -ESRCH;
4697                else if (task->perf_event_ctxp[ctxn])
4698                        err = -EAGAIN;
4699                else {
4700                        get_ctx(ctx);
4701                        ++ctx->pin_count;
4702                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4703                }
4704                mutex_unlock(&task->perf_event_mutex);
4705
4706                if (unlikely(err)) {
4707                        put_ctx(ctx);
4708
4709                        if (err == -EAGAIN)
4710                                goto retry;
4711                        goto errout;
4712                }
4713        }
4714
4715        free_task_ctx_data(pmu, task_ctx_data);
4716        return ctx;
4717
4718errout:
4719        free_task_ctx_data(pmu, task_ctx_data);
4720        return ERR_PTR(err);
4721}
4722
4723static void perf_event_free_filter(struct perf_event *event);
4724
4725static void free_event_rcu(struct rcu_head *head)
4726{
4727        struct perf_event *event;
4728
4729        event = container_of(head, struct perf_event, rcu_head);
4730        if (event->ns)
4731                put_pid_ns(event->ns);
4732        perf_event_free_filter(event);
4733        kmem_cache_free(perf_event_cache, event);
4734}
4735
4736static void ring_buffer_attach(struct perf_event *event,
4737                               struct perf_buffer *rb);
4738
4739static void detach_sb_event(struct perf_event *event)
4740{
4741        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4742
4743        raw_spin_lock(&pel->lock);
4744        list_del_rcu(&event->sb_list);
4745        raw_spin_unlock(&pel->lock);
4746}
4747
4748static bool is_sb_event(struct perf_event *event)
4749{
4750        struct perf_event_attr *attr = &event->attr;
4751
4752        if (event->parent)
4753                return false;
4754
4755        if (event->attach_state & PERF_ATTACH_TASK)
4756                return false;
4757
4758        if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4759            attr->comm || attr->comm_exec ||
4760            attr->task || attr->ksymbol ||
4761            attr->context_switch || attr->text_poke ||
4762            attr->bpf_event)
4763                return true;
4764        return false;
4765}
4766
4767static void unaccount_pmu_sb_event(struct perf_event *event)
4768{
4769        if (is_sb_event(event))
4770                detach_sb_event(event);
4771}
4772
4773static void unaccount_event_cpu(struct perf_event *event, int cpu)
4774{
4775        if (event->parent)
4776                return;
4777
4778        if (is_cgroup_event(event))
4779                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4780}
4781
4782#ifdef CONFIG_NO_HZ_FULL
4783static DEFINE_SPINLOCK(nr_freq_lock);
4784#endif
4785
4786static void unaccount_freq_event_nohz(void)
4787{
4788#ifdef CONFIG_NO_HZ_FULL
4789        spin_lock(&nr_freq_lock);
4790        if (atomic_dec_and_test(&nr_freq_events))
4791                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4792        spin_unlock(&nr_freq_lock);
4793#endif
4794}
4795
4796static void unaccount_freq_event(void)
4797{
4798        if (tick_nohz_full_enabled())
4799                unaccount_freq_event_nohz();
4800        else
4801                atomic_dec(&nr_freq_events);
4802}
4803
4804static void unaccount_event(struct perf_event *event)
4805{
4806        bool dec = false;
4807
4808        if (event->parent)
4809                return;
4810
4811        if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4812                dec = true;
4813        if (event->attr.mmap || event->attr.mmap_data)
4814                atomic_dec(&nr_mmap_events);
4815        if (event->attr.build_id)
4816                atomic_dec(&nr_build_id_events);
4817        if (event->attr.comm)
4818                atomic_dec(&nr_comm_events);
4819        if (event->attr.namespaces)
4820                atomic_dec(&nr_namespaces_events);
4821        if (event->attr.cgroup)
4822                atomic_dec(&nr_cgroup_events);
4823        if (event->attr.task)
4824                atomic_dec(&nr_task_events);
4825        if (event->attr.freq)
4826                unaccount_freq_event();
4827        if (event->attr.context_switch) {
4828                dec = true;
4829                atomic_dec(&nr_switch_events);
4830        }
4831        if (is_cgroup_event(event))
4832                dec = true;
4833        if (has_branch_stack(event))
4834                dec = true;
4835        if (event->attr.ksymbol)
4836                atomic_dec(&nr_ksymbol_events);
4837        if (event->attr.bpf_event)
4838                atomic_dec(&nr_bpf_events);
4839        if (event->attr.text_poke)
4840                atomic_dec(&nr_text_poke_events);
4841
4842        if (dec) {
4843                if (!atomic_add_unless(&perf_sched_count, -1, 1))
4844                        schedule_delayed_work(&perf_sched_work, HZ);
4845        }
4846
4847        unaccount_event_cpu(event, event->cpu);
4848
4849        unaccount_pmu_sb_event(event);
4850}
4851
4852static void perf_sched_delayed(struct work_struct *work)
4853{
4854        mutex_lock(&perf_sched_mutex);
4855        if (atomic_dec_and_test(&perf_sched_count))
4856                static_branch_disable(&perf_sched_events);
4857        mutex_unlock(&perf_sched_mutex);
4858}
4859
4860/*
4861 * The following implement mutual exclusion of events on "exclusive" pmus
4862 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4863 * at a time, so we disallow creating events that might conflict, namely:
4864 *
4865 *  1) cpu-wide events in the presence of per-task events,
4866 *  2) per-task events in the presence of cpu-wide events,
4867 *  3) two matching events on the same context.
4868 *
4869 * The former two cases are handled in the allocation path (perf_event_alloc(),
4870 * _free_event()), the latter -- before the first perf_install_in_context().
4871 */
4872static int exclusive_event_init(struct perf_event *event)
4873{
4874        struct pmu *pmu = event->pmu;
4875
4876        if (!is_exclusive_pmu(pmu))
4877                return 0;
4878
4879        /*
4880         * Prevent co-existence of per-task and cpu-wide events on the
4881         * same exclusive pmu.
4882         *
4883         * Negative pmu::exclusive_cnt means there are cpu-wide
4884         * events on this "exclusive" pmu, positive means there are
4885         * per-task events.
4886         *
4887         * Since this is called in perf_event_alloc() path, event::ctx
4888         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4889         * to mean "per-task event", because unlike other attach states it
4890         * never gets cleared.
4891         */
4892        if (event->attach_state & PERF_ATTACH_TASK) {
4893                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4894                        return -EBUSY;
4895        } else {
4896                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4897                        return -EBUSY;
4898        }
4899
4900        return 0;
4901}
4902
4903static void exclusive_event_destroy(struct perf_event *event)
4904{
4905        struct pmu *pmu = event->pmu;
4906
4907        if (!is_exclusive_pmu(pmu))
4908                return;
4909
4910        /* see comment in exclusive_event_init() */
4911        if (event->attach_state & PERF_ATTACH_TASK)
4912                atomic_dec(&pmu->exclusive_cnt);
4913        else
4914                atomic_inc(&pmu->exclusive_cnt);
4915}
4916
4917static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4918{
4919        if ((e1->pmu == e2->pmu) &&
4920            (e1->cpu == e2->cpu ||
4921             e1->cpu == -1 ||
4922             e2->cpu == -1))
4923                return true;
4924        return false;
4925}
4926
4927static bool exclusive_event_installable(struct perf_event *event,
4928                                        struct perf_event_context *ctx)
4929{
4930        struct perf_event *iter_event;
4931        struct pmu *pmu = event->pmu;
4932
4933        lockdep_assert_held(&ctx->mutex);
4934
4935        if (!is_exclusive_pmu(pmu))
4936                return true;
4937
4938        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4939                if (exclusive_event_match(iter_event, event))
4940                        return false;
4941        }
4942
4943        return true;
4944}
4945
4946static void perf_addr_filters_splice(struct perf_event *event,
4947                                       struct list_head *head);
4948
4949static void _free_event(struct perf_event *event)
4950{
4951        irq_work_sync(&event->pending);
4952
4953        unaccount_event(event);
4954
4955        security_perf_event_free(event);
4956
4957        if (event->rb) {
4958                /*
4959                 * Can happen when we close an event with re-directed output.
4960                 *
4961                 * Since we have a 0 refcount, perf_mmap_close() will skip
4962                 * over us; possibly making our ring_buffer_put() the last.
4963                 */
4964                mutex_lock(&event->mmap_mutex);
4965                ring_buffer_attach(event, NULL);
4966                mutex_unlock(&event->mmap_mutex);
4967        }
4968
4969        if (is_cgroup_event(event))
4970                perf_detach_cgroup(event);
4971
4972        if (!event->parent) {
4973                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4974                        put_callchain_buffers();
4975        }
4976
4977        perf_event_free_bpf_prog(event);
4978        perf_addr_filters_splice(event, NULL);
4979        kfree(event->addr_filter_ranges);
4980
4981        if (event->destroy)
4982                event->destroy(event);
4983
4984        /*
4985         * Must be after ->destroy(), due to uprobe_perf_close() using
4986         * hw.target.
4987         */
4988        if (event->hw.target)
4989                put_task_struct(event->hw.target);
4990
4991        /*
4992         * perf_event_free_task() relies on put_ctx() being 'last', in particular
4993         * all task references must be cleaned up.
4994         */
4995        if (event->ctx)
4996                put_ctx(event->ctx);
4997
4998        exclusive_event_destroy(event);
4999        module_put(event->pmu->module);
5000
5001        call_rcu(&event->rcu_head, free_event_rcu);
5002}
5003
5004/*
5005 * Used to free events which have a known refcount of 1, such as in error paths
5006 * where the event isn't exposed yet and inherited events.
5007 */
5008static void free_event(struct perf_event *event)
5009{
5010        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5011                                "unexpected event refcount: %ld; ptr=%p\n",
5012                                atomic_long_read(&event->refcount), event)) {
5013                /* leak to avoid use-after-free */
5014                return;
5015        }
5016
5017        _free_event(event);
5018}
5019
5020/*
5021 * Remove user event from the owner task.
5022 */
5023static void perf_remove_from_owner(struct perf_event *event)
5024{
5025        struct task_struct *owner;
5026
5027        rcu_read_lock();
5028        /*
5029         * Matches the smp_store_release() in perf_event_exit_task(). If we
5030         * observe !owner it means the list deletion is complete and we can
5031         * indeed free this event, otherwise we need to serialize on
5032         * owner->perf_event_mutex.
5033         */
5034        owner = READ_ONCE(event->owner);
5035        if (owner) {
5036                /*
5037                 * Since delayed_put_task_struct() also drops the last
5038                 * task reference we can safely take a new reference
5039                 * while holding the rcu_read_lock().
5040                 */
5041                get_task_struct(owner);
5042        }
5043        rcu_read_unlock();
5044
5045        if (owner) {
5046                /*
5047                 * If we're here through perf_event_exit_task() we're already
5048                 * holding ctx->mutex which would be an inversion wrt. the
5049                 * normal lock order.
5050                 *
5051                 * However we can safely take this lock because its the child
5052                 * ctx->mutex.
5053                 */
5054                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5055
5056                /*
5057                 * We have to re-check the event->owner field, if it is cleared
5058                 * we raced with perf_event_exit_task(), acquiring the mutex
5059                 * ensured they're done, and we can proceed with freeing the
5060                 * event.
5061                 */
5062                if (event->owner) {
5063                        list_del_init(&event->owner_entry);
5064                        smp_store_release(&event->owner, NULL);
5065                }
5066                mutex_unlock(&owner->perf_event_mutex);
5067                put_task_struct(owner);
5068        }
5069}
5070
5071static void put_event(struct perf_event *event)
5072{
5073        if (!atomic_long_dec_and_test(&event->refcount))
5074                return;
5075
5076        _free_event(event);
5077}
5078
5079/*
5080 * Kill an event dead; while event:refcount will preserve the event
5081 * object, it will not preserve its functionality. Once the last 'user'
5082 * gives up the object, we'll destroy the thing.
5083 */
5084int perf_event_release_kernel(struct perf_event *event)
5085{
5086        struct perf_event_context *ctx = event->ctx;
5087        struct perf_event *child, *tmp;
5088        LIST_HEAD(free_list);
5089
5090        /*
5091         * If we got here through err_file: fput(event_file); we will not have
5092         * attached to a context yet.
5093         */
5094        if (!ctx) {
5095                WARN_ON_ONCE(event->attach_state &
5096                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5097                goto no_ctx;
5098        }
5099
5100        if (!is_kernel_event(event))
5101                perf_remove_from_owner(event);
5102
5103        ctx = perf_event_ctx_lock(event);
5104        WARN_ON_ONCE(ctx->parent_ctx);
5105        perf_remove_from_context(event, DETACH_GROUP);
5106
5107        raw_spin_lock_irq(&ctx->lock);
5108        /*
5109         * Mark this event as STATE_DEAD, there is no external reference to it
5110         * anymore.
5111         *
5112         * Anybody acquiring event->child_mutex after the below loop _must_
5113         * also see this, most importantly inherit_event() which will avoid
5114         * placing more children on the list.
5115         *
5116         * Thus this guarantees that we will in fact observe and kill _ALL_
5117         * child events.
5118         */
5119        event->state = PERF_EVENT_STATE_DEAD;
5120        raw_spin_unlock_irq(&ctx->lock);
5121
5122        perf_event_ctx_unlock(event, ctx);
5123
5124again:
5125        mutex_lock(&event->child_mutex);
5126        list_for_each_entry(child, &event->child_list, child_list) {
5127
5128                /*
5129                 * Cannot change, child events are not migrated, see the
5130                 * comment with perf_event_ctx_lock_nested().
5131                 */
5132                ctx = READ_ONCE(child->ctx);
5133                /*
5134                 * Since child_mutex nests inside ctx::mutex, we must jump
5135                 * through hoops. We start by grabbing a reference on the ctx.
5136                 *
5137                 * Since the event cannot get freed while we hold the
5138                 * child_mutex, the context must also exist and have a !0
5139                 * reference count.
5140                 */
5141                get_ctx(ctx);
5142
5143                /*
5144                 * Now that we have a ctx ref, we can drop child_mutex, and
5145                 * acquire ctx::mutex without fear of it going away. Then we
5146                 * can re-acquire child_mutex.
5147                 */
5148                mutex_unlock(&event->child_mutex);
5149                mutex_lock(&ctx->mutex);
5150                mutex_lock(&event->child_mutex);
5151
5152                /*
5153                 * Now that we hold ctx::mutex and child_mutex, revalidate our
5154                 * state, if child is still the first entry, it didn't get freed
5155                 * and we can continue doing so.
5156                 */
5157                tmp = list_first_entry_or_null(&event->child_list,
5158                                               struct perf_event, child_list);
5159                if (tmp == child) {
5160                        perf_remove_from_context(child, DETACH_GROUP);
5161                        list_move(&child->child_list, &free_list);
5162                        /*
5163                         * This matches the refcount bump in inherit_event();
5164                         * this can't be the last reference.
5165                         */
5166                        put_event(event);
5167                }
5168
5169                mutex_unlock(&event->child_mutex);
5170                mutex_unlock(&ctx->mutex);
5171                put_ctx(ctx);
5172                goto again;
5173        }
5174        mutex_unlock(&event->child_mutex);
5175
5176        list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5177                void *var = &child->ctx->refcount;
5178
5179                list_del(&child->child_list);
5180                free_event(child);
5181
5182                /*
5183                 * Wake any perf_event_free_task() waiting for this event to be
5184                 * freed.
5185                 */
5186                smp_mb(); /* pairs with wait_var_event() */
5187                wake_up_var(var);
5188        }
5189
5190no_ctx:
5191        put_event(event); /* Must be the 'last' reference */
5192        return 0;
5193}
5194EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5195
5196/*
5197 * Called when the last reference to the file is gone.
5198 */
5199static int perf_release(struct inode *inode, struct file *file)
5200{
5201        perf_event_release_kernel(file->private_data);
5202        return 0;
5203}
5204
5205static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5206{
5207        struct perf_event *child;
5208        u64 total = 0;
5209
5210        *enabled = 0;
5211        *running = 0;
5212
5213        mutex_lock(&event->child_mutex);
5214
5215        (void)perf_event_read(event, false);
5216        total += perf_event_count(event);
5217
5218        *enabled += event->total_time_enabled +
5219                        atomic64_read(&event->child_total_time_enabled);
5220        *running += event->total_time_running +
5221                        atomic64_read(&event->child_total_time_running);
5222
5223        list_for_each_entry(child, &event->child_list, child_list) {
5224                (void)perf_event_read(child, false);
5225                total += perf_event_count(child);
5226                *enabled += child->total_time_enabled;
5227                *running += child->total_time_running;
5228        }
5229        mutex_unlock(&event->child_mutex);
5230
5231        return total;
5232}
5233
5234u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5235{
5236        struct perf_event_context *ctx;
5237        u64 count;
5238
5239        ctx = perf_event_ctx_lock(event);
5240        count = __perf_event_read_value(event, enabled, running);
5241        perf_event_ctx_unlock(event, ctx);
5242
5243        return count;
5244}
5245EXPORT_SYMBOL_GPL(perf_event_read_value);
5246
5247static int __perf_read_group_add(struct perf_event *leader,
5248                                        u64 read_format, u64 *values)
5249{
5250        struct perf_event_context *ctx = leader->ctx;
5251        struct perf_event *sub;
5252        unsigned long flags;
5253        int n = 1; /* skip @nr */
5254        int ret;
5255
5256        ret = perf_event_read(leader, true);
5257        if (ret)
5258                return ret;
5259
5260        raw_spin_lock_irqsave(&ctx->lock, flags);
5261
5262        /*
5263         * Since we co-schedule groups, {enabled,running} times of siblings
5264         * will be identical to those of the leader, so we only publish one
5265         * set.
5266         */
5267        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5268                values[n++] += leader->total_time_enabled +
5269                        atomic64_read(&leader->child_total_time_enabled);
5270        }
5271
5272        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5273                values[n++] += leader->total_time_running +
5274                        atomic64_read(&leader->child_total_time_running);
5275        }
5276
5277        /*
5278         * Write {count,id} tuples for every sibling.
5279         */
5280        values[n++] += perf_event_count(leader);
5281        if (read_format & PERF_FORMAT_ID)
5282                values[n++] = primary_event_id(leader);
5283
5284        for_each_sibling_event(sub, leader) {
5285                values[n++] += perf_event_count(sub);
5286                if (read_format & PERF_FORMAT_ID)
5287                        values[n++] = primary_event_id(sub);
5288        }
5289
5290        raw_spin_unlock_irqrestore(&ctx->lock, flags);
5291        return 0;
5292}
5293
5294static int perf_read_group(struct perf_event *event,
5295                                   u64 read_format, char __user *buf)
5296{
5297        struct perf_event *leader = event->group_leader, *child;
5298        struct perf_event_context *ctx = leader->ctx;
5299        int ret;
5300        u64 *values;
5301
5302        lockdep_assert_held(&ctx->mutex);
5303
5304        values = kzalloc(event->read_size, GFP_KERNEL);
5305        if (!values)
5306                return -ENOMEM;
5307
5308        values[0] = 1 + leader->nr_siblings;
5309
5310        /*
5311         * By locking the child_mutex of the leader we effectively
5312         * lock the child list of all siblings.. XXX explain how.
5313         */
5314        mutex_lock(&leader->child_mutex);
5315
5316        ret = __perf_read_group_add(leader, read_format, values);
5317        if (ret)
5318                goto unlock;
5319
5320        list_for_each_entry(child, &leader->child_list, child_list) {
5321                ret = __perf_read_group_add(child, read_format, values);
5322                if (ret)
5323                        goto unlock;
5324        }
5325
5326        mutex_unlock(&leader->child_mutex);
5327
5328        ret = event->read_size;
5329        if (copy_to_user(buf, values, event->read_size))
5330                ret = -EFAULT;
5331        goto out;
5332
5333unlock:
5334        mutex_unlock(&leader->child_mutex);
5335out:
5336        kfree(values);
5337        return ret;
5338}
5339
5340static int perf_read_one(struct perf_event *event,
5341                                 u64 read_format, char __user *buf)
5342{
5343        u64 enabled, running;
5344        u64 values[4];
5345        int n = 0;
5346
5347        values[n++] = __perf_event_read_value(event, &enabled, &running);
5348        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5349                values[n++] = enabled;
5350        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5351                values[n++] = running;
5352        if (read_format & PERF_FORMAT_ID)
5353                values[n++] = primary_event_id(event);
5354
5355        if (copy_to_user(buf, values, n * sizeof(u64)))
5356                return -EFAULT;
5357
5358        return n * sizeof(u64);
5359}
5360
5361static bool is_event_hup(struct perf_event *event)
5362{
5363        bool no_children;
5364
5365        if (event->state > PERF_EVENT_STATE_EXIT)
5366                return false;
5367
5368        mutex_lock(&event->child_mutex);
5369        no_children = list_empty(&event->child_list);
5370        mutex_unlock(&event->child_mutex);
5371        return no_children;
5372}
5373
5374/*
5375 * Read the performance event - simple non blocking version for now
5376 */
5377static ssize_t
5378__perf_read(struct perf_event *event, char __user *buf, size_t count)
5379{
5380        u64 read_format = event->attr.read_format;
5381        int ret;
5382
5383        /*
5384         * Return end-of-file for a read on an event that is in
5385         * error state (i.e. because it was pinned but it couldn't be
5386         * scheduled on to the CPU at some point).
5387         */
5388        if (event->state == PERF_EVENT_STATE_ERROR)
5389                return 0;
5390
5391        if (count < event->read_size)
5392                return -ENOSPC;
5393
5394        WARN_ON_ONCE(event->ctx->parent_ctx);
5395        if (read_format & PERF_FORMAT_GROUP)
5396                ret = perf_read_group(event, read_format, buf);
5397        else
5398                ret = perf_read_one(event, read_format, buf);
5399
5400        return ret;
5401}
5402
5403static ssize_t
5404perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5405{
5406        struct perf_event *event = file->private_data;
5407        struct perf_event_context *ctx;
5408        int ret;
5409
5410        ret = security_perf_event_read(event);
5411        if (ret)
5412                return ret;
5413
5414        ctx = perf_event_ctx_lock(event);
5415        ret = __perf_read(event, buf, count);
5416        perf_event_ctx_unlock(event, ctx);
5417
5418        return ret;
5419}
5420
5421static __poll_t perf_poll(struct file *file, poll_table *wait)
5422{
5423        struct perf_event *event = file->private_data;
5424        struct perf_buffer *rb;
5425        __poll_t events = EPOLLHUP;
5426
5427        poll_wait(file, &event->waitq, wait);
5428
5429        if (is_event_hup(event))
5430                return events;
5431
5432        /*
5433         * Pin the event->rb by taking event->mmap_mutex; otherwise
5434         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5435         */
5436        mutex_lock(&event->mmap_mutex);
5437        rb = event->rb;
5438        if (rb)
5439                events = atomic_xchg(&rb->poll, 0);
5440        mutex_unlock(&event->mmap_mutex);
5441        return events;
5442}
5443
5444static void _perf_event_reset(struct perf_event *event)
5445{
5446        (void)perf_event_read(event, false);
5447        local64_set(&event->count, 0);
5448        perf_event_update_userpage(event);
5449}
5450
5451/* Assume it's not an event with inherit set. */
5452u64 perf_event_pause(struct perf_event *event, bool reset)
5453{
5454        struct perf_event_context *ctx;
5455        u64 count;
5456
5457        ctx = perf_event_ctx_lock(event);
5458        WARN_ON_ONCE(event->attr.inherit);
5459        _perf_event_disable(event);
5460        count = local64_read(&event->count);
5461        if (reset)
5462                local64_set(&event->count, 0);
5463        perf_event_ctx_unlock(event, ctx);
5464
5465        return count;
5466}
5467EXPORT_SYMBOL_GPL(perf_event_pause);
5468
5469/*
5470 * Holding the top-level event's child_mutex means that any
5471 * descendant process that has inherited this event will block
5472 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5473 * task existence requirements of perf_event_enable/disable.
5474 */
5475static void perf_event_for_each_child(struct perf_event *event,
5476                                        void (*func)(struct perf_event *))
5477{
5478        struct perf_event *child;
5479
5480        WARN_ON_ONCE(event->ctx->parent_ctx);
5481
5482        mutex_lock(&event->child_mutex);
5483        func(event);
5484        list_for_each_entry(child, &event->child_list, child_list)
5485                func(child);
5486        mutex_unlock(&event->child_mutex);
5487}
5488
5489static void perf_event_for_each(struct perf_event *event,
5490                                  void (*func)(struct perf_event *))
5491{
5492        struct perf_event_context *ctx = event->ctx;
5493        struct perf_event *sibling;
5494
5495        lockdep_assert_held(&ctx->mutex);
5496
5497        event = event->group_leader;
5498
5499        perf_event_for_each_child(event, func);
5500        for_each_sibling_event(sibling, event)
5501                perf_event_for_each_child(sibling, func);
5502}
5503
5504static void __perf_event_period(struct perf_event *event,
5505                                struct perf_cpu_context *cpuctx,
5506                                struct perf_event_context *ctx,
5507                                void *info)
5508{
5509        u64 value = *((u64 *)info);
5510        bool active;
5511
5512        if (event->attr.freq) {
5513                event->attr.sample_freq = value;
5514        } else {
5515                event->attr.sample_period = value;
5516                event->hw.sample_period = value;
5517        }
5518
5519        active = (event->state == PERF_EVENT_STATE_ACTIVE);
5520        if (active) {
5521                perf_pmu_disable(ctx->pmu);
5522                /*
5523                 * We could be throttled; unthrottle now to avoid the tick
5524                 * trying to unthrottle while we already re-started the event.
5525                 */
5526                if (event->hw.interrupts == MAX_INTERRUPTS) {
5527                        event->hw.interrupts = 0;
5528                        perf_log_throttle(event, 1);
5529                }
5530                event->pmu->stop(event, PERF_EF_UPDATE);
5531        }
5532
5533        local64_set(&event->hw.period_left, 0);
5534
5535        if (active) {
5536                event->pmu->start(event, PERF_EF_RELOAD);
5537                perf_pmu_enable(ctx->pmu);
5538        }
5539}
5540
5541static int perf_event_check_period(struct perf_event *event, u64 value)
5542{
5543        return event->pmu->check_period(event, value);
5544}
5545
5546static int _perf_event_period(struct perf_event *event, u64 value)
5547{
5548        if (!is_sampling_event(event))
5549                return -EINVAL;
5550
5551        if (!value)
5552                return -EINVAL;
5553
5554        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5555                return -EINVAL;
5556
5557        if (perf_event_check_period(event, value))
5558                return -EINVAL;
5559
5560        if (!event->attr.freq && (value & (1ULL << 63)))
5561                return -EINVAL;
5562
5563        event_function_call(event, __perf_event_period, &value);
5564
5565        return 0;
5566}
5567
5568int perf_event_period(struct perf_event *event, u64 value)
5569{
5570        struct perf_event_context *ctx;
5571        int ret;
5572
5573        ctx = perf_event_ctx_lock(event);
5574        ret = _perf_event_period(event, value);
5575        perf_event_ctx_unlock(event, ctx);
5576
5577        return ret;
5578}
5579EXPORT_SYMBOL_GPL(perf_event_period);
5580
5581static const struct file_operations perf_fops;
5582
5583static inline int perf_fget_light(int fd, struct fd *p)
5584{
5585        struct fd f = fdget(fd);
5586        if (!f.file)
5587                return -EBADF;
5588
5589        if (f.file->f_op != &perf_fops) {
5590                fdput(f);
5591                return -EBADF;
5592        }
5593        *p = f;
5594        return 0;
5595}
5596
5597static int perf_event_set_output(struct perf_event *event,
5598                                 struct perf_event *output_event);
5599static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5600static int perf_copy_attr(struct perf_event_attr __user *uattr,
5601                          struct perf_event_attr *attr);
5602
5603static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5604{
5605        void (*func)(struct perf_event *);
5606        u32 flags = arg;
5607
5608        switch (cmd) {
5609        case PERF_EVENT_IOC_ENABLE:
5610                func = _perf_event_enable;
5611                break;
5612        case PERF_EVENT_IOC_DISABLE:
5613                func = _perf_event_disable;
5614                break;
5615        case PERF_EVENT_IOC_RESET:
5616                func = _perf_event_reset;
5617                break;
5618
5619        case PERF_EVENT_IOC_REFRESH:
5620                return _perf_event_refresh(event, arg);
5621
5622        case PERF_EVENT_IOC_PERIOD:
5623        {
5624                u64 value;
5625
5626                if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5627                        return -EFAULT;
5628
5629                return _perf_event_period(event, value);
5630        }
5631        case PERF_EVENT_IOC_ID:
5632        {
5633                u64 id = primary_event_id(event);
5634
5635                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5636                        return -EFAULT;
5637                return 0;
5638        }
5639
5640        case PERF_EVENT_IOC_SET_OUTPUT:
5641        {
5642                int ret;
5643                if (arg != -1) {
5644                        struct perf_event *output_event;
5645                        struct fd output;
5646                        ret = perf_fget_light(arg, &output);
5647                        if (ret)
5648                                return ret;
5649                        output_event = output.file->private_data;
5650                        ret = perf_event_set_output(event, output_event);
5651                        fdput(output);
5652                } else {
5653                        ret = perf_event_set_output(event, NULL);
5654                }
5655                return ret;
5656        }
5657
5658        case PERF_EVENT_IOC_SET_FILTER:
5659                return perf_event_set_filter(event, (void __user *)arg);
5660
5661        case PERF_EVENT_IOC_SET_BPF:
5662        {
5663                struct bpf_prog *prog;
5664                int err;
5665
5666                prog = bpf_prog_get(arg);
5667                if (IS_ERR(prog))
5668                        return PTR_ERR(prog);
5669
5670                err = perf_event_set_bpf_prog(event, prog, 0);
5671                if (err) {
5672                        bpf_prog_put(prog);
5673                        return err;
5674                }
5675
5676                return 0;
5677        }
5678
5679        case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5680                struct perf_buffer *rb;
5681
5682                rcu_read_lock();
5683                rb = rcu_dereference(event->rb);
5684                if (!rb || !rb->nr_pages) {
5685                        rcu_read_unlock();
5686                        return -EINVAL;
5687                }
5688                rb_toggle_paused(rb, !!arg);
5689                rcu_read_unlock();
5690                return 0;
5691        }
5692
5693        case PERF_EVENT_IOC_QUERY_BPF:
5694                return perf_event_query_prog_array(event, (void __user *)arg);
5695
5696        case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5697                struct perf_event_attr new_attr;
5698                int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5699                                         &new_attr);
5700
5701                if (err)
5702                        return err;
5703
5704                return perf_event_modify_attr(event,  &new_attr);
5705        }
5706        default:
5707                return -ENOTTY;
5708        }
5709
5710        if (flags & PERF_IOC_FLAG_GROUP)
5711                perf_event_for_each(event, func);
5712        else
5713                perf_event_for_each_child(event, func);
5714
5715        return 0;
5716}
5717
5718static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5719{
5720        struct perf_event *event = file->private_data;
5721        struct perf_event_context *ctx;
5722        long ret;
5723
5724        /* Treat ioctl like writes as it is likely a mutating operation. */
5725        ret = security_perf_event_write(event);
5726        if (ret)
5727                return ret;
5728
5729        ctx = perf_event_ctx_lock(event);
5730        ret = _perf_ioctl(event, cmd, arg);
5731        perf_event_ctx_unlock(event, ctx);
5732
5733        return ret;
5734}
5735
5736#ifdef CONFIG_COMPAT
5737static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5738                                unsigned long arg)
5739{
5740        switch (_IOC_NR(cmd)) {
5741        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5742        case _IOC_NR(PERF_EVENT_IOC_ID):
5743        case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5744        case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5745                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5746                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5747                        cmd &= ~IOCSIZE_MASK;
5748                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5749                }
5750                break;
5751        }
5752        return perf_ioctl(file, cmd, arg);
5753}
5754#else
5755# define perf_compat_ioctl NULL
5756#endif
5757
5758int perf_event_task_enable(void)
5759{
5760        struct perf_event_context *ctx;
5761        struct perf_event *event;
5762
5763        mutex_lock(&current->perf_event_mutex);
5764        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5765                ctx = perf_event_ctx_lock(event);
5766                perf_event_for_each_child(event, _perf_event_enable);
5767                perf_event_ctx_unlock(event, ctx);
5768        }
5769        mutex_unlock(&current->perf_event_mutex);
5770
5771        return 0;
5772}
5773
5774int perf_event_task_disable(void)
5775{
5776        struct perf_event_context *ctx;
5777        struct perf_event *event;
5778
5779        mutex_lock(&current->perf_event_mutex);
5780        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5781                ctx = perf_event_ctx_lock(event);
5782                perf_event_for_each_child(event, _perf_event_disable);
5783                perf_event_ctx_unlock(event, ctx);
5784        }
5785        mutex_unlock(&current->perf_event_mutex);
5786
5787        return 0;
5788}
5789
5790static int perf_event_index(struct perf_event *event)
5791{
5792        if (event->hw.state & PERF_HES_STOPPED)
5793                return 0;
5794
5795        if (event->state != PERF_EVENT_STATE_ACTIVE)
5796                return 0;
5797
5798        return event->pmu->event_idx(event);
5799}
5800
5801static void calc_timer_values(struct perf_event *event,
5802                                u64 *now,
5803                                u64 *enabled,
5804                                u64 *running)
5805{
5806        u64 ctx_time;
5807
5808        *now = perf_clock();
5809        ctx_time = event->shadow_ctx_time + *now;
5810        __perf_update_times(event, ctx_time, enabled, running);
5811}
5812
5813static void perf_event_init_userpage(struct perf_event *event)
5814{
5815        struct perf_event_mmap_page *userpg;
5816        struct perf_buffer *rb;
5817
5818        rcu_read_lock();
5819        rb = rcu_dereference(event->rb);
5820        if (!rb)
5821                goto unlock;
5822
5823        userpg = rb->user_page;
5824
5825        /* Allow new userspace to detect that bit 0 is deprecated */
5826        userpg->cap_bit0_is_deprecated = 1;
5827        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5828        userpg->data_offset = PAGE_SIZE;
5829        userpg->data_size = perf_data_size(rb);
5830
5831unlock:
5832        rcu_read_unlock();
5833}
5834
5835void __weak arch_perf_update_userpage(
5836        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5837{
5838}
5839
5840/*
5841 * Callers need to ensure there can be no nesting of this function, otherwise
5842 * the seqlock logic goes bad. We can not serialize this because the arch
5843 * code calls this from NMI context.
5844 */
5845void perf_event_update_userpage(struct perf_event *event)
5846{
5847        struct perf_event_mmap_page *userpg;
5848        struct perf_buffer *rb;
5849        u64 enabled, running, now;
5850
5851        rcu_read_lock();
5852        rb = rcu_dereference(event->rb);
5853        if (!rb)
5854                goto unlock;
5855
5856        /*
5857         * compute total_time_enabled, total_time_running
5858         * based on snapshot values taken when the event
5859         * was last scheduled in.
5860         *
5861         * we cannot simply called update_context_time()
5862         * because of locking issue as we can be called in
5863         * NMI context
5864         */
5865        calc_timer_values(event, &now, &enabled, &running);
5866
5867        userpg = rb->user_page;
5868        /*
5869         * Disable preemption to guarantee consistent time stamps are stored to
5870         * the user page.
5871         */
5872        preempt_disable();
5873        ++userpg->lock;
5874        barrier();
5875        userpg->index = perf_event_index(event);
5876        userpg->offset = perf_event_count(event);
5877        if (userpg->index)
5878                userpg->offset -= local64_read(&event->hw.prev_count);
5879
5880        userpg->time_enabled = enabled +
5881                        atomic64_read(&event->child_total_time_enabled);
5882
5883        userpg->time_running = running +
5884                        atomic64_read(&event->child_total_time_running);
5885
5886        arch_perf_update_userpage(event, userpg, now);
5887
5888        barrier();
5889        ++userpg->lock;
5890        preempt_enable();
5891unlock:
5892        rcu_read_unlock();
5893}
5894EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5895
5896static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5897{
5898        struct perf_event *event = vmf->vma->vm_file->private_data;
5899        struct perf_buffer *rb;
5900        vm_fault_t ret = VM_FAULT_SIGBUS;
5901
5902        if (vmf->flags & FAULT_FLAG_MKWRITE) {
5903                if (vmf->pgoff == 0)
5904                        ret = 0;
5905                return ret;
5906        }
5907
5908        rcu_read_lock();
5909        rb = rcu_dereference(event->rb);
5910        if (!rb)
5911                goto unlock;
5912
5913        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5914                goto unlock;
5915
5916        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5917        if (!vmf->page)
5918                goto unlock;
5919
5920        get_page(vmf->page);
5921        vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5922        vmf->page->index   = vmf->pgoff;
5923
5924        ret = 0;
5925unlock:
5926        rcu_read_unlock();
5927
5928        return ret;
5929}
5930
5931static void ring_buffer_attach(struct perf_event *event,
5932                               struct perf_buffer *rb)
5933{
5934        struct perf_buffer *old_rb = NULL;
5935        unsigned long flags;
5936
5937        if (event->rb) {
5938                /*
5939                 * Should be impossible, we set this when removing
5940                 * event->rb_entry and wait/clear when adding event->rb_entry.
5941                 */
5942                WARN_ON_ONCE(event->rcu_pending);
5943
5944                old_rb = event->rb;
5945                spin_lock_irqsave(&old_rb->event_lock, flags);
5946                list_del_rcu(&event->rb_entry);
5947                spin_unlock_irqrestore(&old_rb->event_lock, flags);
5948
5949                event->rcu_batches = get_state_synchronize_rcu();
5950                event->rcu_pending = 1;
5951        }
5952
5953        if (rb) {
5954                if (event->rcu_pending) {
5955                        cond_synchronize_rcu(event->rcu_batches);
5956                        event->rcu_pending = 0;
5957                }
5958
5959                spin_lock_irqsave(&rb->event_lock, flags);
5960                list_add_rcu(&event->rb_entry, &rb->event_list);
5961                spin_unlock_irqrestore(&rb->event_lock, flags);
5962        }
5963
5964        /*
5965         * Avoid racing with perf_mmap_close(AUX): stop the event
5966         * before swizzling the event::rb pointer; if it's getting
5967         * unmapped, its aux_mmap_count will be 0 and it won't
5968         * restart. See the comment in __perf_pmu_output_stop().
5969         *
5970         * Data will inevitably be lost when set_output is done in
5971         * mid-air, but then again, whoever does it like this is
5972         * not in for the data anyway.
5973         */
5974        if (has_aux(event))
5975                perf_event_stop(event, 0);
5976
5977        rcu_assign_pointer(event->rb, rb);
5978
5979        if (old_rb) {
5980                ring_buffer_put(old_rb);
5981                /*
5982                 * Since we detached before setting the new rb, so that we
5983                 * could attach the new rb, we could have missed a wakeup.
5984                 * Provide it now.
5985                 */
5986                wake_up_all(&event->waitq);
5987        }
5988}
5989
5990static void ring_buffer_wakeup(struct perf_event *event)
5991{
5992        struct perf_buffer *rb;
5993
5994        rcu_read_lock();
5995        rb = rcu_dereference(event->rb);
5996        if (rb) {
5997                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5998                        wake_up_all(&event->waitq);
5999        }
6000        rcu_read_unlock();
6001}
6002
6003struct perf_buffer *ring_buffer_get(struct perf_event *event)
6004{
6005        struct perf_buffer *rb;
6006
6007        rcu_read_lock();
6008        rb = rcu_dereference(event->rb);
6009        if (rb) {
6010                if (!refcount_inc_not_zero(&rb->refcount))
6011                        rb = NULL;
6012        }
6013        rcu_read_unlock();
6014
6015        return rb;
6016}
6017
6018void ring_buffer_put(struct perf_buffer *rb)
6019{
6020        if (!refcount_dec_and_test(&rb->refcount))
6021                return;
6022
6023        WARN_ON_ONCE(!list_empty(&rb->event_list));
6024
6025        call_rcu(&rb->rcu_head, rb_free_rcu);
6026}
6027
6028static void perf_mmap_open(struct vm_area_struct *vma)
6029{
6030        struct perf_event *event = vma->vm_file->private_data;
6031
6032        atomic_inc(&event->mmap_count);
6033        atomic_inc(&event->rb->mmap_count);
6034
6035        if (vma->vm_pgoff)
6036                atomic_inc(&event->rb->aux_mmap_count);
6037
6038        if (event->pmu->event_mapped)
6039                event->pmu->event_mapped(event, vma->vm_mm);
6040}
6041
6042static void perf_pmu_output_stop(struct perf_event *event);
6043
6044/*
6045 * A buffer can be mmap()ed multiple times; either directly through the same
6046 * event, or through other events by use of perf_event_set_output().
6047 *
6048 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6049 * the buffer here, where we still have a VM context. This means we need
6050 * to detach all events redirecting to us.
6051 */
6052static void perf_mmap_close(struct vm_area_struct *vma)
6053{
6054        struct perf_event *event = vma->vm_file->private_data;
6055        struct perf_buffer *rb = ring_buffer_get(event);
6056        struct user_struct *mmap_user = rb->mmap_user;
6057        int mmap_locked = rb->mmap_locked;
6058        unsigned long size = perf_data_size(rb);
6059        bool detach_rest = false;
6060
6061        if (event->pmu->event_unmapped)
6062                event->pmu->event_unmapped(event, vma->vm_mm);
6063
6064        /*
6065         * rb->aux_mmap_count will always drop before rb->mmap_count and
6066         * event->mmap_count, so it is ok to use event->mmap_mutex to
6067         * serialize with perf_mmap here.
6068         */
6069        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6070            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6071                /*
6072                 * Stop all AUX events that are writing to this buffer,
6073                 * so that we can free its AUX pages and corresponding PMU
6074                 * data. Note that after rb::aux_mmap_count dropped to zero,
6075                 * they won't start any more (see perf_aux_output_begin()).
6076                 */
6077                perf_pmu_output_stop(event);
6078
6079                /* now it's safe to free the pages */
6080                atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6081                atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6082
6083                /* this has to be the last one */
6084                rb_free_aux(rb);
6085                WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6086
6087                mutex_unlock(&event->mmap_mutex);
6088        }
6089
6090        if (atomic_dec_and_test(&rb->mmap_count))
6091                detach_rest = true;
6092
6093        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6094                goto out_put;
6095
6096        ring_buffer_attach(event, NULL);
6097        mutex_unlock(&event->mmap_mutex);
6098
6099        /* If there's still other mmap()s of this buffer, we're done. */
6100        if (!detach_rest)
6101                goto out_put;
6102
6103        /*
6104         * No other mmap()s, detach from all other events that might redirect
6105         * into the now unreachable buffer. Somewhat complicated by the
6106         * fact that rb::event_lock otherwise nests inside mmap_mutex.
6107         */
6108again:
6109        rcu_read_lock();
6110        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6111                if (!atomic_long_inc_not_zero(&event->refcount)) {
6112                        /*
6113                         * This event is en-route to free_event() which will
6114                         * detach it and remove it from the list.
6115                         */
6116                        continue;
6117                }
6118                rcu_read_unlock();
6119
6120                mutex_lock(&event->mmap_mutex);
6121                /*
6122                 * Check we didn't race with perf_event_set_output() which can
6123                 * swizzle the rb from under us while we were waiting to
6124                 * acquire mmap_mutex.
6125                 *
6126                 * If we find a different rb; ignore this event, a next
6127                 * iteration will no longer find it on the list. We have to
6128                 * still restart the iteration to make sure we're not now
6129                 * iterating the wrong list.
6130                 */
6131                if (event->rb == rb)
6132                        ring_buffer_attach(event, NULL);
6133
6134                mutex_unlock(&event->mmap_mutex);
6135                put_event(event);
6136
6137                /*
6138                 * Restart the iteration; either we're on the wrong list or
6139                 * destroyed its integrity by doing a deletion.
6140                 */
6141                goto again;
6142        }
6143        rcu_read_unlock();
6144
6145        /*
6146         * It could be there's still a few 0-ref events on the list; they'll
6147         * get cleaned up by free_event() -- they'll also still have their
6148         * ref on the rb and will free it whenever they are done with it.
6149         *
6150         * Aside from that, this buffer is 'fully' detached and unmapped,
6151         * undo the VM accounting.
6152         */
6153
6154        atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6155                        &mmap_user->locked_vm);
6156        atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6157        free_uid(mmap_user);
6158
6159out_put:
6160        ring_buffer_put(rb); /* could be last */
6161}
6162
6163static const struct vm_operations_struct perf_mmap_vmops = {
6164        .open           = perf_mmap_open,
6165        .close          = perf_mmap_close, /* non mergeable */
6166        .fault          = perf_mmap_fault,
6167        .page_mkwrite   = perf_mmap_fault,
6168};
6169
6170static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6171{
6172        struct perf_event *event = file->private_data;
6173        unsigned long user_locked, user_lock_limit;
6174        struct user_struct *user = current_user();
6175        struct perf_buffer *rb = NULL;
6176        unsigned long locked, lock_limit;
6177        unsigned long vma_size;
6178        unsigned long nr_pages;
6179        long user_extra = 0, extra = 0;
6180        int ret = 0, flags = 0;
6181
6182        /*
6183         * Don't allow mmap() of inherited per-task counters. This would
6184         * create a performance issue due to all children writing to the
6185         * same rb.
6186         */
6187        if (event->cpu == -1 && event->attr.inherit)
6188                return -EINVAL;
6189
6190        if (!(vma->vm_flags & VM_SHARED))
6191                return -EINVAL;
6192
6193        ret = security_perf_event_read(event);
6194        if (ret)
6195                return ret;
6196
6197        vma_size = vma->vm_end - vma->vm_start;
6198
6199        if (vma->vm_pgoff == 0) {
6200                nr_pages = (vma_size / PAGE_SIZE) - 1;
6201        } else {
6202                /*
6203                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6204                 * mapped, all subsequent mappings should have the same size
6205                 * and offset. Must be above the normal perf buffer.
6206                 */
6207                u64 aux_offset, aux_size;
6208
6209                if (!event->rb)
6210                        return -EINVAL;
6211
6212                nr_pages = vma_size / PAGE_SIZE;
6213
6214                mutex_lock(&event->mmap_mutex);
6215                ret = -EINVAL;
6216
6217                rb = event->rb;
6218                if (!rb)
6219                        goto aux_unlock;
6220
6221                aux_offset = READ_ONCE(rb->user_page->aux_offset);
6222                aux_size = READ_ONCE(rb->user_page->aux_size);
6223
6224                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6225                        goto aux_unlock;
6226
6227                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6228                        goto aux_unlock;
6229
6230                /* already mapped with a different offset */
6231                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6232                        goto aux_unlock;
6233
6234                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6235                        goto aux_unlock;
6236
6237                /* already mapped with a different size */
6238                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6239                        goto aux_unlock;
6240
6241                if (!is_power_of_2(nr_pages))
6242                        goto aux_unlock;
6243
6244                if (!atomic_inc_not_zero(&rb->mmap_count))
6245                        goto aux_unlock;
6246
6247                if (rb_has_aux(rb)) {
6248                        atomic_inc(&rb->aux_mmap_count);
6249                        ret = 0;
6250                        goto unlock;
6251                }
6252
6253                atomic_set(&rb->aux_mmap_count, 1);
6254                user_extra = nr_pages;
6255
6256                goto accounting;
6257        }
6258
6259        /*
6260         * If we have rb pages ensure they're a power-of-two number, so we
6261         * can do bitmasks instead of modulo.
6262         */
6263        if (nr_pages != 0 && !is_power_of_2(nr_pages))
6264                return -EINVAL;
6265
6266        if (vma_size != PAGE_SIZE * (1 + nr_pages))
6267                return -EINVAL;
6268
6269        WARN_ON_ONCE(event->ctx->parent_ctx);
6270again:
6271        mutex_lock(&event->mmap_mutex);
6272        if (event->rb) {
6273                if (event->rb->nr_pages != nr_pages) {
6274                        ret = -EINVAL;
6275                        goto unlock;
6276                }
6277
6278                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6279                        /*
6280                         * Raced against perf_mmap_close() through
6281                         * perf_event_set_output(). Try again, hope for better
6282                         * luck.
6283                         */
6284                        mutex_unlock(&event->mmap_mutex);
6285                        goto again;
6286                }
6287
6288                goto unlock;
6289        }
6290
6291        user_extra = nr_pages + 1;
6292
6293accounting:
6294        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6295
6296        /*
6297         * Increase the limit linearly with more CPUs:
6298         */
6299        user_lock_limit *= num_online_cpus();
6300
6301        user_locked = atomic_long_read(&user->locked_vm);
6302
6303        /*
6304         * sysctl_perf_event_mlock may have changed, so that
6305         *     user->locked_vm > user_lock_limit
6306         */
6307        if (user_locked > user_lock_limit)
6308                user_locked = user_lock_limit;
6309        user_locked += user_extra;
6310
6311        if (user_locked > user_lock_limit) {
6312                /*
6313                 * charge locked_vm until it hits user_lock_limit;
6314                 * charge the rest from pinned_vm
6315                 */
6316                extra = user_locked - user_lock_limit;
6317                user_extra -= extra;
6318        }
6319
6320        lock_limit = rlimit(RLIMIT_MEMLOCK);
6321        lock_limit >>= PAGE_SHIFT;
6322        locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6323
6324        if ((locked > lock_limit) && perf_is_paranoid() &&
6325                !capable(CAP_IPC_LOCK)) {
6326                ret = -EPERM;
6327                goto unlock;
6328        }
6329
6330        WARN_ON(!rb && event->rb);
6331
6332        if (vma->vm_flags & VM_WRITE)
6333                flags |= RING_BUFFER_WRITABLE;
6334
6335        if (!rb) {
6336                rb = rb_alloc(nr_pages,
6337                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
6338                              event->cpu, flags);
6339
6340                if (!rb) {
6341                        ret = -ENOMEM;
6342                        goto unlock;
6343                }
6344
6345                atomic_set(&rb->mmap_count, 1);
6346                rb->mmap_user = get_current_user();
6347                rb->mmap_locked = extra;
6348
6349                ring_buffer_attach(event, rb);
6350
6351                perf_event_update_time(event);
6352                perf_set_shadow_time(event, event->ctx);
6353                perf_event_init_userpage(event);
6354                perf_event_update_userpage(event);
6355        } else {
6356                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6357                                   event->attr.aux_watermark, flags);
6358                if (!ret)
6359                        rb->aux_mmap_locked = extra;
6360        }
6361
6362unlock:
6363        if (!ret) {
6364                atomic_long_add(user_extra, &user->locked_vm);
6365                atomic64_add(extra, &vma->vm_mm->pinned_vm);
6366
6367                atomic_inc(&event->mmap_count);
6368        } else if (rb) {
6369                atomic_dec(&rb->mmap_count);
6370        }
6371aux_unlock:
6372        mutex_unlock(&event->mmap_mutex);
6373
6374        /*
6375         * Since pinned accounting is per vm we cannot allow fork() to copy our
6376         * vma.
6377         */
6378        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6379        vma->vm_ops = &perf_mmap_vmops;
6380
6381        if (event->pmu->event_mapped)
6382                event->pmu->event_mapped(event, vma->vm_mm);
6383
6384        return ret;
6385}
6386
6387static int perf_fasync(int fd, struct file *filp, int on)
6388{
6389        struct inode *inode = file_inode(filp);
6390        struct perf_event *event = filp->private_data;
6391        int retval;
6392
6393        inode_lock(inode);
6394        retval = fasync_helper(fd, filp, on, &event->fasync);
6395        inode_unlock(inode);
6396
6397        if (retval < 0)
6398                return retval;
6399
6400        return 0;
6401}
6402
6403static const struct file_operations perf_fops = {
6404        .llseek                 = no_llseek,
6405        .release                = perf_release,
6406        .read                   = perf_read,
6407        .poll                   = perf_poll,
6408        .unlocked_ioctl         = perf_ioctl,
6409        .compat_ioctl           = perf_compat_ioctl,
6410        .mmap                   = perf_mmap,
6411        .fasync                 = perf_fasync,
6412};
6413
6414/*
6415 * Perf event wakeup
6416 *
6417 * If there's data, ensure we set the poll() state and publish everything
6418 * to user-space before waking everybody up.
6419 */
6420
6421static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6422{
6423        /* only the parent has fasync state */
6424        if (event->parent)
6425                event = event->parent;
6426        return &event->fasync;
6427}
6428
6429void perf_event_wakeup(struct perf_event *event)
6430{
6431        ring_buffer_wakeup(event);
6432
6433        if (event->pending_kill) {
6434                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6435                event->pending_kill = 0;
6436        }
6437}
6438
6439static void perf_sigtrap(struct perf_event *event)
6440{
6441        /*
6442         * We'd expect this to only occur if the irq_work is delayed and either
6443         * ctx->task or current has changed in the meantime. This can be the
6444         * case on architectures that do not implement arch_irq_work_raise().
6445         */
6446        if (WARN_ON_ONCE(event->ctx->task != current))
6447                return;
6448
6449        /*
6450         * perf_pending_event() can race with the task exiting.
6451         */
6452        if (current->flags & PF_EXITING)
6453                return;
6454
6455        force_sig_perf((void __user *)event->pending_addr,
6456                       event->attr.type, event->attr.sig_data);
6457}
6458
6459static void perf_pending_event_disable(struct perf_event *event)
6460{
6461        int cpu = READ_ONCE(event->pending_disable);
6462
6463        if (cpu < 0)
6464                return;
6465
6466        if (cpu == smp_processor_id()) {
6467                WRITE_ONCE(event->pending_disable, -1);
6468
6469                if (event->attr.sigtrap) {
6470                        perf_sigtrap(event);
6471                        atomic_set_release(&event->event_limit, 1); /* rearm event */
6472                        return;
6473                }
6474
6475                perf_event_disable_local(event);
6476                return;
6477        }
6478
6479        /*
6480         *  CPU-A                       CPU-B
6481         *
6482         *  perf_event_disable_inatomic()
6483         *    @pending_disable = CPU-A;
6484         *    irq_work_queue();
6485         *
6486         *  sched-out
6487         *    @pending_disable = -1;
6488         *
6489         *                              sched-in
6490         *                              perf_event_disable_inatomic()
6491         *                                @pending_disable = CPU-B;
6492         *                                irq_work_queue(); // FAILS
6493         *
6494         *  irq_work_run()
6495         *    perf_pending_event()
6496         *
6497         * But the event runs on CPU-B and wants disabling there.
6498         */
6499        irq_work_queue_on(&event->pending, cpu);
6500}
6501
6502static void perf_pending_event(struct irq_work *entry)
6503{
6504        struct perf_event *event = container_of(entry, struct perf_event, pending);
6505        int rctx;
6506
6507        rctx = perf_swevent_get_recursion_context();
6508        /*
6509         * If we 'fail' here, that's OK, it means recursion is already disabled
6510         * and we won't recurse 'further'.
6511         */
6512
6513        perf_pending_event_disable(event);
6514
6515        if (event->pending_wakeup) {
6516                event->pending_wakeup = 0;
6517                perf_event_wakeup(event);
6518        }
6519
6520        if (rctx >= 0)
6521                perf_swevent_put_recursion_context(rctx);
6522}
6523
6524/*
6525 * We assume there is only KVM supporting the callbacks.
6526 * Later on, we might change it to a list if there is
6527 * another virtualization implementation supporting the callbacks.
6528 */
6529struct perf_guest_info_callbacks *perf_guest_cbs;
6530
6531int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532{
6533        perf_guest_cbs = cbs;
6534        return 0;
6535}
6536EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6537
6538int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6539{
6540        perf_guest_cbs = NULL;
6541        return 0;
6542}
6543EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544
6545static void
6546perf_output_sample_regs(struct perf_output_handle *handle,
6547                        struct pt_regs *regs, u64 mask)
6548{
6549        int bit;
6550        DECLARE_BITMAP(_mask, 64);
6551
6552        bitmap_from_u64(_mask, mask);
6553        for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6554                u64 val;
6555
6556                val = perf_reg_value(regs, bit);
6557                perf_output_put(handle, val);
6558        }
6559}
6560
6561static void perf_sample_regs_user(struct perf_regs *regs_user,
6562                                  struct pt_regs *regs)
6563{
6564        if (user_mode(regs)) {
6565                regs_user->abi = perf_reg_abi(current);
6566                regs_user->regs = regs;
6567        } else if (!(current->flags & PF_KTHREAD)) {
6568                perf_get_regs_user(regs_user, regs);
6569        } else {
6570                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6571                regs_user->regs = NULL;
6572        }
6573}
6574
6575static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6576                                  struct pt_regs *regs)
6577{
6578        regs_intr->regs = regs;
6579        regs_intr->abi  = perf_reg_abi(current);
6580}
6581
6582
6583/*
6584 * Get remaining task size from user stack pointer.
6585 *
6586 * It'd be better to take stack vma map and limit this more
6587 * precisely, but there's no way to get it safely under interrupt,
6588 * so using TASK_SIZE as limit.
6589 */
6590static u64 perf_ustack_task_size(struct pt_regs *regs)
6591{
6592        unsigned long addr = perf_user_stack_pointer(regs);
6593
6594        if (!addr || addr >= TASK_SIZE)
6595                return 0;
6596
6597        return TASK_SIZE - addr;
6598}
6599
6600static u16
6601perf_sample_ustack_size(u16 stack_size, u16 header_size,
6602                        struct pt_regs *regs)
6603{
6604        u64 task_size;
6605
6606        /* No regs, no stack pointer, no dump. */
6607        if (!regs)
6608                return 0;
6609
6610        /*
6611         * Check if we fit in with the requested stack size into the:
6612         * - TASK_SIZE
6613         *   If we don't, we limit the size to the TASK_SIZE.
6614         *
6615         * - remaining sample size
6616         *   If we don't, we customize the stack size to
6617         *   fit in to the remaining sample size.
6618         */
6619
6620        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6621        stack_size = min(stack_size, (u16) task_size);
6622
6623        /* Current header size plus static size and dynamic size. */
6624        header_size += 2 * sizeof(u64);
6625
6626        /* Do we fit in with the current stack dump size? */
6627        if ((u16) (header_size + stack_size) < header_size) {
6628                /*
6629                 * If we overflow the maximum size for the sample,
6630                 * we customize the stack dump size to fit in.
6631                 */
6632                stack_size = USHRT_MAX - header_size - sizeof(u64);
6633                stack_size = round_up(stack_size, sizeof(u64));
6634        }
6635
6636        return stack_size;
6637}
6638
6639static void
6640perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6641                          struct pt_regs *regs)
6642{
6643        /* Case of a kernel thread, nothing to dump */
6644        if (!regs) {
6645                u64 size = 0;
6646                perf_output_put(handle, size);
6647        } else {
6648                unsigned long sp;
6649                unsigned int rem;
6650                u64 dyn_size;
6651                mm_segment_t fs;
6652
6653                /*
6654                 * We dump:
6655                 * static size
6656                 *   - the size requested by user or the best one we can fit
6657                 *     in to the sample max size
6658                 * data
6659                 *   - user stack dump data
6660                 * dynamic size
6661                 *   - the actual dumped size
6662                 */
6663
6664                /* Static size. */
6665                perf_output_put(handle, dump_size);
6666
6667                /* Data. */
6668                sp = perf_user_stack_pointer(regs);
6669                fs = force_uaccess_begin();
6670                rem = __output_copy_user(handle, (void *) sp, dump_size);
6671                force_uaccess_end(fs);
6672                dyn_size = dump_size - rem;
6673
6674                perf_output_skip(handle, rem);
6675
6676                /* Dynamic size. */
6677                perf_output_put(handle, dyn_size);
6678        }
6679}
6680
6681static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6682                                          struct perf_sample_data *data,
6683                                          size_t size)
6684{
6685        struct perf_event *sampler = event->aux_event;
6686        struct perf_buffer *rb;
6687
6688        data->aux_size = 0;
6689
6690        if (!sampler)
6691                goto out;
6692
6693        if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6694                goto out;
6695
6696        if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6697                goto out;
6698
6699        rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6700        if (!rb)
6701                goto out;
6702
6703        /*
6704         * If this is an NMI hit inside sampling code, don't take
6705         * the sample. See also perf_aux_sample_output().
6706         */
6707        if (READ_ONCE(rb->aux_in_sampling)) {
6708                data->aux_size = 0;
6709        } else {
6710                size = min_t(size_t, size, perf_aux_size(rb));
6711                data->aux_size = ALIGN(size, sizeof(u64));
6712        }
6713        ring_buffer_put(rb);
6714
6715out:
6716        return data->aux_size;
6717}
6718
6719static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6720                                 struct perf_event *event,
6721                                 struct perf_output_handle *handle,
6722                                 unsigned long size)
6723{
6724        unsigned long flags;
6725        long ret;
6726
6727        /*
6728         * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6729         * paths. If we start calling them in NMI context, they may race with
6730         * the IRQ ones, that is, for example, re-starting an event that's just
6731         * been stopped, which is why we're using a separate callback that
6732         * doesn't change the event state.
6733         *
6734         * IRQs need to be disabled to prevent IPIs from racing with us.
6735         */
6736        local_irq_save(flags);
6737        /*
6738         * Guard against NMI hits inside the critical section;
6739         * see also perf_prepare_sample_aux().
6740         */
6741        WRITE_ONCE(rb->aux_in_sampling, 1);
6742        barrier();
6743
6744        ret = event->pmu->snapshot_aux(event, handle, size);
6745
6746        barrier();
6747        WRITE_ONCE(rb->aux_in_sampling, 0);
6748        local_irq_restore(flags);
6749
6750        return ret;
6751}
6752
6753static void perf_aux_sample_output(struct perf_event *event,
6754                                   struct perf_output_handle *handle,
6755                                   struct perf_sample_data *data)
6756{
6757        struct perf_event *sampler = event->aux_event;
6758        struct perf_buffer *rb;
6759        unsigned long pad;
6760        long size;
6761
6762        if (WARN_ON_ONCE(!sampler || !data->aux_size))
6763                return;
6764
6765        rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6766        if (!rb)
6767                return;
6768
6769        size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6770
6771        /*
6772         * An error here means that perf_output_copy() failed (returned a
6773         * non-zero surplus that it didn't copy), which in its current
6774         * enlightened implementation is not possible. If that changes, we'd
6775         * like to know.
6776         */
6777        if (WARN_ON_ONCE(size < 0))
6778                goto out_put;
6779
6780        /*
6781         * The pad comes from ALIGN()ing data->aux_size up to u64 in
6782         * perf_prepare_sample_aux(), so should not be more than that.
6783         */
6784        pad = data->aux_size - size;
6785        if (WARN_ON_ONCE(pad >= sizeof(u64)))
6786                pad = 8;
6787
6788        if (pad) {
6789                u64 zero = 0;
6790                perf_output_copy(handle, &zero, pad);
6791        }
6792
6793out_put:
6794        ring_buffer_put(rb);
6795}
6796
6797static void __perf_event_header__init_id(struct perf_event_header *header,
6798                                         struct perf_sample_data *data,
6799                                         struct perf_event *event)
6800{
6801        u64 sample_type = event->attr.sample_type;
6802
6803        data->type = sample_type;
6804        header->size += event->id_header_size;
6805
6806        if (sample_type & PERF_SAMPLE_TID) {
6807                /* namespace issues */
6808                data->tid_entry.pid = perf_event_pid(event, current);
6809                data->tid_entry.tid = perf_event_tid(event, current);
6810        }
6811
6812        if (sample_type & PERF_SAMPLE_TIME)
6813                data->time = perf_event_clock(event);
6814
6815        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6816                data->id = primary_event_id(event);
6817
6818        if (sample_type & PERF_SAMPLE_STREAM_ID)
6819                data->stream_id = event->id;
6820
6821        if (sample_type & PERF_SAMPLE_CPU) {
6822                data->cpu_entry.cpu      = raw_smp_processor_id();
6823                data->cpu_entry.reserved = 0;
6824        }
6825}
6826
6827void perf_event_header__init_id(struct perf_event_header *header,
6828                                struct perf_sample_data *data,
6829                                struct perf_event *event)
6830{
6831        if (event->attr.sample_id_all)
6832                __perf_event_header__init_id(header, data, event);
6833}
6834
6835static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6836                                           struct perf_sample_data *data)
6837{
6838        u64 sample_type = data->type;
6839
6840        if (sample_type & PERF_SAMPLE_TID)
6841                perf_output_put(handle, data->tid_entry);
6842
6843        if (sample_type & PERF_SAMPLE_TIME)
6844                perf_output_put(handle, data->time);
6845
6846        if (sample_type & PERF_SAMPLE_ID)
6847                perf_output_put(handle, data->id);
6848
6849        if (sample_type & PERF_SAMPLE_STREAM_ID)
6850                perf_output_put(handle, data->stream_id);
6851
6852        if (sample_type & PERF_SAMPLE_CPU)
6853                perf_output_put(handle, data->cpu_entry);
6854
6855        if (sample_type & PERF_SAMPLE_IDENTIFIER)
6856                perf_output_put(handle, data->id);
6857}
6858
6859void perf_event__output_id_sample(struct perf_event *event,
6860                                  struct perf_output_handle *handle,
6861                                  struct perf_sample_data *sample)
6862{
6863        if (event->attr.sample_id_all)
6864                __perf_event__output_id_sample(handle, sample);
6865}
6866
6867static void perf_output_read_one(struct perf_output_handle *handle,
6868                                 struct perf_event *event,
6869                                 u64 enabled, u64 running)
6870{
6871        u64 read_format = event->attr.read_format;
6872        u64 values[4];
6873        int n = 0;
6874
6875        values[n++] = perf_event_count(event);
6876        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6877                values[n++] = enabled +
6878                        atomic64_read(&event->child_total_time_enabled);
6879        }
6880        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6881                values[n++] = running +
6882                        atomic64_read(&event->child_total_time_running);
6883        }
6884        if (read_format & PERF_FORMAT_ID)
6885                values[n++] = primary_event_id(event);
6886
6887        __output_copy(handle, values, n * sizeof(u64));
6888}
6889
6890static void perf_output_read_group(struct perf_output_handle *handle,
6891                            struct perf_event *event,
6892                            u64 enabled, u64 running)
6893{
6894        struct perf_event *leader = event->group_leader, *sub;
6895        u64 read_format = event->attr.read_format;
6896        u64 values[5];
6897        int n = 0;
6898
6899        values[n++] = 1 + leader->nr_siblings;
6900
6901        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6902                values[n++] = enabled;
6903
6904        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6905                values[n++] = running;
6906
6907        if ((leader != event) &&
6908            (leader->state == PERF_EVENT_STATE_ACTIVE))
6909                leader->pmu->read(leader);
6910
6911        values[n++] = perf_event_count(leader);
6912        if (read_format & PERF_FORMAT_ID)
6913                values[n++] = primary_event_id(leader);
6914
6915        __output_copy(handle, values, n * sizeof(u64));
6916
6917        for_each_sibling_event(sub, leader) {
6918                n = 0;
6919
6920                if ((sub != event) &&
6921                    (sub->state == PERF_EVENT_STATE_ACTIVE))
6922                        sub->pmu->read(sub);
6923
6924                values[n++] = perf_event_count(sub);
6925                if (read_format & PERF_FORMAT_ID)
6926                        values[n++] = primary_event_id(sub);
6927
6928                __output_copy(handle, values, n * sizeof(u64));
6929        }
6930}
6931
6932#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6933                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
6934
6935/*
6936 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6937 *
6938 * The problem is that its both hard and excessively expensive to iterate the
6939 * child list, not to mention that its impossible to IPI the children running
6940 * on another CPU, from interrupt/NMI context.
6941 */
6942static void perf_output_read(struct perf_output_handle *handle,
6943                             struct perf_event *event)
6944{
6945        u64 enabled = 0, running = 0, now;
6946        u64 read_format = event->attr.read_format;
6947
6948        /*
6949         * compute total_time_enabled, total_time_running
6950         * based on snapshot values taken when the event
6951         * was last scheduled in.
6952         *
6953         * we cannot simply called update_context_time()
6954         * because of locking issue as we are called in
6955         * NMI context
6956         */
6957        if (read_format & PERF_FORMAT_TOTAL_TIMES)
6958                calc_timer_values(event, &now, &enabled, &running);
6959
6960        if (event->attr.read_format & PERF_FORMAT_GROUP)
6961                perf_output_read_group(handle, event, enabled, running);
6962        else
6963                perf_output_read_one(handle, event, enabled, running);
6964}
6965
6966static inline bool perf_sample_save_hw_index(struct perf_event *event)
6967{
6968        return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6969}
6970
6971void perf_output_sample(struct perf_output_handle *handle,
6972                        struct perf_event_header *header,
6973                        struct perf_sample_data *data,
6974                        struct perf_event *event)
6975{
6976        u64 sample_type = data->type;
6977
6978        perf_output_put(handle, *header);
6979
6980        if (sample_type & PERF_SAMPLE_IDENTIFIER)
6981                perf_output_put(handle, data->id);
6982
6983        if (sample_type & PERF_SAMPLE_IP)
6984                perf_output_put(handle, data->ip);
6985
6986        if (sample_type & PERF_SAMPLE_TID)
6987                perf_output_put(handle, data->tid_entry);
6988
6989        if (sample_type & PERF_SAMPLE_TIME)
6990                perf_output_put(handle, data->time);
6991
6992        if (sample_type & PERF_SAMPLE_ADDR)
6993                perf_output_put(handle, data->addr);
6994
6995        if (sample_type & PERF_SAMPLE_ID)
6996                perf_output_put(handle, data->id);
6997
6998        if (sample_type & PERF_SAMPLE_STREAM_ID)
6999                perf_output_put(handle, data->stream_id);
7000
7001        if (sample_type & PERF_SAMPLE_CPU)
7002                perf_output_put(handle, data->cpu_entry);
7003
7004        if (sample_type & PERF_SAMPLE_PERIOD)
7005                perf_output_put(handle, data->period);
7006
7007        if (sample_type & PERF_SAMPLE_READ)
7008                perf_output_read(handle, event);
7009
7010        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7011                int size = 1;
7012
7013                size += data->callchain->nr;
7014                size *= sizeof(u64);
7015                __output_copy(handle, data->callchain, size);
7016        }
7017
7018        if (sample_type & PERF_SAMPLE_RAW) {
7019                struct perf_raw_record *raw = data->raw;
7020
7021                if (raw) {
7022                        struct perf_raw_frag *frag = &raw->frag;
7023
7024                        perf_output_put(handle, raw->size);
7025                        do {
7026                                if (frag->copy) {
7027                                        __output_custom(handle, frag->copy,
7028                                                        frag->data, frag->size);
7029                                } else {
7030                                        __output_copy(handle, frag->data,
7031                                                      frag->size);
7032                                }
7033                                if (perf_raw_frag_last(frag))
7034                                        break;
7035                                frag = frag->next;
7036                        } while (1);
7037                        if (frag->pad)
7038                                __output_skip(handle, NULL, frag->pad);
7039                } else {
7040                        struct {
7041                                u32     size;
7042                                u32     data;
7043                        } raw = {
7044                                .size = sizeof(u32),
7045                                .data = 0,
7046                        };
7047                        perf_output_put(handle, raw);
7048                }
7049        }
7050
7051        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7052                if (data->br_stack) {
7053                        size_t size;
7054
7055                        size = data->br_stack->nr
7056                             * sizeof(struct perf_branch_entry);
7057
7058                        perf_output_put(handle, data->br_stack->nr);
7059                        if (perf_sample_save_hw_index(event))
7060                                perf_output_put(handle, data->br_stack->hw_idx);
7061                        perf_output_copy(handle, data->br_stack->entries, size);
7062                } else {
7063                        /*
7064                         * we always store at least the value of nr
7065                         */
7066                        u64 nr = 0;
7067                        perf_output_put(handle, nr);
7068                }
7069        }
7070
7071        if (sample_type & PERF_SAMPLE_REGS_USER) {
7072                u64 abi = data->regs_user.abi;
7073
7074                /*
7075                 * If there are no regs to dump, notice it through
7076                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7077                 */
7078                perf_output_put(handle, abi);
7079
7080                if (abi) {
7081                        u64 mask = event->attr.sample_regs_user;
7082                        perf_output_sample_regs(handle,
7083                                                data->regs_user.regs,
7084                                                mask);
7085                }
7086        }
7087
7088        if (sample_type & PERF_SAMPLE_STACK_USER) {
7089                perf_output_sample_ustack(handle,
7090                                          data->stack_user_size,
7091                                          data->regs_user.regs);
7092        }
7093
7094        if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7095                perf_output_put(handle, data->weight.full);
7096
7097        if (sample_type & PERF_SAMPLE_DATA_SRC)
7098                perf_output_put(handle, data->data_src.val);
7099
7100        if (sample_type & PERF_SAMPLE_TRANSACTION)
7101                perf_output_put(handle, data->txn);
7102
7103        if (sample_type & PERF_SAMPLE_REGS_INTR) {
7104                u64 abi = data->regs_intr.abi;
7105                /*
7106                 * If there are no regs to dump, notice it through
7107                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7108                 */
7109                perf_output_put(handle, abi);
7110
7111                if (abi) {
7112                        u64 mask = event->attr.sample_regs_intr;
7113
7114                        perf_output_sample_regs(handle,
7115                                                data->regs_intr.regs,
7116                                                mask);
7117                }
7118        }
7119
7120        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7121                perf_output_put(handle, data->phys_addr);
7122
7123        if (sample_type & PERF_SAMPLE_CGROUP)
7124                perf_output_put(handle, data->cgroup);
7125
7126        if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7127                perf_output_put(handle, data->data_page_size);
7128
7129        if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7130                perf_output_put(handle, data->code_page_size);
7131
7132        if (sample_type & PERF_SAMPLE_AUX) {
7133                perf_output_put(handle, data->aux_size);
7134
7135                if (data->aux_size)
7136                        perf_aux_sample_output(event, handle, data);
7137        }
7138
7139        if (!event->attr.watermark) {
7140                int wakeup_events = event->attr.wakeup_events;
7141
7142                if (wakeup_events) {
7143                        struct perf_buffer *rb = handle->rb;
7144                        int events = local_inc_return(&rb->events);
7145
7146                        if (events >= wakeup_events) {
7147                                local_sub(wakeup_events, &rb->events);
7148                                local_inc(&rb->wakeup);
7149                        }
7150                }
7151        }
7152}
7153
7154static u64 perf_virt_to_phys(u64 virt)
7155{
7156        u64 phys_addr = 0;
7157
7158        if (!virt)
7159                return 0;
7160
7161        if (virt >= TASK_SIZE) {
7162                /* If it's vmalloc()d memory, leave phys_addr as 0 */
7163                if (virt_addr_valid((void *)(uintptr_t)virt) &&
7164                    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7165                        phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7166        } else {
7167                /*
7168                 * Walking the pages tables for user address.
7169                 * Interrupts are disabled, so it prevents any tear down
7170                 * of the page tables.
7171                 * Try IRQ-safe get_user_page_fast_only first.
7172                 * If failed, leave phys_addr as 0.
7173                 */
7174                if (current->mm != NULL) {
7175                        struct page *p;
7176
7177                        pagefault_disable();
7178                        if (get_user_page_fast_only(virt, 0, &p)) {
7179                                phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7180                                put_page(p);
7181                        }
7182                        pagefault_enable();
7183                }
7184        }
7185
7186        return phys_addr;
7187}
7188
7189/*
7190 * Return the pagetable size of a given virtual address.
7191 */
7192static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7193{
7194        u64 size = 0;
7195
7196#ifdef CONFIG_HAVE_FAST_GUP
7197        pgd_t *pgdp, pgd;
7198        p4d_t *p4dp, p4d;
7199        pud_t *pudp, pud;
7200        pmd_t *pmdp, pmd;
7201        pte_t *ptep, pte;
7202
7203        pgdp = pgd_offset(mm, addr);
7204        pgd = READ_ONCE(*pgdp);
7205        if (pgd_none(pgd))
7206                return 0;
7207
7208        if (pgd_leaf(pgd))
7209                return pgd_leaf_size(pgd);
7210
7211        p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7212        p4d = READ_ONCE(*p4dp);
7213        if (!p4d_present(p4d))
7214                return 0;
7215
7216        if (p4d_leaf(p4d))
7217                return p4d_leaf_size(p4d);
7218
7219        pudp = pud_offset_lockless(p4dp, p4d, addr);
7220        pud = READ_ONCE(*pudp);
7221        if (!pud_present(pud))
7222                return 0;
7223
7224        if (pud_leaf(pud))
7225                return pud_leaf_size(pud);
7226
7227        pmdp = pmd_offset_lockless(pudp, pud, addr);
7228        pmd = READ_ONCE(*pmdp);
7229        if (!pmd_present(pmd))
7230                return 0;
7231
7232        if (pmd_leaf(pmd))
7233                return pmd_leaf_size(pmd);
7234
7235        ptep = pte_offset_map(&pmd, addr);
7236        pte = ptep_get_lockless(ptep);
7237        if (pte_present(pte))
7238                size = pte_leaf_size(pte);
7239        pte_unmap(ptep);
7240#endif /* CONFIG_HAVE_FAST_GUP */
7241
7242        return size;
7243}
7244
7245static u64 perf_get_page_size(unsigned long addr)
7246{
7247        struct mm_struct *mm;
7248        unsigned long flags;
7249        u64 size;
7250
7251        if (!addr)
7252                return 0;
7253
7254        /*
7255         * Software page-table walkers must disable IRQs,
7256         * which prevents any tear down of the page tables.
7257         */
7258        local_irq_save(flags);
7259
7260        mm = current->mm;
7261        if (!mm) {
7262                /*
7263                 * For kernel threads and the like, use init_mm so that
7264                 * we can find kernel memory.
7265                 */
7266                mm = &init_mm;
7267        }
7268
7269        size = perf_get_pgtable_size(mm, addr);
7270
7271        local_irq_restore(flags);
7272
7273        return size;
7274}
7275
7276static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7277
7278struct perf_callchain_entry *
7279perf_callchain(struct perf_event *event, struct pt_regs *regs)
7280{
7281        bool kernel = !event->attr.exclude_callchain_kernel;
7282        bool user   = !event->attr.exclude_callchain_user;
7283        /* Disallow cross-task user callchains. */
7284        bool crosstask = event->ctx->task && event->ctx->task != current;
7285        const u32 max_stack = event->attr.sample_max_stack;
7286        struct perf_callchain_entry *callchain;
7287
7288        if (!kernel && !user)
7289                return &__empty_callchain;
7290
7291        callchain = get_perf_callchain(regs, 0, kernel, user,
7292                                       max_stack, crosstask, true);
7293        return callchain ?: &__empty_callchain;
7294}
7295
7296void perf_prepare_sample(struct perf_event_header *header,
7297                         struct perf_sample_data *data,
7298                         struct perf_event *event,
7299                         struct pt_regs *regs)
7300{
7301        u64 sample_type = event->attr.sample_type;
7302
7303        header->type = PERF_RECORD_SAMPLE;
7304        header->size = sizeof(*header) + event->header_size;
7305
7306        header->misc = 0;
7307        header->misc |= perf_misc_flags(regs);
7308
7309        __perf_event_header__init_id(header, data, event);
7310
7311        if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7312                data->ip = perf_instruction_pointer(regs);
7313
7314        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7315                int size = 1;
7316
7317                if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7318                        data->callchain = perf_callchain(event, regs);
7319
7320                size += data->callchain->nr;
7321
7322                header->size += size * sizeof(u64);
7323        }
7324
7325        if (sample_type & PERF_SAMPLE_RAW) {
7326                struct perf_raw_record *raw = data->raw;
7327                int size;
7328
7329                if (raw) {
7330                        struct perf_raw_frag *frag = &raw->frag;
7331                        u32 sum = 0;
7332
7333                        do {
7334                                sum += frag->size;
7335                                if (perf_raw_frag_last(frag))
7336                                        break;
7337                                frag = frag->next;
7338                        } while (1);
7339
7340                        size = round_up(sum + sizeof(u32), sizeof(u64));
7341                        raw->size = size - sizeof(u32);
7342                        frag->pad = raw->size - sum;
7343                } else {
7344                        size = sizeof(u64);
7345                }
7346
7347                header->size += size;
7348        }
7349
7350        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7351                int size = sizeof(u64); /* nr */
7352                if (data->br_stack) {
7353                        if (perf_sample_save_hw_index(event))
7354                                size += sizeof(u64);
7355
7356                        size += data->br_stack->nr
7357                              * sizeof(struct perf_branch_entry);
7358                }
7359                header->size += size;
7360        }
7361
7362        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7363                perf_sample_regs_user(&data->regs_user, regs);
7364
7365        if (sample_type & PERF_SAMPLE_REGS_USER) {
7366                /* regs dump ABI info */
7367                int size = sizeof(u64);
7368
7369                if (data->regs_user.regs) {
7370                        u64 mask = event->attr.sample_regs_user;
7371                        size += hweight64(mask) * sizeof(u64);
7372                }
7373
7374                header->size += size;
7375        }
7376
7377        if (sample_type & PERF_SAMPLE_STACK_USER) {
7378                /*
7379                 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7380                 * processed as the last one or have additional check added
7381                 * in case new sample type is added, because we could eat
7382                 * up the rest of the sample size.
7383                 */
7384                u16 stack_size = event->attr.sample_stack_user;
7385                u16 size = sizeof(u64);
7386
7387                stack_size = perf_sample_ustack_size(stack_size, header->size,
7388                                                     data->regs_user.regs);
7389
7390                /*
7391                 * If there is something to dump, add space for the dump
7392                 * itself and for the field that tells the dynamic size,
7393                 * which is how many have been actually dumped.
7394                 */
7395                if (stack_size)
7396                        size += sizeof(u64) + stack_size;
7397
7398                data->stack_user_size = stack_size;
7399                header->size += size;
7400        }
7401
7402        if (sample_type & PERF_SAMPLE_REGS_INTR) {
7403                /* regs dump ABI info */
7404                int size = sizeof(u64);
7405
7406                perf_sample_regs_intr(&data->regs_intr, regs);
7407
7408                if (data->regs_intr.regs) {
7409                        u64 mask = event->attr.sample_regs_intr;
7410
7411                        size += hweight64(mask) * sizeof(u64);
7412                }
7413
7414                header->size += size;
7415        }
7416
7417        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7418                data->phys_addr = perf_virt_to_phys(data->addr);
7419
7420#ifdef CONFIG_CGROUP_PERF
7421        if (sample_type & PERF_SAMPLE_CGROUP) {
7422                struct cgroup *cgrp;
7423
7424                /* protected by RCU */
7425                cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7426                data->cgroup = cgroup_id(cgrp);
7427        }
7428#endif
7429
7430        /*
7431         * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7432         * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7433         * but the value will not dump to the userspace.
7434         */
7435        if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7436                data->data_page_size = perf_get_page_size(data->addr);
7437
7438        if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7439                data->code_page_size = perf_get_page_size(data->ip);
7440
7441        if (sample_type & PERF_SAMPLE_AUX) {
7442                u64 size;
7443
7444                header->size += sizeof(u64); /* size */
7445
7446                /*
7447                 * Given the 16bit nature of header::size, an AUX sample can
7448                 * easily overflow it, what with all the preceding sample bits.
7449                 * Make sure this doesn't happen by using up to U16_MAX bytes
7450                 * per sample in total (rounded down to 8 byte boundary).
7451                 */
7452                size = min_t(size_t, U16_MAX - header->size,
7453                             event->attr.aux_sample_size);
7454                size = rounddown(size, 8);
7455                size = perf_prepare_sample_aux(event, data, size);
7456
7457                WARN_ON_ONCE(size + header->size > U16_MAX);
7458                header->size += size;
7459        }
7460        /*
7461         * If you're adding more sample types here, you likely need to do
7462         * something about the overflowing header::size, like repurpose the
7463         * lowest 3 bits of size, which should be always zero at the moment.
7464         * This raises a more important question, do we really need 512k sized
7465         * samples and why, so good argumentation is in order for whatever you
7466         * do here next.
7467         */
7468        WARN_ON_ONCE(header->size & 7);
7469}
7470
7471static __always_inline int
7472__perf_event_output(struct perf_event *event,
7473                    struct perf_sample_data *data,
7474                    struct pt_regs *regs,
7475                    int (*output_begin)(struct perf_output_handle *,
7476                                        struct perf_sample_data *,
7477                                        struct perf_event *,
7478                                        unsigned int))
7479{
7480        struct perf_output_handle handle;
7481        struct perf_event_header header;
7482        int err;
7483
7484        /* protect the callchain buffers */
7485        rcu_read_lock();
7486
7487        perf_prepare_sample(&header, data, event, regs);
7488
7489        err = output_begin(&handle, data, event, header.size);
7490        if (err)
7491                goto exit;
7492
7493        perf_output_sample(&handle, &header, data, event);
7494
7495        perf_output_end(&handle);
7496
7497exit:
7498        rcu_read_unlock();
7499        return err;
7500}
7501
7502void
7503perf_event_output_forward(struct perf_event *event,
7504                         struct perf_sample_data *data,
7505                         struct pt_regs *regs)
7506{
7507        __perf_event_output(event, data, regs, perf_output_begin_forward);
7508}
7509
7510void
7511perf_event_output_backward(struct perf_event *event,
7512                           struct perf_sample_data *data,
7513                           struct pt_regs *regs)
7514{
7515        __perf_event_output(event, data, regs, perf_output_begin_backward);
7516}
7517
7518int
7519perf_event_output(struct perf_event *event,
7520                  struct perf_sample_data *data,
7521                  struct pt_regs *regs)
7522{
7523        return __perf_event_output(event, data, regs, perf_output_begin);
7524}
7525
7526/*
7527 * read event_id
7528 */
7529
7530struct perf_read_event {
7531        struct perf_event_header        header;
7532
7533        u32                             pid;
7534        u32                             tid;
7535};
7536
7537static void
7538perf_event_read_event(struct perf_event *event,
7539                        struct task_struct *task)
7540{
7541        struct perf_output_handle handle;
7542        struct perf_sample_data sample;
7543        struct perf_read_event read_event = {
7544                .header = {
7545                        .type = PERF_RECORD_READ,
7546                        .misc = 0,
7547                        .size = sizeof(read_event) + event->read_size,
7548                },
7549                .pid = perf_event_pid(event, task),
7550                .tid = perf_event_tid(event, task),
7551        };
7552        int ret;
7553
7554        perf_event_header__init_id(&read_event.header, &sample, event);
7555        ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7556        if (ret)
7557                return;
7558
7559        perf_output_put(&handle, read_event);
7560        perf_output_read(&handle, event);
7561        perf_event__output_id_sample(event, &handle, &sample);
7562
7563        perf_output_end(&handle);
7564}
7565
7566typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7567
7568static void
7569perf_iterate_ctx(struct perf_event_context *ctx,
7570                   perf_iterate_f output,
7571                   void *data, bool all)
7572{
7573        struct perf_event *event;
7574
7575        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7576                if (!all) {
7577                        if (event->state < PERF_EVENT_STATE_INACTIVE)
7578                                continue;
7579                        if (!event_filter_match(event))
7580                                continue;
7581                }
7582
7583                output(event, data);
7584        }
7585}
7586
7587static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7588{
7589        struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7590        struct perf_event *event;
7591
7592        list_for_each_entry_rcu(event, &pel->list, sb_list) {
7593                /*
7594                 * Skip events that are not fully formed yet; ensure that
7595                 * if we observe event->ctx, both event and ctx will be
7596                 * complete enough. See perf_install_in_context().
7597                 */
7598                if (!smp_load_acquire(&event->ctx))
7599                        continue;
7600
7601                if (event->state < PERF_EVENT_STATE_INACTIVE)
7602                        continue;
7603                if (!event_filter_match(event))
7604                        continue;
7605                output(event, data);
7606        }
7607}
7608
7609/*
7610 * Iterate all events that need to receive side-band events.
7611 *
7612 * For new callers; ensure that account_pmu_sb_event() includes
7613 * your event, otherwise it might not get delivered.
7614 */
7615static void
7616perf_iterate_sb(perf_iterate_f output, void *data,
7617               struct perf_event_context *task_ctx)
7618{
7619        struct perf_event_context *ctx;
7620        int ctxn;
7621
7622        rcu_read_lock();
7623        preempt_disable();
7624
7625        /*
7626         * If we have task_ctx != NULL we only notify the task context itself.
7627         * The task_ctx is set only for EXIT events before releasing task
7628         * context.
7629         */
7630        if (task_ctx) {
7631                perf_iterate_ctx(task_ctx, output, data, false);
7632                goto done;
7633        }
7634
7635        perf_iterate_sb_cpu(output, data);
7636
7637        for_each_task_context_nr(ctxn) {
7638                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7639                if (ctx)
7640                        perf_iterate_ctx(ctx, output, data, false);
7641        }
7642done:
7643        preempt_enable();
7644        rcu_read_unlock();
7645}
7646
7647/*
7648 * Clear all file-based filters at exec, they'll have to be
7649 * re-instated when/if these objects are mmapped again.
7650 */
7651static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7652{
7653        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7654        struct perf_addr_filter *filter;
7655        unsigned int restart = 0, count = 0;
7656        unsigned long flags;
7657
7658        if (!has_addr_filter(event))
7659                return;
7660
7661        raw_spin_lock_irqsave(&ifh->lock, flags);
7662        list_for_each_entry(filter, &ifh->list, entry) {
7663                if (filter->path.dentry) {
7664                        event->addr_filter_ranges[count].start = 0;
7665                        event->addr_filter_ranges[count].size = 0;
7666                        restart++;
7667                }
7668
7669                count++;
7670        }
7671
7672        if (restart)
7673                event->addr_filters_gen++;
7674        raw_spin_unlock_irqrestore(&ifh->lock, flags);
7675
7676        if (restart)
7677                perf_event_stop(event, 1);
7678}
7679
7680void perf_event_exec(void)
7681{
7682        struct perf_event_context *ctx;
7683        int ctxn;
7684
7685        for_each_task_context_nr(ctxn) {
7686                perf_event_enable_on_exec(ctxn);
7687                perf_event_remove_on_exec(ctxn);
7688
7689                rcu_read_lock();
7690                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7691                if (ctx) {
7692                        perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7693                                         NULL, true);
7694                }
7695                rcu_read_unlock();
7696        }
7697}
7698
7699struct remote_output {
7700        struct perf_buffer      *rb;
7701        int                     err;
7702};
7703
7704static void __perf_event_output_stop(struct perf_event *event, void *data)
7705{
7706        struct perf_event *parent = event->parent;
7707        struct remote_output *ro = data;
7708        struct perf_buffer *rb = ro->rb;
7709        struct stop_event_data sd = {
7710                .event  = event,
7711        };
7712
7713        if (!has_aux(event))
7714                return;
7715
7716        if (!parent)
7717                parent = event;
7718
7719        /*
7720         * In case of inheritance, it will be the parent that links to the
7721         * ring-buffer, but it will be the child that's actually using it.
7722         *
7723         * We are using event::rb to determine if the event should be stopped,
7724         * however this may race with ring_buffer_attach() (through set_output),
7725         * which will make us skip the event that actually needs to be stopped.
7726         * So ring_buffer_attach() has to stop an aux event before re-assigning
7727         * its rb pointer.
7728         */
7729        if (rcu_dereference(parent->rb) == rb)
7730                ro->err = __perf_event_stop(&sd);
7731}
7732
7733static int __perf_pmu_output_stop(void *info)
7734{
7735        struct perf_event *event = info;
7736        struct pmu *pmu = event->ctx->pmu;
7737        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7738        struct remote_output ro = {
7739                .rb     = event->rb,
7740        };
7741
7742        rcu_read_lock();
7743        perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7744        if (cpuctx->task_ctx)
7745                perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7746                                   &ro, false);
7747        rcu_read_unlock();
7748
7749        return ro.err;
7750}
7751
7752static void perf_pmu_output_stop(struct perf_event *event)
7753{
7754        struct perf_event *iter;
7755        int err, cpu;
7756
7757restart:
7758        rcu_read_lock();
7759        list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7760                /*
7761                 * For per-CPU events, we need to make sure that neither they
7762                 * nor their children are running; for cpu==-1 events it's
7763                 * sufficient to stop the event itself if it's active, since
7764                 * it can't have children.
7765                 */
7766                cpu = iter->cpu;
7767                if (cpu == -1)
7768                        cpu = READ_ONCE(iter->oncpu);
7769
7770                if (cpu == -1)
7771                        continue;
7772
7773                err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7774                if (err == -EAGAIN) {
7775                        rcu_read_unlock();
7776                        goto restart;
7777                }
7778        }
7779        rcu_read_unlock();
7780}
7781
7782/*
7783 * task tracking -- fork/exit
7784 *
7785 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7786 */
7787
7788struct perf_task_event {
7789        struct task_struct              *task;
7790        struct perf_event_context       *task_ctx;
7791
7792        struct {
7793                struct perf_event_header        header;
7794
7795                u32                             pid;
7796                u32                             ppid;
7797                u32                             tid;
7798                u32                             ptid;
7799                u64                             time;
7800        } event_id;
7801};
7802
7803static int perf_event_task_match(struct perf_event *event)
7804{
7805        return event->attr.comm  || event->attr.mmap ||
7806               event->attr.mmap2 || event->attr.mmap_data ||
7807               event->attr.task;
7808}
7809
7810static void perf_event_task_output(struct perf_event *event,
7811                                   void *data)
7812{
7813        struct perf_task_event *task_event = data;
7814        struct perf_output_handle handle;
7815        struct perf_sample_data sample;
7816        struct task_struct *task = task_event->task;
7817        int ret, size = task_event->event_id.header.size;
7818
7819        if (!perf_event_task_match(event))
7820                return;
7821
7822        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7823
7824        ret = perf_output_begin(&handle, &sample, event,
7825                                task_event->event_id.header.size);
7826        if (ret)
7827                goto out;
7828
7829        task_event->event_id.pid = perf_event_pid(event, task);
7830        task_event->event_id.tid = perf_event_tid(event, task);
7831
7832        if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7833                task_event->event_id.ppid = perf_event_pid(event,
7834                                                        task->real_parent);
7835                task_event->event_id.ptid = perf_event_pid(event,
7836                                                        task->real_parent);
7837        } else {  /* PERF_RECORD_FORK */
7838                task_event->event_id.ppid = perf_event_pid(event, current);
7839                task_event->event_id.ptid = perf_event_tid(event, current);
7840        }
7841
7842        task_event->event_id.time = perf_event_clock(event);
7843
7844        perf_output_put(&handle, task_event->event_id);
7845
7846        perf_event__output_id_sample(event, &handle, &sample);
7847
7848        perf_output_end(&handle);
7849out:
7850        task_event->event_id.header.size = size;
7851}
7852
7853static void perf_event_task(struct task_struct *task,
7854                              struct perf_event_context *task_ctx,
7855                              int new)
7856{
7857        struct perf_task_event task_event;
7858
7859        if (!atomic_read(&nr_comm_events) &&
7860            !atomic_read(&nr_mmap_events) &&
7861            !atomic_read(&nr_task_events))
7862                return;
7863
7864        task_event = (struct perf_task_event){
7865                .task     = task,
7866                .task_ctx = task_ctx,
7867                .event_id    = {
7868                        .header = {
7869                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7870                                .misc = 0,
7871                                .size = sizeof(task_event.event_id),
7872                        },
7873                        /* .pid  */
7874                        /* .ppid */
7875                        /* .tid  */
7876                        /* .ptid */
7877                        /* .time */
7878                },
7879        };
7880
7881        perf_iterate_sb(perf_event_task_output,
7882                       &task_event,
7883                       task_ctx);
7884}
7885
7886void perf_event_fork(struct task_struct *task)
7887{
7888        perf_event_task(task, NULL, 1);
7889        perf_event_namespaces(task);
7890}
7891
7892/*
7893 * comm tracking
7894 */
7895
7896struct perf_comm_event {
7897        struct task_struct      *task;
7898        char                    *comm;
7899        int                     comm_size;
7900
7901        struct {
7902                struct perf_event_header        header;
7903
7904                u32                             pid;
7905                u32                             tid;
7906        } event_id;
7907};
7908
7909static int perf_event_comm_match(struct perf_event *event)
7910{
7911        return event->attr.comm;
7912}
7913
7914static void perf_event_comm_output(struct perf_event *event,
7915                                   void *data)
7916{
7917        struct perf_comm_event *comm_event = data;
7918        struct perf_output_handle handle;
7919        struct perf_sample_data sample;
7920        int size = comm_event->event_id.header.size;
7921        int ret;
7922
7923        if (!perf_event_comm_match(event))
7924                return;
7925
7926        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7927        ret = perf_output_begin(&handle, &sample, event,
7928                                comm_event->event_id.header.size);
7929
7930        if (ret)
7931                goto out;
7932
7933        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7934        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7935
7936        perf_output_put(&handle, comm_event->event_id);
7937        __output_copy(&handle, comm_event->comm,
7938                                   comm_event->comm_size);
7939
7940        perf_event__output_id_sample(event, &handle, &sample);
7941
7942        perf_output_end(&handle);
7943out:
7944        comm_event->event_id.header.size = size;
7945}
7946
7947static void perf_event_comm_event(struct perf_comm_event *comm_event)
7948{
7949        char comm[TASK_COMM_LEN];
7950        unsigned int size;
7951
7952        memset(comm, 0, sizeof(comm));
7953        strlcpy(comm, comm_event->task->comm, sizeof(comm));
7954        size = ALIGN(strlen(comm)+1, sizeof(u64));
7955
7956        comm_event->comm = comm;
7957        comm_event->comm_size = size;
7958
7959        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7960
7961        perf_iterate_sb(perf_event_comm_output,
7962                       comm_event,
7963                       NULL);
7964}
7965
7966void perf_event_comm(struct task_struct *task, bool exec)
7967{
7968        struct perf_comm_event comm_event;
7969
7970        if (!atomic_read(&nr_comm_events))
7971                return;
7972
7973        comm_event = (struct perf_comm_event){
7974                .task   = task,
7975                /* .comm      */
7976                /* .comm_size */
7977                .event_id  = {
7978                        .header = {
7979                                .type = PERF_RECORD_COMM,
7980                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7981                                /* .size */
7982                        },
7983                        /* .pid */
7984                        /* .tid */
7985                },
7986        };
7987
7988        perf_event_comm_event(&comm_event);
7989}
7990
7991/*
7992 * namespaces tracking
7993 */
7994
7995struct perf_namespaces_event {
7996        struct task_struct              *task;
7997
7998        struct {
7999                struct perf_event_header        header;
8000
8001                u32                             pid;
8002                u32                             tid;
8003                u64                             nr_namespaces;
8004                struct perf_ns_link_info        link_info[NR_NAMESPACES];
8005        } event_id;
8006};
8007
8008static int perf_event_namespaces_match(struct perf_event *event)
8009{
8010        return event->attr.namespaces;
8011}
8012
8013static void perf_event_namespaces_output(struct perf_event *event,
8014                                         void *data)
8015{
8016        struct perf_namespaces_event *namespaces_event = data;
8017        struct perf_output_handle handle;
8018        struct perf_sample_data sample;
8019        u16 header_size = namespaces_event->event_id.header.size;
8020        int ret;
8021
8022        if (!perf_event_namespaces_match(event))
8023                return;
8024
8025        perf_event_header__init_id(&namespaces_event->event_id.header,
8026                                   &sample, event);
8027        ret = perf_output_begin(&handle, &sample, event,
8028                                namespaces_event->event_id.header.size);
8029        if (ret)
8030                goto out;
8031
8032        namespaces_event->event_id.pid = perf_event_pid(event,
8033                                                        namespaces_event->task);
8034        namespaces_event->event_id.tid = perf_event_tid(event,
8035                                                        namespaces_event->task);
8036
8037        perf_output_put(&handle, namespaces_event->event_id);
8038
8039        perf_event__output_id_sample(event, &handle, &sample);
8040
8041        perf_output_end(&handle);
8042out:
8043        namespaces_event->event_id.header.size = header_size;
8044}
8045
8046static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8047                                   struct task_struct *task,
8048                                   const struct proc_ns_operations *ns_ops)
8049{
8050        struct path ns_path;
8051        struct inode *ns_inode;
8052        int error;
8053
8054        error = ns_get_path(&ns_path, task, ns_ops);
8055        if (!error) {
8056                ns_inode = ns_path.dentry->d_inode;
8057                ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8058                ns_link_info->ino = ns_inode->i_ino;
8059                path_put(&ns_path);
8060        }
8061}
8062
8063void perf_event_namespaces(struct task_struct *task)
8064{
8065        struct perf_namespaces_event namespaces_event;
8066        struct perf_ns_link_info *ns_link_info;
8067
8068        if (!atomic_read(&nr_namespaces_events))
8069                return;
8070
8071        namespaces_event = (struct perf_namespaces_event){
8072                .task   = task,
8073                .event_id  = {
8074                        .header = {
8075                                .type = PERF_RECORD_NAMESPACES,
8076                                .misc = 0,
8077                                .size = sizeof(namespaces_event.event_id),
8078                        },
8079                        /* .pid */
8080                        /* .tid */
8081                        .nr_namespaces = NR_NAMESPACES,
8082                        /* .link_info[NR_NAMESPACES] */
8083                },
8084        };
8085
8086        ns_link_info = namespaces_event.event_id.link_info;
8087
8088        perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8089                               task, &mntns_operations);
8090
8091#ifdef CONFIG_USER_NS
8092        perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8093                               task, &userns_operations);
8094#endif
8095#ifdef CONFIG_NET_NS
8096        perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8097                               task, &netns_operations);
8098#endif
8099#ifdef CONFIG_UTS_NS
8100        perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8101                               task, &utsns_operations);
8102#endif
8103#ifdef CONFIG_IPC_NS
8104        perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8105                               task, &ipcns_operations);
8106#endif
8107#ifdef CONFIG_PID_NS
8108        perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8109                               task, &pidns_operations);
8110#endif
8111#ifdef CONFIG_CGROUPS
8112        perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8113                               task, &cgroupns_operations);
8114#endif
8115
8116        perf_iterate_sb(perf_event_namespaces_output,
8117                        &namespaces_event,
8118                        NULL);
8119}
8120
8121/*
8122 * cgroup tracking
8123 */
8124#ifdef CONFIG_CGROUP_PERF
8125
8126struct perf_cgroup_event {
8127        char                            *path;
8128        int                             path_size;
8129        struct {
8130                struct perf_event_header        header;
8131                u64                             id;
8132                char                            path[];
8133        } event_id;
8134};
8135
8136static int perf_event_cgroup_match(struct perf_event *event)
8137{
8138        return event->attr.cgroup;
8139}
8140
8141static void perf_event_cgroup_output(struct perf_event *event, void *data)
8142{
8143        struct perf_cgroup_event *cgroup_event = data;
8144        struct perf_output_handle handle;
8145        struct perf_sample_data sample;
8146        u16 header_size = cgroup_event->event_id.header.size;
8147        int ret;
8148
8149        if (!perf_event_cgroup_match(event))
8150                return;
8151
8152        perf_event_header__init_id(&cgroup_event->event_id.header,
8153                                   &sample, event);
8154        ret = perf_output_begin(&handle, &sample, event,
8155                                cgroup_event->event_id.header.size);
8156        if (ret)
8157                goto out;
8158
8159        perf_output_put(&handle, cgroup_event->event_id);
8160        __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8161
8162        perf_event__output_id_sample(event, &handle, &sample);
8163
8164        perf_output_end(&handle);
8165out:
8166        cgroup_event->event_id.header.size = header_size;
8167}
8168
8169static void perf_event_cgroup(struct cgroup *cgrp)
8170{
8171        struct perf_cgroup_event cgroup_event;
8172        char path_enomem[16] = "//enomem";
8173        char *pathname;
8174        size_t size;
8175
8176        if (!atomic_read(&nr_cgroup_events))
8177                return;
8178
8179        cgroup_event = (struct perf_cgroup_event){
8180                .event_id  = {
8181                        .header = {
8182                                .type = PERF_RECORD_CGROUP,
8183                                .misc = 0,
8184                                .size = sizeof(cgroup_event.event_id),
8185                        },
8186                        .id = cgroup_id(cgrp),
8187                },
8188        };
8189
8190        pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8191        if (pathname == NULL) {
8192                cgroup_event.path = path_enomem;
8193        } else {
8194                /* just to be sure to have enough space for alignment */
8195                cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8196                cgroup_event.path = pathname;
8197        }
8198
8199        /*
8200         * Since our buffer works in 8 byte units we need to align our string
8201         * size to a multiple of 8. However, we must guarantee the tail end is
8202         * zero'd out to avoid leaking random bits to userspace.
8203         */
8204        size = strlen(cgroup_event.path) + 1;
8205        while (!IS_ALIGNED(size, sizeof(u64)))
8206                cgroup_event.path[size++] = '\0';
8207
8208        cgroup_event.event_id.header.size += size;
8209        cgroup_event.path_size = size;
8210
8211        perf_iterate_sb(perf_event_cgroup_output,
8212                        &cgroup_event,
8213                        NULL);
8214
8215        kfree(pathname);
8216}
8217
8218#endif
8219
8220/*
8221 * mmap tracking
8222 */
8223
8224struct perf_mmap_event {
8225        struct vm_area_struct   *vma;
8226
8227        const char              *file_name;
8228        int                     file_size;
8229        int                     maj, min;
8230        u64                     ino;
8231        u64                     ino_generation;
8232        u32                     prot, flags;
8233        u8                      build_id[BUILD_ID_SIZE_MAX];
8234        u32                     build_id_size;
8235
8236        struct {
8237                struct perf_event_header        header;
8238
8239                u32                             pid;
8240                u32                             tid;
8241                u64                             start;
8242                u64                             len;
8243                u64                             pgoff;
8244        } event_id;
8245};
8246
8247static int perf_event_mmap_match(struct perf_event *event,
8248                                 void *data)
8249{
8250        struct perf_mmap_event *mmap_event = data;
8251        struct vm_area_struct *vma = mmap_event->vma;
8252        int executable = vma->vm_flags & VM_EXEC;
8253
8254        return (!executable && event->attr.mmap_data) ||
8255               (executable && (event->attr.mmap || event->attr.mmap2));
8256}
8257
8258static void perf_event_mmap_output(struct perf_event *event,
8259                                   void *data)
8260{
8261        struct perf_mmap_event *mmap_event = data;
8262        struct perf_output_handle handle;
8263        struct perf_sample_data sample;
8264        int size = mmap_event->event_id.header.size;
8265        u32 type = mmap_event->event_id.header.type;
8266        bool use_build_id;
8267        int ret;
8268
8269        if (!perf_event_mmap_match(event, data))
8270                return;
8271
8272        if (event->attr.mmap2) {
8273                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8274                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8275                mmap_event->event_id.header.size += sizeof(mmap_event->min);
8276                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8277                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8278                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8279                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8280        }
8281
8282        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8283        ret = perf_output_begin(&handle, &sample, event,
8284                                mmap_event->event_id.header.size);
8285        if (ret)
8286                goto out;
8287
8288        mmap_event->event_id.pid = perf_event_pid(event, current);
8289        mmap_event->event_id.tid = perf_event_tid(event, current);
8290
8291        use_build_id = event->attr.build_id && mmap_event->build_id_size;
8292
8293        if (event->attr.mmap2 && use_build_id)
8294                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8295
8296        perf_output_put(&handle, mmap_event->event_id);
8297
8298        if (event->attr.mmap2) {
8299                if (use_build_id) {
8300                        u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8301
8302                        __output_copy(&handle, size, 4);
8303                        __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8304                } else {
8305                        perf_output_put(&handle, mmap_event->maj);
8306                        perf_output_put(&handle, mmap_event->min);
8307                        perf_output_put(&handle, mmap_event->ino);
8308                        perf_output_put(&handle, mmap_event->ino_generation);
8309                }
8310                perf_output_put(&handle, mmap_event->prot);
8311                perf_output_put(&handle, mmap_event->flags);
8312        }
8313
8314        __output_copy(&handle, mmap_event->file_name,
8315                                   mmap_event->file_size);
8316
8317        perf_event__output_id_sample(event, &handle, &sample);
8318
8319        perf_output_end(&handle);
8320out:
8321        mmap_event->event_id.header.size = size;
8322        mmap_event->event_id.header.type = type;
8323}
8324
8325static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8326{
8327        struct vm_area_struct *vma = mmap_event->vma;
8328        struct file *file = vma->vm_file;
8329        int maj = 0, min = 0;
8330        u64 ino = 0, gen = 0;
8331        u32 prot = 0, flags = 0;
8332        unsigned int size;
8333        char tmp[16];
8334        char *buf = NULL;
8335        char *name;
8336
8337        if (vma->vm_flags & VM_READ)
8338                prot |= PROT_READ;
8339        if (vma->vm_flags & VM_WRITE)
8340                prot |= PROT_WRITE;
8341        if (vma->vm_flags & VM_EXEC)
8342                prot |= PROT_EXEC;
8343
8344        if (vma->vm_flags & VM_MAYSHARE)
8345                flags = MAP_SHARED;
8346        else
8347                flags = MAP_PRIVATE;
8348
8349        if (vma->vm_flags & VM_LOCKED)
8350                flags |= MAP_LOCKED;
8351        if (is_vm_hugetlb_page(vma))
8352                flags |= MAP_HUGETLB;
8353
8354        if (file) {
8355                struct inode *inode;
8356                dev_t dev;
8357
8358                buf = kmalloc(PATH_MAX, GFP_KERNEL);
8359                if (!buf) {
8360                        name = "//enomem";
8361                        goto cpy_name;
8362                }
8363                /*
8364                 * d_path() works from the end of the rb backwards, so we
8365                 * need to add enough zero bytes after the string to handle
8366                 * the 64bit alignment we do later.
8367                 */
8368                name = file_path(file, buf, PATH_MAX - sizeof(u64));
8369                if (IS_ERR(name)) {
8370                        name = "//toolong";
8371                        goto cpy_name;
8372                }
8373                inode = file_inode(vma->vm_file);
8374                dev = inode->i_sb->s_dev;
8375                ino = inode->i_ino;
8376                gen = inode->i_generation;
8377                maj = MAJOR(dev);
8378                min = MINOR(dev);
8379
8380                goto got_name;
8381        } else {
8382                if (vma->vm_ops && vma->vm_ops->name) {
8383                        name = (char *) vma->vm_ops->name(vma);
8384                        if (name)
8385                                goto cpy_name;
8386                }
8387
8388                name = (char *)arch_vma_name(vma);
8389                if (name)
8390                        goto cpy_name;
8391
8392                if (vma->vm_start <= vma->vm_mm->start_brk &&
8393                                vma->vm_end >= vma->vm_mm->brk) {
8394                        name = "[heap]";
8395                        goto cpy_name;
8396                }
8397                if (vma->vm_start <= vma->vm_mm->start_stack &&
8398                                vma->vm_end >= vma->vm_mm->start_stack) {
8399                        name = "[stack]";
8400                        goto cpy_name;
8401                }
8402
8403                name = "//anon";
8404                goto cpy_name;
8405        }
8406
8407cpy_name:
8408        strlcpy(tmp, name, sizeof(tmp));
8409        name = tmp;
8410got_name:
8411        /*
8412         * Since our buffer works in 8 byte units we need to align our string
8413         * size to a multiple of 8. However, we must guarantee the tail end is
8414         * zero'd out to avoid leaking random bits to userspace.
8415         */
8416        size = strlen(name)+1;
8417        while (!IS_ALIGNED(size, sizeof(u64)))
8418                name[size++] = '\0';
8419
8420        mmap_event->file_name = name;
8421        mmap_event->file_size = size;
8422        mmap_event->maj = maj;
8423        mmap_event->min = min;
8424        mmap_event->ino = ino;
8425        mmap_event->ino_generation = gen;
8426        mmap_event->prot = prot;
8427        mmap_event->flags = flags;
8428
8429        if (!(vma->vm_flags & VM_EXEC))
8430                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8431
8432        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8433
8434        if (atomic_read(&nr_build_id_events))
8435                build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8436
8437        perf_iterate_sb(perf_event_mmap_output,
8438                       mmap_event,
8439                       NULL);
8440
8441        kfree(buf);
8442}
8443
8444/*
8445 * Check whether inode and address range match filter criteria.
8446 */
8447static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8448                                     struct file *file, unsigned long offset,
8449                                     unsigned long size)
8450{
8451        /* d_inode(NULL) won't be equal to any mapped user-space file */
8452        if (!filter->path.dentry)
8453                return false;
8454
8455        if (d_inode(filter->path.dentry) != file_inode(file))
8456                return false;
8457
8458        if (filter->offset > offset + size)
8459                return false;
8460
8461        if (filter->offset + filter->size < offset)
8462                return false;
8463
8464        return true;
8465}
8466
8467static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8468                                        struct vm_area_struct *vma,
8469                                        struct perf_addr_filter_range *fr)
8470{
8471        unsigned long vma_size = vma->vm_end - vma->vm_start;
8472        unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8473        struct file *file = vma->vm_file;
8474
8475        if (!perf_addr_filter_match(filter, file, off, vma_size))
8476                return false;
8477
8478        if (filter->offset < off) {
8479                fr->start = vma->vm_start;
8480                fr->size = min(vma_size, filter->size - (off - filter->offset));
8481        } else {
8482                fr->start = vma->vm_start + filter->offset - off;
8483                fr->size = min(vma->vm_end - fr->start, filter->size);
8484        }
8485
8486        return true;
8487}
8488
8489static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8490{
8491        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8492        struct vm_area_struct *vma = data;
8493        struct perf_addr_filter *filter;
8494        unsigned int restart = 0, count = 0;
8495        unsigned long flags;
8496
8497        if (!has_addr_filter(event))
8498                return;
8499
8500        if (!vma->vm_file)
8501                return;
8502
8503        raw_spin_lock_irqsave(&ifh->lock, flags);
8504        list_for_each_entry(filter, &ifh->list, entry) {
8505                if (perf_addr_filter_vma_adjust(filter, vma,
8506                                                &event->addr_filter_ranges[count]))
8507                        restart++;
8508
8509                count++;
8510        }
8511
8512        if (restart)
8513                event->addr_filters_gen++;
8514        raw_spin_unlock_irqrestore(&ifh->lock, flags);
8515
8516        if (restart)
8517                perf_event_stop(event, 1);
8518}
8519
8520/*
8521 * Adjust all task's events' filters to the new vma
8522 */
8523static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8524{
8525        struct perf_event_context *ctx;
8526        int ctxn;
8527
8528        /*
8529         * Data tracing isn't supported yet and as such there is no need
8530         * to keep track of anything that isn't related to executable code:
8531         */
8532        if (!(vma->vm_flags & VM_EXEC))
8533                return;
8534
8535        rcu_read_lock();
8536        for_each_task_context_nr(ctxn) {
8537                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8538                if (!ctx)
8539                        continue;
8540
8541                perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8542        }
8543        rcu_read_unlock();
8544}
8545
8546void perf_event_mmap(struct vm_area_struct *vma)
8547{
8548        struct perf_mmap_event mmap_event;
8549
8550        if (!atomic_read(&nr_mmap_events))
8551                return;
8552
8553        mmap_event = (struct perf_mmap_event){
8554                .vma    = vma,
8555                /* .file_name */
8556                /* .file_size */
8557                .event_id  = {
8558                        .header = {
8559                                .type = PERF_RECORD_MMAP,
8560                                .misc = PERF_RECORD_MISC_USER,
8561                                /* .size */
8562                        },
8563                        /* .pid */
8564                        /* .tid */
8565                        .start  = vma->vm_start,
8566                        .len    = vma->vm_end - vma->vm_start,
8567                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8568                },
8569                /* .maj (attr_mmap2 only) */
8570                /* .min (attr_mmap2 only) */
8571                /* .ino (attr_mmap2 only) */
8572                /* .ino_generation (attr_mmap2 only) */
8573                /* .prot (attr_mmap2 only) */
8574                /* .flags (attr_mmap2 only) */
8575        };
8576
8577        perf_addr_filters_adjust(vma);
8578        perf_event_mmap_event(&mmap_event);
8579}
8580
8581void perf_event_aux_event(struct perf_event *event, unsigned long head,
8582                          unsigned long size, u64 flags)
8583{
8584        struct perf_output_handle handle;
8585        struct perf_sample_data sample;
8586        struct perf_aux_event {
8587                struct perf_event_header        header;
8588                u64                             offset;
8589                u64                             size;
8590                u64                             flags;
8591        } rec = {
8592                .header = {
8593                        .type = PERF_RECORD_AUX,
8594                        .misc = 0,
8595                        .size = sizeof(rec),
8596                },
8597                .offset         = head,
8598                .size           = size,
8599                .flags          = flags,
8600        };
8601        int ret;
8602
8603        perf_event_header__init_id(&rec.header, &sample, event);
8604        ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8605
8606        if (ret)
8607                return;
8608
8609        perf_output_put(&handle, rec);
8610        perf_event__output_id_sample(event, &handle, &sample);
8611
8612        perf_output_end(&handle);
8613}
8614
8615/*
8616 * Lost/dropped samples logging
8617 */
8618void perf_log_lost_samples(struct perf_event *event, u64 lost)
8619{
8620        struct perf_output_handle handle;
8621        struct perf_sample_data sample;
8622        int ret;
8623
8624        struct {
8625                struct perf_event_header        header;
8626                u64                             lost;
8627        } lost_samples_event = {
8628                .header = {
8629                        .type = PERF_RECORD_LOST_SAMPLES,
8630                        .misc = 0,
8631                        .size = sizeof(lost_samples_event),
8632                },
8633                .lost           = lost,
8634        };
8635
8636        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8637
8638        ret = perf_output_begin(&handle, &sample, event,
8639                                lost_samples_event.header.size);
8640        if (ret)
8641                return;
8642
8643        perf_output_put(&handle, lost_samples_event);
8644        perf_event__output_id_sample(event, &handle, &sample);
8645        perf_output_end(&handle);
8646}
8647
8648/*
8649 * context_switch tracking
8650 */
8651
8652struct perf_switch_event {
8653        struct task_struct      *task;
8654        struct task_struct      *next_prev;
8655
8656        struct {
8657                struct perf_event_header        header;
8658                u32                             next_prev_pid;
8659                u32                             next_prev_tid;
8660        } event_id;
8661};
8662
8663static int perf_event_switch_match(struct perf_event *event)
8664{
8665        return event->attr.context_switch;
8666}
8667
8668static void perf_event_switch_output(struct perf_event *event, void *data)
8669{
8670        struct perf_switch_event *se = data;
8671        struct perf_output_handle handle;
8672        struct perf_sample_data sample;
8673        int ret;
8674
8675        if (!perf_event_switch_match(event))
8676                return;
8677
8678        /* Only CPU-wide events are allowed to see next/prev pid/tid */
8679        if (event->ctx->task) {
8680                se->event_id.header.type = PERF_RECORD_SWITCH;
8681                se->event_id.header.size = sizeof(se->event_id.header);
8682        } else {
8683                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8684                se->event_id.header.size = sizeof(se->event_id);
8685                se->event_id.next_prev_pid =
8686                                        perf_event_pid(event, se->next_prev);
8687                se->event_id.next_prev_tid =
8688                                        perf_event_tid(event, se->next_prev);
8689        }
8690
8691        perf_event_header__init_id(&se->event_id.header, &sample, event);
8692
8693        ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8694        if (ret)
8695                return;
8696
8697        if (event->ctx->task)
8698                perf_output_put(&handle, se->event_id.header);
8699        else
8700                perf_output_put(&handle, se->event_id);
8701
8702        perf_event__output_id_sample(event, &handle, &sample);
8703
8704        perf_output_end(&handle);
8705}
8706
8707static void perf_event_switch(struct task_struct *task,
8708                              struct task_struct *next_prev, bool sched_in)
8709{
8710        struct perf_switch_event switch_event;
8711
8712        /* N.B. caller checks nr_switch_events != 0 */
8713
8714        switch_event = (struct perf_switch_event){
8715                .task           = task,
8716                .next_prev      = next_prev,
8717                .event_id       = {
8718                        .header = {
8719                                /* .type */
8720                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8721                                /* .size */
8722                        },
8723                        /* .next_prev_pid */
8724                        /* .next_prev_tid */
8725                },
8726        };
8727
8728        if (!sched_in && task->on_rq) {
8729                switch_event.event_id.header.misc |=
8730                                PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8731        }
8732
8733        perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8734}
8735
8736/*
8737 * IRQ throttle logging
8738 */
8739
8740static void perf_log_throttle(struct perf_event *event, int enable)
8741{
8742        struct perf_output_handle handle;
8743        struct perf_sample_data sample;
8744        int ret;
8745
8746        struct {
8747                struct perf_event_header        header;
8748                u64                             time;
8749                u64                             id;
8750                u64                             stream_id;
8751        } throttle_event = {
8752                .header = {
8753                        .type = PERF_RECORD_THROTTLE,
8754                        .misc = 0,
8755                        .size = sizeof(throttle_event),
8756                },
8757                .time           = perf_event_clock(event),
8758                .id             = primary_event_id(event),
8759                .stream_id      = event->id,
8760        };
8761
8762        if (enable)
8763                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8764
8765        perf_event_header__init_id(&throttle_event.header, &sample, event);
8766
8767        ret = perf_output_begin(&handle, &sample, event,
8768                                throttle_event.header.size);
8769        if (ret)
8770                return;
8771
8772        perf_output_put(&handle, throttle_event);
8773        perf_event__output_id_sample(event, &handle, &sample);
8774        perf_output_end(&handle);
8775}
8776
8777/*
8778 * ksymbol register/unregister tracking
8779 */
8780
8781struct perf_ksymbol_event {
8782        const char      *name;
8783        int             name_len;
8784        struct {
8785                struct perf_event_header        header;
8786                u64                             addr;
8787                u32                             len;
8788                u16                             ksym_type;
8789                u16                             flags;
8790        } event_id;
8791};
8792
8793static int perf_event_ksymbol_match(struct perf_event *event)
8794{
8795        return event->attr.ksymbol;
8796}
8797
8798static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8799{
8800        struct perf_ksymbol_event *ksymbol_event = data;
8801        struct perf_output_handle handle;
8802        struct perf_sample_data sample;
8803        int ret;
8804
8805        if (!perf_event_ksymbol_match(event))
8806                return;
8807
8808        perf_event_header__init_id(&ksymbol_event->event_id.header,
8809                                   &sample, event);
8810        ret = perf_output_begin(&handle, &sample, event,
8811                                ksymbol_event->event_id.header.size);
8812        if (ret)
8813                return;
8814
8815        perf_output_put(&handle, ksymbol_event->event_id);
8816        __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8817        perf_event__output_id_sample(event, &handle, &sample);
8818
8819        perf_output_end(&handle);
8820}
8821
8822void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8823                        const char *sym)
8824{
8825        struct perf_ksymbol_event ksymbol_event;
8826        char name[KSYM_NAME_LEN];
8827        u16 flags = 0;
8828        int name_len;
8829
8830        if (!atomic_read(&nr_ksymbol_events))
8831                return;
8832
8833        if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8834            ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8835                goto err;
8836
8837        strlcpy(name, sym, KSYM_NAME_LEN);
8838        name_len = strlen(name) + 1;
8839        while (!IS_ALIGNED(name_len, sizeof(u64)))
8840                name[name_len++] = '\0';
8841        BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8842
8843        if (unregister)
8844                flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8845
8846        ksymbol_event = (struct perf_ksymbol_event){
8847                .name = name,
8848                .name_len = name_len,
8849                .event_id = {
8850                        .header = {
8851                                .type = PERF_RECORD_KSYMBOL,
8852                                .size = sizeof(ksymbol_event.event_id) +
8853                                        name_len,
8854                        },
8855                        .addr = addr,
8856                        .len = len,
8857                        .ksym_type = ksym_type,
8858                        .flags = flags,
8859                },
8860        };
8861
8862        perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8863        return;
8864err:
8865        WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8866}
8867
8868/*
8869 * bpf program load/unload tracking
8870 */
8871
8872struct perf_bpf_event {
8873        struct bpf_prog *prog;
8874        struct {
8875                struct perf_event_header        header;
8876                u16                             type;
8877                u16                             flags;
8878                u32                             id;
8879                u8                              tag[BPF_TAG_SIZE];
8880        } event_id;
8881};
8882
8883static int perf_event_bpf_match(struct perf_event *event)
8884{
8885        return event->attr.bpf_event;
8886}
8887
8888static void perf_event_bpf_output(struct perf_event *event, void *data)
8889{
8890        struct perf_bpf_event *bpf_event = data;
8891        struct perf_output_handle handle;
8892        struct perf_sample_data sample;
8893        int ret;
8894
8895        if (!perf_event_bpf_match(event))
8896                return;
8897
8898        perf_event_header__init_id(&bpf_event->event_id.header,
8899                                   &sample, event);
8900        ret = perf_output_begin(&handle, data, event,
8901                                bpf_event->event_id.header.size);
8902        if (ret)
8903                return;
8904
8905        perf_output_put(&handle, bpf_event->event_id);
8906        perf_event__output_id_sample(event, &handle, &sample);
8907
8908        perf_output_end(&handle);
8909}
8910
8911static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8912                                         enum perf_bpf_event_type type)
8913{
8914        bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8915        int i;
8916
8917        if (prog->aux->func_cnt == 0) {
8918                perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8919                                   (u64)(unsigned long)prog->bpf_func,
8920                                   prog->jited_len, unregister,
8921                                   prog->aux->ksym.name);
8922        } else {
8923                for (i = 0; i < prog->aux->func_cnt; i++) {
8924                        struct bpf_prog *subprog = prog->aux->func[i];
8925
8926                        perf_event_ksymbol(
8927                                PERF_RECORD_KSYMBOL_TYPE_BPF,
8928                                (u64)(unsigned long)subprog->bpf_func,
8929                                subprog->jited_len, unregister,
8930                                prog->aux->ksym.name);
8931                }
8932        }
8933}
8934
8935void perf_event_bpf_event(struct bpf_prog *prog,
8936                          enum perf_bpf_event_type type,
8937                          u16 flags)
8938{
8939        struct perf_bpf_event bpf_event;
8940
8941        if (type <= PERF_BPF_EVENT_UNKNOWN ||
8942            type >= PERF_BPF_EVENT_MAX)
8943                return;
8944
8945        switch (type) {
8946        case PERF_BPF_EVENT_PROG_LOAD:
8947        case PERF_BPF_EVENT_PROG_UNLOAD:
8948                if (atomic_read(&nr_ksymbol_events))
8949                        perf_event_bpf_emit_ksymbols(prog, type);
8950                break;
8951        default:
8952                break;
8953        }
8954
8955        if (!atomic_read(&nr_bpf_events))
8956                return;
8957
8958        bpf_event = (struct perf_bpf_event){
8959                .prog = prog,
8960                .event_id = {
8961                        .header = {
8962                                .type = PERF_RECORD_BPF_EVENT,
8963                                .size = sizeof(bpf_event.event_id),
8964                        },
8965                        .type = type,
8966                        .flags = flags,
8967                        .id = prog->aux->id,
8968                },
8969        };
8970
8971        BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8972
8973        memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8974        perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8975}
8976
8977struct perf_text_poke_event {
8978        const void              *old_bytes;
8979        const void              *new_bytes;
8980        size_t                  pad;
8981        u16                     old_len;
8982        u16                     new_len;
8983
8984        struct {
8985                struct perf_event_header        header;
8986
8987                u64                             addr;
8988        } event_id;
8989};
8990
8991static int perf_event_text_poke_match(struct perf_event *event)
8992{
8993        return event->attr.text_poke;
8994}
8995
8996static void perf_event_text_poke_output(struct perf_event *event, void *data)
8997{
8998        struct perf_text_poke_event *text_poke_event = data;
8999        struct perf_output_handle handle;
9000        struct perf_sample_data sample;
9001        u64 padding = 0;
9002        int ret;
9003
9004        if (!perf_event_text_poke_match(event))
9005                return;
9006
9007        perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9008
9009        ret = perf_output_begin(&handle, &sample, event,
9010                                text_poke_event->event_id.header.size);
9011        if (ret)
9012                return;
9013
9014        perf_output_put(&handle, text_poke_event->event_id);
9015        perf_output_put(&handle, text_poke_event->old_len);
9016        perf_output_put(&handle, text_poke_event->new_len);
9017
9018        __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9019        __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9020
9021        if (text_poke_event->pad)
9022                __output_copy(&handle, &padding, text_poke_event->pad);
9023
9024        perf_event__output_id_sample(event, &handle, &sample);
9025
9026        perf_output_end(&handle);
9027}
9028
9029void perf_event_text_poke(const void *addr, const void *old_bytes,
9030                          size_t old_len, const void *new_bytes, size_t new_len)
9031{
9032        struct perf_text_poke_event text_poke_event;
9033        size_t tot, pad;
9034
9035        if (!atomic_read(&nr_text_poke_events))
9036                return;
9037
9038        tot  = sizeof(text_poke_event.old_len) + old_len;
9039        tot += sizeof(text_poke_event.new_len) + new_len;
9040        pad  = ALIGN(tot, sizeof(u64)) - tot;
9041
9042        text_poke_event = (struct perf_text_poke_event){
9043                .old_bytes    = old_bytes,
9044                .new_bytes    = new_bytes,
9045                .pad          = pad,
9046                .old_len      = old_len,
9047                .new_len      = new_len,
9048                .event_id  = {
9049                        .header = {
9050                                .type = PERF_RECORD_TEXT_POKE,
9051                                .misc = PERF_RECORD_MISC_KERNEL,
9052                                .size = sizeof(text_poke_event.event_id) + tot + pad,
9053                        },
9054                        .addr = (unsigned long)addr,
9055                },
9056        };
9057
9058        perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9059}
9060
9061void perf_event_itrace_started(struct perf_event *event)
9062{
9063        event->attach_state |= PERF_ATTACH_ITRACE;
9064}
9065
9066static void perf_log_itrace_start(struct perf_event *event)
9067{
9068        struct perf_output_handle handle;
9069        struct perf_sample_data sample;
9070        struct perf_aux_event {
9071                struct perf_event_header        header;
9072                u32                             pid;
9073                u32                             tid;
9074        } rec;
9075        int ret;
9076
9077        if (event->parent)
9078                event = event->parent;
9079
9080        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9081            event->attach_state & PERF_ATTACH_ITRACE)
9082                return;
9083
9084        rec.header.type = PERF_RECORD_ITRACE_START;
9085        rec.header.misc = 0;
9086        rec.header.size = sizeof(rec);
9087        rec.pid = perf_event_pid(event, current);
9088        rec.tid = perf_event_tid(event, current);
9089
9090        perf_event_header__init_id(&rec.header, &sample, event);
9091        ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9092
9093        if (ret)
9094                return;
9095
9096        perf_output_put(&handle, rec);
9097        perf_event__output_id_sample(event, &handle, &sample);
9098
9099        perf_output_end(&handle);
9100}
9101
9102void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9103{
9104        struct perf_output_handle handle;
9105        struct perf_sample_data sample;
9106        struct perf_aux_event {
9107                struct perf_event_header        header;
9108                u64                             hw_id;
9109        } rec;
9110        int ret;
9111
9112        if (event->parent)
9113                event = event->parent;
9114
9115        rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9116        rec.header.misc = 0;
9117        rec.header.size = sizeof(rec);
9118        rec.hw_id       = hw_id;
9119
9120        perf_event_header__init_id(&rec.header, &sample, event);
9121        ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9122
9123        if (ret)
9124                return;
9125
9126        perf_output_put(&handle, rec);
9127        perf_event__output_id_sample(event, &handle, &sample);
9128
9129        perf_output_end(&handle);
9130}
9131
9132static int
9133__perf_event_account_interrupt(struct perf_event *event, int throttle)
9134{
9135        struct hw_perf_event *hwc = &event->hw;
9136        int ret = 0;
9137        u64 seq;
9138
9139        seq = __this_cpu_read(perf_throttled_seq);
9140        if (seq != hwc->interrupts_seq) {
9141                hwc->interrupts_seq = seq;
9142                hwc->interrupts = 1;
9143        } else {
9144                hwc->interrupts++;
9145                if (unlikely(throttle
9146                             && hwc->interrupts >= max_samples_per_tick)) {
9147                        __this_cpu_inc(perf_throttled_count);
9148                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9149                        hwc->interrupts = MAX_INTERRUPTS;
9150                        perf_log_throttle(event, 0);
9151                        ret = 1;
9152                }
9153        }
9154
9155        if (event->attr.freq) {
9156                u64 now = perf_clock();
9157                s64 delta = now - hwc->freq_time_stamp;
9158
9159                hwc->freq_time_stamp = now;
9160
9161                if (delta > 0 && delta < 2*TICK_NSEC)
9162                        perf_adjust_period(event, delta, hwc->last_period, true);
9163        }
9164
9165        return ret;
9166}
9167
9168int perf_event_account_interrupt(struct perf_event *event)
9169{
9170        return __perf_event_account_interrupt(event, 1);
9171}
9172
9173/*
9174 * Generic event overflow handling, sampling.
9175 */
9176
9177static int __perf_event_overflow(struct perf_event *event,
9178                                   int throttle, struct perf_sample_data *data,
9179                                   struct pt_regs *regs)
9180{
9181        int events = atomic_read(&event->event_limit);
9182        int ret = 0;
9183
9184        /*
9185         * Non-sampling counters might still use the PMI to fold short
9186         * hardware counters, ignore those.
9187         */
9188        if (unlikely(!is_sampling_event(event)))
9189                return 0;
9190
9191        ret = __perf_event_account_interrupt(event, throttle);
9192
9193        /*
9194         * XXX event_limit might not quite work as expected on inherited
9195         * events
9196         */
9197
9198        event->pending_kill = POLL_IN;
9199        if (events && atomic_dec_and_test(&event->event_limit)) {
9200                ret = 1;
9201                event->pending_kill = POLL_HUP;
9202                event->pending_addr = data->addr;
9203
9204                perf_event_disable_inatomic(event);
9205        }
9206
9207        READ_ONCE(event->overflow_handler)(event, data, regs);
9208
9209        if (*perf_event_fasync(event) && event->pending_kill) {
9210                event->pending_wakeup = 1;
9211                irq_work_queue(&event->pending);
9212        }
9213
9214        return ret;
9215}
9216
9217int perf_event_overflow(struct perf_event *event,
9218                          struct perf_sample_data *data,
9219                          struct pt_regs *regs)
9220{
9221        return __perf_event_overflow(event, 1, data, regs);
9222}
9223
9224/*
9225 * Generic software event infrastructure
9226 */
9227
9228struct swevent_htable {
9229        struct swevent_hlist            *swevent_hlist;
9230        struct mutex                    hlist_mutex;
9231        int                             hlist_refcount;
9232
9233        /* Recursion avoidance in each contexts */
9234        int                             recursion[PERF_NR_CONTEXTS];
9235};
9236
9237static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9238
9239/*
9240 * We directly increment event->count and keep a second value in
9241 * event->hw.period_left to count intervals. This period event
9242 * is kept in the range [-sample_period, 0] so that we can use the
9243 * sign as trigger.
9244 */
9245
9246u64 perf_swevent_set_period(struct perf_event *event)
9247{
9248        struct hw_perf_event *hwc = &event->hw;
9249        u64 period = hwc->last_period;
9250        u64 nr, offset;
9251        s64 old, val;
9252
9253        hwc->last_period = hwc->sample_period;
9254
9255again:
9256        old = val = local64_read(&hwc->period_left);
9257        if (val < 0)
9258                return 0;
9259
9260        nr = div64_u64(period + val, period);
9261        offset = nr * period;
9262        val -= offset;
9263        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9264                goto again;
9265
9266        return nr;
9267}
9268
9269static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9270                                    struct perf_sample_data *data,
9271                                    struct pt_regs *regs)
9272{
9273        struct hw_perf_event *hwc = &event->hw;
9274        int throttle = 0;
9275
9276        if (!overflow)
9277                overflow = perf_swevent_set_period(event);
9278
9279        if (hwc->interrupts == MAX_INTERRUPTS)
9280                return;
9281
9282        for (; overflow; overflow--) {
9283                if (__perf_event_overflow(event, throttle,
9284                                            data, regs)) {
9285                        /*
9286                         * We inhibit the overflow from happening when
9287                         * hwc->interrupts == MAX_INTERRUPTS.
9288                         */
9289                        break;
9290                }
9291                throttle = 1;
9292        }
9293}
9294
9295static void perf_swevent_event(struct perf_event *event, u64 nr,
9296                               struct perf_sample_data *data,
9297                               struct pt_regs *regs)
9298{
9299        struct hw_perf_event *hwc = &event->hw;
9300
9301        local64_add(nr, &event->count);
9302
9303        if (!regs)
9304                return;
9305
9306        if (!is_sampling_event(event))
9307                return;
9308
9309        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9310                data->period = nr;
9311                return perf_swevent_overflow(event, 1, data, regs);
9312        } else
9313                data->period = event->hw.last_period;
9314
9315        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9316                return perf_swevent_overflow(event, 1, data, regs);
9317
9318        if (local64_add_negative(nr, &hwc->period_left))
9319                return;
9320
9321        perf_swevent_overflow(event, 0, data, regs);
9322}
9323
9324static int perf_exclude_event(struct perf_event *event,
9325                              struct pt_regs *regs)
9326{
9327        if (event->hw.state & PERF_HES_STOPPED)
9328                return 1;
9329
9330        if (regs) {
9331                if (event->attr.exclude_user && user_mode(regs))
9332                        return 1;
9333
9334                if (event->attr.exclude_kernel && !user_mode(regs))
9335                        return 1;
9336        }
9337
9338        return 0;
9339}
9340
9341static int perf_swevent_match(struct perf_event *event,
9342                                enum perf_type_id type,
9343                                u32 event_id,
9344                                struct perf_sample_data *data,
9345                                struct pt_regs *regs)
9346{
9347        if (event->attr.type != type)
9348                return 0;
9349
9350        if (event->attr.config != event_id)
9351                return 0;
9352
9353        if (perf_exclude_event(event, regs))
9354                return 0;
9355
9356        return 1;
9357}
9358
9359static inline u64 swevent_hash(u64 type, u32 event_id)
9360{
9361        u64 val = event_id | (type << 32);
9362
9363        return hash_64(val, SWEVENT_HLIST_BITS);
9364}
9365
9366static inline struct hlist_head *
9367__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9368{
9369        u64 hash = swevent_hash(type, event_id);
9370
9371        return &hlist->heads[hash];
9372}
9373
9374/* For the read side: events when they trigger */
9375static inline struct hlist_head *
9376find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9377{
9378        struct swevent_hlist *hlist;
9379
9380        hlist = rcu_dereference(swhash->swevent_hlist);
9381        if (!hlist)
9382                return NULL;
9383
9384        return __find_swevent_head(hlist, type, event_id);
9385}
9386
9387/* For the event head insertion and removal in the hlist */
9388static inline struct hlist_head *
9389find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9390{
9391        struct swevent_hlist *hlist;
9392        u32 event_id = event->attr.config;
9393        u64 type = event->attr.type;
9394
9395        /*
9396         * Event scheduling is always serialized against hlist allocation
9397         * and release. Which makes the protected version suitable here.
9398         * The context lock guarantees that.
9399         */
9400        hlist = rcu_dereference_protected(swhash->swevent_hlist,
9401                                          lockdep_is_held(&event->ctx->lock));
9402        if (!hlist)
9403                return NULL;
9404
9405        return __find_swevent_head(hlist, type, event_id);
9406}
9407
9408static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9409                                    u64 nr,
9410                                    struct perf_sample_data *data,
9411                                    struct pt_regs *regs)
9412{
9413        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414        struct perf_event *event;
9415        struct hlist_head *head;
9416
9417        rcu_read_lock();
9418        head = find_swevent_head_rcu(swhash, type, event_id);
9419        if (!head)
9420                goto end;
9421
9422        hlist_for_each_entry_rcu(event, head, hlist_entry) {
9423                if (perf_swevent_match(event, type, event_id, data, regs))
9424                        perf_swevent_event(event, nr, data, regs);
9425        }
9426end:
9427        rcu_read_unlock();
9428}
9429
9430DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9431
9432int perf_swevent_get_recursion_context(void)
9433{
9434        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9435
9436        return get_recursion_context(swhash->recursion);
9437}
9438EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9439
9440void perf_swevent_put_recursion_context(int rctx)
9441{
9442        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9443
9444        put_recursion_context(swhash->recursion, rctx);
9445}
9446
9447void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9448{
9449        struct perf_sample_data data;
9450
9451        if (WARN_ON_ONCE(!regs))
9452                return;
9453
9454        perf_sample_data_init(&data, addr, 0);
9455        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9456}
9457
9458void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9459{
9460        int rctx;
9461
9462        preempt_disable_notrace();
9463        rctx = perf_swevent_get_recursion_context();
9464        if (unlikely(rctx < 0))
9465                goto fail;
9466
9467        ___perf_sw_event(event_id, nr, regs, addr);
9468
9469        perf_swevent_put_recursion_context(rctx);
9470fail:
9471        preempt_enable_notrace();
9472}
9473
9474static void perf_swevent_read(struct perf_event *event)
9475{
9476}
9477
9478static int perf_swevent_add(struct perf_event *event, int flags)
9479{
9480        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9481        struct hw_perf_event *hwc = &event->hw;
9482        struct hlist_head *head;
9483
9484        if (is_sampling_event(event)) {
9485                hwc->last_period = hwc->sample_period;
9486                perf_swevent_set_period(event);
9487        }
9488
9489        hwc->state = !(flags & PERF_EF_START);
9490
9491        head = find_swevent_head(swhash, event);
9492        if (WARN_ON_ONCE(!head))
9493                return -EINVAL;
9494
9495        hlist_add_head_rcu(&event->hlist_entry, head);
9496        perf_event_update_userpage(event);
9497
9498        return 0;
9499}
9500
9501static void perf_swevent_del(struct perf_event *event, int flags)
9502{
9503        hlist_del_rcu(&event->hlist_entry);
9504}
9505
9506static void perf_swevent_start(struct perf_event *event, int flags)
9507{
9508        event->hw.state = 0;
9509}
9510
9511static void perf_swevent_stop(struct perf_event *event, int flags)
9512{
9513        event->hw.state = PERF_HES_STOPPED;
9514}
9515
9516/* Deref the hlist from the update side */
9517static inline struct swevent_hlist *
9518swevent_hlist_deref(struct swevent_htable *swhash)
9519{
9520        return rcu_dereference_protected(swhash->swevent_hlist,
9521                                         lockdep_is_held(&swhash->hlist_mutex));
9522}
9523
9524static void swevent_hlist_release(struct swevent_htable *swhash)
9525{
9526        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9527
9528        if (!hlist)
9529                return;
9530
9531        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9532        kfree_rcu(hlist, rcu_head);
9533}
9534
9535static void swevent_hlist_put_cpu(int cpu)
9536{
9537        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9538
9539        mutex_lock(&swhash->hlist_mutex);
9540
9541        if (!--swhash->hlist_refcount)
9542                swevent_hlist_release(swhash);
9543
9544        mutex_unlock(&swhash->hlist_mutex);
9545}
9546
9547static void swevent_hlist_put(void)
9548{
9549        int cpu;
9550
9551        for_each_possible_cpu(cpu)
9552                swevent_hlist_put_cpu(cpu);
9553}
9554
9555static int swevent_hlist_get_cpu(int cpu)
9556{
9557        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9558        int err = 0;
9559
9560        mutex_lock(&swhash->hlist_mutex);
9561        if (!swevent_hlist_deref(swhash) &&
9562            cpumask_test_cpu(cpu, perf_online_mask)) {
9563                struct swevent_hlist *hlist;
9564
9565                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9566                if (!hlist) {
9567                        err = -ENOMEM;
9568                        goto exit;
9569                }
9570                rcu_assign_pointer(swhash->swevent_hlist, hlist);
9571        }
9572        swhash->hlist_refcount++;
9573exit:
9574        mutex_unlock(&swhash->hlist_mutex);
9575
9576        return err;
9577}
9578
9579static int swevent_hlist_get(void)
9580{
9581        int err, cpu, failed_cpu;
9582
9583        mutex_lock(&pmus_lock);
9584        for_each_possible_cpu(cpu) {
9585                err = swevent_hlist_get_cpu(cpu);
9586                if (err) {
9587                        failed_cpu = cpu;
9588                        goto fail;
9589                }
9590        }
9591        mutex_unlock(&pmus_lock);
9592        return 0;
9593fail:
9594        for_each_possible_cpu(cpu) {
9595                if (cpu == failed_cpu)
9596                        break;
9597                swevent_hlist_put_cpu(cpu);
9598        }
9599        mutex_unlock(&pmus_lock);
9600        return err;
9601}
9602
9603struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9604
9605static void sw_perf_event_destroy(struct perf_event *event)
9606{
9607        u64 event_id = event->attr.config;
9608
9609        WARN_ON(event->parent);
9610
9611        static_key_slow_dec(&perf_swevent_enabled[event_id]);
9612        swevent_hlist_put();
9613}
9614
9615static int perf_swevent_init(struct perf_event *event)
9616{
9617        u64 event_id = event->attr.config;
9618
9619        if (event->attr.type != PERF_TYPE_SOFTWARE)
9620                return -ENOENT;
9621
9622        /*
9623         * no branch sampling for software events
9624         */
9625        if (has_branch_stack(event))
9626                return -EOPNOTSUPP;
9627
9628        switch (event_id) {
9629        case PERF_COUNT_SW_CPU_CLOCK:
9630        case PERF_COUNT_SW_TASK_CLOCK:
9631                return -ENOENT;
9632
9633        default:
9634                break;
9635        }
9636
9637        if (event_id >= PERF_COUNT_SW_MAX)
9638                return -ENOENT;
9639
9640        if (!event->parent) {
9641                int err;
9642
9643                err = swevent_hlist_get();
9644                if (err)
9645                        return err;
9646
9647                static_key_slow_inc(&perf_swevent_enabled[event_id]);
9648                event->destroy = sw_perf_event_destroy;
9649        }
9650
9651        return 0;
9652}
9653
9654static struct pmu perf_swevent = {
9655        .task_ctx_nr    = perf_sw_context,
9656
9657        .capabilities   = PERF_PMU_CAP_NO_NMI,
9658
9659        .event_init     = perf_swevent_init,
9660        .add            = perf_swevent_add,
9661        .del            = perf_swevent_del,
9662        .start          = perf_swevent_start,
9663        .stop           = perf_swevent_stop,
9664        .read           = perf_swevent_read,
9665};
9666
9667#ifdef CONFIG_EVENT_TRACING
9668
9669static int perf_tp_filter_match(struct perf_event *event,
9670                                struct perf_sample_data *data)
9671{
9672        void *record = data->raw->frag.data;
9673
9674        /* only top level events have filters set */
9675        if (event->parent)
9676                event = event->parent;
9677
9678        if (likely(!event->filter) || filter_match_preds(event->filter, record))
9679                return 1;
9680        return 0;
9681}
9682
9683static int perf_tp_event_match(struct perf_event *event,
9684                                struct perf_sample_data *data,
9685                                struct pt_regs *regs)
9686{
9687        if (event->hw.state & PERF_HES_STOPPED)
9688                return 0;
9689        /*
9690         * If exclude_kernel, only trace user-space tracepoints (uprobes)
9691         */
9692        if (event->attr.exclude_kernel && !user_mode(regs))
9693                return 0;
9694
9695        if (!perf_tp_filter_match(event, data))
9696                return 0;
9697
9698        return 1;
9699}
9700
9701void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9702                               struct trace_event_call *call, u64 count,
9703                               struct pt_regs *regs, struct hlist_head *head,
9704                               struct task_struct *task)
9705{
9706        if (bpf_prog_array_valid(call)) {
9707                *(struct pt_regs **)raw_data = regs;
9708                if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9709                        perf_swevent_put_recursion_context(rctx);
9710                        return;
9711                }
9712        }
9713        perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9714                      rctx, task);
9715}
9716EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9717
9718void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9719                   struct pt_regs *regs, struct hlist_head *head, int rctx,
9720                   struct task_struct *task)
9721{
9722        struct perf_sample_data data;
9723        struct perf_event *event;
9724
9725        struct perf_raw_record raw = {
9726                .frag = {
9727                        .size = entry_size,
9728                        .data = record,
9729                },
9730        };
9731
9732        perf_sample_data_init(&data, 0, 0);
9733        data.raw = &raw;
9734
9735        perf_trace_buf_update(record, event_type);
9736
9737        hlist_for_each_entry_rcu(event, head, hlist_entry) {
9738                if (perf_tp_event_match(event, &data, regs))
9739                        perf_swevent_event(event, count, &data, regs);
9740        }
9741
9742        /*
9743         * If we got specified a target task, also iterate its context and
9744         * deliver this event there too.
9745         */
9746        if (task && task != current) {
9747                struct perf_event_context *ctx;
9748                struct trace_entry *entry = record;
9749
9750                rcu_read_lock();
9751                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9752                if (!ctx)
9753                        goto unlock;
9754
9755                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9756                        if (event->cpu != smp_processor_id())
9757                                continue;
9758                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
9759                                continue;
9760                        if (event->attr.config != entry->type)
9761                                continue;
9762                        /* Cannot deliver synchronous signal to other task. */
9763                        if (event->attr.sigtrap)
9764                                continue;
9765                        if (perf_tp_event_match(event, &data, regs))
9766                                perf_swevent_event(event, count, &data, regs);
9767                }
9768unlock:
9769                rcu_read_unlock();
9770        }
9771
9772        perf_swevent_put_recursion_context(rctx);
9773}
9774EXPORT_SYMBOL_GPL(perf_tp_event);
9775
9776static void tp_perf_event_destroy(struct perf_event *event)
9777{
9778        perf_trace_destroy(event);
9779}
9780
9781static int perf_tp_event_init(struct perf_event *event)
9782{
9783        int err;
9784
9785        if (event->attr.type != PERF_TYPE_TRACEPOINT)
9786                return -ENOENT;
9787
9788        /*
9789         * no branch sampling for tracepoint events
9790         */
9791        if (has_branch_stack(event))
9792                return -EOPNOTSUPP;
9793
9794        err = perf_trace_init(event);
9795        if (err)
9796                return err;
9797
9798        event->destroy = tp_perf_event_destroy;
9799
9800        return 0;
9801}
9802
9803static struct pmu perf_tracepoint = {
9804        .task_ctx_nr    = perf_sw_context,
9805
9806        .event_init     = perf_tp_event_init,
9807        .add            = perf_trace_add,
9808        .del            = perf_trace_del,
9809        .start          = perf_swevent_start,
9810        .stop           = perf_swevent_stop,
9811        .read           = perf_swevent_read,
9812};
9813
9814#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9815/*
9816 * Flags in config, used by dynamic PMU kprobe and uprobe
9817 * The flags should match following PMU_FORMAT_ATTR().
9818 *
9819 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9820 *                               if not set, create kprobe/uprobe
9821 *
9822 * The following values specify a reference counter (or semaphore in the
9823 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9824 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9825 *
9826 * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9827 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9828 */
9829enum perf_probe_config {
9830        PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9831        PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9832        PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9833};
9834
9835PMU_FORMAT_ATTR(retprobe, "config:0");
9836#endif
9837
9838#ifdef CONFIG_KPROBE_EVENTS
9839static struct attribute *kprobe_attrs[] = {
9840        &format_attr_retprobe.attr,
9841        NULL,
9842};
9843
9844static struct attribute_group kprobe_format_group = {
9845        .name = "format",
9846        .attrs = kprobe_attrs,
9847};
9848
9849static const struct attribute_group *kprobe_attr_groups[] = {
9850        &kprobe_format_group,
9851        NULL,
9852};
9853
9854static int perf_kprobe_event_init(struct perf_event *event);
9855static struct pmu perf_kprobe = {
9856        .task_ctx_nr    = perf_sw_context,
9857        .event_init     = perf_kprobe_event_init,
9858        .add            = perf_trace_add,
9859        .del            = perf_trace_del,
9860        .start          = perf_swevent_start,
9861        .stop           = perf_swevent_stop,
9862        .read           = perf_swevent_read,
9863        .attr_groups    = kprobe_attr_groups,
9864};
9865
9866static int perf_kprobe_event_init(struct perf_event *event)
9867{
9868        int err;
9869        bool is_retprobe;
9870
9871        if (event->attr.type != perf_kprobe.type)
9872                return -ENOENT;
9873
9874        if (!perfmon_capable())
9875                return -EACCES;
9876
9877        /*
9878         * no branch sampling for probe events
9879         */
9880        if (has_branch_stack(event))
9881                return -EOPNOTSUPP;
9882
9883        is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9884        err = perf_kprobe_init(event, is_retprobe);
9885        if (err)
9886                return err;
9887
9888        event->destroy = perf_kprobe_destroy;
9889
9890        return 0;
9891}
9892#endif /* CONFIG_KPROBE_EVENTS */
9893
9894#ifdef CONFIG_UPROBE_EVENTS
9895PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9896
9897static struct attribute *uprobe_attrs[] = {
9898        &format_attr_retprobe.attr,
9899        &format_attr_ref_ctr_offset.attr,
9900        NULL,
9901};
9902
9903static struct attribute_group uprobe_format_group = {
9904        .name = "format",
9905        .attrs = uprobe_attrs,
9906};
9907
9908static const struct attribute_group *uprobe_attr_groups[] = {
9909        &uprobe_format_group,
9910        NULL,
9911};
9912
9913static int perf_uprobe_event_init(struct perf_event *event);
9914static struct pmu perf_uprobe = {
9915        .task_ctx_nr    = perf_sw_context,
9916        .event_init     = perf_uprobe_event_init,
9917        .add            = perf_trace_add,
9918        .del            = perf_trace_del,
9919        .start          = perf_swevent_start,
9920        .stop           = perf_swevent_stop,
9921        .read           = perf_swevent_read,
9922        .attr_groups    = uprobe_attr_groups,
9923};
9924
9925static int perf_uprobe_event_init(struct perf_event *event)
9926{
9927        int err;
9928        unsigned long ref_ctr_offset;
9929        bool is_retprobe;
9930
9931        if (event->attr.type != perf_uprobe.type)
9932                return -ENOENT;
9933
9934        if (!perfmon_capable())
9935                return -EACCES;
9936
9937        /*
9938         * no branch sampling for probe events
9939         */
9940        if (has_branch_stack(event))
9941                return -EOPNOTSUPP;
9942
9943        is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9944        ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9945        err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9946        if (err)
9947                return err;
9948
9949        event->destroy = perf_uprobe_destroy;
9950
9951        return 0;
9952}
9953#endif /* CONFIG_UPROBE_EVENTS */
9954
9955static inline void perf_tp_register(void)
9956{
9957        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9958#ifdef CONFIG_KPROBE_EVENTS
9959        perf_pmu_register(&perf_kprobe, "kprobe", -1);
9960#endif
9961#ifdef CONFIG_UPROBE_EVENTS
9962        perf_pmu_register(&perf_uprobe, "uprobe", -1);
9963#endif
9964}
9965
9966static void perf_event_free_filter(struct perf_event *event)
9967{
9968        ftrace_profile_free_filter(event);
9969}
9970
9971#ifdef CONFIG_BPF_SYSCALL
9972static void bpf_overflow_handler(struct perf_event *event,
9973                                 struct perf_sample_data *data,
9974                                 struct pt_regs *regs)
9975{
9976        struct bpf_perf_event_data_kern ctx = {
9977                .data = data,
9978                .event = event,
9979        };
9980        struct bpf_prog *prog;
9981        int ret = 0;
9982
9983        ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9984        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9985                goto out;
9986        rcu_read_lock();
9987        prog = READ_ONCE(event->prog);
9988        if (prog)
9989                ret = bpf_prog_run(prog, &ctx);
9990        rcu_read_unlock();
9991out:
9992        __this_cpu_dec(bpf_prog_active);
9993        if (!ret)
9994                return;
9995
9996        event->orig_overflow_handler(event, data, regs);
9997}
9998
9999static int perf_event_set_bpf_handler(struct perf_event *event,
10000                                      struct bpf_prog *prog,
10001                                      u64 bpf_cookie)
10002{
10003        if (event->overflow_handler_context)
10004                /* hw breakpoint or kernel counter */
10005                return -EINVAL;
10006
10007        if (event->prog)
10008                return -EEXIST;
10009
10010        if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10011                return -EINVAL;
10012
10013        if (event->attr.precise_ip &&
10014            prog->call_get_stack &&
10015            (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10016             event->attr.exclude_callchain_kernel ||
10017             event->attr.exclude_callchain_user)) {
10018                /*
10019                 * On perf_event with precise_ip, calling bpf_get_stack()
10020                 * may trigger unwinder warnings and occasional crashes.
10021                 * bpf_get_[stack|stackid] works around this issue by using
10022                 * callchain attached to perf_sample_data. If the
10023                 * perf_event does not full (kernel and user) callchain
10024                 * attached to perf_sample_data, do not allow attaching BPF
10025                 * program that calls bpf_get_[stack|stackid].
10026                 */
10027                return -EPROTO;
10028        }
10029
10030        event->prog = prog;
10031        event->bpf_cookie = bpf_cookie;
10032        event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10033        WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10034        return 0;
10035}
10036
10037static void perf_event_free_bpf_handler(struct perf_event *event)
10038{
10039        struct bpf_prog *prog = event->prog;
10040
10041        if (!prog)
10042                return;
10043
10044        WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10045        event->prog = NULL;
10046        bpf_prog_put(prog);
10047}
10048#else
10049static int perf_event_set_bpf_handler(struct perf_event *event,
10050                                      struct bpf_prog *prog,
10051                                      u64 bpf_cookie)
10052{
10053        return -EOPNOTSUPP;
10054}
10055static void perf_event_free_bpf_handler(struct perf_event *event)
10056{
10057}
10058#endif
10059
10060/*
10061 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10062 * with perf_event_open()
10063 */
10064static inline bool perf_event_is_tracing(struct perf_event *event)
10065{
10066        if (event->pmu == &perf_tracepoint)
10067                return true;
10068#ifdef CONFIG_KPROBE_EVENTS
10069        if (event->pmu == &perf_kprobe)
10070                return true;
10071#endif
10072#ifdef CONFIG_UPROBE_EVENTS
10073        if (event->pmu == &perf_uprobe)
10074                return true;
10075#endif
10076        return false;
10077}
10078
10079int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10080                            u64 bpf_cookie)
10081{
10082        bool is_kprobe, is_tracepoint, is_syscall_tp;
10083
10084        if (!perf_event_is_tracing(event))
10085                return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10086
10087        is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10088        is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10089        is_syscall_tp = is_syscall_trace_event(event->tp_event);
10090        if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10091                /* bpf programs can only be attached to u/kprobe or tracepoint */
10092                return -EINVAL;
10093
10094        if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10095            (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10096            (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10097                return -EINVAL;
10098
10099        /* Kprobe override only works for kprobes, not uprobes. */
10100        if (prog->kprobe_override &&
10101            !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10102                return -EINVAL;
10103
10104        if (is_tracepoint || is_syscall_tp) {
10105                int off = trace_event_get_offsets(event->tp_event);
10106
10107                if (prog->aux->max_ctx_offset > off)
10108                        return -EACCES;
10109        }
10110
10111        return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10112}
10113
10114void perf_event_free_bpf_prog(struct perf_event *event)
10115{
10116        if (!perf_event_is_tracing(event)) {
10117                perf_event_free_bpf_handler(event);
10118                return;
10119        }
10120        perf_event_detach_bpf_prog(event);
10121}
10122
10123#else
10124
10125static inline void perf_tp_register(void)
10126{
10127}
10128
10129static void perf_event_free_filter(struct perf_event *event)
10130{
10131}
10132
10133int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10134                            u64 bpf_cookie)
10135{
10136        return -ENOENT;
10137}
10138
10139void perf_event_free_bpf_prog(struct perf_event *event)
10140{
10141}
10142#endif /* CONFIG_EVENT_TRACING */
10143
10144#ifdef CONFIG_HAVE_HW_BREAKPOINT
10145void perf_bp_event(struct perf_event *bp, void *data)
10146{
10147        struct perf_sample_data sample;
10148        struct pt_regs *regs = data;
10149
10150        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10151
10152        if (!bp->hw.state && !perf_exclude_event(bp, regs))
10153                perf_swevent_event(bp, 1, &sample, regs);
10154}
10155#endif
10156
10157/*
10158 * Allocate a new address filter
10159 */
10160static struct perf_addr_filter *
10161perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10162{
10163        int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10164        struct perf_addr_filter *filter;
10165
10166        filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10167        if (!filter)
10168                return NULL;
10169
10170        INIT_LIST_HEAD(&filter->entry);
10171        list_add_tail(&filter->entry, filters);
10172
10173        return filter;
10174}
10175
10176static void free_filters_list(struct list_head *filters)
10177{
10178        struct perf_addr_filter *filter, *iter;
10179
10180        list_for_each_entry_safe(filter, iter, filters, entry) {
10181                path_put(&filter->path);
10182                list_del(&filter->entry);
10183                kfree(filter);
10184        }
10185}
10186
10187/*
10188 * Free existing address filters and optionally install new ones
10189 */
10190static void perf_addr_filters_splice(struct perf_event *event,
10191                                     struct list_head *head)
10192{
10193        unsigned long flags;
10194        LIST_HEAD(list);
10195
10196        if (!has_addr_filter(event))
10197                return;
10198
10199        /* don't bother with children, they don't have their own filters */
10200        if (event->parent)
10201                return;
10202
10203        raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10204
10205        list_splice_init(&event->addr_filters.list, &list);
10206        if (head)
10207                list_splice(head, &event->addr_filters.list);
10208
10209        raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10210
10211        free_filters_list(&list);
10212}
10213
10214/*
10215 * Scan through mm's vmas and see if one of them matches the
10216 * @filter; if so, adjust filter's address range.
10217 * Called with mm::mmap_lock down for reading.
10218 */
10219static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10220                                   struct mm_struct *mm,
10221                                   struct perf_addr_filter_range *fr)
10222{
10223        struct vm_area_struct *vma;
10224
10225        for (vma = mm->mmap; vma; vma = vma->vm_next) {
10226                if (!vma->vm_file)
10227                        continue;
10228
10229                if (perf_addr_filter_vma_adjust(filter, vma, fr))
10230                        return;
10231        }
10232}
10233
10234/*
10235 * Update event's address range filters based on the
10236 * task's existing mappings, if any.
10237 */
10238static void perf_event_addr_filters_apply(struct perf_event *event)
10239{
10240        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10241        struct task_struct *task = READ_ONCE(event->ctx->task);
10242        struct perf_addr_filter *filter;
10243        struct mm_struct *mm = NULL;
10244        unsigned int count = 0;
10245        unsigned long flags;
10246
10247        /*
10248         * We may observe TASK_TOMBSTONE, which means that the event tear-down
10249         * will stop on the parent's child_mutex that our caller is also holding
10250         */
10251        if (task == TASK_TOMBSTONE)
10252                return;
10253
10254        if (ifh->nr_file_filters) {
10255                mm = get_task_mm(task);
10256                if (!mm)
10257                        goto restart;
10258
10259                mmap_read_lock(mm);
10260        }
10261
10262        raw_spin_lock_irqsave(&ifh->lock, flags);
10263        list_for_each_entry(filter, &ifh->list, entry) {
10264                if (filter->path.dentry) {
10265                        /*
10266                         * Adjust base offset if the filter is associated to a
10267                         * binary that needs to be mapped:
10268                         */
10269                        event->addr_filter_ranges[count].start = 0;
10270                        event->addr_filter_ranges[count].size = 0;
10271
10272                        perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10273                } else {
10274                        event->addr_filter_ranges[count].start = filter->offset;
10275                        event->addr_filter_ranges[count].size  = filter->size;
10276                }
10277
10278                count++;
10279        }
10280
10281        event->addr_filters_gen++;
10282        raw_spin_unlock_irqrestore(&ifh->lock, flags);
10283
10284        if (ifh->nr_file_filters) {
10285                mmap_read_unlock(mm);
10286
10287                mmput(mm);
10288        }
10289
10290restart:
10291        perf_event_stop(event, 1);
10292}
10293
10294/*
10295 * Address range filtering: limiting the data to certain
10296 * instruction address ranges. Filters are ioctl()ed to us from
10297 * userspace as ascii strings.
10298 *
10299 * Filter string format:
10300 *
10301 * ACTION RANGE_SPEC
10302 * where ACTION is one of the
10303 *  * "filter": limit the trace to this region
10304 *  * "start": start tracing from this address
10305 *  * "stop": stop tracing at this address/region;
10306 * RANGE_SPEC is
10307 *  * for kernel addresses: <start address>[/<size>]
10308 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10309 *
10310 * if <size> is not specified or is zero, the range is treated as a single
10311 * address; not valid for ACTION=="filter".
10312 */
10313enum {
10314        IF_ACT_NONE = -1,
10315        IF_ACT_FILTER,
10316        IF_ACT_START,
10317        IF_ACT_STOP,
10318        IF_SRC_FILE,
10319        IF_SRC_KERNEL,
10320        IF_SRC_FILEADDR,
10321        IF_SRC_KERNELADDR,
10322};
10323
10324enum {
10325        IF_STATE_ACTION = 0,
10326        IF_STATE_SOURCE,
10327        IF_STATE_END,
10328};
10329
10330static const match_table_t if_tokens = {
10331        { IF_ACT_FILTER,        "filter" },
10332        { IF_ACT_START,         "start" },
10333        { IF_ACT_STOP,          "stop" },
10334        { IF_SRC_FILE,          "%u/%u@%s" },
10335        { IF_SRC_KERNEL,        "%u/%u" },
10336        { IF_SRC_FILEADDR,      "%u@%s" },
10337        { IF_SRC_KERNELADDR,    "%u" },
10338        { IF_ACT_NONE,          NULL },
10339};
10340
10341/*
10342 * Address filter string parser
10343 */
10344static int
10345perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10346                             struct list_head *filters)
10347{
10348        struct perf_addr_filter *filter = NULL;
10349        char *start, *orig, *filename = NULL;
10350        substring_t args[MAX_OPT_ARGS];
10351        int state = IF_STATE_ACTION, token;
10352        unsigned int kernel = 0;
10353        int ret = -EINVAL;
10354
10355        orig = fstr = kstrdup(fstr, GFP_KERNEL);
10356        if (!fstr)
10357                return -ENOMEM;
10358
10359        while ((start = strsep(&fstr, " ,\n")) != NULL) {
10360                static const enum perf_addr_filter_action_t actions[] = {
10361                        [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10362                        [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10363                        [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10364                };
10365                ret = -EINVAL;
10366
10367                if (!*start)
10368                        continue;
10369
10370                /* filter definition begins */
10371                if (state == IF_STATE_ACTION) {
10372                        filter = perf_addr_filter_new(event, filters);
10373                        if (!filter)
10374                                goto fail;
10375                }
10376
10377                token = match_token(start, if_tokens, args);
10378                switch (token) {
10379                case IF_ACT_FILTER:
10380                case IF_ACT_START:
10381                case IF_ACT_STOP:
10382                        if (state != IF_STATE_ACTION)
10383                                goto fail;
10384
10385                        filter->action = actions[token];
10386                        state = IF_STATE_SOURCE;
10387                        break;
10388
10389                case IF_SRC_KERNELADDR:
10390                case IF_SRC_KERNEL:
10391                        kernel = 1;
10392                        fallthrough;
10393
10394                case IF_SRC_FILEADDR:
10395                case IF_SRC_FILE:
10396                        if (state != IF_STATE_SOURCE)
10397                                goto fail;
10398
10399                        *args[0].to = 0;
10400                        ret = kstrtoul(args[0].from, 0, &filter->offset);
10401                        if (ret)
10402                                goto fail;
10403
10404                        if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10405                                *args[1].to = 0;
10406                                ret = kstrtoul(args[1].from, 0, &filter->size);
10407                                if (ret)
10408                                        goto fail;
10409                        }
10410
10411                        if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10412                                int fpos = token == IF_SRC_FILE ? 2 : 1;
10413
10414                                kfree(filename);
10415                                filename = match_strdup(&args[fpos]);
10416                                if (!filename) {
10417                                        ret = -ENOMEM;
10418                                        goto fail;
10419                                }
10420                        }
10421
10422                        state = IF_STATE_END;
10423                        break;
10424
10425                default:
10426                        goto fail;
10427                }
10428
10429                /*
10430                 * Filter definition is fully parsed, validate and install it.
10431                 * Make sure that it doesn't contradict itself or the event's
10432                 * attribute.
10433                 */
10434                if (state == IF_STATE_END) {
10435                        ret = -EINVAL;
10436                        if (kernel && event->attr.exclude_kernel)
10437                                goto fail;
10438
10439                        /*
10440                         * ACTION "filter" must have a non-zero length region
10441                         * specified.
10442                         */
10443                        if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10444                            !filter->size)
10445                                goto fail;
10446
10447                        if (!kernel) {
10448                                if (!filename)
10449                                        goto fail;
10450
10451                                /*
10452                                 * For now, we only support file-based filters
10453                                 * in per-task events; doing so for CPU-wide
10454                                 * events requires additional context switching
10455                                 * trickery, since same object code will be
10456                                 * mapped at different virtual addresses in
10457                                 * different processes.
10458                                 */
10459                                ret = -EOPNOTSUPP;
10460                                if (!event->ctx->task)
10461                                        goto fail;
10462
10463                                /* look up the path and grab its inode */
10464                                ret = kern_path(filename, LOOKUP_FOLLOW,
10465                                                &filter->path);
10466                                if (ret)
10467                                        goto fail;
10468
10469                                ret = -EINVAL;
10470                                if (!filter->path.dentry ||
10471                                    !S_ISREG(d_inode(filter->path.dentry)
10472                                             ->i_mode))
10473                                        goto fail;
10474
10475                                event->addr_filters.nr_file_filters++;
10476                        }
10477
10478                        /* ready to consume more filters */
10479                        state = IF_STATE_ACTION;
10480                        filter = NULL;
10481                }
10482        }
10483
10484        if (state != IF_STATE_ACTION)
10485                goto fail;
10486
10487        kfree(filename);
10488        kfree(orig);
10489
10490        return 0;
10491
10492fail:
10493        kfree(filename);
10494        free_filters_list(filters);
10495        kfree(orig);
10496
10497        return ret;
10498}
10499
10500static int
10501perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10502{
10503        LIST_HEAD(filters);
10504        int ret;
10505
10506        /*
10507         * Since this is called in perf_ioctl() path, we're already holding
10508         * ctx::mutex.
10509         */
10510        lockdep_assert_held(&event->ctx->mutex);
10511
10512        if (WARN_ON_ONCE(event->parent))
10513                return -EINVAL;
10514
10515        ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10516        if (ret)
10517                goto fail_clear_files;
10518
10519        ret = event->pmu->addr_filters_validate(&filters);
10520        if (ret)
10521                goto fail_free_filters;
10522
10523        /* remove existing filters, if any */
10524        perf_addr_filters_splice(event, &filters);
10525
10526        /* install new filters */
10527        perf_event_for_each_child(event, perf_event_addr_filters_apply);
10528
10529        return ret;
10530
10531fail_free_filters:
10532        free_filters_list(&filters);
10533
10534fail_clear_files:
10535        event->addr_filters.nr_file_filters = 0;
10536
10537        return ret;
10538}
10539
10540static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10541{
10542        int ret = -EINVAL;
10543        char *filter_str;
10544
10545        filter_str = strndup_user(arg, PAGE_SIZE);
10546        if (IS_ERR(filter_str))
10547                return PTR_ERR(filter_str);
10548
10549#ifdef CONFIG_EVENT_TRACING
10550        if (perf_event_is_tracing(event)) {
10551                struct perf_event_context *ctx = event->ctx;
10552
10553                /*
10554                 * Beware, here be dragons!!
10555                 *
10556                 * the tracepoint muck will deadlock against ctx->mutex, but
10557                 * the tracepoint stuff does not actually need it. So
10558                 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10559                 * already have a reference on ctx.
10560                 *
10561                 * This can result in event getting moved to a different ctx,
10562                 * but that does not affect the tracepoint state.
10563                 */
10564                mutex_unlock(&ctx->mutex);
10565                ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10566                mutex_lock(&ctx->mutex);
10567        } else
10568#endif
10569        if (has_addr_filter(event))
10570                ret = perf_event_set_addr_filter(event, filter_str);
10571
10572        kfree(filter_str);
10573        return ret;
10574}
10575
10576/*
10577 * hrtimer based swevent callback
10578 */
10579
10580static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10581{
10582        enum hrtimer_restart ret = HRTIMER_RESTART;
10583        struct perf_sample_data data;
10584        struct pt_regs *regs;
10585        struct perf_event *event;
10586        u64 period;
10587
10588        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10589
10590        if (event->state != PERF_EVENT_STATE_ACTIVE)
10591                return HRTIMER_NORESTART;
10592
10593        event->pmu->read(event);
10594
10595        perf_sample_data_init(&data, 0, event->hw.last_period);
10596        regs = get_irq_regs();
10597
10598        if (regs && !perf_exclude_event(event, regs)) {
10599                if (!(event->attr.exclude_idle && is_idle_task(current)))
10600                        if (__perf_event_overflow(event, 1, &data, regs))
10601                                ret = HRTIMER_NORESTART;
10602        }
10603
10604        period = max_t(u64, 10000, event->hw.sample_period);
10605        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10606
10607        return ret;
10608}
10609
10610static void perf_swevent_start_hrtimer(struct perf_event *event)
10611{
10612        struct hw_perf_event *hwc = &event->hw;
10613        s64 period;
10614
10615        if (!is_sampling_event(event))
10616                return;
10617
10618        period = local64_read(&hwc->period_left);
10619        if (period) {
10620                if (period < 0)
10621                        period = 10000;
10622
10623                local64_set(&hwc->period_left, 0);
10624        } else {
10625                period = max_t(u64, 10000, hwc->sample_period);
10626        }
10627        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10628                      HRTIMER_MODE_REL_PINNED_HARD);
10629}
10630
10631static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10632{
10633        struct hw_perf_event *hwc = &event->hw;
10634
10635        if (is_sampling_event(event)) {
10636                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10637                local64_set(&hwc->period_left, ktime_to_ns(remaining));
10638
10639                hrtimer_cancel(&hwc->hrtimer);
10640        }
10641}
10642
10643static void perf_swevent_init_hrtimer(struct perf_event *event)
10644{
10645        struct hw_perf_event *hwc = &event->hw;
10646
10647        if (!is_sampling_event(event))
10648                return;
10649
10650        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10651        hwc->hrtimer.function = perf_swevent_hrtimer;
10652
10653        /*
10654         * Since hrtimers have a fixed rate, we can do a static freq->period
10655         * mapping and avoid the whole period adjust feedback stuff.
10656         */
10657        if (event->attr.freq) {
10658                long freq = event->attr.sample_freq;
10659
10660                event->attr.sample_period = NSEC_PER_SEC / freq;
10661                hwc->sample_period = event->attr.sample_period;
10662                local64_set(&hwc->period_left, hwc->sample_period);
10663                hwc->last_period = hwc->sample_period;
10664                event->attr.freq = 0;
10665        }
10666}
10667
10668/*
10669 * Software event: cpu wall time clock
10670 */
10671
10672static void cpu_clock_event_update(struct perf_event *event)
10673{
10674        s64 prev;
10675        u64 now;
10676
10677        now = local_clock();
10678        prev = local64_xchg(&event->hw.prev_count, now);
10679        local64_add(now - prev, &event->count);
10680}
10681
10682static void cpu_clock_event_start(struct perf_event *event, int flags)
10683{
10684        local64_set(&event->hw.prev_count, local_clock());
10685        perf_swevent_start_hrtimer(event);
10686}
10687
10688static void cpu_clock_event_stop(struct perf_event *event, int flags)
10689{
10690        perf_swevent_cancel_hrtimer(event);
10691        cpu_clock_event_update(event);
10692}
10693
10694static int cpu_clock_event_add(struct perf_event *event, int flags)
10695{
10696        if (flags & PERF_EF_START)
10697                cpu_clock_event_start(event, flags);
10698        perf_event_update_userpage(event);
10699
10700        return 0;
10701}
10702
10703static void cpu_clock_event_del(struct perf_event *event, int flags)
10704{
10705        cpu_clock_event_stop(event, flags);
10706}
10707
10708static void cpu_clock_event_read(struct perf_event *event)
10709{
10710        cpu_clock_event_update(event);
10711}
10712
10713static int cpu_clock_event_init(struct perf_event *event)
10714{
10715        if (event->attr.type != PERF_TYPE_SOFTWARE)
10716                return -ENOENT;
10717
10718        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10719                return -ENOENT;
10720
10721        /*
10722         * no branch sampling for software events
10723         */
10724        if (has_branch_stack(event))
10725                return -EOPNOTSUPP;
10726
10727        perf_swevent_init_hrtimer(event);
10728
10729        return 0;
10730}
10731
10732static struct pmu perf_cpu_clock = {
10733        .task_ctx_nr    = perf_sw_context,
10734
10735        .capabilities   = PERF_PMU_CAP_NO_NMI,
10736
10737        .event_init     = cpu_clock_event_init,
10738        .add            = cpu_clock_event_add,
10739        .del            = cpu_clock_event_del,
10740        .start          = cpu_clock_event_start,
10741        .stop           = cpu_clock_event_stop,
10742        .read           = cpu_clock_event_read,
10743};
10744
10745/*
10746 * Software event: task time clock
10747 */
10748
10749static void task_clock_event_update(struct perf_event *event, u64 now)
10750{
10751        u64 prev;
10752        s64 delta;
10753
10754        prev = local64_xchg(&event->hw.prev_count, now);
10755        delta = now - prev;
10756        local64_add(delta, &event->count);
10757}
10758
10759static void task_clock_event_start(struct perf_event *event, int flags)
10760{
10761        local64_set(&event->hw.prev_count, event->ctx->time);
10762        perf_swevent_start_hrtimer(event);
10763}
10764
10765static void task_clock_event_stop(struct perf_event *event, int flags)
10766{
10767        perf_swevent_cancel_hrtimer(event);
10768        task_clock_event_update(event, event->ctx->time);
10769}
10770
10771static int task_clock_event_add(struct perf_event *event, int flags)
10772{
10773        if (flags & PERF_EF_START)
10774                task_clock_event_start(event, flags);
10775        perf_event_update_userpage(event);
10776
10777        return 0;
10778}
10779
10780static void task_clock_event_del(struct perf_event *event, int flags)
10781{
10782        task_clock_event_stop(event, PERF_EF_UPDATE);
10783}
10784
10785static void task_clock_event_read(struct perf_event *event)
10786{
10787        u64 now = perf_clock();
10788        u64 delta = now - event->ctx->timestamp;
10789        u64 time = event->ctx->time + delta;
10790
10791        task_clock_event_update(event, time);
10792}
10793
10794static int task_clock_event_init(struct perf_event *event)
10795{
10796        if (event->attr.type != PERF_TYPE_SOFTWARE)
10797                return -ENOENT;
10798
10799        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10800                return -ENOENT;
10801
10802        /*
10803         * no branch sampling for software events
10804         */
10805        if (has_branch_stack(event))
10806                return -EOPNOTSUPP;
10807
10808        perf_swevent_init_hrtimer(event);
10809
10810        return 0;
10811}
10812
10813static struct pmu perf_task_clock = {
10814        .task_ctx_nr    = perf_sw_context,
10815
10816        .capabilities   = PERF_PMU_CAP_NO_NMI,
10817
10818        .event_init     = task_clock_event_init,
10819        .add            = task_clock_event_add,
10820        .del            = task_clock_event_del,
10821        .start          = task_clock_event_start,
10822        .stop           = task_clock_event_stop,
10823        .read           = task_clock_event_read,
10824};
10825
10826static void perf_pmu_nop_void(struct pmu *pmu)
10827{
10828}
10829
10830static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10831{
10832}
10833
10834static int perf_pmu_nop_int(struct pmu *pmu)
10835{
10836        return 0;
10837}
10838
10839static int perf_event_nop_int(struct perf_event *event, u64 value)
10840{
10841        return 0;
10842}
10843
10844static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10845
10846static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10847{
10848        __this_cpu_write(nop_txn_flags, flags);
10849
10850        if (flags & ~PERF_PMU_TXN_ADD)
10851                return;
10852
10853        perf_pmu_disable(pmu);
10854}
10855
10856static int perf_pmu_commit_txn(struct pmu *pmu)
10857{
10858        unsigned int flags = __this_cpu_read(nop_txn_flags);
10859
10860        __this_cpu_write(nop_txn_flags, 0);
10861
10862        if (flags & ~PERF_PMU_TXN_ADD)
10863                return 0;
10864
10865        perf_pmu_enable(pmu);
10866        return 0;
10867}
10868
10869static void perf_pmu_cancel_txn(struct pmu *pmu)
10870{
10871        unsigned int flags =  __this_cpu_read(nop_txn_flags);
10872
10873        __this_cpu_write(nop_txn_flags, 0);
10874
10875        if (flags & ~PERF_PMU_TXN_ADD)
10876                return;
10877
10878        perf_pmu_enable(pmu);
10879}
10880
10881static int perf_event_idx_default(struct perf_event *event)
10882{
10883        return 0;
10884}
10885
10886/*
10887 * Ensures all contexts with the same task_ctx_nr have the same
10888 * pmu_cpu_context too.
10889 */
10890static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10891{
10892        struct pmu *pmu;
10893
10894        if (ctxn < 0)
10895                return NULL;
10896
10897        list_for_each_entry(pmu, &pmus, entry) {
10898                if (pmu->task_ctx_nr == ctxn)
10899                        return pmu->pmu_cpu_context;
10900        }
10901
10902        return NULL;
10903}
10904
10905static void free_pmu_context(struct pmu *pmu)
10906{
10907        /*
10908         * Static contexts such as perf_sw_context have a global lifetime
10909         * and may be shared between different PMUs. Avoid freeing them
10910         * when a single PMU is going away.
10911         */
10912        if (pmu->task_ctx_nr > perf_invalid_context)
10913                return;
10914
10915        free_percpu(pmu->pmu_cpu_context);
10916}
10917
10918/*
10919 * Let userspace know that this PMU supports address range filtering:
10920 */
10921static ssize_t nr_addr_filters_show(struct device *dev,
10922                                    struct device_attribute *attr,
10923                                    char *page)
10924{
10925        struct pmu *pmu = dev_get_drvdata(dev);
10926
10927        return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10928}
10929DEVICE_ATTR_RO(nr_addr_filters);
10930
10931static struct idr pmu_idr;
10932
10933static ssize_t
10934type_show(struct device *dev, struct device_attribute *attr, char *page)
10935{
10936        struct pmu *pmu = dev_get_drvdata(dev);
10937
10938        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10939}
10940static DEVICE_ATTR_RO(type);
10941
10942static ssize_t
10943perf_event_mux_interval_ms_show(struct device *dev,
10944                                struct device_attribute *attr,
10945                                char *page)
10946{
10947        struct pmu *pmu = dev_get_drvdata(dev);
10948
10949        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10950}
10951
10952static DEFINE_MUTEX(mux_interval_mutex);
10953
10954static ssize_t
10955perf_event_mux_interval_ms_store(struct device *dev,
10956                                 struct device_attribute *attr,
10957                                 const char *buf, size_t count)
10958{
10959        struct pmu *pmu = dev_get_drvdata(dev);
10960        int timer, cpu, ret;
10961
10962        ret = kstrtoint(buf, 0, &timer);
10963        if (ret)
10964                return ret;
10965
10966        if (timer < 1)
10967                return -EINVAL;
10968
10969        /* same value, noting to do */
10970        if (timer == pmu->hrtimer_interval_ms)
10971                return count;
10972
10973        mutex_lock(&mux_interval_mutex);
10974        pmu->hrtimer_interval_ms = timer;
10975
10976        /* update all cpuctx for this PMU */
10977        cpus_read_lock();
10978        for_each_online_cpu(cpu) {
10979                struct perf_cpu_context *cpuctx;
10980                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10981                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10982
10983                cpu_function_call(cpu,
10984                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10985        }
10986        cpus_read_unlock();
10987        mutex_unlock(&mux_interval_mutex);
10988
10989        return count;
10990}
10991static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10992
10993static struct attribute *pmu_dev_attrs[] = {
10994        &dev_attr_type.attr,
10995        &dev_attr_perf_event_mux_interval_ms.attr,
10996        NULL,
10997};
10998ATTRIBUTE_GROUPS(pmu_dev);
10999
11000static int pmu_bus_running;
11001static struct bus_type pmu_bus = {
11002        .name           = "event_source",
11003        .dev_groups     = pmu_dev_groups,
11004};
11005
11006static void pmu_dev_release(struct device *dev)
11007{
11008        kfree(dev);
11009}
11010
11011static int pmu_dev_alloc(struct pmu *pmu)
11012{
11013        int ret = -ENOMEM;
11014
11015        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11016        if (!pmu->dev)
11017                goto out;
11018
11019        pmu->dev->groups = pmu->attr_groups;
11020        device_initialize(pmu->dev);
11021        ret = dev_set_name(pmu->dev, "%s", pmu->name);
11022        if (ret)
11023                goto free_dev;
11024
11025        dev_set_drvdata(pmu->dev, pmu);
11026        pmu->dev->bus = &pmu_bus;
11027        pmu->dev->release = pmu_dev_release;
11028        ret = device_add(pmu->dev);
11029        if (ret)
11030                goto free_dev;
11031
11032        /* For PMUs with address filters, throw in an extra attribute: */
11033        if (pmu->nr_addr_filters)
11034                ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11035
11036        if (ret)
11037                goto del_dev;
11038
11039        if (pmu->attr_update)
11040                ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11041
11042        if (ret)
11043                goto del_dev;
11044
11045out:
11046        return ret;
11047
11048del_dev:
11049        device_del(pmu->dev);
11050
11051free_dev:
11052        put_device(pmu->dev);
11053        goto out;
11054}
11055
11056static struct lock_class_key cpuctx_mutex;
11057static struct lock_class_key cpuctx_lock;
11058
11059int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11060{
11061        int cpu, ret, max = PERF_TYPE_MAX;
11062
11063        mutex_lock(&pmus_lock);
11064        ret = -ENOMEM;
11065        pmu->pmu_disable_count = alloc_percpu(int);
11066        if (!pmu->pmu_disable_count)
11067                goto unlock;
11068
11069        pmu->type = -1;
11070        if (!name)
11071                goto skip_type;
11072        pmu->name = name;
11073
11074        if (type != PERF_TYPE_SOFTWARE) {
11075                if (type >= 0)
11076                        max = type;
11077
11078                ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11079                if (ret < 0)
11080                        goto free_pdc;
11081
11082                WARN_ON(type >= 0 && ret != type);
11083
11084                type = ret;
11085        }
11086        pmu->type = type;
11087
11088        if (pmu_bus_running) {
11089                ret = pmu_dev_alloc(pmu);
11090                if (ret)
11091                        goto free_idr;
11092        }
11093
11094skip_type:
11095        if (pmu->task_ctx_nr == perf_hw_context) {
11096                static int hw_context_taken = 0;
11097
11098                /*
11099                 * Other than systems with heterogeneous CPUs, it never makes
11100                 * sense for two PMUs to share perf_hw_context. PMUs which are
11101                 * uncore must use perf_invalid_context.
11102                 */
11103                if (WARN_ON_ONCE(hw_context_taken &&
11104                    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11105                        pmu->task_ctx_nr = perf_invalid_context;
11106
11107                hw_context_taken = 1;
11108        }
11109
11110        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11111        if (pmu->pmu_cpu_context)
11112                goto got_cpu_context;
11113
11114        ret = -ENOMEM;
11115        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11116        if (!pmu->pmu_cpu_context)
11117                goto free_dev;
11118
11119        for_each_possible_cpu(cpu) {
11120                struct perf_cpu_context *cpuctx;
11121
11122                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11123                __perf_event_init_context(&cpuctx->ctx);
11124                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11125                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11126                cpuctx->ctx.pmu = pmu;
11127                cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11128
11129                __perf_mux_hrtimer_init(cpuctx, cpu);
11130
11131                cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11132                cpuctx->heap = cpuctx->heap_default;
11133        }
11134
11135got_cpu_context:
11136        if (!pmu->start_txn) {
11137                if (pmu->pmu_enable) {
11138                        /*
11139                         * If we have pmu_enable/pmu_disable calls, install
11140                         * transaction stubs that use that to try and batch
11141                         * hardware accesses.
11142                         */
11143                        pmu->start_txn  = perf_pmu_start_txn;
11144                        pmu->commit_txn = perf_pmu_commit_txn;
11145                        pmu->cancel_txn = perf_pmu_cancel_txn;
11146                } else {
11147                        pmu->start_txn  = perf_pmu_nop_txn;
11148                        pmu->commit_txn = perf_pmu_nop_int;
11149                        pmu->cancel_txn = perf_pmu_nop_void;
11150                }
11151        }
11152
11153        if (!pmu->pmu_enable) {
11154                pmu->pmu_enable  = perf_pmu_nop_void;
11155                pmu->pmu_disable = perf_pmu_nop_void;
11156        }
11157
11158        if (!pmu->check_period)
11159                pmu->check_period = perf_event_nop_int;
11160
11161        if (!pmu->event_idx)
11162                pmu->event_idx = perf_event_idx_default;
11163
11164        /*
11165         * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11166         * since these cannot be in the IDR. This way the linear search
11167         * is fast, provided a valid software event is provided.
11168         */
11169        if (type == PERF_TYPE_SOFTWARE || !name)
11170                list_add_rcu(&pmu->entry, &pmus);
11171        else
11172                list_add_tail_rcu(&pmu->entry, &pmus);
11173
11174        atomic_set(&pmu->exclusive_cnt, 0);
11175        ret = 0;
11176unlock:
11177        mutex_unlock(&pmus_lock);
11178
11179        return ret;
11180
11181free_dev:
11182        device_del(pmu->dev);
11183        put_device(pmu->dev);
11184
11185free_idr:
11186        if (pmu->type != PERF_TYPE_SOFTWARE)
11187                idr_remove(&pmu_idr, pmu->type);
11188
11189free_pdc:
11190        free_percpu(pmu->pmu_disable_count);
11191        goto unlock;
11192}
11193EXPORT_SYMBOL_GPL(perf_pmu_register);
11194
11195void perf_pmu_unregister(struct pmu *pmu)
11196{
11197        mutex_lock(&pmus_lock);
11198        list_del_rcu(&pmu->entry);
11199
11200        /*
11201         * We dereference the pmu list under both SRCU and regular RCU, so
11202         * synchronize against both of those.
11203         */
11204        synchronize_srcu(&pmus_srcu);
11205        synchronize_rcu();
11206
11207        free_percpu(pmu->pmu_disable_count);
11208        if (pmu->type != PERF_TYPE_SOFTWARE)
11209                idr_remove(&pmu_idr, pmu->type);
11210        if (pmu_bus_running) {
11211                if (pmu->nr_addr_filters)
11212                        device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11213                device_del(pmu->dev);
11214                put_device(pmu->dev);
11215        }
11216        free_pmu_context(pmu);
11217        mutex_unlock(&pmus_lock);
11218}
11219EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11220
11221static inline bool has_extended_regs(struct perf_event *event)
11222{
11223        return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11224               (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11225}
11226
11227static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11228{
11229        struct perf_event_context *ctx = NULL;
11230        int ret;
11231
11232        if (!try_module_get(pmu->module))
11233                return -ENODEV;
11234
11235        /*
11236         * A number of pmu->event_init() methods iterate the sibling_list to,
11237         * for example, validate if the group fits on the PMU. Therefore,
11238         * if this is a sibling event, acquire the ctx->mutex to protect
11239         * the sibling_list.
11240         */
11241        if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11242                /*
11243                 * This ctx->mutex can nest when we're called through
11244                 * inheritance. See the perf_event_ctx_lock_nested() comment.
11245                 */
11246                ctx = perf_event_ctx_lock_nested(event->group_leader,
11247                                                 SINGLE_DEPTH_NESTING);
11248                BUG_ON(!ctx);
11249        }
11250
11251        event->pmu = pmu;
11252        ret = pmu->event_init(event);
11253
11254        if (ctx)
11255                perf_event_ctx_unlock(event->group_leader, ctx);
11256
11257        if (!ret) {
11258                if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11259                    has_extended_regs(event))
11260                        ret = -EOPNOTSUPP;
11261
11262                if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11263                    event_has_any_exclude_flag(event))
11264                        ret = -EINVAL;
11265
11266                if (ret && event->destroy)
11267                        event->destroy(event);
11268        }
11269
11270        if (ret)
11271                module_put(pmu->module);
11272
11273        return ret;
11274}
11275
11276static struct pmu *perf_init_event(struct perf_event *event)
11277{
11278        bool extended_type = false;
11279        int idx, type, ret;
11280        struct pmu *pmu;
11281
11282        idx = srcu_read_lock(&pmus_srcu);
11283
11284        /* Try parent's PMU first: */
11285        if (event->parent && event->parent->pmu) {
11286                pmu = event->parent->pmu;
11287                ret = perf_try_init_event(pmu, event);
11288                if (!ret)
11289                        goto unlock;
11290        }
11291
11292        /*
11293         * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11294         * are often aliases for PERF_TYPE_RAW.
11295         */
11296        type = event->attr.type;
11297        if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11298                type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11299                if (!type) {
11300                        type = PERF_TYPE_RAW;
11301                } else {
11302                        extended_type = true;
11303                        event->attr.config &= PERF_HW_EVENT_MASK;
11304                }
11305        }
11306
11307again:
11308        rcu_read_lock();
11309        pmu = idr_find(&pmu_idr, type);
11310        rcu_read_unlock();
11311        if (pmu) {
11312                if (event->attr.type != type && type != PERF_TYPE_RAW &&
11313                    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11314                        goto fail;
11315
11316                ret = perf_try_init_event(pmu, event);
11317                if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11318                        type = event->attr.type;
11319                        goto again;
11320                }
11321
11322                if (ret)
11323                        pmu = ERR_PTR(ret);
11324
11325                goto unlock;
11326        }
11327
11328        list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11329                ret = perf_try_init_event(pmu, event);
11330                if (!ret)
11331                        goto unlock;
11332
11333                if (ret != -ENOENT) {
11334                        pmu = ERR_PTR(ret);
11335                        goto unlock;
11336                }
11337        }
11338fail:
11339        pmu = ERR_PTR(-ENOENT);
11340unlock:
11341        srcu_read_unlock(&pmus_srcu, idx);
11342
11343        return pmu;
11344}
11345
11346static void attach_sb_event(struct perf_event *event)
11347{
11348        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11349
11350        raw_spin_lock(&pel->lock);
11351        list_add_rcu(&event->sb_list, &pel->list);
11352        raw_spin_unlock(&pel->lock);
11353}
11354
11355/*
11356 * We keep a list of all !task (and therefore per-cpu) events
11357 * that need to receive side-band records.
11358 *
11359 * This avoids having to scan all the various PMU per-cpu contexts
11360 * looking for them.
11361 */
11362static void account_pmu_sb_event(struct perf_event *event)
11363{
11364        if (is_sb_event(event))
11365                attach_sb_event(event);
11366}
11367
11368static void account_event_cpu(struct perf_event *event, int cpu)
11369{
11370        if (event->parent)
11371                return;
11372
11373        if (is_cgroup_event(event))
11374                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11375}
11376
11377/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11378static void account_freq_event_nohz(void)
11379{
11380#ifdef CONFIG_NO_HZ_FULL
11381        /* Lock so we don't race with concurrent unaccount */
11382        spin_lock(&nr_freq_lock);
11383        if (atomic_inc_return(&nr_freq_events) == 1)
11384                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11385        spin_unlock(&nr_freq_lock);
11386#endif
11387}
11388
11389static void account_freq_event(void)
11390{
11391        if (tick_nohz_full_enabled())
11392                account_freq_event_nohz();
11393        else
11394                atomic_inc(&nr_freq_events);
11395}
11396
11397
11398static void account_event(struct perf_event *event)
11399{
11400        bool inc = false;
11401
11402        if (event->parent)
11403                return;
11404
11405        if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11406                inc = true;
11407        if (event->attr.mmap || event->attr.mmap_data)
11408                atomic_inc(&nr_mmap_events);
11409        if (event->attr.build_id)
11410                atomic_inc(&nr_build_id_events);
11411        if (event->attr.comm)
11412                atomic_inc(&nr_comm_events);
11413        if (event->attr.namespaces)
11414                atomic_inc(&nr_namespaces_events);
11415        if (event->attr.cgroup)
11416                atomic_inc(&nr_cgroup_events);
11417        if (event->attr.task)
11418                atomic_inc(&nr_task_events);
11419        if (event->attr.freq)
11420                account_freq_event();
11421        if (event->attr.context_switch) {
11422                atomic_inc(&nr_switch_events);
11423                inc = true;
11424        }
11425        if (has_branch_stack(event))
11426                inc = true;
11427        if (is_cgroup_event(event))
11428                inc = true;
11429        if (event->attr.ksymbol)
11430                atomic_inc(&nr_ksymbol_events);
11431        if (event->attr.bpf_event)
11432                atomic_inc(&nr_bpf_events);
11433        if (event->attr.text_poke)
11434                atomic_inc(&nr_text_poke_events);
11435
11436        if (inc) {
11437                /*
11438                 * We need the mutex here because static_branch_enable()
11439                 * must complete *before* the perf_sched_count increment
11440                 * becomes visible.
11441                 */
11442                if (atomic_inc_not_zero(&perf_sched_count))
11443                        goto enabled;
11444
11445                mutex_lock(&perf_sched_mutex);
11446                if (!atomic_read(&perf_sched_count)) {
11447                        static_branch_enable(&perf_sched_events);
11448                        /*
11449                         * Guarantee that all CPUs observe they key change and
11450                         * call the perf scheduling hooks before proceeding to
11451                         * install events that need them.
11452                         */
11453                        synchronize_rcu();
11454                }
11455                /*
11456                 * Now that we have waited for the sync_sched(), allow further
11457                 * increments to by-pass the mutex.
11458                 */
11459                atomic_inc(&perf_sched_count);
11460                mutex_unlock(&perf_sched_mutex);
11461        }
11462enabled:
11463
11464        account_event_cpu(event, event->cpu);
11465
11466        account_pmu_sb_event(event);
11467}
11468
11469/*
11470 * Allocate and initialize an event structure
11471 */
11472static struct perf_event *
11473perf_event_alloc(struct perf_event_attr *attr, int cpu,
11474                 struct task_struct *task,
11475                 struct perf_event *group_leader,
11476                 struct perf_event *parent_event,
11477                 perf_overflow_handler_t overflow_handler,
11478                 void *context, int cgroup_fd)
11479{
11480        struct pmu *pmu;
11481        struct perf_event *event;
11482        struct hw_perf_event *hwc;
11483        long err = -EINVAL;
11484        int node;
11485
11486        if ((unsigned)cpu >= nr_cpu_ids) {
11487                if (!task || cpu != -1)
11488                        return ERR_PTR(-EINVAL);
11489        }
11490        if (attr->sigtrap && !task) {
11491                /* Requires a task: avoid signalling random tasks. */
11492                return ERR_PTR(-EINVAL);
11493        }
11494
11495        node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11496        event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11497                                      node);
11498        if (!event)
11499                return ERR_PTR(-ENOMEM);
11500
11501        /*
11502         * Single events are their own group leaders, with an
11503         * empty sibling list:
11504         */
11505        if (!group_leader)
11506                group_leader = event;
11507
11508        mutex_init(&event->child_mutex);
11509        INIT_LIST_HEAD(&event->child_list);
11510
11511        INIT_LIST_HEAD(&event->event_entry);
11512        INIT_LIST_HEAD(&event->sibling_list);
11513        INIT_LIST_HEAD(&event->active_list);
11514        init_event_group(event);
11515        INIT_LIST_HEAD(&event->rb_entry);
11516        INIT_LIST_HEAD(&event->active_entry);
11517        INIT_LIST_HEAD(&event->addr_filters.list);
11518        INIT_HLIST_NODE(&event->hlist_entry);
11519
11520
11521        init_waitqueue_head(&event->waitq);
11522        event->pending_disable = -1;
11523        init_irq_work(&event->pending, perf_pending_event);
11524
11525        mutex_init(&event->mmap_mutex);
11526        raw_spin_lock_init(&event->addr_filters.lock);
11527
11528        atomic_long_set(&event->refcount, 1);
11529        event->cpu              = cpu;
11530        event->attr             = *attr;
11531        event->group_leader     = group_leader;
11532        event->pmu              = NULL;
11533        event->oncpu            = -1;
11534
11535        event->parent           = parent_event;
11536
11537        event->ns               = get_pid_ns(task_active_pid_ns(current));
11538        event->id               = atomic64_inc_return(&perf_event_id);
11539
11540        event->state            = PERF_EVENT_STATE_INACTIVE;
11541
11542        if (event->attr.sigtrap)
11543                atomic_set(&event->event_limit, 1);
11544
11545        if (task) {
11546                event->attach_state = PERF_ATTACH_TASK;
11547                /*
11548                 * XXX pmu::event_init needs to know what task to account to
11549                 * and we cannot use the ctx information because we need the
11550                 * pmu before we get a ctx.
11551                 */
11552                event->hw.target = get_task_struct(task);
11553        }
11554
11555        event->clock = &local_clock;
11556        if (parent_event)
11557                event->clock = parent_event->clock;
11558
11559        if (!overflow_handler && parent_event) {
11560                overflow_handler = parent_event->overflow_handler;
11561                context = parent_event->overflow_handler_context;
11562#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11563                if (overflow_handler == bpf_overflow_handler) {
11564                        struct bpf_prog *prog = parent_event->prog;
11565
11566                        bpf_prog_inc(prog);
11567                        event->prog = prog;
11568                        event->orig_overflow_handler =
11569                                parent_event->orig_overflow_handler;
11570                }
11571#endif
11572        }
11573
11574        if (overflow_handler) {
11575                event->overflow_handler = overflow_handler;
11576                event->overflow_handler_context = context;
11577        } else if (is_write_backward(event)){
11578                event->overflow_handler = perf_event_output_backward;
11579                event->overflow_handler_context = NULL;
11580        } else {
11581                event->overflow_handler = perf_event_output_forward;
11582                event->overflow_handler_context = NULL;
11583        }
11584
11585        perf_event__state_init(event);
11586
11587        pmu = NULL;
11588
11589        hwc = &event->hw;
11590        hwc->sample_period = attr->sample_period;
11591        if (attr->freq && attr->sample_freq)
11592                hwc->sample_period = 1;
11593        hwc->last_period = hwc->sample_period;
11594
11595        local64_set(&hwc->period_left, hwc->sample_period);
11596
11597        /*
11598         * We currently do not support PERF_SAMPLE_READ on inherited events.
11599         * See perf_output_read().
11600         */
11601        if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11602                goto err_ns;
11603
11604        if (!has_branch_stack(event))
11605                event->attr.branch_sample_type = 0;
11606
11607        pmu = perf_init_event(event);
11608        if (IS_ERR(pmu)) {
11609                err = PTR_ERR(pmu);
11610                goto err_ns;
11611        }
11612
11613        /*
11614         * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11615         * be different on other CPUs in the uncore mask.
11616         */
11617        if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11618                err = -EINVAL;
11619                goto err_pmu;
11620        }
11621
11622        if (event->attr.aux_output &&
11623            !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11624                err = -EOPNOTSUPP;
11625                goto err_pmu;
11626        }
11627
11628        if (cgroup_fd != -1) {
11629                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11630                if (err)
11631                        goto err_pmu;
11632        }
11633
11634        err = exclusive_event_init(event);
11635        if (err)
11636                goto err_pmu;
11637
11638        if (has_addr_filter(event)) {
11639                event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11640                                                    sizeof(struct perf_addr_filter_range),
11641                                                    GFP_KERNEL);
11642                if (!event->addr_filter_ranges) {
11643                        err = -ENOMEM;
11644                        goto err_per_task;
11645                }
11646
11647                /*
11648                 * Clone the parent's vma offsets: they are valid until exec()
11649                 * even if the mm is not shared with the parent.
11650                 */
11651                if (event->parent) {
11652                        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11653
11654                        raw_spin_lock_irq(&ifh->lock);
11655                        memcpy(event->addr_filter_ranges,
11656                               event->parent->addr_filter_ranges,
11657                               pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11658                        raw_spin_unlock_irq(&ifh->lock);
11659                }
11660
11661                /* force hw sync on the address filters */
11662                event->addr_filters_gen = 1;
11663        }
11664
11665        if (!event->parent) {
11666                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11667                        err = get_callchain_buffers(attr->sample_max_stack);
11668                        if (err)
11669                                goto err_addr_filters;
11670                }
11671        }
11672
11673        err = security_perf_event_alloc(event);
11674        if (err)
11675                goto err_callchain_buffer;
11676
11677        /* symmetric to unaccount_event() in _free_event() */
11678        account_event(event);
11679
11680        return event;
11681
11682err_callchain_buffer:
11683        if (!event->parent) {
11684                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11685                        put_callchain_buffers();
11686        }
11687err_addr_filters:
11688        kfree(event->addr_filter_ranges);
11689
11690err_per_task:
11691        exclusive_event_destroy(event);
11692
11693err_pmu:
11694        if (is_cgroup_event(event))
11695                perf_detach_cgroup(event);
11696        if (event->destroy)
11697                event->destroy(event);
11698        module_put(pmu->module);
11699err_ns:
11700        if (event->ns)
11701                put_pid_ns(event->ns);
11702        if (event->hw.target)
11703                put_task_struct(event->hw.target);
11704        kmem_cache_free(perf_event_cache, event);
11705
11706        return ERR_PTR(err);
11707}
11708
11709static int perf_copy_attr(struct perf_event_attr __user *uattr,
11710                          struct perf_event_attr *attr)
11711{
11712        u32 size;
11713        int ret;
11714
11715        /* Zero the full structure, so that a short copy will be nice. */
11716        memset(attr, 0, sizeof(*attr));
11717
11718        ret = get_user(size, &uattr->size);
11719        if (ret)
11720                return ret;
11721
11722        /* ABI compatibility quirk: */
11723        if (!size)
11724                size = PERF_ATTR_SIZE_VER0;
11725        if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11726                goto err_size;
11727
11728        ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11729        if (ret) {
11730                if (ret == -E2BIG)
11731                        goto err_size;
11732                return ret;
11733        }
11734
11735        attr->size = size;
11736
11737        if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11738                return -EINVAL;
11739
11740        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11741                return -EINVAL;
11742
11743        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11744                return -EINVAL;
11745
11746        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11747                u64 mask = attr->branch_sample_type;
11748
11749                /* only using defined bits */
11750                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11751                        return -EINVAL;
11752
11753                /* at least one branch bit must be set */
11754                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11755                        return -EINVAL;
11756
11757                /* propagate priv level, when not set for branch */
11758                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11759
11760                        /* exclude_kernel checked on syscall entry */
11761                        if (!attr->exclude_kernel)
11762                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
11763
11764                        if (!attr->exclude_user)
11765                                mask |= PERF_SAMPLE_BRANCH_USER;
11766
11767                        if (!attr->exclude_hv)
11768                                mask |= PERF_SAMPLE_BRANCH_HV;
11769                        /*
11770                         * adjust user setting (for HW filter setup)
11771                         */
11772                        attr->branch_sample_type = mask;
11773                }
11774                /* privileged levels capture (kernel, hv): check permissions */
11775                if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11776                        ret = perf_allow_kernel(attr);
11777                        if (ret)
11778                                return ret;
11779                }
11780        }
11781
11782        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11783                ret = perf_reg_validate(attr->sample_regs_user);
11784                if (ret)
11785                        return ret;
11786        }
11787
11788        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11789                if (!arch_perf_have_user_stack_dump())
11790                        return -ENOSYS;
11791
11792                /*
11793                 * We have __u32 type for the size, but so far
11794                 * we can only use __u16 as maximum due to the
11795                 * __u16 sample size limit.
11796                 */
11797                if (attr->sample_stack_user >= USHRT_MAX)
11798                        return -EINVAL;
11799                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11800                        return -EINVAL;
11801        }
11802
11803        if (!attr->sample_max_stack)
11804                attr->sample_max_stack = sysctl_perf_event_max_stack;
11805
11806        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11807                ret = perf_reg_validate(attr->sample_regs_intr);
11808
11809#ifndef CONFIG_CGROUP_PERF
11810        if (attr->sample_type & PERF_SAMPLE_CGROUP)
11811                return -EINVAL;
11812#endif
11813        if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11814            (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11815                return -EINVAL;
11816
11817        if (!attr->inherit && attr->inherit_thread)
11818                return -EINVAL;
11819
11820        if (attr->remove_on_exec && attr->enable_on_exec)
11821                return -EINVAL;
11822
11823        if (attr->sigtrap && !attr->remove_on_exec)
11824                return -EINVAL;
11825
11826out:
11827        return ret;
11828
11829err_size:
11830        put_user(sizeof(*attr), &uattr->size);
11831        ret = -E2BIG;
11832        goto out;
11833}
11834
11835static int
11836perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11837{
11838        struct perf_buffer *rb = NULL;
11839        int ret = -EINVAL;
11840
11841        if (!output_event)
11842                goto set;
11843
11844        /* don't allow circular references */
11845        if (event == output_event)
11846                goto out;
11847
11848        /*
11849         * Don't allow cross-cpu buffers
11850         */
11851        if (output_event->cpu != event->cpu)
11852                goto out;
11853
11854        /*
11855         * If its not a per-cpu rb, it must be the same task.
11856         */
11857        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11858                goto out;
11859
11860        /*
11861         * Mixing clocks in the same buffer is trouble you don't need.
11862         */
11863        if (output_event->clock != event->clock)
11864                goto out;
11865
11866        /*
11867         * Either writing ring buffer from beginning or from end.
11868         * Mixing is not allowed.
11869         */
11870        if (is_write_backward(output_event) != is_write_backward(event))
11871                goto out;
11872
11873        /*
11874         * If both events generate aux data, they must be on the same PMU
11875         */
11876        if (has_aux(event) && has_aux(output_event) &&
11877            event->pmu != output_event->pmu)
11878                goto out;
11879
11880set:
11881        mutex_lock(&event->mmap_mutex);
11882        /* Can't redirect output if we've got an active mmap() */
11883        if (atomic_read(&event->mmap_count))
11884                goto unlock;
11885
11886        if (output_event) {
11887                /* get the rb we want to redirect to */
11888                rb = ring_buffer_get(output_event);
11889                if (!rb)
11890                        goto unlock;
11891        }
11892
11893        ring_buffer_attach(event, rb);
11894
11895        ret = 0;
11896unlock:
11897        mutex_unlock(&event->mmap_mutex);
11898
11899out:
11900        return ret;
11901}
11902
11903static void mutex_lock_double(struct mutex *a, struct mutex *b)
11904{
11905        if (b < a)
11906                swap(a, b);
11907
11908        mutex_lock(a);
11909        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11910}
11911
11912static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11913{
11914        bool nmi_safe = false;
11915
11916        switch (clk_id) {
11917        case CLOCK_MONOTONIC:
11918                event->clock = &ktime_get_mono_fast_ns;
11919                nmi_safe = true;
11920                break;
11921
11922        case CLOCK_MONOTONIC_RAW:
11923                event->clock = &ktime_get_raw_fast_ns;
11924                nmi_safe = true;
11925                break;
11926
11927        case CLOCK_REALTIME:
11928                event->clock = &ktime_get_real_ns;
11929                break;
11930
11931        case CLOCK_BOOTTIME:
11932                event->clock = &ktime_get_boottime_ns;
11933                break;
11934
11935        case CLOCK_TAI:
11936                event->clock = &ktime_get_clocktai_ns;
11937                break;
11938
11939        default:
11940                return -EINVAL;
11941        }
11942
11943        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11944                return -EINVAL;
11945
11946        return 0;
11947}
11948
11949/*
11950 * Variation on perf_event_ctx_lock_nested(), except we take two context
11951 * mutexes.
11952 */
11953static struct perf_event_context *
11954__perf_event_ctx_lock_double(struct perf_event *group_leader,
11955                             struct perf_event_context *ctx)
11956{
11957        struct perf_event_context *gctx;
11958
11959again:
11960        rcu_read_lock();
11961        gctx = READ_ONCE(group_leader->ctx);
11962        if (!refcount_inc_not_zero(&gctx->refcount)) {
11963                rcu_read_unlock();
11964                goto again;
11965        }
11966        rcu_read_unlock();
11967
11968        mutex_lock_double(&gctx->mutex, &ctx->mutex);
11969
11970        if (group_leader->ctx != gctx) {
11971                mutex_unlock(&ctx->mutex);
11972                mutex_unlock(&gctx->mutex);
11973                put_ctx(gctx);
11974                goto again;
11975        }
11976
11977        return gctx;
11978}
11979
11980static bool
11981perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11982{
11983        unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11984        bool is_capable = perfmon_capable();
11985
11986        if (attr->sigtrap) {
11987                /*
11988                 * perf_event_attr::sigtrap sends signals to the other task.
11989                 * Require the current task to also have CAP_KILL.
11990                 */
11991                rcu_read_lock();
11992                is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11993                rcu_read_unlock();
11994
11995                /*
11996                 * If the required capabilities aren't available, checks for
11997                 * ptrace permissions: upgrade to ATTACH, since sending signals
11998                 * can effectively change the target task.
11999                 */
12000                ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12001        }
12002
12003        /*
12004         * Preserve ptrace permission check for backwards compatibility. The
12005         * ptrace check also includes checks that the current task and other
12006         * task have matching uids, and is therefore not done here explicitly.
12007         */
12008        return is_capable || ptrace_may_access(task, ptrace_mode);
12009}
12010
12011/**
12012 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12013 *
12014 * @attr_uptr:  event_id type attributes for monitoring/sampling
12015 * @pid:                target pid
12016 * @cpu:                target cpu
12017 * @group_fd:           group leader event fd
12018 * @flags:              perf event open flags
12019 */
12020SYSCALL_DEFINE5(perf_event_open,
12021                struct perf_event_attr __user *, attr_uptr,
12022                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12023{
12024        struct perf_event *group_leader = NULL, *output_event = NULL;
12025        struct perf_event *event, *sibling;
12026        struct perf_event_attr attr;
12027        struct perf_event_context *ctx, *gctx;
12028        struct file *event_file = NULL;
12029        struct fd group = {NULL, 0};
12030        struct task_struct *task = NULL;
12031        struct pmu *pmu;
12032        int event_fd;
12033        int move_group = 0;
12034        int err;
12035        int f_flags = O_RDWR;
12036        int cgroup_fd = -1;
12037
12038        /* for future expandability... */
12039        if (flags & ~PERF_FLAG_ALL)
12040                return -EINVAL;
12041
12042        /* Do we allow access to perf_event_open(2) ? */
12043        err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12044        if (err)
12045                return err;
12046
12047        err = perf_copy_attr(attr_uptr, &attr);
12048        if (err)
12049                return err;
12050
12051        if (!attr.exclude_kernel) {
12052                err = perf_allow_kernel(&attr);
12053                if (err)
12054                        return err;
12055        }
12056
12057        if (attr.namespaces) {
12058                if (!perfmon_capable())
12059                        return -EACCES;
12060        }
12061
12062        if (attr.freq) {
12063                if (attr.sample_freq > sysctl_perf_event_sample_rate)
12064                        return -EINVAL;
12065        } else {
12066                if (attr.sample_period & (1ULL << 63))
12067                        return -EINVAL;
12068        }
12069
12070        /* Only privileged users can get physical addresses */
12071        if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12072                err = perf_allow_kernel(&attr);
12073                if (err)
12074                        return err;
12075        }
12076
12077        /* REGS_INTR can leak data, lockdown must prevent this */
12078        if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12079                err = security_locked_down(LOCKDOWN_PERF);
12080                if (err)
12081                        return err;
12082        }
12083
12084        /*
12085         * In cgroup mode, the pid argument is used to pass the fd
12086         * opened to the cgroup directory in cgroupfs. The cpu argument
12087         * designates the cpu on which to monitor threads from that
12088         * cgroup.
12089         */
12090        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12091                return -EINVAL;
12092
12093        if (flags & PERF_FLAG_FD_CLOEXEC)
12094                f_flags |= O_CLOEXEC;
12095
12096        event_fd = get_unused_fd_flags(f_flags);
12097        if (event_fd < 0)
12098                return event_fd;
12099
12100        if (group_fd != -1) {
12101                err = perf_fget_light(group_fd, &group);
12102                if (err)
12103                        goto err_fd;
12104                group_leader = group.file->private_data;
12105                if (flags & PERF_FLAG_FD_OUTPUT)
12106                        output_event = group_leader;
12107                if (flags & PERF_FLAG_FD_NO_GROUP)
12108                        group_leader = NULL;
12109        }
12110
12111        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12112                task = find_lively_task_by_vpid(pid);
12113                if (IS_ERR(task)) {
12114                        err = PTR_ERR(task);
12115                        goto err_group_fd;
12116                }
12117        }
12118
12119        if (task && group_leader &&
12120            group_leader->attr.inherit != attr.inherit) {
12121                err = -EINVAL;
12122                goto err_task;
12123        }
12124
12125        if (flags & PERF_FLAG_PID_CGROUP)
12126                cgroup_fd = pid;
12127
12128        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12129                                 NULL, NULL, cgroup_fd);
12130        if (IS_ERR(event)) {
12131                err = PTR_ERR(event);
12132                goto err_task;
12133        }
12134
12135        if (is_sampling_event(event)) {
12136                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12137                        err = -EOPNOTSUPP;
12138                        goto err_alloc;
12139                }
12140        }
12141
12142        /*
12143         * Special case software events and allow them to be part of
12144         * any hardware group.
12145         */
12146        pmu = event->pmu;
12147
12148        if (attr.use_clockid) {
12149                err = perf_event_set_clock(event, attr.clockid);
12150                if (err)
12151                        goto err_alloc;
12152        }
12153
12154        if (pmu->task_ctx_nr == perf_sw_context)
12155                event->event_caps |= PERF_EV_CAP_SOFTWARE;
12156
12157        if (group_leader) {
12158                if (is_software_event(event) &&
12159                    !in_software_context(group_leader)) {
12160                        /*
12161                         * If the event is a sw event, but the group_leader
12162                         * is on hw context.
12163                         *
12164                         * Allow the addition of software events to hw
12165                         * groups, this is safe because software events
12166                         * never fail to schedule.
12167                         */
12168                        pmu = group_leader->ctx->pmu;
12169                } else if (!is_software_event(event) &&
12170                           is_software_event(group_leader) &&
12171                           (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12172                        /*
12173                         * In case the group is a pure software group, and we
12174                         * try to add a hardware event, move the whole group to
12175                         * the hardware context.
12176                         */
12177                        move_group = 1;
12178                }
12179        }
12180
12181        /*
12182         * Get the target context (task or percpu):
12183         */
12184        ctx = find_get_context(pmu, task, event);
12185        if (IS_ERR(ctx)) {
12186                err = PTR_ERR(ctx);
12187                goto err_alloc;
12188        }
12189
12190        /*
12191         * Look up the group leader (we will attach this event to it):
12192         */
12193        if (group_leader) {
12194                err = -EINVAL;
12195
12196                /*
12197                 * Do not allow a recursive hierarchy (this new sibling
12198                 * becoming part of another group-sibling):
12199                 */
12200                if (group_leader->group_leader != group_leader)
12201                        goto err_context;
12202
12203                /* All events in a group should have the same clock */
12204                if (group_leader->clock != event->clock)
12205                        goto err_context;
12206
12207                /*
12208                 * Make sure we're both events for the same CPU;
12209                 * grouping events for different CPUs is broken; since
12210                 * you can never concurrently schedule them anyhow.
12211                 */
12212                if (group_leader->cpu != event->cpu)
12213                        goto err_context;
12214
12215                /*
12216                 * Make sure we're both on the same task, or both
12217                 * per-CPU events.
12218                 */
12219                if (group_leader->ctx->task != ctx->task)
12220                        goto err_context;
12221
12222                /*
12223                 * Do not allow to attach to a group in a different task
12224                 * or CPU context. If we're moving SW events, we'll fix
12225                 * this up later, so allow that.
12226                 */
12227                if (!move_group && group_leader->ctx != ctx)
12228                        goto err_context;
12229
12230                /*
12231                 * Only a group leader can be exclusive or pinned
12232                 */
12233                if (attr.exclusive || attr.pinned)
12234                        goto err_context;
12235        }
12236
12237        if (output_event) {
12238                err = perf_event_set_output(event, output_event);
12239                if (err)
12240                        goto err_context;
12241        }
12242
12243        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12244                                        f_flags);
12245        if (IS_ERR(event_file)) {
12246                err = PTR_ERR(event_file);
12247                event_file = NULL;
12248                goto err_context;
12249        }
12250
12251        if (task) {
12252                err = down_read_interruptible(&task->signal->exec_update_lock);
12253                if (err)
12254                        goto err_file;
12255
12256                /*
12257                 * We must hold exec_update_lock across this and any potential
12258                 * perf_install_in_context() call for this new event to
12259                 * serialize against exec() altering our credentials (and the
12260                 * perf_event_exit_task() that could imply).
12261                 */
12262                err = -EACCES;
12263                if (!perf_check_permission(&attr, task))
12264                        goto err_cred;
12265        }
12266
12267        if (move_group) {
12268                gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12269
12270                if (gctx->task == TASK_TOMBSTONE) {
12271                        err = -ESRCH;
12272                        goto err_locked;
12273                }
12274
12275                /*
12276                 * Check if we raced against another sys_perf_event_open() call
12277                 * moving the software group underneath us.
12278                 */
12279                if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12280                        /*
12281                         * If someone moved the group out from under us, check
12282                         * if this new event wound up on the same ctx, if so
12283                         * its the regular !move_group case, otherwise fail.
12284                         */
12285                        if (gctx != ctx) {
12286                                err = -EINVAL;
12287                                goto err_locked;
12288                        } else {
12289                                perf_event_ctx_unlock(group_leader, gctx);
12290                                move_group = 0;
12291                        }
12292                }
12293
12294                /*
12295                 * Failure to create exclusive events returns -EBUSY.
12296                 */
12297                err = -EBUSY;
12298                if (!exclusive_event_installable(group_leader, ctx))
12299                        goto err_locked;
12300
12301                for_each_sibling_event(sibling, group_leader) {
12302                        if (!exclusive_event_installable(sibling, ctx))
12303                                goto err_locked;
12304                }
12305        } else {
12306                mutex_lock(&ctx->mutex);
12307        }
12308
12309        if (ctx->task == TASK_TOMBSTONE) {
12310                err = -ESRCH;
12311                goto err_locked;
12312        }
12313
12314        if (!perf_event_validate_size(event)) {
12315                err = -E2BIG;
12316                goto err_locked;
12317        }
12318
12319        if (!task) {
12320                /*
12321                 * Check if the @cpu we're creating an event for is online.
12322                 *
12323                 * We use the perf_cpu_context::ctx::mutex to serialize against
12324                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12325                 */
12326                struct perf_cpu_context *cpuctx =
12327                        container_of(ctx, struct perf_cpu_context, ctx);
12328
12329                if (!cpuctx->online) {
12330                        err = -ENODEV;
12331                        goto err_locked;
12332                }
12333        }
12334
12335        if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12336                err = -EINVAL;
12337                goto err_locked;
12338        }
12339
12340        /*
12341         * Must be under the same ctx::mutex as perf_install_in_context(),
12342         * because we need to serialize with concurrent event creation.
12343         */
12344        if (!exclusive_event_installable(event, ctx)) {
12345                err = -EBUSY;
12346                goto err_locked;
12347        }
12348
12349        WARN_ON_ONCE(ctx->parent_ctx);
12350
12351        /*
12352         * This is the point on no return; we cannot fail hereafter. This is
12353         * where we start modifying current state.
12354         */
12355
12356        if (move_group) {
12357                /*
12358                 * See perf_event_ctx_lock() for comments on the details
12359                 * of swizzling perf_event::ctx.
12360                 */
12361                perf_remove_from_context(group_leader, 0);
12362                put_ctx(gctx);
12363
12364                for_each_sibling_event(sibling, group_leader) {
12365                        perf_remove_from_context(sibling, 0);
12366                        put_ctx(gctx);
12367                }
12368
12369                /*
12370                 * Wait for everybody to stop referencing the events through
12371                 * the old lists, before installing it on new lists.
12372                 */
12373                synchronize_rcu();
12374
12375                /*
12376                 * Install the group siblings before the group leader.
12377                 *
12378                 * Because a group leader will try and install the entire group
12379                 * (through the sibling list, which is still in-tact), we can
12380                 * end up with siblings installed in the wrong context.
12381                 *
12382                 * By installing siblings first we NO-OP because they're not
12383                 * reachable through the group lists.
12384                 */
12385                for_each_sibling_event(sibling, group_leader) {
12386                        perf_event__state_init(sibling);
12387                        perf_install_in_context(ctx, sibling, sibling->cpu);
12388                        get_ctx(ctx);
12389                }
12390
12391                /*
12392                 * Removing from the context ends up with disabled
12393                 * event. What we want here is event in the initial
12394                 * startup state, ready to be add into new context.
12395                 */
12396                perf_event__state_init(group_leader);
12397                perf_install_in_context(ctx, group_leader, group_leader->cpu);
12398                get_ctx(ctx);
12399        }
12400
12401        /*
12402         * Precalculate sample_data sizes; do while holding ctx::mutex such
12403         * that we're serialized against further additions and before
12404         * perf_install_in_context() which is the point the event is active and
12405         * can use these values.
12406         */
12407        perf_event__header_size(event);
12408        perf_event__id_header_size(event);
12409
12410        event->owner = current;
12411
12412        perf_install_in_context(ctx, event, event->cpu);
12413        perf_unpin_context(ctx);
12414
12415        if (move_group)
12416                perf_event_ctx_unlock(group_leader, gctx);
12417        mutex_unlock(&ctx->mutex);
12418
12419        if (task) {
12420                up_read(&task->signal->exec_update_lock);
12421                put_task_struct(task);
12422        }
12423
12424        mutex_lock(&current->perf_event_mutex);
12425        list_add_tail(&event->owner_entry, &current->perf_event_list);
12426        mutex_unlock(&current->perf_event_mutex);
12427
12428        /*
12429         * Drop the reference on the group_event after placing the
12430         * new event on the sibling_list. This ensures destruction
12431         * of the group leader will find the pointer to itself in
12432         * perf_group_detach().
12433         */
12434        fdput(group);
12435        fd_install(event_fd, event_file);
12436        return event_fd;
12437
12438err_locked:
12439        if (move_group)
12440                perf_event_ctx_unlock(group_leader, gctx);
12441        mutex_unlock(&ctx->mutex);
12442err_cred:
12443        if (task)
12444                up_read(&task->signal->exec_update_lock);
12445err_file:
12446        fput(event_file);
12447err_context:
12448        perf_unpin_context(ctx);
12449        put_ctx(ctx);
12450err_alloc:
12451        /*
12452         * If event_file is set, the fput() above will have called ->release()
12453         * and that will take care of freeing the event.
12454         */
12455        if (!event_file)
12456                free_event(event);
12457err_task:
12458        if (task)
12459                put_task_struct(task);
12460err_group_fd:
12461        fdput(group);
12462err_fd:
12463        put_unused_fd(event_fd);
12464        return err;
12465}
12466
12467/**
12468 * perf_event_create_kernel_counter
12469 *
12470 * @attr: attributes of the counter to create
12471 * @cpu: cpu in which the counter is bound
12472 * @task: task to profile (NULL for percpu)
12473 * @overflow_handler: callback to trigger when we hit the event
12474 * @context: context data could be used in overflow_handler callback
12475 */
12476struct perf_event *
12477perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12478                                 struct task_struct *task,
12479                                 perf_overflow_handler_t overflow_handler,
12480                                 void *context)
12481{
12482        struct perf_event_context *ctx;
12483        struct perf_event *event;
12484        int err;
12485
12486        /*
12487         * Grouping is not supported for kernel events, neither is 'AUX',
12488         * make sure the caller's intentions are adjusted.
12489         */
12490        if (attr->aux_output)
12491                return ERR_PTR(-EINVAL);
12492
12493        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12494                                 overflow_handler, context, -1);
12495        if (IS_ERR(event)) {
12496                err = PTR_ERR(event);
12497                goto err;
12498        }
12499
12500        /* Mark owner so we could distinguish it from user events. */
12501        event->owner = TASK_TOMBSTONE;
12502
12503        /*
12504         * Get the target context (task or percpu):
12505         */
12506        ctx = find_get_context(event->pmu, task, event);
12507        if (IS_ERR(ctx)) {
12508                err = PTR_ERR(ctx);
12509                goto err_free;
12510        }
12511
12512        WARN_ON_ONCE(ctx->parent_ctx);
12513        mutex_lock(&ctx->mutex);
12514        if (ctx->task == TASK_TOMBSTONE) {
12515                err = -ESRCH;
12516                goto err_unlock;
12517        }
12518
12519        if (!task) {
12520                /*
12521                 * Check if the @cpu we're creating an event for is online.
12522                 *
12523                 * We use the perf_cpu_context::ctx::mutex to serialize against
12524                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12525                 */
12526                struct perf_cpu_context *cpuctx =
12527                        container_of(ctx, struct perf_cpu_context, ctx);
12528                if (!cpuctx->online) {
12529                        err = -ENODEV;
12530                        goto err_unlock;
12531                }
12532        }
12533
12534        if (!exclusive_event_installable(event, ctx)) {
12535                err = -EBUSY;
12536                goto err_unlock;
12537        }
12538
12539        perf_install_in_context(ctx, event, event->cpu);
12540        perf_unpin_context(ctx);
12541        mutex_unlock(&ctx->mutex);
12542
12543        return event;
12544
12545err_unlock:
12546        mutex_unlock(&ctx->mutex);
12547        perf_unpin_context(ctx);
12548        put_ctx(ctx);
12549err_free:
12550        free_event(event);
12551err:
12552        return ERR_PTR(err);
12553}
12554EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12555
12556void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12557{
12558        struct perf_event_context *src_ctx;
12559        struct perf_event_context *dst_ctx;
12560        struct perf_event *event, *tmp;
12561        LIST_HEAD(events);
12562
12563        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12564        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12565
12566        /*
12567         * See perf_event_ctx_lock() for comments on the details
12568         * of swizzling perf_event::ctx.
12569         */
12570        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12571        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12572                                 event_entry) {
12573                perf_remove_from_context(event, 0);
12574                unaccount_event_cpu(event, src_cpu);
12575                put_ctx(src_ctx);
12576                list_add(&event->migrate_entry, &events);
12577        }
12578
12579        /*
12580         * Wait for the events to quiesce before re-instating them.
12581         */
12582        synchronize_rcu();
12583
12584        /*
12585         * Re-instate events in 2 passes.
12586         *
12587         * Skip over group leaders and only install siblings on this first
12588         * pass, siblings will not get enabled without a leader, however a
12589         * leader will enable its siblings, even if those are still on the old
12590         * context.
12591         */
12592        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12593                if (event->group_leader == event)
12594                        continue;
12595
12596                list_del(&event->migrate_entry);
12597                if (event->state >= PERF_EVENT_STATE_OFF)
12598                        event->state = PERF_EVENT_STATE_INACTIVE;
12599                account_event_cpu(event, dst_cpu);
12600                perf_install_in_context(dst_ctx, event, dst_cpu);
12601                get_ctx(dst_ctx);
12602        }
12603
12604        /*
12605         * Once all the siblings are setup properly, install the group leaders
12606         * to make it go.
12607         */
12608        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12609                list_del(&event->migrate_entry);
12610                if (event->state >= PERF_EVENT_STATE_OFF)
12611                        event->state = PERF_EVENT_STATE_INACTIVE;
12612                account_event_cpu(event, dst_cpu);
12613                perf_install_in_context(dst_ctx, event, dst_cpu);
12614                get_ctx(dst_ctx);
12615        }
12616        mutex_unlock(&dst_ctx->mutex);
12617        mutex_unlock(&src_ctx->mutex);
12618}
12619EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12620
12621static void sync_child_event(struct perf_event *child_event)
12622{
12623        struct perf_event *parent_event = child_event->parent;
12624        u64 child_val;
12625
12626        if (child_event->attr.inherit_stat) {
12627                struct task_struct *task = child_event->ctx->task;
12628
12629                if (task && task != TASK_TOMBSTONE)
12630                        perf_event_read_event(child_event, task);
12631        }
12632
12633        child_val = perf_event_count(child_event);
12634
12635        /*
12636         * Add back the child's count to the parent's count:
12637         */
12638        atomic64_add(child_val, &parent_event->child_count);
12639        atomic64_add(child_event->total_time_enabled,
12640                     &parent_event->child_total_time_enabled);
12641        atomic64_add(child_event->total_time_running,
12642                     &parent_event->child_total_time_running);
12643}
12644
12645static void
12646perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12647{
12648        struct perf_event *parent_event = event->parent;
12649        unsigned long detach_flags = 0;
12650
12651        if (parent_event) {
12652                /*
12653                 * Do not destroy the 'original' grouping; because of the
12654                 * context switch optimization the original events could've
12655                 * ended up in a random child task.
12656                 *
12657                 * If we were to destroy the original group, all group related
12658                 * operations would cease to function properly after this
12659                 * random child dies.
12660                 *
12661                 * Do destroy all inherited groups, we don't care about those
12662                 * and being thorough is better.
12663                 */
12664                detach_flags = DETACH_GROUP | DETACH_CHILD;
12665                mutex_lock(&parent_event->child_mutex);
12666        }
12667
12668        perf_remove_from_context(event, detach_flags);
12669
12670        raw_spin_lock_irq(&ctx->lock);
12671        if (event->state > PERF_EVENT_STATE_EXIT)
12672                perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12673        raw_spin_unlock_irq(&ctx->lock);
12674
12675        /*
12676         * Child events can be freed.
12677         */
12678        if (parent_event) {
12679                mutex_unlock(&parent_event->child_mutex);
12680                /*
12681                 * Kick perf_poll() for is_event_hup();
12682                 */
12683                perf_event_wakeup(parent_event);
12684                free_event(event);
12685                put_event(parent_event);
12686                return;
12687        }
12688
12689        /*
12690         * Parent events are governed by their filedesc, retain them.
12691         */
12692        perf_event_wakeup(event);
12693}
12694
12695static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12696{
12697        struct perf_event_context *child_ctx, *clone_ctx = NULL;
12698        struct perf_event *child_event, *next;
12699
12700        WARN_ON_ONCE(child != current);
12701
12702        child_ctx = perf_pin_task_context(child, ctxn);
12703        if (!child_ctx)
12704                return;
12705
12706        /*
12707         * In order to reduce the amount of tricky in ctx tear-down, we hold
12708         * ctx::mutex over the entire thing. This serializes against almost
12709         * everything that wants to access the ctx.
12710         *
12711         * The exception is sys_perf_event_open() /
12712         * perf_event_create_kernel_count() which does find_get_context()
12713         * without ctx::mutex (it cannot because of the move_group double mutex
12714         * lock thing). See the comments in perf_install_in_context().
12715         */
12716        mutex_lock(&child_ctx->mutex);
12717
12718        /*
12719         * In a single ctx::lock section, de-schedule the events and detach the
12720         * context from the task such that we cannot ever get it scheduled back
12721         * in.
12722         */
12723        raw_spin_lock_irq(&child_ctx->lock);
12724        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12725
12726        /*
12727         * Now that the context is inactive, destroy the task <-> ctx relation
12728         * and mark the context dead.
12729         */
12730        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12731        put_ctx(child_ctx); /* cannot be last */
12732        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12733        put_task_struct(current); /* cannot be last */
12734
12735        clone_ctx = unclone_ctx(child_ctx);
12736        raw_spin_unlock_irq(&child_ctx->lock);
12737
12738        if (clone_ctx)
12739                put_ctx(clone_ctx);
12740
12741        /*
12742         * Report the task dead after unscheduling the events so that we
12743         * won't get any samples after PERF_RECORD_EXIT. We can however still
12744         * get a few PERF_RECORD_READ events.
12745         */
12746        perf_event_task(child, child_ctx, 0);
12747
12748        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12749                perf_event_exit_event(child_event, child_ctx);
12750
12751        mutex_unlock(&child_ctx->mutex);
12752
12753        put_ctx(child_ctx);
12754}
12755
12756/*
12757 * When a child task exits, feed back event values to parent events.
12758 *
12759 * Can be called with exec_update_lock held when called from
12760 * setup_new_exec().
12761 */
12762void perf_event_exit_task(struct task_struct *child)
12763{
12764        struct perf_event *event, *tmp;
12765        int ctxn;
12766
12767        mutex_lock(&child->perf_event_mutex);
12768        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12769                                 owner_entry) {
12770                list_del_init(&event->owner_entry);
12771
12772                /*
12773                 * Ensure the list deletion is visible before we clear
12774                 * the owner, closes a race against perf_release() where
12775                 * we need to serialize on the owner->perf_event_mutex.
12776                 */
12777                smp_store_release(&event->owner, NULL);
12778        }
12779        mutex_unlock(&child->perf_event_mutex);
12780
12781        for_each_task_context_nr(ctxn)
12782                perf_event_exit_task_context(child, ctxn);
12783
12784        /*
12785         * The perf_event_exit_task_context calls perf_event_task
12786         * with child's task_ctx, which generates EXIT events for
12787         * child contexts and sets child->perf_event_ctxp[] to NULL.
12788         * At this point we need to send EXIT events to cpu contexts.
12789         */
12790        perf_event_task(child, NULL, 0);
12791}
12792
12793static void perf_free_event(struct perf_event *event,
12794                            struct perf_event_context *ctx)
12795{
12796        struct perf_event *parent = event->parent;
12797
12798        if (WARN_ON_ONCE(!parent))
12799                return;
12800
12801        mutex_lock(&parent->child_mutex);
12802        list_del_init(&event->child_list);
12803        mutex_unlock(&parent->child_mutex);
12804
12805        put_event(parent);
12806
12807        raw_spin_lock_irq(&ctx->lock);
12808        perf_group_detach(event);
12809        list_del_event(event, ctx);
12810        raw_spin_unlock_irq(&ctx->lock);
12811        free_event(event);
12812}
12813
12814/*
12815 * Free a context as created by inheritance by perf_event_init_task() below,
12816 * used by fork() in case of fail.
12817 *
12818 * Even though the task has never lived, the context and events have been
12819 * exposed through the child_list, so we must take care tearing it all down.
12820 */
12821void perf_event_free_task(struct task_struct *task)
12822{
12823        struct perf_event_context *ctx;
12824        struct perf_event *event, *tmp;
12825        int ctxn;
12826
12827        for_each_task_context_nr(ctxn) {
12828                ctx = task->perf_event_ctxp[ctxn];
12829                if (!ctx)
12830                        continue;
12831
12832                mutex_lock(&ctx->mutex);
12833                raw_spin_lock_irq(&ctx->lock);
12834                /*
12835                 * Destroy the task <-> ctx relation and mark the context dead.
12836                 *
12837                 * This is important because even though the task hasn't been
12838                 * exposed yet the context has been (through child_list).
12839                 */
12840                RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12841                WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12842                put_task_struct(task); /* cannot be last */
12843                raw_spin_unlock_irq(&ctx->lock);
12844
12845                list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12846                        perf_free_event(event, ctx);
12847
12848                mutex_unlock(&ctx->mutex);
12849
12850                /*
12851                 * perf_event_release_kernel() could've stolen some of our
12852                 * child events and still have them on its free_list. In that
12853                 * case we must wait for these events to have been freed (in
12854                 * particular all their references to this task must've been
12855                 * dropped).
12856                 *
12857                 * Without this copy_process() will unconditionally free this
12858                 * task (irrespective of its reference count) and
12859                 * _free_event()'s put_task_struct(event->hw.target) will be a
12860                 * use-after-free.
12861                 *
12862                 * Wait for all events to drop their context reference.
12863                 */
12864                wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12865                put_ctx(ctx); /* must be last */
12866        }
12867}
12868
12869void perf_event_delayed_put(struct task_struct *task)
12870{
12871        int ctxn;
12872
12873        for_each_task_context_nr(ctxn)
12874                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12875}
12876
12877struct file *perf_event_get(unsigned int fd)
12878{
12879        struct file *file = fget(fd);
12880        if (!file)
12881                return ERR_PTR(-EBADF);
12882
12883        if (file->f_op != &perf_fops) {
12884                fput(file);
12885                return ERR_PTR(-EBADF);
12886        }
12887
12888        return file;
12889}
12890
12891const struct perf_event *perf_get_event(struct file *file)
12892{
12893        if (file->f_op != &perf_fops)
12894                return ERR_PTR(-EINVAL);
12895
12896        return file->private_data;
12897}
12898
12899const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12900{
12901        if (!event)
12902                return ERR_PTR(-EINVAL);
12903
12904        return &event->attr;
12905}
12906
12907/*
12908 * Inherit an event from parent task to child task.
12909 *
12910 * Returns:
12911 *  - valid pointer on success
12912 *  - NULL for orphaned events
12913 *  - IS_ERR() on error
12914 */
12915static struct perf_event *
12916inherit_event(struct perf_event *parent_event,
12917              struct task_struct *parent,
12918              struct perf_event_context *parent_ctx,
12919              struct task_struct *child,
12920              struct perf_event *group_leader,
12921              struct perf_event_context *child_ctx)
12922{
12923        enum perf_event_state parent_state = parent_event->state;
12924        struct perf_event *child_event;
12925        unsigned long flags;
12926
12927        /*
12928         * Instead of creating recursive hierarchies of events,
12929         * we link inherited events back to the original parent,
12930         * which has a filp for sure, which we use as the reference
12931         * count:
12932         */
12933        if (parent_event->parent)
12934                parent_event = parent_event->parent;
12935
12936        child_event = perf_event_alloc(&parent_event->attr,
12937                                           parent_event->cpu,
12938                                           child,
12939                                           group_leader, parent_event,
12940                                           NULL, NULL, -1);
12941        if (IS_ERR(child_event))
12942                return child_event;
12943
12944
12945        if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12946            !child_ctx->task_ctx_data) {
12947                struct pmu *pmu = child_event->pmu;
12948
12949                child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12950                if (!child_ctx->task_ctx_data) {
12951                        free_event(child_event);
12952                        return ERR_PTR(-ENOMEM);
12953                }
12954        }
12955
12956        /*
12957         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12958         * must be under the same lock in order to serialize against
12959         * perf_event_release_kernel(), such that either we must observe
12960         * is_orphaned_event() or they will observe us on the child_list.
12961         */
12962        mutex_lock(&parent_event->child_mutex);
12963        if (is_orphaned_event(parent_event) ||
12964            !atomic_long_inc_not_zero(&parent_event->refcount)) {
12965                mutex_unlock(&parent_event->child_mutex);
12966                /* task_ctx_data is freed with child_ctx */
12967                free_event(child_event);
12968                return NULL;
12969        }
12970
12971        get_ctx(child_ctx);
12972
12973        /*
12974         * Make the child state follow the state of the parent event,
12975         * not its attr.disabled bit.  We hold the parent's mutex,
12976         * so we won't race with perf_event_{en, dis}able_family.
12977         */
12978        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12979                child_event->state = PERF_EVENT_STATE_INACTIVE;
12980        else
12981                child_event->state = PERF_EVENT_STATE_OFF;
12982
12983        if (parent_event->attr.freq) {
12984                u64 sample_period = parent_event->hw.sample_period;
12985                struct hw_perf_event *hwc = &child_event->hw;
12986
12987                hwc->sample_period = sample_period;
12988                hwc->last_period   = sample_period;
12989
12990                local64_set(&hwc->period_left, sample_period);
12991        }
12992
12993        child_event->ctx = child_ctx;
12994        child_event->overflow_handler = parent_event->overflow_handler;
12995        child_event->overflow_handler_context
12996                = parent_event->overflow_handler_context;
12997
12998        /*
12999         * Precalculate sample_data sizes
13000         */
13001        perf_event__header_size(child_event);
13002        perf_event__id_header_size(child_event);
13003
13004        /*
13005         * Link it up in the child's context:
13006         */
13007        raw_spin_lock_irqsave(&child_ctx->lock, flags);
13008        add_event_to_ctx(child_event, child_ctx);
13009        child_event->attach_state |= PERF_ATTACH_CHILD;
13010        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13011
13012        /*
13013         * Link this into the parent event's child list
13014         */
13015        list_add_tail(&child_event->child_list, &parent_event->child_list);
13016        mutex_unlock(&parent_event->child_mutex);
13017
13018        return child_event;
13019}
13020
13021/*
13022 * Inherits an event group.
13023 *
13024 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13025 * This matches with perf_event_release_kernel() removing all child events.
13026 *
13027 * Returns:
13028 *  - 0 on success
13029 *  - <0 on error
13030 */
13031static int inherit_group(struct perf_event *parent_event,
13032              struct task_struct *parent,
13033              struct perf_event_context *parent_ctx,
13034              struct task_struct *child,
13035              struct perf_event_context *child_ctx)
13036{
13037        struct perf_event *leader;
13038        struct perf_event *sub;
13039        struct perf_event *child_ctr;
13040
13041        leader = inherit_event(parent_event, parent, parent_ctx,
13042                                 child, NULL, child_ctx);
13043        if (IS_ERR(leader))
13044                return PTR_ERR(leader);
13045        /*
13046         * @leader can be NULL here because of is_orphaned_event(). In this
13047         * case inherit_event() will create individual events, similar to what
13048         * perf_group_detach() would do anyway.
13049         */
13050        for_each_sibling_event(sub, parent_event) {
13051                child_ctr = inherit_event(sub, parent, parent_ctx,
13052                                            child, leader, child_ctx);
13053                if (IS_ERR(child_ctr))
13054                        return PTR_ERR(child_ctr);
13055
13056                if (sub->aux_event == parent_event && child_ctr &&
13057                    !perf_get_aux_event(child_ctr, leader))
13058                        return -EINVAL;
13059        }
13060        return 0;
13061}
13062
13063/*
13064 * Creates the child task context and tries to inherit the event-group.
13065 *
13066 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13067 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13068 * consistent with perf_event_release_kernel() removing all child events.
13069 *
13070 * Returns:
13071 *  - 0 on success
13072 *  - <0 on error
13073 */
13074static int
13075inherit_task_group(struct perf_event *event, struct task_struct *parent,
13076                   struct perf_event_context *parent_ctx,
13077                   struct task_struct *child, int ctxn,
13078                   u64 clone_flags, int *inherited_all)
13079{
13080        int ret;
13081        struct perf_event_context *child_ctx;
13082
13083        if (!event->attr.inherit ||
13084            (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13085            /* Do not inherit if sigtrap and signal handlers were cleared. */
13086            (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13087                *inherited_all = 0;
13088                return 0;
13089        }
13090
13091        child_ctx = child->perf_event_ctxp[ctxn];
13092        if (!child_ctx) {
13093                /*
13094                 * This is executed from the parent task context, so
13095                 * inherit events that have been marked for cloning.
13096                 * First allocate and initialize a context for the
13097                 * child.
13098                 */
13099                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13100                if (!child_ctx)
13101                        return -ENOMEM;
13102
13103                child->perf_event_ctxp[ctxn] = child_ctx;
13104        }
13105
13106        ret = inherit_group(event, parent, parent_ctx,
13107                            child, child_ctx);
13108
13109        if (ret)
13110                *inherited_all = 0;
13111
13112        return ret;
13113}
13114
13115/*
13116 * Initialize the perf_event context in task_struct
13117 */
13118static int perf_event_init_context(struct task_struct *child, int ctxn,
13119                                   u64 clone_flags)
13120{
13121        struct perf_event_context *child_ctx, *parent_ctx;
13122        struct perf_event_context *cloned_ctx;
13123        struct perf_event *event;
13124        struct task_struct *parent = current;
13125        int inherited_all = 1;
13126        unsigned long flags;
13127        int ret = 0;
13128
13129        if (likely(!parent->perf_event_ctxp[ctxn]))
13130                return 0;
13131
13132        /*
13133         * If the parent's context is a clone, pin it so it won't get
13134         * swapped under us.
13135         */
13136        parent_ctx = perf_pin_task_context(parent, ctxn);
13137        if (!parent_ctx)
13138                return 0;
13139
13140        /*
13141         * No need to check if parent_ctx != NULL here; since we saw
13142         * it non-NULL earlier, the only reason for it to become NULL
13143         * is if we exit, and since we're currently in the middle of
13144         * a fork we can't be exiting at the same time.
13145         */
13146
13147        /*
13148         * Lock the parent list. No need to lock the child - not PID
13149         * hashed yet and not running, so nobody can access it.
13150         */
13151        mutex_lock(&parent_ctx->mutex);
13152
13153        /*
13154         * We dont have to disable NMIs - we are only looking at
13155         * the list, not manipulating it:
13156         */
13157        perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13158                ret = inherit_task_group(event, parent, parent_ctx,
13159                                         child, ctxn, clone_flags,
13160                                         &inherited_all);
13161                if (ret)
13162                        goto out_unlock;
13163        }
13164
13165        /*
13166         * We can't hold ctx->lock when iterating the ->flexible_group list due
13167         * to allocations, but we need to prevent rotation because
13168         * rotate_ctx() will change the list from interrupt context.
13169         */
13170        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13171        parent_ctx->rotate_disable = 1;
13172        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13173
13174        perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13175                ret = inherit_task_group(event, parent, parent_ctx,
13176                                         child, ctxn, clone_flags,
13177                                         &inherited_all);
13178                if (ret)
13179                        goto out_unlock;
13180        }
13181
13182        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13183        parent_ctx->rotate_disable = 0;
13184
13185        child_ctx = child->perf_event_ctxp[ctxn];
13186
13187        if (child_ctx && inherited_all) {
13188                /*
13189                 * Mark the child context as a clone of the parent
13190                 * context, or of whatever the parent is a clone of.
13191                 *
13192                 * Note that if the parent is a clone, the holding of
13193                 * parent_ctx->lock avoids it from being uncloned.
13194                 */
13195                cloned_ctx = parent_ctx->parent_ctx;
13196                if (cloned_ctx) {
13197                        child_ctx->parent_ctx = cloned_ctx;
13198                        child_ctx->parent_gen = parent_ctx->parent_gen;
13199                } else {
13200                        child_ctx->parent_ctx = parent_ctx;
13201                        child_ctx->parent_gen = parent_ctx->generation;
13202                }
13203                get_ctx(child_ctx->parent_ctx);
13204        }
13205
13206        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13207out_unlock:
13208        mutex_unlock(&parent_ctx->mutex);
13209
13210        perf_unpin_context(parent_ctx);
13211        put_ctx(parent_ctx);
13212
13213        return ret;
13214}
13215
13216/*
13217 * Initialize the perf_event context in task_struct
13218 */
13219int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13220{
13221        int ctxn, ret;
13222
13223        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13224        mutex_init(&child->perf_event_mutex);
13225        INIT_LIST_HEAD(&child->perf_event_list);
13226
13227        for_each_task_context_nr(ctxn) {
13228                ret = perf_event_init_context(child, ctxn, clone_flags);
13229                if (ret) {
13230                        perf_event_free_task(child);
13231                        return ret;
13232                }
13233        }
13234
13235        return 0;
13236}
13237
13238static void __init perf_event_init_all_cpus(void)
13239{
13240        struct swevent_htable *swhash;
13241        int cpu;
13242
13243        zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13244
13245        for_each_possible_cpu(cpu) {
13246                swhash = &per_cpu(swevent_htable, cpu);
13247                mutex_init(&swhash->hlist_mutex);
13248                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13249
13250                INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13251                raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13252
13253#ifdef CONFIG_CGROUP_PERF
13254                INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13255#endif
13256                INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13257        }
13258}
13259
13260static void perf_swevent_init_cpu(unsigned int cpu)
13261{
13262        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13263
13264        mutex_lock(&swhash->hlist_mutex);
13265        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13266                struct swevent_hlist *hlist;
13267
13268                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13269                WARN_ON(!hlist);
13270                rcu_assign_pointer(swhash->swevent_hlist, hlist);
13271        }
13272        mutex_unlock(&swhash->hlist_mutex);
13273}
13274
13275#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13276static void __perf_event_exit_context(void *__info)
13277{
13278        struct perf_event_context *ctx = __info;
13279        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13280        struct perf_event *event;
13281
13282        raw_spin_lock(&ctx->lock);
13283        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13284        list_for_each_entry(event, &ctx->event_list, event_entry)
13285                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13286        raw_spin_unlock(&ctx->lock);
13287}
13288
13289static void perf_event_exit_cpu_context(int cpu)
13290{
13291        struct perf_cpu_context *cpuctx;
13292        struct perf_event_context *ctx;
13293        struct pmu *pmu;
13294
13295        mutex_lock(&pmus_lock);
13296        list_for_each_entry(pmu, &pmus, entry) {
13297                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13298                ctx = &cpuctx->ctx;
13299
13300                mutex_lock(&ctx->mutex);
13301                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13302                cpuctx->online = 0;
13303                mutex_unlock(&ctx->mutex);
13304        }
13305        cpumask_clear_cpu(cpu, perf_online_mask);
13306        mutex_unlock(&pmus_lock);
13307}
13308#else
13309
13310static void perf_event_exit_cpu_context(int cpu) { }
13311
13312#endif
13313
13314int perf_event_init_cpu(unsigned int cpu)
13315{
13316        struct perf_cpu_context *cpuctx;
13317        struct perf_event_context *ctx;
13318        struct pmu *pmu;
13319
13320        perf_swevent_init_cpu(cpu);
13321
13322        mutex_lock(&pmus_lock);
13323        cpumask_set_cpu(cpu, perf_online_mask);
13324        list_for_each_entry(pmu, &pmus, entry) {
13325                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13326                ctx = &cpuctx->ctx;
13327
13328                mutex_lock(&ctx->mutex);
13329                cpuctx->online = 1;
13330                mutex_unlock(&ctx->mutex);
13331        }
13332        mutex_unlock(&pmus_lock);
13333
13334        return 0;
13335}
13336
13337int perf_event_exit_cpu(unsigned int cpu)
13338{
13339        perf_event_exit_cpu_context(cpu);
13340        return 0;
13341}
13342
13343static int
13344perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13345{
13346        int cpu;
13347
13348        for_each_online_cpu(cpu)
13349                perf_event_exit_cpu(cpu);
13350
13351        return NOTIFY_OK;
13352}
13353
13354/*
13355 * Run the perf reboot notifier at the very last possible moment so that
13356 * the generic watchdog code runs as long as possible.
13357 */
13358static struct notifier_block perf_reboot_notifier = {
13359        .notifier_call = perf_reboot,
13360        .priority = INT_MIN,
13361};
13362
13363void __init perf_event_init(void)
13364{
13365        int ret;
13366
13367        idr_init(&pmu_idr);
13368
13369        perf_event_init_all_cpus();
13370        init_srcu_struct(&pmus_srcu);
13371        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13372        perf_pmu_register(&perf_cpu_clock, NULL, -1);
13373        perf_pmu_register(&perf_task_clock, NULL, -1);
13374        perf_tp_register();
13375        perf_event_init_cpu(smp_processor_id());
13376        register_reboot_notifier(&perf_reboot_notifier);
13377
13378        ret = init_hw_breakpoint();
13379        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13380
13381        perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13382
13383        /*
13384         * Build time assertion that we keep the data_head at the intended
13385         * location.  IOW, validation we got the __reserved[] size right.
13386         */
13387        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13388                     != 1024);
13389}
13390
13391ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13392                              char *page)
13393{
13394        struct perf_pmu_events_attr *pmu_attr =
13395                container_of(attr, struct perf_pmu_events_attr, attr);
13396
13397        if (pmu_attr->event_str)
13398                return sprintf(page, "%s\n", pmu_attr->event_str);
13399
13400        return 0;
13401}
13402EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13403
13404static int __init perf_event_sysfs_init(void)
13405{
13406        struct pmu *pmu;
13407        int ret;
13408
13409        mutex_lock(&pmus_lock);
13410
13411        ret = bus_register(&pmu_bus);
13412        if (ret)
13413                goto unlock;
13414
13415        list_for_each_entry(pmu, &pmus, entry) {
13416                if (!pmu->name || pmu->type < 0)
13417                        continue;
13418
13419                ret = pmu_dev_alloc(pmu);
13420                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13421        }
13422        pmu_bus_running = 1;
13423        ret = 0;
13424
13425unlock:
13426        mutex_unlock(&pmus_lock);
13427
13428        return ret;
13429}
13430device_initcall(perf_event_sysfs_init);
13431
13432#ifdef CONFIG_CGROUP_PERF
13433static struct cgroup_subsys_state *
13434perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13435{
13436        struct perf_cgroup *jc;
13437
13438        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13439        if (!jc)
13440                return ERR_PTR(-ENOMEM);
13441
13442        jc->info = alloc_percpu(struct perf_cgroup_info);
13443        if (!jc->info) {
13444                kfree(jc);
13445                return ERR_PTR(-ENOMEM);
13446        }
13447
13448        return &jc->css;
13449}
13450
13451static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13452{
13453        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13454
13455        free_percpu(jc->info);
13456        kfree(jc);
13457}
13458
13459static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13460{
13461        perf_event_cgroup(css->cgroup);
13462        return 0;
13463}
13464
13465static int __perf_cgroup_move(void *info)
13466{
13467        struct task_struct *task = info;
13468        rcu_read_lock();
13469        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13470        rcu_read_unlock();
13471        return 0;
13472}
13473
13474static void perf_cgroup_attach(struct cgroup_taskset *tset)
13475{
13476        struct task_struct *task;
13477        struct cgroup_subsys_state *css;
13478
13479        cgroup_taskset_for_each(task, css, tset)
13480                task_function_call(task, __perf_cgroup_move, task);
13481}
13482
13483struct cgroup_subsys perf_event_cgrp_subsys = {
13484        .css_alloc      = perf_cgroup_css_alloc,
13485        .css_free       = perf_cgroup_css_free,
13486        .css_online     = perf_cgroup_css_online,
13487        .attach         = perf_cgroup_attach,
13488        /*
13489         * Implicitly enable on dfl hierarchy so that perf events can
13490         * always be filtered by cgroup2 path as long as perf_event
13491         * controller is not mounted on a legacy hierarchy.
13492         */
13493        .implicit_on_dfl = true,
13494        .threaded       = true,
13495};
13496#endif /* CONFIG_CGROUP_PERF */
13497
13498DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13499