linux/kernel/signal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *              Changes to use preallocated sigqueue structures
  11 *              to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>        /* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69        return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74        /* Is it explicitly or implicitly ignored? */
  75        return handler == SIG_IGN ||
  76               (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81        void __user *handler;
  82
  83        handler = sig_handler(t, sig);
  84
  85        /* SIGKILL and SIGSTOP may not be sent to the global init */
  86        if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87                return true;
  88
  89        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90            handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91                return true;
  92
  93        /* Only allow kernel generated signals to this kthread */
  94        if (unlikely((t->flags & PF_KTHREAD) &&
  95                     (handler == SIG_KTHREAD_KERNEL) && !force))
  96                return true;
  97
  98        return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103        /*
 104         * Blocked signals are never ignored, since the
 105         * signal handler may change by the time it is
 106         * unblocked.
 107         */
 108        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109                return false;
 110
 111        /*
 112         * Tracers may want to know about even ignored signal unless it
 113         * is SIGKILL which can't be reported anyway but can be ignored
 114         * by SIGNAL_UNKILLABLE task.
 115         */
 116        if (t->ptrace && sig != SIGKILL)
 117                return false;
 118
 119        return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128        unsigned long ready;
 129        long i;
 130
 131        switch (_NSIG_WORDS) {
 132        default:
 133                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134                        ready |= signal->sig[i] &~ blocked->sig[i];
 135                break;
 136
 137        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138                ready |= signal->sig[2] &~ blocked->sig[2];
 139                ready |= signal->sig[1] &~ blocked->sig[1];
 140                ready |= signal->sig[0] &~ blocked->sig[0];
 141                break;
 142
 143        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144                ready |= signal->sig[0] &~ blocked->sig[0];
 145                break;
 146
 147        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148        }
 149        return ready != 0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156        if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157            PENDING(&t->pending, &t->blocked) ||
 158            PENDING(&t->signal->shared_pending, &t->blocked) ||
 159            cgroup_task_frozen(t)) {
 160                set_tsk_thread_flag(t, TIF_SIGPENDING);
 161                return true;
 162        }
 163
 164        /*
 165         * We must never clear the flag in another thread, or in current
 166         * when it's possible the current syscall is returning -ERESTART*.
 167         * So we don't clear it here, and only callers who know they should do.
 168         */
 169        return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178        if (recalc_sigpending_tsk(t))
 179                signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184        if (!recalc_sigpending_tsk(current) && !freezing(current))
 185                clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192        /* Have any signals or users of TIF_SIGPENDING been delayed
 193         * until after fork?
 194         */
 195        spin_lock_irq(&current->sighand->siglock);
 196        set_tsk_thread_flag(current, TIF_SIGPENDING);
 197        recalc_sigpending();
 198        spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209        unsigned long i, *s, *m, x;
 210        int sig = 0;
 211
 212        s = pending->signal.sig;
 213        m = mask->sig;
 214
 215        /*
 216         * Handle the first word specially: it contains the
 217         * synchronous signals that need to be dequeued first.
 218         */
 219        x = *s &~ *m;
 220        if (x) {
 221                if (x & SYNCHRONOUS_MASK)
 222                        x &= SYNCHRONOUS_MASK;
 223                sig = ffz(~x) + 1;
 224                return sig;
 225        }
 226
 227        switch (_NSIG_WORDS) {
 228        default:
 229                for (i = 1; i < _NSIG_WORDS; ++i) {
 230                        x = *++s &~ *++m;
 231                        if (!x)
 232                                continue;
 233                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 234                        break;
 235                }
 236                break;
 237
 238        case 2:
 239                x = s[1] &~ m[1];
 240                if (!x)
 241                        break;
 242                sig = ffz(~x) + _NSIG_BPW + 1;
 243                break;
 244
 245        case 1:
 246                /* Nothing to do */
 247                break;
 248        }
 249
 250        return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257        if (!print_fatal_signals)
 258                return;
 259
 260        if (!__ratelimit(&ratelimit_state))
 261                return;
 262
 263        pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264                                current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291                return false;
 292
 293        if (mask & JOBCTL_STOP_SIGMASK)
 294                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296        task->jobctl |= mask;
 297        return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315                task->jobctl &= ~JOBCTL_TRAPPING;
 316                smp_mb();       /* advised by wake_up_bit() */
 317                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318        }
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340        if (mask & JOBCTL_STOP_PENDING)
 341                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343        task->jobctl &= ~mask;
 344
 345        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346                task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367        struct signal_struct *sig = task->signal;
 368        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374        if (!consume)
 375                return false;
 376
 377        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378                sig->group_stop_count--;
 379
 380        /*
 381         * Tell the caller to notify completion iff we are entering into a
 382         * fresh group stop.  Read comment in do_signal_stop() for details.
 383         */
 384        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385                signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386                return true;
 387        }
 388        return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393        unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394        struct signal_struct *sig = current->signal;
 395
 396        if (sig->group_stop_count) {
 397                sig->group_stop_count++;
 398                mask |= JOBCTL_STOP_CONSUME;
 399        } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400                return;
 401
 402        /* Have the new thread join an on-going signal group stop */
 403        task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413                 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415        struct sigqueue *q = NULL;
 416        struct ucounts *ucounts = NULL;
 417        long sigpending;
 418
 419        /*
 420         * Protect access to @t credentials. This can go away when all
 421         * callers hold rcu read lock.
 422         *
 423         * NOTE! A pending signal will hold on to the user refcount,
 424         * and we get/put the refcount only when the sigpending count
 425         * changes from/to zero.
 426         */
 427        rcu_read_lock();
 428        ucounts = task_ucounts(t);
 429        sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430        rcu_read_unlock();
 431        if (!sigpending)
 432                return NULL;
 433
 434        if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435                q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 436        } else {
 437                print_dropped_signal(sig);
 438        }
 439
 440        if (unlikely(q == NULL)) {
 441                dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 442        } else {
 443                INIT_LIST_HEAD(&q->list);
 444                q->flags = sigqueue_flags;
 445                q->ucounts = ucounts;
 446        }
 447        return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452        if (q->flags & SIGQUEUE_PREALLOC)
 453                return;
 454        if (q->ucounts) {
 455                dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456                q->ucounts = NULL;
 457        }
 458        kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463        struct sigqueue *q;
 464
 465        sigemptyset(&queue->signal);
 466        while (!list_empty(&queue->list)) {
 467                q = list_entry(queue->list.next, struct sigqueue , list);
 468                list_del_init(&q->list);
 469                __sigqueue_free(q);
 470        }
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478        unsigned long flags;
 479
 480        spin_lock_irqsave(&t->sighand->siglock, flags);
 481        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482        flush_sigqueue(&t->pending);
 483        flush_sigqueue(&t->signal->shared_pending);
 484        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491        sigset_t signal, retain;
 492        struct sigqueue *q, *n;
 493
 494        signal = pending->signal;
 495        sigemptyset(&retain);
 496
 497        list_for_each_entry_safe(q, n, &pending->list, list) {
 498                int sig = q->info.si_signo;
 499
 500                if (likely(q->info.si_code != SI_TIMER)) {
 501                        sigaddset(&retain, sig);
 502                } else {
 503                        sigdelset(&signal, sig);
 504                        list_del_init(&q->list);
 505                        __sigqueue_free(q);
 506                }
 507        }
 508
 509        sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514        struct task_struct *tsk = current;
 515        unsigned long flags;
 516
 517        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518        __flush_itimer_signals(&tsk->pending);
 519        __flush_itimer_signals(&tsk->signal->shared_pending);
 520        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526        int i;
 527
 528        for (i = 0; i < _NSIG; ++i)
 529                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531        flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541        int i;
 542        struct k_sigaction *ka = &t->sighand->action[0];
 543        for (i = _NSIG ; i != 0 ; i--) {
 544                if (force_default || ka->sa.sa_handler != SIG_IGN)
 545                        ka->sa.sa_handler = SIG_DFL;
 546                ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548                ka->sa.sa_restorer = NULL;
 549#endif
 550                sigemptyset(&ka->sa.sa_mask);
 551                ka++;
 552        }
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558        if (is_global_init(tsk))
 559                return true;
 560
 561        if (handler != SIG_IGN && handler != SIG_DFL)
 562                return false;
 563
 564        /* if ptraced, let the tracer determine */
 565        return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569                           bool *resched_timer)
 570{
 571        struct sigqueue *q, *first = NULL;
 572
 573        /*
 574         * Collect the siginfo appropriate to this signal.  Check if
 575         * there is another siginfo for the same signal.
 576        */
 577        list_for_each_entry(q, &list->list, list) {
 578                if (q->info.si_signo == sig) {
 579                        if (first)
 580                                goto still_pending;
 581                        first = q;
 582                }
 583        }
 584
 585        sigdelset(&list->signal, sig);
 586
 587        if (first) {
 588still_pending:
 589                list_del_init(&first->list);
 590                copy_siginfo(info, &first->info);
 591
 592                *resched_timer =
 593                        (first->flags & SIGQUEUE_PREALLOC) &&
 594                        (info->si_code == SI_TIMER) &&
 595                        (info->si_sys_private);
 596
 597                __sigqueue_free(first);
 598        } else {
 599                /*
 600                 * Ok, it wasn't in the queue.  This must be
 601                 * a fast-pathed signal or we must have been
 602                 * out of queue space.  So zero out the info.
 603                 */
 604                clear_siginfo(info);
 605                info->si_signo = sig;
 606                info->si_errno = 0;
 607                info->si_code = SI_USER;
 608                info->si_pid = 0;
 609                info->si_uid = 0;
 610        }
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614                        kernel_siginfo_t *info, bool *resched_timer)
 615{
 616        int sig = next_signal(pending, mask);
 617
 618        if (sig)
 619                collect_signal(sig, pending, info, resched_timer);
 620        return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 630{
 631        bool resched_timer = false;
 632        int signr;
 633
 634        /* We only dequeue private signals from ourselves, we don't let
 635         * signalfd steal them
 636         */
 637        signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 638        if (!signr) {
 639                signr = __dequeue_signal(&tsk->signal->shared_pending,
 640                                         mask, info, &resched_timer);
 641#ifdef CONFIG_POSIX_TIMERS
 642                /*
 643                 * itimer signal ?
 644                 *
 645                 * itimers are process shared and we restart periodic
 646                 * itimers in the signal delivery path to prevent DoS
 647                 * attacks in the high resolution timer case. This is
 648                 * compliant with the old way of self-restarting
 649                 * itimers, as the SIGALRM is a legacy signal and only
 650                 * queued once. Changing the restart behaviour to
 651                 * restart the timer in the signal dequeue path is
 652                 * reducing the timer noise on heavy loaded !highres
 653                 * systems too.
 654                 */
 655                if (unlikely(signr == SIGALRM)) {
 656                        struct hrtimer *tmr = &tsk->signal->real_timer;
 657
 658                        if (!hrtimer_is_queued(tmr) &&
 659                            tsk->signal->it_real_incr != 0) {
 660                                hrtimer_forward(tmr, tmr->base->get_time(),
 661                                                tsk->signal->it_real_incr);
 662                                hrtimer_restart(tmr);
 663                        }
 664                }
 665#endif
 666        }
 667
 668        recalc_sigpending();
 669        if (!signr)
 670                return 0;
 671
 672        if (unlikely(sig_kernel_stop(signr))) {
 673                /*
 674                 * Set a marker that we have dequeued a stop signal.  Our
 675                 * caller might release the siglock and then the pending
 676                 * stop signal it is about to process is no longer in the
 677                 * pending bitmasks, but must still be cleared by a SIGCONT
 678                 * (and overruled by a SIGKILL).  So those cases clear this
 679                 * shared flag after we've set it.  Note that this flag may
 680                 * remain set after the signal we return is ignored or
 681                 * handled.  That doesn't matter because its only purpose
 682                 * is to alert stop-signal processing code when another
 683                 * processor has come along and cleared the flag.
 684                 */
 685                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 686        }
 687#ifdef CONFIG_POSIX_TIMERS
 688        if (resched_timer) {
 689                /*
 690                 * Release the siglock to ensure proper locking order
 691                 * of timer locks outside of siglocks.  Note, we leave
 692                 * irqs disabled here, since the posix-timers code is
 693                 * about to disable them again anyway.
 694                 */
 695                spin_unlock(&tsk->sighand->siglock);
 696                posixtimer_rearm(info);
 697                spin_lock(&tsk->sighand->siglock);
 698
 699                /* Don't expose the si_sys_private value to userspace */
 700                info->si_sys_private = 0;
 701        }
 702#endif
 703        return signr;
 704}
 705EXPORT_SYMBOL_GPL(dequeue_signal);
 706
 707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 708{
 709        struct task_struct *tsk = current;
 710        struct sigpending *pending = &tsk->pending;
 711        struct sigqueue *q, *sync = NULL;
 712
 713        /*
 714         * Might a synchronous signal be in the queue?
 715         */
 716        if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 717                return 0;
 718
 719        /*
 720         * Return the first synchronous signal in the queue.
 721         */
 722        list_for_each_entry(q, &pending->list, list) {
 723                /* Synchronous signals have a positive si_code */
 724                if ((q->info.si_code > SI_USER) &&
 725                    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 726                        sync = q;
 727                        goto next;
 728                }
 729        }
 730        return 0;
 731next:
 732        /*
 733         * Check if there is another siginfo for the same signal.
 734         */
 735        list_for_each_entry_continue(q, &pending->list, list) {
 736                if (q->info.si_signo == sync->info.si_signo)
 737                        goto still_pending;
 738        }
 739
 740        sigdelset(&pending->signal, sync->info.si_signo);
 741        recalc_sigpending();
 742still_pending:
 743        list_del_init(&sync->list);
 744        copy_siginfo(info, &sync->info);
 745        __sigqueue_free(sync);
 746        return info->si_signo;
 747}
 748
 749/*
 750 * Tell a process that it has a new active signal..
 751 *
 752 * NOTE! we rely on the previous spin_lock to
 753 * lock interrupts for us! We can only be called with
 754 * "siglock" held, and the local interrupt must
 755 * have been disabled when that got acquired!
 756 *
 757 * No need to set need_resched since signal event passing
 758 * goes through ->blocked
 759 */
 760void signal_wake_up_state(struct task_struct *t, unsigned int state)
 761{
 762        set_tsk_thread_flag(t, TIF_SIGPENDING);
 763        /*
 764         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 765         * case. We don't check t->state here because there is a race with it
 766         * executing another processor and just now entering stopped state.
 767         * By using wake_up_state, we ensure the process will wake up and
 768         * handle its death signal.
 769         */
 770        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 771                kick_process(t);
 772}
 773
 774/*
 775 * Remove signals in mask from the pending set and queue.
 776 * Returns 1 if any signals were found.
 777 *
 778 * All callers must be holding the siglock.
 779 */
 780static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 781{
 782        struct sigqueue *q, *n;
 783        sigset_t m;
 784
 785        sigandsets(&m, mask, &s->signal);
 786        if (sigisemptyset(&m))
 787                return;
 788
 789        sigandnsets(&s->signal, &s->signal, mask);
 790        list_for_each_entry_safe(q, n, &s->list, list) {
 791                if (sigismember(mask, q->info.si_signo)) {
 792                        list_del_init(&q->list);
 793                        __sigqueue_free(q);
 794                }
 795        }
 796}
 797
 798static inline int is_si_special(const struct kernel_siginfo *info)
 799{
 800        return info <= SEND_SIG_PRIV;
 801}
 802
 803static inline bool si_fromuser(const struct kernel_siginfo *info)
 804{
 805        return info == SEND_SIG_NOINFO ||
 806                (!is_si_special(info) && SI_FROMUSER(info));
 807}
 808
 809/*
 810 * called with RCU read lock from check_kill_permission()
 811 */
 812static bool kill_ok_by_cred(struct task_struct *t)
 813{
 814        const struct cred *cred = current_cred();
 815        const struct cred *tcred = __task_cred(t);
 816
 817        return uid_eq(cred->euid, tcred->suid) ||
 818               uid_eq(cred->euid, tcred->uid) ||
 819               uid_eq(cred->uid, tcred->suid) ||
 820               uid_eq(cred->uid, tcred->uid) ||
 821               ns_capable(tcred->user_ns, CAP_KILL);
 822}
 823
 824/*
 825 * Bad permissions for sending the signal
 826 * - the caller must hold the RCU read lock
 827 */
 828static int check_kill_permission(int sig, struct kernel_siginfo *info,
 829                                 struct task_struct *t)
 830{
 831        struct pid *sid;
 832        int error;
 833
 834        if (!valid_signal(sig))
 835                return -EINVAL;
 836
 837        if (!si_fromuser(info))
 838                return 0;
 839
 840        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 841        if (error)
 842                return error;
 843
 844        if (!same_thread_group(current, t) &&
 845            !kill_ok_by_cred(t)) {
 846                switch (sig) {
 847                case SIGCONT:
 848                        sid = task_session(t);
 849                        /*
 850                         * We don't return the error if sid == NULL. The
 851                         * task was unhashed, the caller must notice this.
 852                         */
 853                        if (!sid || sid == task_session(current))
 854                                break;
 855                        fallthrough;
 856                default:
 857                        return -EPERM;
 858                }
 859        }
 860
 861        return security_task_kill(t, info, sig, NULL);
 862}
 863
 864/**
 865 * ptrace_trap_notify - schedule trap to notify ptracer
 866 * @t: tracee wanting to notify tracer
 867 *
 868 * This function schedules sticky ptrace trap which is cleared on the next
 869 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 870 * ptracer.
 871 *
 872 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 873 * ptracer is listening for events, tracee is woken up so that it can
 874 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 875 * eventually taken without returning to userland after the existing traps
 876 * are finished by PTRACE_CONT.
 877 *
 878 * CONTEXT:
 879 * Must be called with @task->sighand->siglock held.
 880 */
 881static void ptrace_trap_notify(struct task_struct *t)
 882{
 883        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 884        assert_spin_locked(&t->sighand->siglock);
 885
 886        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 887        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 888}
 889
 890/*
 891 * Handle magic process-wide effects of stop/continue signals. Unlike
 892 * the signal actions, these happen immediately at signal-generation
 893 * time regardless of blocking, ignoring, or handling.  This does the
 894 * actual continuing for SIGCONT, but not the actual stopping for stop
 895 * signals. The process stop is done as a signal action for SIG_DFL.
 896 *
 897 * Returns true if the signal should be actually delivered, otherwise
 898 * it should be dropped.
 899 */
 900static bool prepare_signal(int sig, struct task_struct *p, bool force)
 901{
 902        struct signal_struct *signal = p->signal;
 903        struct task_struct *t;
 904        sigset_t flush;
 905
 906        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 907                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 908                        return sig == SIGKILL;
 909                /*
 910                 * The process is in the middle of dying, nothing to do.
 911                 */
 912        } else if (sig_kernel_stop(sig)) {
 913                /*
 914                 * This is a stop signal.  Remove SIGCONT from all queues.
 915                 */
 916                siginitset(&flush, sigmask(SIGCONT));
 917                flush_sigqueue_mask(&flush, &signal->shared_pending);
 918                for_each_thread(p, t)
 919                        flush_sigqueue_mask(&flush, &t->pending);
 920        } else if (sig == SIGCONT) {
 921                unsigned int why;
 922                /*
 923                 * Remove all stop signals from all queues, wake all threads.
 924                 */
 925                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 926                flush_sigqueue_mask(&flush, &signal->shared_pending);
 927                for_each_thread(p, t) {
 928                        flush_sigqueue_mask(&flush, &t->pending);
 929                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 930                        if (likely(!(t->ptrace & PT_SEIZED)))
 931                                wake_up_state(t, __TASK_STOPPED);
 932                        else
 933                                ptrace_trap_notify(t);
 934                }
 935
 936                /*
 937                 * Notify the parent with CLD_CONTINUED if we were stopped.
 938                 *
 939                 * If we were in the middle of a group stop, we pretend it
 940                 * was already finished, and then continued. Since SIGCHLD
 941                 * doesn't queue we report only CLD_STOPPED, as if the next
 942                 * CLD_CONTINUED was dropped.
 943                 */
 944                why = 0;
 945                if (signal->flags & SIGNAL_STOP_STOPPED)
 946                        why |= SIGNAL_CLD_CONTINUED;
 947                else if (signal->group_stop_count)
 948                        why |= SIGNAL_CLD_STOPPED;
 949
 950                if (why) {
 951                        /*
 952                         * The first thread which returns from do_signal_stop()
 953                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 954                         * notify its parent. See get_signal().
 955                         */
 956                        signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 957                        signal->group_stop_count = 0;
 958                        signal->group_exit_code = 0;
 959                }
 960        }
 961
 962        return !sig_ignored(p, sig, force);
 963}
 964
 965/*
 966 * Test if P wants to take SIG.  After we've checked all threads with this,
 967 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 968 * blocking SIG were ruled out because they are not running and already
 969 * have pending signals.  Such threads will dequeue from the shared queue
 970 * as soon as they're available, so putting the signal on the shared queue
 971 * will be equivalent to sending it to one such thread.
 972 */
 973static inline bool wants_signal(int sig, struct task_struct *p)
 974{
 975        if (sigismember(&p->blocked, sig))
 976                return false;
 977
 978        if (p->flags & PF_EXITING)
 979                return false;
 980
 981        if (sig == SIGKILL)
 982                return true;
 983
 984        if (task_is_stopped_or_traced(p))
 985                return false;
 986
 987        return task_curr(p) || !task_sigpending(p);
 988}
 989
 990static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 991{
 992        struct signal_struct *signal = p->signal;
 993        struct task_struct *t;
 994
 995        /*
 996         * Now find a thread we can wake up to take the signal off the queue.
 997         *
 998         * If the main thread wants the signal, it gets first crack.
 999         * Probably the least surprising to the average bear.
1000         */
1001        if (wants_signal(sig, p))
1002                t = p;
1003        else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004                /*
1005                 * There is just one thread and it does not need to be woken.
1006                 * It will dequeue unblocked signals before it runs again.
1007                 */
1008                return;
1009        else {
1010                /*
1011                 * Otherwise try to find a suitable thread.
1012                 */
1013                t = signal->curr_target;
1014                while (!wants_signal(sig, t)) {
1015                        t = next_thread(t);
1016                        if (t == signal->curr_target)
1017                                /*
1018                                 * No thread needs to be woken.
1019                                 * Any eligible threads will see
1020                                 * the signal in the queue soon.
1021                                 */
1022                                return;
1023                }
1024                signal->curr_target = t;
1025        }
1026
1027        /*
1028         * Found a killable thread.  If the signal will be fatal,
1029         * then start taking the whole group down immediately.
1030         */
1031        if (sig_fatal(p, sig) &&
1032            !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033            !sigismember(&t->real_blocked, sig) &&
1034            (sig == SIGKILL || !p->ptrace)) {
1035                /*
1036                 * This signal will be fatal to the whole group.
1037                 */
1038                if (!sig_kernel_coredump(sig)) {
1039                        /*
1040                         * Start a group exit and wake everybody up.
1041                         * This way we don't have other threads
1042                         * running and doing things after a slower
1043                         * thread has the fatal signal pending.
1044                         */
1045                        signal->flags = SIGNAL_GROUP_EXIT;
1046                        signal->group_exit_code = sig;
1047                        signal->group_stop_count = 0;
1048                        t = p;
1049                        do {
1050                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051                                sigaddset(&t->pending.signal, SIGKILL);
1052                                signal_wake_up(t, 1);
1053                        } while_each_thread(p, t);
1054                        return;
1055                }
1056        }
1057
1058        /*
1059         * The signal is already in the shared-pending queue.
1060         * Tell the chosen thread to wake up and dequeue it.
1061         */
1062        signal_wake_up(t, sig == SIGKILL);
1063        return;
1064}
1065
1066static inline bool legacy_queue(struct sigpending *signals, int sig)
1067{
1068        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069}
1070
1071static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072                        enum pid_type type, bool force)
1073{
1074        struct sigpending *pending;
1075        struct sigqueue *q;
1076        int override_rlimit;
1077        int ret = 0, result;
1078
1079        assert_spin_locked(&t->sighand->siglock);
1080
1081        result = TRACE_SIGNAL_IGNORED;
1082        if (!prepare_signal(sig, t, force))
1083                goto ret;
1084
1085        pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086        /*
1087         * Short-circuit ignored signals and support queuing
1088         * exactly one non-rt signal, so that we can get more
1089         * detailed information about the cause of the signal.
1090         */
1091        result = TRACE_SIGNAL_ALREADY_PENDING;
1092        if (legacy_queue(pending, sig))
1093                goto ret;
1094
1095        result = TRACE_SIGNAL_DELIVERED;
1096        /*
1097         * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098         */
1099        if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100                goto out_set;
1101
1102        /*
1103         * Real-time signals must be queued if sent by sigqueue, or
1104         * some other real-time mechanism.  It is implementation
1105         * defined whether kill() does so.  We attempt to do so, on
1106         * the principle of least surprise, but since kill is not
1107         * allowed to fail with EAGAIN when low on memory we just
1108         * make sure at least one signal gets delivered and don't
1109         * pass on the info struct.
1110         */
1111        if (sig < SIGRTMIN)
1112                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113        else
1114                override_rlimit = 0;
1115
1116        q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117
1118        if (q) {
1119                list_add_tail(&q->list, &pending->list);
1120                switch ((unsigned long) info) {
1121                case (unsigned long) SEND_SIG_NOINFO:
1122                        clear_siginfo(&q->info);
1123                        q->info.si_signo = sig;
1124                        q->info.si_errno = 0;
1125                        q->info.si_code = SI_USER;
1126                        q->info.si_pid = task_tgid_nr_ns(current,
1127                                                        task_active_pid_ns(t));
1128                        rcu_read_lock();
1129                        q->info.si_uid =
1130                                from_kuid_munged(task_cred_xxx(t, user_ns),
1131                                                 current_uid());
1132                        rcu_read_unlock();
1133                        break;
1134                case (unsigned long) SEND_SIG_PRIV:
1135                        clear_siginfo(&q->info);
1136                        q->info.si_signo = sig;
1137                        q->info.si_errno = 0;
1138                        q->info.si_code = SI_KERNEL;
1139                        q->info.si_pid = 0;
1140                        q->info.si_uid = 0;
1141                        break;
1142                default:
1143                        copy_siginfo(&q->info, info);
1144                        break;
1145                }
1146        } else if (!is_si_special(info) &&
1147                   sig >= SIGRTMIN && info->si_code != SI_USER) {
1148                /*
1149                 * Queue overflow, abort.  We may abort if the
1150                 * signal was rt and sent by user using something
1151                 * other than kill().
1152                 */
1153                result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154                ret = -EAGAIN;
1155                goto ret;
1156        } else {
1157                /*
1158                 * This is a silent loss of information.  We still
1159                 * send the signal, but the *info bits are lost.
1160                 */
1161                result = TRACE_SIGNAL_LOSE_INFO;
1162        }
1163
1164out_set:
1165        signalfd_notify(t, sig);
1166        sigaddset(&pending->signal, sig);
1167
1168        /* Let multiprocess signals appear after on-going forks */
1169        if (type > PIDTYPE_TGID) {
1170                struct multiprocess_signals *delayed;
1171                hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172                        sigset_t *signal = &delayed->signal;
1173                        /* Can't queue both a stop and a continue signal */
1174                        if (sig == SIGCONT)
1175                                sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176                        else if (sig_kernel_stop(sig))
1177                                sigdelset(signal, SIGCONT);
1178                        sigaddset(signal, sig);
1179                }
1180        }
1181
1182        complete_signal(sig, t, type);
1183ret:
1184        trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185        return ret;
1186}
1187
1188static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189{
1190        bool ret = false;
1191        switch (siginfo_layout(info->si_signo, info->si_code)) {
1192        case SIL_KILL:
1193        case SIL_CHLD:
1194        case SIL_RT:
1195                ret = true;
1196                break;
1197        case SIL_TIMER:
1198        case SIL_POLL:
1199        case SIL_FAULT:
1200        case SIL_FAULT_TRAPNO:
1201        case SIL_FAULT_MCEERR:
1202        case SIL_FAULT_BNDERR:
1203        case SIL_FAULT_PKUERR:
1204        case SIL_FAULT_PERF_EVENT:
1205        case SIL_SYS:
1206                ret = false;
1207                break;
1208        }
1209        return ret;
1210}
1211
1212static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213                        enum pid_type type)
1214{
1215        /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216        bool force = false;
1217
1218        if (info == SEND_SIG_NOINFO) {
1219                /* Force if sent from an ancestor pid namespace */
1220                force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221        } else if (info == SEND_SIG_PRIV) {
1222                /* Don't ignore kernel generated signals */
1223                force = true;
1224        } else if (has_si_pid_and_uid(info)) {
1225                /* SIGKILL and SIGSTOP is special or has ids */
1226                struct user_namespace *t_user_ns;
1227
1228                rcu_read_lock();
1229                t_user_ns = task_cred_xxx(t, user_ns);
1230                if (current_user_ns() != t_user_ns) {
1231                        kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232                        info->si_uid = from_kuid_munged(t_user_ns, uid);
1233                }
1234                rcu_read_unlock();
1235
1236                /* A kernel generated signal? */
1237                force = (info->si_code == SI_KERNEL);
1238
1239                /* From an ancestor pid namespace? */
1240                if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241                        info->si_pid = 0;
1242                        force = true;
1243                }
1244        }
1245        return __send_signal(sig, info, t, type, force);
1246}
1247
1248static void print_fatal_signal(int signr)
1249{
1250        struct pt_regs *regs = signal_pt_regs();
1251        pr_info("potentially unexpected fatal signal %d.\n", signr);
1252
1253#if defined(__i386__) && !defined(__arch_um__)
1254        pr_info("code at %08lx: ", regs->ip);
1255        {
1256                int i;
1257                for (i = 0; i < 16; i++) {
1258                        unsigned char insn;
1259
1260                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261                                break;
1262                        pr_cont("%02x ", insn);
1263                }
1264        }
1265        pr_cont("\n");
1266#endif
1267        preempt_disable();
1268        show_regs(regs);
1269        preempt_enable();
1270}
1271
1272static int __init setup_print_fatal_signals(char *str)
1273{
1274        get_option (&str, &print_fatal_signals);
1275
1276        return 1;
1277}
1278
1279__setup("print-fatal-signals=", setup_print_fatal_signals);
1280
1281int
1282__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283{
1284        return send_signal(sig, info, p, PIDTYPE_TGID);
1285}
1286
1287int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288                        enum pid_type type)
1289{
1290        unsigned long flags;
1291        int ret = -ESRCH;
1292
1293        if (lock_task_sighand(p, &flags)) {
1294                ret = send_signal(sig, info, p, type);
1295                unlock_task_sighand(p, &flags);
1296        }
1297
1298        return ret;
1299}
1300
1301enum sig_handler {
1302        HANDLER_CURRENT, /* If reachable use the current handler */
1303        HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1304        HANDLER_EXIT,    /* Only visible as the process exit code */
1305};
1306
1307/*
1308 * Force a signal that the process can't ignore: if necessary
1309 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1310 *
1311 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1312 * since we do not want to have a signal handler that was blocked
1313 * be invoked when user space had explicitly blocked it.
1314 *
1315 * We don't want to have recursive SIGSEGV's etc, for example,
1316 * that is why we also clear SIGNAL_UNKILLABLE.
1317 */
1318static int
1319force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1320        enum sig_handler handler)
1321{
1322        unsigned long int flags;
1323        int ret, blocked, ignored;
1324        struct k_sigaction *action;
1325        int sig = info->si_signo;
1326
1327        spin_lock_irqsave(&t->sighand->siglock, flags);
1328        action = &t->sighand->action[sig-1];
1329        ignored = action->sa.sa_handler == SIG_IGN;
1330        blocked = sigismember(&t->blocked, sig);
1331        if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1332                action->sa.sa_handler = SIG_DFL;
1333                if (handler == HANDLER_EXIT)
1334                        action->sa.sa_flags |= SA_IMMUTABLE;
1335                if (blocked) {
1336                        sigdelset(&t->blocked, sig);
1337                        recalc_sigpending_and_wake(t);
1338                }
1339        }
1340        /*
1341         * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1342         * debugging to leave init killable.
1343         */
1344        if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1345                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1346        ret = send_signal(sig, info, t, PIDTYPE_PID);
1347        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1348
1349        return ret;
1350}
1351
1352int force_sig_info(struct kernel_siginfo *info)
1353{
1354        return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1355}
1356
1357/*
1358 * Nuke all other threads in the group.
1359 */
1360int zap_other_threads(struct task_struct *p)
1361{
1362        struct task_struct *t = p;
1363        int count = 0;
1364
1365        p->signal->group_stop_count = 0;
1366
1367        while_each_thread(p, t) {
1368                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1369                count++;
1370
1371                /* Don't bother with already dead threads */
1372                if (t->exit_state)
1373                        continue;
1374                sigaddset(&t->pending.signal, SIGKILL);
1375                signal_wake_up(t, 1);
1376        }
1377
1378        return count;
1379}
1380
1381struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1382                                           unsigned long *flags)
1383{
1384        struct sighand_struct *sighand;
1385
1386        rcu_read_lock();
1387        for (;;) {
1388                sighand = rcu_dereference(tsk->sighand);
1389                if (unlikely(sighand == NULL))
1390                        break;
1391
1392                /*
1393                 * This sighand can be already freed and even reused, but
1394                 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1395                 * initializes ->siglock: this slab can't go away, it has
1396                 * the same object type, ->siglock can't be reinitialized.
1397                 *
1398                 * We need to ensure that tsk->sighand is still the same
1399                 * after we take the lock, we can race with de_thread() or
1400                 * __exit_signal(). In the latter case the next iteration
1401                 * must see ->sighand == NULL.
1402                 */
1403                spin_lock_irqsave(&sighand->siglock, *flags);
1404                if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1405                        break;
1406                spin_unlock_irqrestore(&sighand->siglock, *flags);
1407        }
1408        rcu_read_unlock();
1409
1410        return sighand;
1411}
1412
1413#ifdef CONFIG_LOCKDEP
1414void lockdep_assert_task_sighand_held(struct task_struct *task)
1415{
1416        struct sighand_struct *sighand;
1417
1418        rcu_read_lock();
1419        sighand = rcu_dereference(task->sighand);
1420        if (sighand)
1421                lockdep_assert_held(&sighand->siglock);
1422        else
1423                WARN_ON_ONCE(1);
1424        rcu_read_unlock();
1425}
1426#endif
1427
1428/*
1429 * send signal info to all the members of a group
1430 */
1431int group_send_sig_info(int sig, struct kernel_siginfo *info,
1432                        struct task_struct *p, enum pid_type type)
1433{
1434        int ret;
1435
1436        rcu_read_lock();
1437        ret = check_kill_permission(sig, info, p);
1438        rcu_read_unlock();
1439
1440        if (!ret && sig)
1441                ret = do_send_sig_info(sig, info, p, type);
1442
1443        return ret;
1444}
1445
1446/*
1447 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1448 * control characters do (^C, ^Z etc)
1449 * - the caller must hold at least a readlock on tasklist_lock
1450 */
1451int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1452{
1453        struct task_struct *p = NULL;
1454        int retval, success;
1455
1456        success = 0;
1457        retval = -ESRCH;
1458        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1459                int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1460                success |= !err;
1461                retval = err;
1462        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1463        return success ? 0 : retval;
1464}
1465
1466int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1467{
1468        int error = -ESRCH;
1469        struct task_struct *p;
1470
1471        for (;;) {
1472                rcu_read_lock();
1473                p = pid_task(pid, PIDTYPE_PID);
1474                if (p)
1475                        error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1476                rcu_read_unlock();
1477                if (likely(!p || error != -ESRCH))
1478                        return error;
1479
1480                /*
1481                 * The task was unhashed in between, try again.  If it
1482                 * is dead, pid_task() will return NULL, if we race with
1483                 * de_thread() it will find the new leader.
1484                 */
1485        }
1486}
1487
1488static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1489{
1490        int error;
1491        rcu_read_lock();
1492        error = kill_pid_info(sig, info, find_vpid(pid));
1493        rcu_read_unlock();
1494        return error;
1495}
1496
1497static inline bool kill_as_cred_perm(const struct cred *cred,
1498                                     struct task_struct *target)
1499{
1500        const struct cred *pcred = __task_cred(target);
1501
1502        return uid_eq(cred->euid, pcred->suid) ||
1503               uid_eq(cred->euid, pcred->uid) ||
1504               uid_eq(cred->uid, pcred->suid) ||
1505               uid_eq(cred->uid, pcred->uid);
1506}
1507
1508/*
1509 * The usb asyncio usage of siginfo is wrong.  The glibc support
1510 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1511 * AKA after the generic fields:
1512 *      kernel_pid_t    si_pid;
1513 *      kernel_uid32_t  si_uid;
1514 *      sigval_t        si_value;
1515 *
1516 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1517 * after the generic fields is:
1518 *      void __user     *si_addr;
1519 *
1520 * This is a practical problem when there is a 64bit big endian kernel
1521 * and a 32bit userspace.  As the 32bit address will encoded in the low
1522 * 32bits of the pointer.  Those low 32bits will be stored at higher
1523 * address than appear in a 32 bit pointer.  So userspace will not
1524 * see the address it was expecting for it's completions.
1525 *
1526 * There is nothing in the encoding that can allow
1527 * copy_siginfo_to_user32 to detect this confusion of formats, so
1528 * handle this by requiring the caller of kill_pid_usb_asyncio to
1529 * notice when this situration takes place and to store the 32bit
1530 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1531 * parameter.
1532 */
1533int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1534                         struct pid *pid, const struct cred *cred)
1535{
1536        struct kernel_siginfo info;
1537        struct task_struct *p;
1538        unsigned long flags;
1539        int ret = -EINVAL;
1540
1541        if (!valid_signal(sig))
1542                return ret;
1543
1544        clear_siginfo(&info);
1545        info.si_signo = sig;
1546        info.si_errno = errno;
1547        info.si_code = SI_ASYNCIO;
1548        *((sigval_t *)&info.si_pid) = addr;
1549
1550        rcu_read_lock();
1551        p = pid_task(pid, PIDTYPE_PID);
1552        if (!p) {
1553                ret = -ESRCH;
1554                goto out_unlock;
1555        }
1556        if (!kill_as_cred_perm(cred, p)) {
1557                ret = -EPERM;
1558                goto out_unlock;
1559        }
1560        ret = security_task_kill(p, &info, sig, cred);
1561        if (ret)
1562                goto out_unlock;
1563
1564        if (sig) {
1565                if (lock_task_sighand(p, &flags)) {
1566                        ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1567                        unlock_task_sighand(p, &flags);
1568                } else
1569                        ret = -ESRCH;
1570        }
1571out_unlock:
1572        rcu_read_unlock();
1573        return ret;
1574}
1575EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1576
1577/*
1578 * kill_something_info() interprets pid in interesting ways just like kill(2).
1579 *
1580 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1581 * is probably wrong.  Should make it like BSD or SYSV.
1582 */
1583
1584static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1585{
1586        int ret;
1587
1588        if (pid > 0)
1589                return kill_proc_info(sig, info, pid);
1590
1591        /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1592        if (pid == INT_MIN)
1593                return -ESRCH;
1594
1595        read_lock(&tasklist_lock);
1596        if (pid != -1) {
1597                ret = __kill_pgrp_info(sig, info,
1598                                pid ? find_vpid(-pid) : task_pgrp(current));
1599        } else {
1600                int retval = 0, count = 0;
1601                struct task_struct * p;
1602
1603                for_each_process(p) {
1604                        if (task_pid_vnr(p) > 1 &&
1605                                        !same_thread_group(p, current)) {
1606                                int err = group_send_sig_info(sig, info, p,
1607                                                              PIDTYPE_MAX);
1608                                ++count;
1609                                if (err != -EPERM)
1610                                        retval = err;
1611                        }
1612                }
1613                ret = count ? retval : -ESRCH;
1614        }
1615        read_unlock(&tasklist_lock);
1616
1617        return ret;
1618}
1619
1620/*
1621 * These are for backward compatibility with the rest of the kernel source.
1622 */
1623
1624int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1625{
1626        /*
1627         * Make sure legacy kernel users don't send in bad values
1628         * (normal paths check this in check_kill_permission).
1629         */
1630        if (!valid_signal(sig))
1631                return -EINVAL;
1632
1633        return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1634}
1635EXPORT_SYMBOL(send_sig_info);
1636
1637#define __si_special(priv) \
1638        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1639
1640int
1641send_sig(int sig, struct task_struct *p, int priv)
1642{
1643        return send_sig_info(sig, __si_special(priv), p);
1644}
1645EXPORT_SYMBOL(send_sig);
1646
1647void force_sig(int sig)
1648{
1649        struct kernel_siginfo info;
1650
1651        clear_siginfo(&info);
1652        info.si_signo = sig;
1653        info.si_errno = 0;
1654        info.si_code = SI_KERNEL;
1655        info.si_pid = 0;
1656        info.si_uid = 0;
1657        force_sig_info(&info);
1658}
1659EXPORT_SYMBOL(force_sig);
1660
1661void force_fatal_sig(int sig)
1662{
1663        struct kernel_siginfo info;
1664
1665        clear_siginfo(&info);
1666        info.si_signo = sig;
1667        info.si_errno = 0;
1668        info.si_code = SI_KERNEL;
1669        info.si_pid = 0;
1670        info.si_uid = 0;
1671        force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1672}
1673
1674void force_exit_sig(int sig)
1675{
1676        struct kernel_siginfo info;
1677
1678        clear_siginfo(&info);
1679        info.si_signo = sig;
1680        info.si_errno = 0;
1681        info.si_code = SI_KERNEL;
1682        info.si_pid = 0;
1683        info.si_uid = 0;
1684        force_sig_info_to_task(&info, current, HANDLER_EXIT);
1685}
1686
1687/*
1688 * When things go south during signal handling, we
1689 * will force a SIGSEGV. And if the signal that caused
1690 * the problem was already a SIGSEGV, we'll want to
1691 * make sure we don't even try to deliver the signal..
1692 */
1693void force_sigsegv(int sig)
1694{
1695        if (sig == SIGSEGV)
1696                force_fatal_sig(SIGSEGV);
1697        else
1698                force_sig(SIGSEGV);
1699}
1700
1701int force_sig_fault_to_task(int sig, int code, void __user *addr
1702        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1703        , struct task_struct *t)
1704{
1705        struct kernel_siginfo info;
1706
1707        clear_siginfo(&info);
1708        info.si_signo = sig;
1709        info.si_errno = 0;
1710        info.si_code  = code;
1711        info.si_addr  = addr;
1712#ifdef __ia64__
1713        info.si_imm = imm;
1714        info.si_flags = flags;
1715        info.si_isr = isr;
1716#endif
1717        return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1718}
1719
1720int force_sig_fault(int sig, int code, void __user *addr
1721        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1722{
1723        return force_sig_fault_to_task(sig, code, addr
1724                                       ___ARCH_SI_IA64(imm, flags, isr), current);
1725}
1726
1727int send_sig_fault(int sig, int code, void __user *addr
1728        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1729        , struct task_struct *t)
1730{
1731        struct kernel_siginfo info;
1732
1733        clear_siginfo(&info);
1734        info.si_signo = sig;
1735        info.si_errno = 0;
1736        info.si_code  = code;
1737        info.si_addr  = addr;
1738#ifdef __ia64__
1739        info.si_imm = imm;
1740        info.si_flags = flags;
1741        info.si_isr = isr;
1742#endif
1743        return send_sig_info(info.si_signo, &info, t);
1744}
1745
1746int force_sig_mceerr(int code, void __user *addr, short lsb)
1747{
1748        struct kernel_siginfo info;
1749
1750        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1751        clear_siginfo(&info);
1752        info.si_signo = SIGBUS;
1753        info.si_errno = 0;
1754        info.si_code = code;
1755        info.si_addr = addr;
1756        info.si_addr_lsb = lsb;
1757        return force_sig_info(&info);
1758}
1759
1760int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1761{
1762        struct kernel_siginfo info;
1763
1764        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1765        clear_siginfo(&info);
1766        info.si_signo = SIGBUS;
1767        info.si_errno = 0;
1768        info.si_code = code;
1769        info.si_addr = addr;
1770        info.si_addr_lsb = lsb;
1771        return send_sig_info(info.si_signo, &info, t);
1772}
1773EXPORT_SYMBOL(send_sig_mceerr);
1774
1775int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1776{
1777        struct kernel_siginfo info;
1778
1779        clear_siginfo(&info);
1780        info.si_signo = SIGSEGV;
1781        info.si_errno = 0;
1782        info.si_code  = SEGV_BNDERR;
1783        info.si_addr  = addr;
1784        info.si_lower = lower;
1785        info.si_upper = upper;
1786        return force_sig_info(&info);
1787}
1788
1789#ifdef SEGV_PKUERR
1790int force_sig_pkuerr(void __user *addr, u32 pkey)
1791{
1792        struct kernel_siginfo info;
1793
1794        clear_siginfo(&info);
1795        info.si_signo = SIGSEGV;
1796        info.si_errno = 0;
1797        info.si_code  = SEGV_PKUERR;
1798        info.si_addr  = addr;
1799        info.si_pkey  = pkey;
1800        return force_sig_info(&info);
1801}
1802#endif
1803
1804int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1805{
1806        struct kernel_siginfo info;
1807
1808        clear_siginfo(&info);
1809        info.si_signo     = SIGTRAP;
1810        info.si_errno     = 0;
1811        info.si_code      = TRAP_PERF;
1812        info.si_addr      = addr;
1813        info.si_perf_data = sig_data;
1814        info.si_perf_type = type;
1815
1816        return force_sig_info(&info);
1817}
1818
1819/**
1820 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1821 * @syscall: syscall number to send to userland
1822 * @reason: filter-supplied reason code to send to userland (via si_errno)
1823 *
1824 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1825 */
1826int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1827{
1828        struct kernel_siginfo info;
1829
1830        clear_siginfo(&info);
1831        info.si_signo = SIGSYS;
1832        info.si_code = SYS_SECCOMP;
1833        info.si_call_addr = (void __user *)KSTK_EIP(current);
1834        info.si_errno = reason;
1835        info.si_arch = syscall_get_arch(current);
1836        info.si_syscall = syscall;
1837        return force_sig_info_to_task(&info, current,
1838                force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1839}
1840
1841/* For the crazy architectures that include trap information in
1842 * the errno field, instead of an actual errno value.
1843 */
1844int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1845{
1846        struct kernel_siginfo info;
1847
1848        clear_siginfo(&info);
1849        info.si_signo = SIGTRAP;
1850        info.si_errno = errno;
1851        info.si_code  = TRAP_HWBKPT;
1852        info.si_addr  = addr;
1853        return force_sig_info(&info);
1854}
1855
1856/* For the rare architectures that include trap information using
1857 * si_trapno.
1858 */
1859int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1860{
1861        struct kernel_siginfo info;
1862
1863        clear_siginfo(&info);
1864        info.si_signo = sig;
1865        info.si_errno = 0;
1866        info.si_code  = code;
1867        info.si_addr  = addr;
1868        info.si_trapno = trapno;
1869        return force_sig_info(&info);
1870}
1871
1872/* For the rare architectures that include trap information using
1873 * si_trapno.
1874 */
1875int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1876                          struct task_struct *t)
1877{
1878        struct kernel_siginfo info;
1879
1880        clear_siginfo(&info);
1881        info.si_signo = sig;
1882        info.si_errno = 0;
1883        info.si_code  = code;
1884        info.si_addr  = addr;
1885        info.si_trapno = trapno;
1886        return send_sig_info(info.si_signo, &info, t);
1887}
1888
1889int kill_pgrp(struct pid *pid, int sig, int priv)
1890{
1891        int ret;
1892
1893        read_lock(&tasklist_lock);
1894        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1895        read_unlock(&tasklist_lock);
1896
1897        return ret;
1898}
1899EXPORT_SYMBOL(kill_pgrp);
1900
1901int kill_pid(struct pid *pid, int sig, int priv)
1902{
1903        return kill_pid_info(sig, __si_special(priv), pid);
1904}
1905EXPORT_SYMBOL(kill_pid);
1906
1907/*
1908 * These functions support sending signals using preallocated sigqueue
1909 * structures.  This is needed "because realtime applications cannot
1910 * afford to lose notifications of asynchronous events, like timer
1911 * expirations or I/O completions".  In the case of POSIX Timers
1912 * we allocate the sigqueue structure from the timer_create.  If this
1913 * allocation fails we are able to report the failure to the application
1914 * with an EAGAIN error.
1915 */
1916struct sigqueue *sigqueue_alloc(void)
1917{
1918        return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1919}
1920
1921void sigqueue_free(struct sigqueue *q)
1922{
1923        unsigned long flags;
1924        spinlock_t *lock = &current->sighand->siglock;
1925
1926        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1927        /*
1928         * We must hold ->siglock while testing q->list
1929         * to serialize with collect_signal() or with
1930         * __exit_signal()->flush_sigqueue().
1931         */
1932        spin_lock_irqsave(lock, flags);
1933        q->flags &= ~SIGQUEUE_PREALLOC;
1934        /*
1935         * If it is queued it will be freed when dequeued,
1936         * like the "regular" sigqueue.
1937         */
1938        if (!list_empty(&q->list))
1939                q = NULL;
1940        spin_unlock_irqrestore(lock, flags);
1941
1942        if (q)
1943                __sigqueue_free(q);
1944}
1945
1946int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1947{
1948        int sig = q->info.si_signo;
1949        struct sigpending *pending;
1950        struct task_struct *t;
1951        unsigned long flags;
1952        int ret, result;
1953
1954        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1955
1956        ret = -1;
1957        rcu_read_lock();
1958        t = pid_task(pid, type);
1959        if (!t || !likely(lock_task_sighand(t, &flags)))
1960                goto ret;
1961
1962        ret = 1; /* the signal is ignored */
1963        result = TRACE_SIGNAL_IGNORED;
1964        if (!prepare_signal(sig, t, false))
1965                goto out;
1966
1967        ret = 0;
1968        if (unlikely(!list_empty(&q->list))) {
1969                /*
1970                 * If an SI_TIMER entry is already queue just increment
1971                 * the overrun count.
1972                 */
1973                BUG_ON(q->info.si_code != SI_TIMER);
1974                q->info.si_overrun++;
1975                result = TRACE_SIGNAL_ALREADY_PENDING;
1976                goto out;
1977        }
1978        q->info.si_overrun = 0;
1979
1980        signalfd_notify(t, sig);
1981        pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1982        list_add_tail(&q->list, &pending->list);
1983        sigaddset(&pending->signal, sig);
1984        complete_signal(sig, t, type);
1985        result = TRACE_SIGNAL_DELIVERED;
1986out:
1987        trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1988        unlock_task_sighand(t, &flags);
1989ret:
1990        rcu_read_unlock();
1991        return ret;
1992}
1993
1994static void do_notify_pidfd(struct task_struct *task)
1995{
1996        struct pid *pid;
1997
1998        WARN_ON(task->exit_state == 0);
1999        pid = task_pid(task);
2000        wake_up_all(&pid->wait_pidfd);
2001}
2002
2003/*
2004 * Let a parent know about the death of a child.
2005 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2006 *
2007 * Returns true if our parent ignored us and so we've switched to
2008 * self-reaping.
2009 */
2010bool do_notify_parent(struct task_struct *tsk, int sig)
2011{
2012        struct kernel_siginfo info;
2013        unsigned long flags;
2014        struct sighand_struct *psig;
2015        bool autoreap = false;
2016        u64 utime, stime;
2017
2018        BUG_ON(sig == -1);
2019
2020        /* do_notify_parent_cldstop should have been called instead.  */
2021        BUG_ON(task_is_stopped_or_traced(tsk));
2022
2023        BUG_ON(!tsk->ptrace &&
2024               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2025
2026        /* Wake up all pidfd waiters */
2027        do_notify_pidfd(tsk);
2028
2029        if (sig != SIGCHLD) {
2030                /*
2031                 * This is only possible if parent == real_parent.
2032                 * Check if it has changed security domain.
2033                 */
2034                if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2035                        sig = SIGCHLD;
2036        }
2037
2038        clear_siginfo(&info);
2039        info.si_signo = sig;
2040        info.si_errno = 0;
2041        /*
2042         * We are under tasklist_lock here so our parent is tied to
2043         * us and cannot change.
2044         *
2045         * task_active_pid_ns will always return the same pid namespace
2046         * until a task passes through release_task.
2047         *
2048         * write_lock() currently calls preempt_disable() which is the
2049         * same as rcu_read_lock(), but according to Oleg, this is not
2050         * correct to rely on this
2051         */
2052        rcu_read_lock();
2053        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2054        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2055                                       task_uid(tsk));
2056        rcu_read_unlock();
2057
2058        task_cputime(tsk, &utime, &stime);
2059        info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2060        info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2061
2062        info.si_status = tsk->exit_code & 0x7f;
2063        if (tsk->exit_code & 0x80)
2064                info.si_code = CLD_DUMPED;
2065        else if (tsk->exit_code & 0x7f)
2066                info.si_code = CLD_KILLED;
2067        else {
2068                info.si_code = CLD_EXITED;
2069                info.si_status = tsk->exit_code >> 8;
2070        }
2071
2072        psig = tsk->parent->sighand;
2073        spin_lock_irqsave(&psig->siglock, flags);
2074        if (!tsk->ptrace && sig == SIGCHLD &&
2075            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2076             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2077                /*
2078                 * We are exiting and our parent doesn't care.  POSIX.1
2079                 * defines special semantics for setting SIGCHLD to SIG_IGN
2080                 * or setting the SA_NOCLDWAIT flag: we should be reaped
2081                 * automatically and not left for our parent's wait4 call.
2082                 * Rather than having the parent do it as a magic kind of
2083                 * signal handler, we just set this to tell do_exit that we
2084                 * can be cleaned up without becoming a zombie.  Note that
2085                 * we still call __wake_up_parent in this case, because a
2086                 * blocked sys_wait4 might now return -ECHILD.
2087                 *
2088                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2089                 * is implementation-defined: we do (if you don't want
2090                 * it, just use SIG_IGN instead).
2091                 */
2092                autoreap = true;
2093                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2094                        sig = 0;
2095        }
2096        /*
2097         * Send with __send_signal as si_pid and si_uid are in the
2098         * parent's namespaces.
2099         */
2100        if (valid_signal(sig) && sig)
2101                __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2102        __wake_up_parent(tsk, tsk->parent);
2103        spin_unlock_irqrestore(&psig->siglock, flags);
2104
2105        return autoreap;
2106}
2107
2108/**
2109 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2110 * @tsk: task reporting the state change
2111 * @for_ptracer: the notification is for ptracer
2112 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2113 *
2114 * Notify @tsk's parent that the stopped/continued state has changed.  If
2115 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2116 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2117 *
2118 * CONTEXT:
2119 * Must be called with tasklist_lock at least read locked.
2120 */
2121static void do_notify_parent_cldstop(struct task_struct *tsk,
2122                                     bool for_ptracer, int why)
2123{
2124        struct kernel_siginfo info;
2125        unsigned long flags;
2126        struct task_struct *parent;
2127        struct sighand_struct *sighand;
2128        u64 utime, stime;
2129
2130        if (for_ptracer) {
2131                parent = tsk->parent;
2132        } else {
2133                tsk = tsk->group_leader;
2134                parent = tsk->real_parent;
2135        }
2136
2137        clear_siginfo(&info);
2138        info.si_signo = SIGCHLD;
2139        info.si_errno = 0;
2140        /*
2141         * see comment in do_notify_parent() about the following 4 lines
2142         */
2143        rcu_read_lock();
2144        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2145        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2146        rcu_read_unlock();
2147
2148        task_cputime(tsk, &utime, &stime);
2149        info.si_utime = nsec_to_clock_t(utime);
2150        info.si_stime = nsec_to_clock_t(stime);
2151
2152        info.si_code = why;
2153        switch (why) {
2154        case CLD_CONTINUED:
2155                info.si_status = SIGCONT;
2156                break;
2157        case CLD_STOPPED:
2158                info.si_status = tsk->signal->group_exit_code & 0x7f;
2159                break;
2160        case CLD_TRAPPED:
2161                info.si_status = tsk->exit_code & 0x7f;
2162                break;
2163        default:
2164                BUG();
2165        }
2166
2167        sighand = parent->sighand;
2168        spin_lock_irqsave(&sighand->siglock, flags);
2169        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2170            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2171                __group_send_sig_info(SIGCHLD, &info, parent);
2172        /*
2173         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2174         */
2175        __wake_up_parent(tsk, parent);
2176        spin_unlock_irqrestore(&sighand->siglock, flags);
2177}
2178
2179/*
2180 * This must be called with current->sighand->siglock held.
2181 *
2182 * This should be the path for all ptrace stops.
2183 * We always set current->last_siginfo while stopped here.
2184 * That makes it a way to test a stopped process for
2185 * being ptrace-stopped vs being job-control-stopped.
2186 *
2187 * If we actually decide not to stop at all because the tracer
2188 * is gone, we keep current->exit_code unless clear_code.
2189 */
2190static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2191        __releases(&current->sighand->siglock)
2192        __acquires(&current->sighand->siglock)
2193{
2194        bool gstop_done = false;
2195
2196        if (arch_ptrace_stop_needed()) {
2197                /*
2198                 * The arch code has something special to do before a
2199                 * ptrace stop.  This is allowed to block, e.g. for faults
2200                 * on user stack pages.  We can't keep the siglock while
2201                 * calling arch_ptrace_stop, so we must release it now.
2202                 * To preserve proper semantics, we must do this before
2203                 * any signal bookkeeping like checking group_stop_count.
2204                 */
2205                spin_unlock_irq(&current->sighand->siglock);
2206                arch_ptrace_stop();
2207                spin_lock_irq(&current->sighand->siglock);
2208        }
2209
2210        /*
2211         * schedule() will not sleep if there is a pending signal that
2212         * can awaken the task.
2213         */
2214        set_special_state(TASK_TRACED);
2215
2216        /*
2217         * We're committing to trapping.  TRACED should be visible before
2218         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2219         * Also, transition to TRACED and updates to ->jobctl should be
2220         * atomic with respect to siglock and should be done after the arch
2221         * hook as siglock is released and regrabbed across it.
2222         *
2223         *     TRACER                               TRACEE
2224         *
2225         *     ptrace_attach()
2226         * [L]   wait_on_bit(JOBCTL_TRAPPING)   [S] set_special_state(TRACED)
2227         *     do_wait()
2228         *       set_current_state()                smp_wmb();
2229         *       ptrace_do_wait()
2230         *         wait_task_stopped()
2231         *           task_stopped_code()
2232         * [L]         task_is_traced()         [S] task_clear_jobctl_trapping();
2233         */
2234        smp_wmb();
2235
2236        current->last_siginfo = info;
2237        current->exit_code = exit_code;
2238
2239        /*
2240         * If @why is CLD_STOPPED, we're trapping to participate in a group
2241         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2242         * across siglock relocks since INTERRUPT was scheduled, PENDING
2243         * could be clear now.  We act as if SIGCONT is received after
2244         * TASK_TRACED is entered - ignore it.
2245         */
2246        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2247                gstop_done = task_participate_group_stop(current);
2248
2249        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2250        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2251        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2252                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2253
2254        /* entering a trap, clear TRAPPING */
2255        task_clear_jobctl_trapping(current);
2256
2257        spin_unlock_irq(&current->sighand->siglock);
2258        read_lock(&tasklist_lock);
2259        if (likely(current->ptrace)) {
2260                /*
2261                 * Notify parents of the stop.
2262                 *
2263                 * While ptraced, there are two parents - the ptracer and
2264                 * the real_parent of the group_leader.  The ptracer should
2265                 * know about every stop while the real parent is only
2266                 * interested in the completion of group stop.  The states
2267                 * for the two don't interact with each other.  Notify
2268                 * separately unless they're gonna be duplicates.
2269                 */
2270                do_notify_parent_cldstop(current, true, why);
2271                if (gstop_done && ptrace_reparented(current))
2272                        do_notify_parent_cldstop(current, false, why);
2273
2274                /*
2275                 * Don't want to allow preemption here, because
2276                 * sys_ptrace() needs this task to be inactive.
2277                 *
2278                 * XXX: implement read_unlock_no_resched().
2279                 */
2280                preempt_disable();
2281                read_unlock(&tasklist_lock);
2282                cgroup_enter_frozen();
2283                preempt_enable_no_resched();
2284                freezable_schedule();
2285                cgroup_leave_frozen(true);
2286        } else {
2287                /*
2288                 * By the time we got the lock, our tracer went away.
2289                 * Don't drop the lock yet, another tracer may come.
2290                 *
2291                 * If @gstop_done, the ptracer went away between group stop
2292                 * completion and here.  During detach, it would have set
2293                 * JOBCTL_STOP_PENDING on us and we'll re-enter
2294                 * TASK_STOPPED in do_signal_stop() on return, so notifying
2295                 * the real parent of the group stop completion is enough.
2296                 */
2297                if (gstop_done)
2298                        do_notify_parent_cldstop(current, false, why);
2299
2300                /* tasklist protects us from ptrace_freeze_traced() */
2301                __set_current_state(TASK_RUNNING);
2302                if (clear_code)
2303                        current->exit_code = 0;
2304                read_unlock(&tasklist_lock);
2305        }
2306
2307        /*
2308         * We are back.  Now reacquire the siglock before touching
2309         * last_siginfo, so that we are sure to have synchronized with
2310         * any signal-sending on another CPU that wants to examine it.
2311         */
2312        spin_lock_irq(&current->sighand->siglock);
2313        current->last_siginfo = NULL;
2314
2315        /* LISTENING can be set only during STOP traps, clear it */
2316        current->jobctl &= ~JOBCTL_LISTENING;
2317
2318        /*
2319         * Queued signals ignored us while we were stopped for tracing.
2320         * So check for any that we should take before resuming user mode.
2321         * This sets TIF_SIGPENDING, but never clears it.
2322         */
2323        recalc_sigpending_tsk(current);
2324}
2325
2326static void ptrace_do_notify(int signr, int exit_code, int why)
2327{
2328        kernel_siginfo_t info;
2329
2330        clear_siginfo(&info);
2331        info.si_signo = signr;
2332        info.si_code = exit_code;
2333        info.si_pid = task_pid_vnr(current);
2334        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2335
2336        /* Let the debugger run.  */
2337        ptrace_stop(exit_code, why, 1, &info);
2338}
2339
2340void ptrace_notify(int exit_code)
2341{
2342        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2343        if (unlikely(current->task_works))
2344                task_work_run();
2345
2346        spin_lock_irq(&current->sighand->siglock);
2347        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2348        spin_unlock_irq(&current->sighand->siglock);
2349}
2350
2351/**
2352 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2353 * @signr: signr causing group stop if initiating
2354 *
2355 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2356 * and participate in it.  If already set, participate in the existing
2357 * group stop.  If participated in a group stop (and thus slept), %true is
2358 * returned with siglock released.
2359 *
2360 * If ptraced, this function doesn't handle stop itself.  Instead,
2361 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2362 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2363 * places afterwards.
2364 *
2365 * CONTEXT:
2366 * Must be called with @current->sighand->siglock held, which is released
2367 * on %true return.
2368 *
2369 * RETURNS:
2370 * %false if group stop is already cancelled or ptrace trap is scheduled.
2371 * %true if participated in group stop.
2372 */
2373static bool do_signal_stop(int signr)
2374        __releases(&current->sighand->siglock)
2375{
2376        struct signal_struct *sig = current->signal;
2377
2378        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2379                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2380                struct task_struct *t;
2381
2382                /* signr will be recorded in task->jobctl for retries */
2383                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2384
2385                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2386                    unlikely(signal_group_exit(sig)))
2387                        return false;
2388                /*
2389                 * There is no group stop already in progress.  We must
2390                 * initiate one now.
2391                 *
2392                 * While ptraced, a task may be resumed while group stop is
2393                 * still in effect and then receive a stop signal and
2394                 * initiate another group stop.  This deviates from the
2395                 * usual behavior as two consecutive stop signals can't
2396                 * cause two group stops when !ptraced.  That is why we
2397                 * also check !task_is_stopped(t) below.
2398                 *
2399                 * The condition can be distinguished by testing whether
2400                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2401                 * group_exit_code in such case.
2402                 *
2403                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2404                 * an intervening stop signal is required to cause two
2405                 * continued events regardless of ptrace.
2406                 */
2407                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2408                        sig->group_exit_code = signr;
2409
2410                sig->group_stop_count = 0;
2411
2412                if (task_set_jobctl_pending(current, signr | gstop))
2413                        sig->group_stop_count++;
2414
2415                t = current;
2416                while_each_thread(current, t) {
2417                        /*
2418                         * Setting state to TASK_STOPPED for a group
2419                         * stop is always done with the siglock held,
2420                         * so this check has no races.
2421                         */
2422                        if (!task_is_stopped(t) &&
2423                            task_set_jobctl_pending(t, signr | gstop)) {
2424                                sig->group_stop_count++;
2425                                if (likely(!(t->ptrace & PT_SEIZED)))
2426                                        signal_wake_up(t, 0);
2427                                else
2428                                        ptrace_trap_notify(t);
2429                        }
2430                }
2431        }
2432
2433        if (likely(!current->ptrace)) {
2434                int notify = 0;
2435
2436                /*
2437                 * If there are no other threads in the group, or if there
2438                 * is a group stop in progress and we are the last to stop,
2439                 * report to the parent.
2440                 */
2441                if (task_participate_group_stop(current))
2442                        notify = CLD_STOPPED;
2443
2444                set_special_state(TASK_STOPPED);
2445                spin_unlock_irq(&current->sighand->siglock);
2446
2447                /*
2448                 * Notify the parent of the group stop completion.  Because
2449                 * we're not holding either the siglock or tasklist_lock
2450                 * here, ptracer may attach inbetween; however, this is for
2451                 * group stop and should always be delivered to the real
2452                 * parent of the group leader.  The new ptracer will get
2453                 * its notification when this task transitions into
2454                 * TASK_TRACED.
2455                 */
2456                if (notify) {
2457                        read_lock(&tasklist_lock);
2458                        do_notify_parent_cldstop(current, false, notify);
2459                        read_unlock(&tasklist_lock);
2460                }
2461
2462                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2463                cgroup_enter_frozen();
2464                freezable_schedule();
2465                return true;
2466        } else {
2467                /*
2468                 * While ptraced, group stop is handled by STOP trap.
2469                 * Schedule it and let the caller deal with it.
2470                 */
2471                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2472                return false;
2473        }
2474}
2475
2476/**
2477 * do_jobctl_trap - take care of ptrace jobctl traps
2478 *
2479 * When PT_SEIZED, it's used for both group stop and explicit
2480 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2481 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2482 * the stop signal; otherwise, %SIGTRAP.
2483 *
2484 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2485 * number as exit_code and no siginfo.
2486 *
2487 * CONTEXT:
2488 * Must be called with @current->sighand->siglock held, which may be
2489 * released and re-acquired before returning with intervening sleep.
2490 */
2491static void do_jobctl_trap(void)
2492{
2493        struct signal_struct *signal = current->signal;
2494        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2495
2496        if (current->ptrace & PT_SEIZED) {
2497                if (!signal->group_stop_count &&
2498                    !(signal->flags & SIGNAL_STOP_STOPPED))
2499                        signr = SIGTRAP;
2500                WARN_ON_ONCE(!signr);
2501                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2502                                 CLD_STOPPED);
2503        } else {
2504                WARN_ON_ONCE(!signr);
2505                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2506                current->exit_code = 0;
2507        }
2508}
2509
2510/**
2511 * do_freezer_trap - handle the freezer jobctl trap
2512 *
2513 * Puts the task into frozen state, if only the task is not about to quit.
2514 * In this case it drops JOBCTL_TRAP_FREEZE.
2515 *
2516 * CONTEXT:
2517 * Must be called with @current->sighand->siglock held,
2518 * which is always released before returning.
2519 */
2520static void do_freezer_trap(void)
2521        __releases(&current->sighand->siglock)
2522{
2523        /*
2524         * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2525         * let's make another loop to give it a chance to be handled.
2526         * In any case, we'll return back.
2527         */
2528        if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2529             JOBCTL_TRAP_FREEZE) {
2530                spin_unlock_irq(&current->sighand->siglock);
2531                return;
2532        }
2533
2534        /*
2535         * Now we're sure that there is no pending fatal signal and no
2536         * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2537         * immediately (if there is a non-fatal signal pending), and
2538         * put the task into sleep.
2539         */
2540        __set_current_state(TASK_INTERRUPTIBLE);
2541        clear_thread_flag(TIF_SIGPENDING);
2542        spin_unlock_irq(&current->sighand->siglock);
2543        cgroup_enter_frozen();
2544        freezable_schedule();
2545}
2546
2547static int ptrace_signal(int signr, kernel_siginfo_t *info)
2548{
2549        /*
2550         * We do not check sig_kernel_stop(signr) but set this marker
2551         * unconditionally because we do not know whether debugger will
2552         * change signr. This flag has no meaning unless we are going
2553         * to stop after return from ptrace_stop(). In this case it will
2554         * be checked in do_signal_stop(), we should only stop if it was
2555         * not cleared by SIGCONT while we were sleeping. See also the
2556         * comment in dequeue_signal().
2557         */
2558        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2559        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2560
2561        /* We're back.  Did the debugger cancel the sig?  */
2562        signr = current->exit_code;
2563        if (signr == 0)
2564                return signr;
2565
2566        current->exit_code = 0;
2567
2568        /*
2569         * Update the siginfo structure if the signal has
2570         * changed.  If the debugger wanted something
2571         * specific in the siginfo structure then it should
2572         * have updated *info via PTRACE_SETSIGINFO.
2573         */
2574        if (signr != info->si_signo) {
2575                clear_siginfo(info);
2576                info->si_signo = signr;
2577                info->si_errno = 0;
2578                info->si_code = SI_USER;
2579                rcu_read_lock();
2580                info->si_pid = task_pid_vnr(current->parent);
2581                info->si_uid = from_kuid_munged(current_user_ns(),
2582                                                task_uid(current->parent));
2583                rcu_read_unlock();
2584        }
2585
2586        /* If the (new) signal is now blocked, requeue it.  */
2587        if (sigismember(&current->blocked, signr)) {
2588                send_signal(signr, info, current, PIDTYPE_PID);
2589                signr = 0;
2590        }
2591
2592        return signr;
2593}
2594
2595static void hide_si_addr_tag_bits(struct ksignal *ksig)
2596{
2597        switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2598        case SIL_FAULT:
2599        case SIL_FAULT_TRAPNO:
2600        case SIL_FAULT_MCEERR:
2601        case SIL_FAULT_BNDERR:
2602        case SIL_FAULT_PKUERR:
2603        case SIL_FAULT_PERF_EVENT:
2604                ksig->info.si_addr = arch_untagged_si_addr(
2605                        ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2606                break;
2607        case SIL_KILL:
2608        case SIL_TIMER:
2609        case SIL_POLL:
2610        case SIL_CHLD:
2611        case SIL_RT:
2612        case SIL_SYS:
2613                break;
2614        }
2615}
2616
2617bool get_signal(struct ksignal *ksig)
2618{
2619        struct sighand_struct *sighand = current->sighand;
2620        struct signal_struct *signal = current->signal;
2621        int signr;
2622
2623        if (unlikely(current->task_works))
2624                task_work_run();
2625
2626        /*
2627         * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2628         * that the arch handlers don't all have to do it. If we get here
2629         * without TIF_SIGPENDING, just exit after running signal work.
2630         */
2631        if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2632                if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2633                        tracehook_notify_signal();
2634                if (!task_sigpending(current))
2635                        return false;
2636        }
2637
2638        if (unlikely(uprobe_deny_signal()))
2639                return false;
2640
2641        /*
2642         * Do this once, we can't return to user-mode if freezing() == T.
2643         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2644         * thus do not need another check after return.
2645         */
2646        try_to_freeze();
2647
2648relock:
2649        spin_lock_irq(&sighand->siglock);
2650
2651        /*
2652         * Every stopped thread goes here after wakeup. Check to see if
2653         * we should notify the parent, prepare_signal(SIGCONT) encodes
2654         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2655         */
2656        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2657                int why;
2658
2659                if (signal->flags & SIGNAL_CLD_CONTINUED)
2660                        why = CLD_CONTINUED;
2661                else
2662                        why = CLD_STOPPED;
2663
2664                signal->flags &= ~SIGNAL_CLD_MASK;
2665
2666                spin_unlock_irq(&sighand->siglock);
2667
2668                /*
2669                 * Notify the parent that we're continuing.  This event is
2670                 * always per-process and doesn't make whole lot of sense
2671                 * for ptracers, who shouldn't consume the state via
2672                 * wait(2) either, but, for backward compatibility, notify
2673                 * the ptracer of the group leader too unless it's gonna be
2674                 * a duplicate.
2675                 */
2676                read_lock(&tasklist_lock);
2677                do_notify_parent_cldstop(current, false, why);
2678
2679                if (ptrace_reparented(current->group_leader))
2680                        do_notify_parent_cldstop(current->group_leader,
2681                                                true, why);
2682                read_unlock(&tasklist_lock);
2683
2684                goto relock;
2685        }
2686
2687        /* Has this task already been marked for death? */
2688        if (signal_group_exit(signal)) {
2689                ksig->info.si_signo = signr = SIGKILL;
2690                sigdelset(&current->pending.signal, SIGKILL);
2691                trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2692                                &sighand->action[SIGKILL - 1]);
2693                recalc_sigpending();
2694                goto fatal;
2695        }
2696
2697        for (;;) {
2698                struct k_sigaction *ka;
2699
2700                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2701                    do_signal_stop(0))
2702                        goto relock;
2703
2704                if (unlikely(current->jobctl &
2705                             (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2706                        if (current->jobctl & JOBCTL_TRAP_MASK) {
2707                                do_jobctl_trap();
2708                                spin_unlock_irq(&sighand->siglock);
2709                        } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2710                                do_freezer_trap();
2711
2712                        goto relock;
2713                }
2714
2715                /*
2716                 * If the task is leaving the frozen state, let's update
2717                 * cgroup counters and reset the frozen bit.
2718                 */
2719                if (unlikely(cgroup_task_frozen(current))) {
2720                        spin_unlock_irq(&sighand->siglock);
2721                        cgroup_leave_frozen(false);
2722                        goto relock;
2723                }
2724
2725                /*
2726                 * Signals generated by the execution of an instruction
2727                 * need to be delivered before any other pending signals
2728                 * so that the instruction pointer in the signal stack
2729                 * frame points to the faulting instruction.
2730                 */
2731                signr = dequeue_synchronous_signal(&ksig->info);
2732                if (!signr)
2733                        signr = dequeue_signal(current, &current->blocked, &ksig->info);
2734
2735                if (!signr)
2736                        break; /* will return 0 */
2737
2738                if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2739                    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2740                        signr = ptrace_signal(signr, &ksig->info);
2741                        if (!signr)
2742                                continue;
2743                }
2744
2745                ka = &sighand->action[signr-1];
2746
2747                /* Trace actually delivered signals. */
2748                trace_signal_deliver(signr, &ksig->info, ka);
2749
2750                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2751                        continue;
2752                if (ka->sa.sa_handler != SIG_DFL) {
2753                        /* Run the handler.  */
2754                        ksig->ka = *ka;
2755
2756                        if (ka->sa.sa_flags & SA_ONESHOT)
2757                                ka->sa.sa_handler = SIG_DFL;
2758
2759                        break; /* will return non-zero "signr" value */
2760                }
2761
2762                /*
2763                 * Now we are doing the default action for this signal.
2764                 */
2765                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2766                        continue;
2767
2768                /*
2769                 * Global init gets no signals it doesn't want.
2770                 * Container-init gets no signals it doesn't want from same
2771                 * container.
2772                 *
2773                 * Note that if global/container-init sees a sig_kernel_only()
2774                 * signal here, the signal must have been generated internally
2775                 * or must have come from an ancestor namespace. In either
2776                 * case, the signal cannot be dropped.
2777                 */
2778                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2779                                !sig_kernel_only(signr))
2780                        continue;
2781
2782                if (sig_kernel_stop(signr)) {
2783                        /*
2784                         * The default action is to stop all threads in
2785                         * the thread group.  The job control signals
2786                         * do nothing in an orphaned pgrp, but SIGSTOP
2787                         * always works.  Note that siglock needs to be
2788                         * dropped during the call to is_orphaned_pgrp()
2789                         * because of lock ordering with tasklist_lock.
2790                         * This allows an intervening SIGCONT to be posted.
2791                         * We need to check for that and bail out if necessary.
2792                         */
2793                        if (signr != SIGSTOP) {
2794                                spin_unlock_irq(&sighand->siglock);
2795
2796                                /* signals can be posted during this window */
2797
2798                                if (is_current_pgrp_orphaned())
2799                                        goto relock;
2800
2801                                spin_lock_irq(&sighand->siglock);
2802                        }
2803
2804                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2805                                /* It released the siglock.  */
2806                                goto relock;
2807                        }
2808
2809                        /*
2810                         * We didn't actually stop, due to a race
2811                         * with SIGCONT or something like that.
2812                         */
2813                        continue;
2814                }
2815
2816        fatal:
2817                spin_unlock_irq(&sighand->siglock);
2818                if (unlikely(cgroup_task_frozen(current)))
2819                        cgroup_leave_frozen(true);
2820
2821                /*
2822                 * Anything else is fatal, maybe with a core dump.
2823                 */
2824                current->flags |= PF_SIGNALED;
2825
2826                if (sig_kernel_coredump(signr)) {
2827                        if (print_fatal_signals)
2828                                print_fatal_signal(ksig->info.si_signo);
2829                        proc_coredump_connector(current);
2830                        /*
2831                         * If it was able to dump core, this kills all
2832                         * other threads in the group and synchronizes with
2833                         * their demise.  If we lost the race with another
2834                         * thread getting here, it set group_exit_code
2835                         * first and our do_group_exit call below will use
2836                         * that value and ignore the one we pass it.
2837                         */
2838                        do_coredump(&ksig->info);
2839                }
2840
2841                /*
2842                 * PF_IO_WORKER threads will catch and exit on fatal signals
2843                 * themselves. They have cleanup that must be performed, so
2844                 * we cannot call do_exit() on their behalf.
2845                 */
2846                if (current->flags & PF_IO_WORKER)
2847                        goto out;
2848
2849                /*
2850                 * Death signals, no core dump.
2851                 */
2852                do_group_exit(ksig->info.si_signo);
2853                /* NOTREACHED */
2854        }
2855        spin_unlock_irq(&sighand->siglock);
2856out:
2857        ksig->sig = signr;
2858
2859        if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2860                hide_si_addr_tag_bits(ksig);
2861
2862        return ksig->sig > 0;
2863}
2864
2865/**
2866 * signal_delivered - 
2867 * @ksig:               kernel signal struct
2868 * @stepping:           nonzero if debugger single-step or block-step in use
2869 *
2870 * This function should be called when a signal has successfully been
2871 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2872 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2873 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2874 */
2875static void signal_delivered(struct ksignal *ksig, int stepping)
2876{
2877        sigset_t blocked;
2878
2879        /* A signal was successfully delivered, and the
2880           saved sigmask was stored on the signal frame,
2881           and will be restored by sigreturn.  So we can
2882           simply clear the restore sigmask flag.  */
2883        clear_restore_sigmask();
2884
2885        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2886        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2887                sigaddset(&blocked, ksig->sig);
2888        set_current_blocked(&blocked);
2889        if (current->sas_ss_flags & SS_AUTODISARM)
2890                sas_ss_reset(current);
2891        tracehook_signal_handler(stepping);
2892}
2893
2894void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2895{
2896        if (failed)
2897                force_sigsegv(ksig->sig);
2898        else
2899                signal_delivered(ksig, stepping);
2900}
2901
2902/*
2903 * It could be that complete_signal() picked us to notify about the
2904 * group-wide signal. Other threads should be notified now to take
2905 * the shared signals in @which since we will not.
2906 */
2907static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2908{
2909        sigset_t retarget;
2910        struct task_struct *t;
2911
2912        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2913        if (sigisemptyset(&retarget))
2914                return;
2915
2916        t = tsk;
2917        while_each_thread(tsk, t) {
2918                if (t->flags & PF_EXITING)
2919                        continue;
2920
2921                if (!has_pending_signals(&retarget, &t->blocked))
2922                        continue;
2923                /* Remove the signals this thread can handle. */
2924                sigandsets(&retarget, &retarget, &t->blocked);
2925
2926                if (!task_sigpending(t))
2927                        signal_wake_up(t, 0);
2928
2929                if (sigisemptyset(&retarget))
2930                        break;
2931        }
2932}
2933
2934void exit_signals(struct task_struct *tsk)
2935{
2936        int group_stop = 0;
2937        sigset_t unblocked;
2938
2939        /*
2940         * @tsk is about to have PF_EXITING set - lock out users which
2941         * expect stable threadgroup.
2942         */
2943        cgroup_threadgroup_change_begin(tsk);
2944
2945        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2946                tsk->flags |= PF_EXITING;
2947                cgroup_threadgroup_change_end(tsk);
2948                return;
2949        }
2950
2951        spin_lock_irq(&tsk->sighand->siglock);
2952        /*
2953         * From now this task is not visible for group-wide signals,
2954         * see wants_signal(), do_signal_stop().
2955         */
2956        tsk->flags |= PF_EXITING;
2957
2958        cgroup_threadgroup_change_end(tsk);
2959
2960        if (!task_sigpending(tsk))
2961                goto out;
2962
2963        unblocked = tsk->blocked;
2964        signotset(&unblocked);
2965        retarget_shared_pending(tsk, &unblocked);
2966
2967        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2968            task_participate_group_stop(tsk))
2969                group_stop = CLD_STOPPED;
2970out:
2971        spin_unlock_irq(&tsk->sighand->siglock);
2972
2973        /*
2974         * If group stop has completed, deliver the notification.  This
2975         * should always go to the real parent of the group leader.
2976         */
2977        if (unlikely(group_stop)) {
2978                read_lock(&tasklist_lock);
2979                do_notify_parent_cldstop(tsk, false, group_stop);
2980                read_unlock(&tasklist_lock);
2981        }
2982}
2983
2984/*
2985 * System call entry points.
2986 */
2987
2988/**
2989 *  sys_restart_syscall - restart a system call
2990 */
2991SYSCALL_DEFINE0(restart_syscall)
2992{
2993        struct restart_block *restart = &current->restart_block;
2994        return restart->fn(restart);
2995}
2996
2997long do_no_restart_syscall(struct restart_block *param)
2998{
2999        return -EINTR;
3000}
3001
3002static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3003{
3004        if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3005                sigset_t newblocked;
3006                /* A set of now blocked but previously unblocked signals. */
3007                sigandnsets(&newblocked, newset, &current->blocked);
3008                retarget_shared_pending(tsk, &newblocked);
3009        }
3010        tsk->blocked = *newset;
3011        recalc_sigpending();
3012}
3013
3014/**
3015 * set_current_blocked - change current->blocked mask
3016 * @newset: new mask
3017 *
3018 * It is wrong to change ->blocked directly, this helper should be used
3019 * to ensure the process can't miss a shared signal we are going to block.
3020 */
3021void set_current_blocked(sigset_t *newset)
3022{
3023        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3024        __set_current_blocked(newset);
3025}
3026
3027void __set_current_blocked(const sigset_t *newset)
3028{
3029        struct task_struct *tsk = current;
3030
3031        /*
3032         * In case the signal mask hasn't changed, there is nothing we need
3033         * to do. The current->blocked shouldn't be modified by other task.
3034         */
3035        if (sigequalsets(&tsk->blocked, newset))
3036                return;
3037
3038        spin_lock_irq(&tsk->sighand->siglock);
3039        __set_task_blocked(tsk, newset);
3040        spin_unlock_irq(&tsk->sighand->siglock);
3041}
3042
3043/*
3044 * This is also useful for kernel threads that want to temporarily
3045 * (or permanently) block certain signals.
3046 *
3047 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3048 * interface happily blocks "unblockable" signals like SIGKILL
3049 * and friends.
3050 */
3051int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3052{
3053        struct task_struct *tsk = current;
3054        sigset_t newset;
3055
3056        /* Lockless, only current can change ->blocked, never from irq */
3057        if (oldset)
3058                *oldset = tsk->blocked;
3059
3060        switch (how) {
3061        case SIG_BLOCK:
3062                sigorsets(&newset, &tsk->blocked, set);
3063                break;
3064        case SIG_UNBLOCK:
3065                sigandnsets(&newset, &tsk->blocked, set);
3066                break;
3067        case SIG_SETMASK:
3068                newset = *set;
3069                break;
3070        default:
3071                return -EINVAL;
3072        }
3073
3074        __set_current_blocked(&newset);
3075        return 0;
3076}
3077EXPORT_SYMBOL(sigprocmask);
3078
3079/*
3080 * The api helps set app-provided sigmasks.
3081 *
3082 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3083 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3084 *
3085 * Note that it does set_restore_sigmask() in advance, so it must be always
3086 * paired with restore_saved_sigmask_unless() before return from syscall.
3087 */
3088int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3089{
3090        sigset_t kmask;
3091
3092        if (!umask)
3093                return 0;
3094        if (sigsetsize != sizeof(sigset_t))
3095                return -EINVAL;
3096        if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3097                return -EFAULT;
3098
3099        set_restore_sigmask();
3100        current->saved_sigmask = current->blocked;
3101        set_current_blocked(&kmask);
3102
3103        return 0;
3104}
3105
3106#ifdef CONFIG_COMPAT
3107int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3108                            size_t sigsetsize)
3109{
3110        sigset_t kmask;
3111
3112        if (!umask)
3113                return 0;
3114        if (sigsetsize != sizeof(compat_sigset_t))
3115                return -EINVAL;
3116        if (get_compat_sigset(&kmask, umask))
3117                return -EFAULT;
3118
3119        set_restore_sigmask();
3120        current->saved_sigmask = current->blocked;
3121        set_current_blocked(&kmask);
3122
3123        return 0;
3124}
3125#endif
3126
3127/**
3128 *  sys_rt_sigprocmask - change the list of currently blocked signals
3129 *  @how: whether to add, remove, or set signals
3130 *  @nset: stores pending signals
3131 *  @oset: previous value of signal mask if non-null
3132 *  @sigsetsize: size of sigset_t type
3133 */
3134SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3135                sigset_t __user *, oset, size_t, sigsetsize)
3136{
3137        sigset_t old_set, new_set;
3138        int error;
3139
3140        /* XXX: Don't preclude handling different sized sigset_t's.  */
3141        if (sigsetsize != sizeof(sigset_t))
3142                return -EINVAL;
3143
3144        old_set = current->blocked;
3145
3146        if (nset) {
3147                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3148                        return -EFAULT;
3149                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3150
3151                error = sigprocmask(how, &new_set, NULL);
3152                if (error)
3153                        return error;
3154        }
3155
3156        if (oset) {
3157                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3158                        return -EFAULT;
3159        }
3160
3161        return 0;
3162}
3163
3164#ifdef CONFIG_COMPAT
3165COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3166                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3167{
3168        sigset_t old_set = current->blocked;
3169
3170        /* XXX: Don't preclude handling different sized sigset_t's.  */
3171        if (sigsetsize != sizeof(sigset_t))
3172                return -EINVAL;
3173
3174        if (nset) {
3175                sigset_t new_set;
3176                int error;
3177                if (get_compat_sigset(&new_set, nset))
3178                        return -EFAULT;
3179                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3180
3181                error = sigprocmask(how, &new_set, NULL);
3182                if (error)
3183                        return error;
3184        }
3185        return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3186}
3187#endif
3188
3189static void do_sigpending(sigset_t *set)
3190{
3191        spin_lock_irq(&current->sighand->siglock);
3192        sigorsets(set, &current->pending.signal,
3193                  &current->signal->shared_pending.signal);
3194        spin_unlock_irq(&current->sighand->siglock);
3195
3196        /* Outside the lock because only this thread touches it.  */
3197        sigandsets(set, &current->blocked, set);
3198}
3199
3200/**
3201 *  sys_rt_sigpending - examine a pending signal that has been raised
3202 *                      while blocked
3203 *  @uset: stores pending signals
3204 *  @sigsetsize: size of sigset_t type or larger
3205 */
3206SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3207{
3208        sigset_t set;
3209
3210        if (sigsetsize > sizeof(*uset))
3211                return -EINVAL;
3212
3213        do_sigpending(&set);
3214
3215        if (copy_to_user(uset, &set, sigsetsize))
3216                return -EFAULT;
3217
3218        return 0;
3219}
3220
3221#ifdef CONFIG_COMPAT
3222COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3223                compat_size_t, sigsetsize)
3224{
3225        sigset_t set;
3226
3227        if (sigsetsize > sizeof(*uset))
3228                return -EINVAL;
3229
3230        do_sigpending(&set);
3231
3232        return put_compat_sigset(uset, &set, sigsetsize);
3233}
3234#endif
3235
3236static const struct {
3237        unsigned char limit, layout;
3238} sig_sicodes[] = {
3239        [SIGILL]  = { NSIGILL,  SIL_FAULT },
3240        [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3241        [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3242        [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3243        [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3244#if defined(SIGEMT)
3245        [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3246#endif
3247        [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3248        [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3249        [SIGSYS]  = { NSIGSYS,  SIL_SYS },
3250};
3251
3252static bool known_siginfo_layout(unsigned sig, int si_code)
3253{
3254        if (si_code == SI_KERNEL)
3255                return true;
3256        else if ((si_code > SI_USER)) {
3257                if (sig_specific_sicodes(sig)) {
3258                        if (si_code <= sig_sicodes[sig].limit)
3259                                return true;
3260                }
3261                else if (si_code <= NSIGPOLL)
3262                        return true;
3263        }
3264        else if (si_code >= SI_DETHREAD)
3265                return true;
3266        else if (si_code == SI_ASYNCNL)
3267                return true;
3268        return false;
3269}
3270
3271enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3272{
3273        enum siginfo_layout layout = SIL_KILL;
3274        if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3275                if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3276                    (si_code <= sig_sicodes[sig].limit)) {
3277                        layout = sig_sicodes[sig].layout;
3278                        /* Handle the exceptions */
3279                        if ((sig == SIGBUS) &&
3280                            (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3281                                layout = SIL_FAULT_MCEERR;
3282                        else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3283                                layout = SIL_FAULT_BNDERR;
3284#ifdef SEGV_PKUERR
3285                        else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3286                                layout = SIL_FAULT_PKUERR;
3287#endif
3288                        else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3289                                layout = SIL_FAULT_PERF_EVENT;
3290                        else if (IS_ENABLED(CONFIG_SPARC) &&
3291                                 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3292                                layout = SIL_FAULT_TRAPNO;
3293                        else if (IS_ENABLED(CONFIG_ALPHA) &&
3294                                 ((sig == SIGFPE) ||
3295                                  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3296                                layout = SIL_FAULT_TRAPNO;
3297                }
3298                else if (si_code <= NSIGPOLL)
3299                        layout = SIL_POLL;
3300        } else {
3301                if (si_code == SI_TIMER)
3302                        layout = SIL_TIMER;
3303                else if (si_code == SI_SIGIO)
3304                        layout = SIL_POLL;
3305                else if (si_code < 0)
3306                        layout = SIL_RT;
3307        }
3308        return layout;
3309}
3310
3311static inline char __user *si_expansion(const siginfo_t __user *info)
3312{
3313        return ((char __user *)info) + sizeof(struct kernel_siginfo);
3314}
3315
3316int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3317{
3318        char __user *expansion = si_expansion(to);
3319        if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3320                return -EFAULT;
3321        if (clear_user(expansion, SI_EXPANSION_SIZE))
3322                return -EFAULT;
3323        return 0;
3324}
3325
3326static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3327                                       const siginfo_t __user *from)
3328{
3329        if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3330                char __user *expansion = si_expansion(from);
3331                char buf[SI_EXPANSION_SIZE];
3332                int i;
3333                /*
3334                 * An unknown si_code might need more than
3335                 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3336                 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3337                 * will return this data to userspace exactly.
3338                 */
3339                if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3340                        return -EFAULT;
3341                for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3342                        if (buf[i] != 0)
3343                                return -E2BIG;
3344                }
3345        }
3346        return 0;
3347}
3348
3349static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3350                                    const siginfo_t __user *from)
3351{
3352        if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3353                return -EFAULT;
3354        to->si_signo = signo;
3355        return post_copy_siginfo_from_user(to, from);
3356}
3357
3358int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3359{
3360        if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361                return -EFAULT;
3362        return post_copy_siginfo_from_user(to, from);
3363}
3364
3365#ifdef CONFIG_COMPAT
3366/**
3367 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3368 * @to: compat siginfo destination
3369 * @from: kernel siginfo source
3370 *
3371 * Note: This function does not work properly for the SIGCHLD on x32, but
3372 * fortunately it doesn't have to.  The only valid callers for this function are
3373 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3374 * The latter does not care because SIGCHLD will never cause a coredump.
3375 */
3376void copy_siginfo_to_external32(struct compat_siginfo *to,
3377                const struct kernel_siginfo *from)
3378{
3379        memset(to, 0, sizeof(*to));
3380
3381        to->si_signo = from->si_signo;
3382        to->si_errno = from->si_errno;
3383        to->si_code  = from->si_code;
3384        switch(siginfo_layout(from->si_signo, from->si_code)) {
3385        case SIL_KILL:
3386                to->si_pid = from->si_pid;
3387                to->si_uid = from->si_uid;
3388                break;
3389        case SIL_TIMER:
3390                to->si_tid     = from->si_tid;
3391                to->si_overrun = from->si_overrun;
3392                to->si_int     = from->si_int;
3393                break;
3394        case SIL_POLL:
3395                to->si_band = from->si_band;
3396                to->si_fd   = from->si_fd;
3397                break;
3398        case SIL_FAULT:
3399                to->si_addr = ptr_to_compat(from->si_addr);
3400                break;
3401        case SIL_FAULT_TRAPNO:
3402                to->si_addr = ptr_to_compat(from->si_addr);
3403                to->si_trapno = from->si_trapno;
3404                break;
3405        case SIL_FAULT_MCEERR:
3406                to->si_addr = ptr_to_compat(from->si_addr);
3407                to->si_addr_lsb = from->si_addr_lsb;
3408                break;
3409        case SIL_FAULT_BNDERR:
3410                to->si_addr = ptr_to_compat(from->si_addr);
3411                to->si_lower = ptr_to_compat(from->si_lower);
3412                to->si_upper = ptr_to_compat(from->si_upper);
3413                break;
3414        case SIL_FAULT_PKUERR:
3415                to->si_addr = ptr_to_compat(from->si_addr);
3416                to->si_pkey = from->si_pkey;
3417                break;
3418        case SIL_FAULT_PERF_EVENT:
3419                to->si_addr = ptr_to_compat(from->si_addr);
3420                to->si_perf_data = from->si_perf_data;
3421                to->si_perf_type = from->si_perf_type;
3422                break;
3423        case SIL_CHLD:
3424                to->si_pid = from->si_pid;
3425                to->si_uid = from->si_uid;
3426                to->si_status = from->si_status;
3427                to->si_utime = from->si_utime;
3428                to->si_stime = from->si_stime;
3429                break;
3430        case SIL_RT:
3431                to->si_pid = from->si_pid;
3432                to->si_uid = from->si_uid;
3433                to->si_int = from->si_int;
3434                break;
3435        case SIL_SYS:
3436                to->si_call_addr = ptr_to_compat(from->si_call_addr);
3437                to->si_syscall   = from->si_syscall;
3438                to->si_arch      = from->si_arch;
3439                break;
3440        }
3441}
3442
3443int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3444                           const struct kernel_siginfo *from)
3445{
3446        struct compat_siginfo new;
3447
3448        copy_siginfo_to_external32(&new, from);
3449        if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3450                return -EFAULT;
3451        return 0;
3452}
3453
3454static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3455                                         const struct compat_siginfo *from)
3456{
3457        clear_siginfo(to);
3458        to->si_signo = from->si_signo;
3459        to->si_errno = from->si_errno;
3460        to->si_code  = from->si_code;
3461        switch(siginfo_layout(from->si_signo, from->si_code)) {
3462        case SIL_KILL:
3463                to->si_pid = from->si_pid;
3464                to->si_uid = from->si_uid;
3465                break;
3466        case SIL_TIMER:
3467                to->si_tid     = from->si_tid;
3468                to->si_overrun = from->si_overrun;
3469                to->si_int     = from->si_int;
3470                break;
3471        case SIL_POLL:
3472                to->si_band = from->si_band;
3473                to->si_fd   = from->si_fd;
3474                break;
3475        case SIL_FAULT:
3476                to->si_addr = compat_ptr(from->si_addr);
3477                break;
3478        case SIL_FAULT_TRAPNO:
3479                to->si_addr = compat_ptr(from->si_addr);
3480                to->si_trapno = from->si_trapno;
3481                break;
3482        case SIL_FAULT_MCEERR:
3483                to->si_addr = compat_ptr(from->si_addr);
3484                to->si_addr_lsb = from->si_addr_lsb;
3485                break;
3486        case SIL_FAULT_BNDERR:
3487                to->si_addr = compat_ptr(from->si_addr);
3488                to->si_lower = compat_ptr(from->si_lower);
3489                to->si_upper = compat_ptr(from->si_upper);
3490                break;
3491        case SIL_FAULT_PKUERR:
3492                to->si_addr = compat_ptr(from->si_addr);
3493                to->si_pkey = from->si_pkey;
3494                break;
3495        case SIL_FAULT_PERF_EVENT:
3496                to->si_addr = compat_ptr(from->si_addr);
3497                to->si_perf_data = from->si_perf_data;
3498                to->si_perf_type = from->si_perf_type;
3499                break;
3500        case SIL_CHLD:
3501                to->si_pid    = from->si_pid;
3502                to->si_uid    = from->si_uid;
3503                to->si_status = from->si_status;
3504#ifdef CONFIG_X86_X32_ABI
3505                if (in_x32_syscall()) {
3506                        to->si_utime = from->_sifields._sigchld_x32._utime;
3507                        to->si_stime = from->_sifields._sigchld_x32._stime;
3508                } else
3509#endif
3510                {
3511                        to->si_utime = from->si_utime;
3512                        to->si_stime = from->si_stime;
3513                }
3514                break;
3515        case SIL_RT:
3516                to->si_pid = from->si_pid;
3517                to->si_uid = from->si_uid;
3518                to->si_int = from->si_int;
3519                break;
3520        case SIL_SYS:
3521                to->si_call_addr = compat_ptr(from->si_call_addr);
3522                to->si_syscall   = from->si_syscall;
3523                to->si_arch      = from->si_arch;
3524                break;
3525        }
3526        return 0;
3527}
3528
3529static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3530                                      const struct compat_siginfo __user *ufrom)
3531{
3532        struct compat_siginfo from;
3533
3534        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3535                return -EFAULT;
3536
3537        from.si_signo = signo;
3538        return post_copy_siginfo_from_user32(to, &from);
3539}
3540
3541int copy_siginfo_from_user32(struct kernel_siginfo *to,
3542                             const struct compat_siginfo __user *ufrom)
3543{
3544        struct compat_siginfo from;
3545
3546        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3547                return -EFAULT;
3548
3549        return post_copy_siginfo_from_user32(to, &from);
3550}
3551#endif /* CONFIG_COMPAT */
3552
3553/**
3554 *  do_sigtimedwait - wait for queued signals specified in @which
3555 *  @which: queued signals to wait for
3556 *  @info: if non-null, the signal's siginfo is returned here
3557 *  @ts: upper bound on process time suspension
3558 */
3559static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3560                    const struct timespec64 *ts)
3561{
3562        ktime_t *to = NULL, timeout = KTIME_MAX;
3563        struct task_struct *tsk = current;
3564        sigset_t mask = *which;
3565        int sig, ret = 0;
3566
3567        if (ts) {
3568                if (!timespec64_valid(ts))
3569                        return -EINVAL;
3570                timeout = timespec64_to_ktime(*ts);
3571                to = &timeout;
3572        }
3573
3574        /*
3575         * Invert the set of allowed signals to get those we want to block.
3576         */
3577        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3578        signotset(&mask);
3579
3580        spin_lock_irq(&tsk->sighand->siglock);
3581        sig = dequeue_signal(tsk, &mask, info);
3582        if (!sig && timeout) {
3583                /*
3584                 * None ready, temporarily unblock those we're interested
3585                 * while we are sleeping in so that we'll be awakened when
3586                 * they arrive. Unblocking is always fine, we can avoid
3587                 * set_current_blocked().
3588                 */
3589                tsk->real_blocked = tsk->blocked;
3590                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3591                recalc_sigpending();
3592                spin_unlock_irq(&tsk->sighand->siglock);
3593
3594                __set_current_state(TASK_INTERRUPTIBLE);
3595                ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3596                                                         HRTIMER_MODE_REL);
3597                spin_lock_irq(&tsk->sighand->siglock);
3598                __set_task_blocked(tsk, &tsk->real_blocked);
3599                sigemptyset(&tsk->real_blocked);
3600                sig = dequeue_signal(tsk, &mask, info);
3601        }
3602        spin_unlock_irq(&tsk->sighand->siglock);
3603
3604        if (sig)
3605                return sig;
3606        return ret ? -EINTR : -EAGAIN;
3607}
3608
3609/**
3610 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3611 *                      in @uthese
3612 *  @uthese: queued signals to wait for
3613 *  @uinfo: if non-null, the signal's siginfo is returned here
3614 *  @uts: upper bound on process time suspension
3615 *  @sigsetsize: size of sigset_t type
3616 */
3617SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3618                siginfo_t __user *, uinfo,
3619                const struct __kernel_timespec __user *, uts,
3620                size_t, sigsetsize)
3621{
3622        sigset_t these;
3623        struct timespec64 ts;
3624        kernel_siginfo_t info;
3625        int ret;
3626
3627        /* XXX: Don't preclude handling different sized sigset_t's.  */
3628        if (sigsetsize != sizeof(sigset_t))
3629                return -EINVAL;
3630
3631        if (copy_from_user(&these, uthese, sizeof(these)))
3632                return -EFAULT;
3633
3634        if (uts) {
3635                if (get_timespec64(&ts, uts))
3636                        return -EFAULT;
3637        }
3638
3639        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3640
3641        if (ret > 0 && uinfo) {
3642                if (copy_siginfo_to_user(uinfo, &info))
3643                        ret = -EFAULT;
3644        }
3645
3646        return ret;
3647}
3648
3649#ifdef CONFIG_COMPAT_32BIT_TIME
3650SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3651                siginfo_t __user *, uinfo,
3652                const struct old_timespec32 __user *, uts,
3653                size_t, sigsetsize)
3654{
3655        sigset_t these;
3656        struct timespec64 ts;
3657        kernel_siginfo_t info;
3658        int ret;
3659
3660        if (sigsetsize != sizeof(sigset_t))
3661                return -EINVAL;
3662
3663        if (copy_from_user(&these, uthese, sizeof(these)))
3664                return -EFAULT;
3665
3666        if (uts) {
3667                if (get_old_timespec32(&ts, uts))
3668                        return -EFAULT;
3669        }
3670
3671        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3672
3673        if (ret > 0 && uinfo) {
3674                if (copy_siginfo_to_user(uinfo, &info))
3675                        ret = -EFAULT;
3676        }
3677
3678        return ret;
3679}
3680#endif
3681
3682#ifdef CONFIG_COMPAT
3683COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3684                struct compat_siginfo __user *, uinfo,
3685                struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3686{
3687        sigset_t s;
3688        struct timespec64 t;
3689        kernel_siginfo_t info;
3690        long ret;
3691
3692        if (sigsetsize != sizeof(sigset_t))
3693                return -EINVAL;
3694
3695        if (get_compat_sigset(&s, uthese))
3696                return -EFAULT;
3697
3698        if (uts) {
3699                if (get_timespec64(&t, uts))
3700                        return -EFAULT;
3701        }
3702
3703        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3704
3705        if (ret > 0 && uinfo) {
3706                if (copy_siginfo_to_user32(uinfo, &info))
3707                        ret = -EFAULT;
3708        }
3709
3710        return ret;
3711}
3712
3713#ifdef CONFIG_COMPAT_32BIT_TIME
3714COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3715                struct compat_siginfo __user *, uinfo,
3716                struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3717{
3718        sigset_t s;
3719        struct timespec64 t;
3720        kernel_siginfo_t info;
3721        long ret;
3722
3723        if (sigsetsize != sizeof(sigset_t))
3724                return -EINVAL;
3725
3726        if (get_compat_sigset(&s, uthese))
3727                return -EFAULT;
3728
3729        if (uts) {
3730                if (get_old_timespec32(&t, uts))
3731                        return -EFAULT;
3732        }
3733
3734        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3735
3736        if (ret > 0 && uinfo) {
3737                if (copy_siginfo_to_user32(uinfo, &info))
3738                        ret = -EFAULT;
3739        }
3740
3741        return ret;
3742}
3743#endif
3744#endif
3745
3746static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3747{
3748        clear_siginfo(info);
3749        info->si_signo = sig;
3750        info->si_errno = 0;
3751        info->si_code = SI_USER;
3752        info->si_pid = task_tgid_vnr(current);
3753        info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3754}
3755
3756/**
3757 *  sys_kill - send a signal to a process
3758 *  @pid: the PID of the process
3759 *  @sig: signal to be sent
3760 */
3761SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3762{
3763        struct kernel_siginfo info;
3764
3765        prepare_kill_siginfo(sig, &info);
3766
3767        return kill_something_info(sig, &info, pid);
3768}
3769
3770/*
3771 * Verify that the signaler and signalee either are in the same pid namespace
3772 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3773 * namespace.
3774 */
3775static bool access_pidfd_pidns(struct pid *pid)
3776{
3777        struct pid_namespace *active = task_active_pid_ns(current);
3778        struct pid_namespace *p = ns_of_pid(pid);
3779
3780        for (;;) {
3781                if (!p)
3782                        return false;
3783                if (p == active)
3784                        break;
3785                p = p->parent;
3786        }
3787
3788        return true;
3789}
3790
3791static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3792                siginfo_t __user *info)
3793{
3794#ifdef CONFIG_COMPAT
3795        /*
3796         * Avoid hooking up compat syscalls and instead handle necessary
3797         * conversions here. Note, this is a stop-gap measure and should not be
3798         * considered a generic solution.
3799         */
3800        if (in_compat_syscall())
3801                return copy_siginfo_from_user32(
3802                        kinfo, (struct compat_siginfo __user *)info);
3803#endif
3804        return copy_siginfo_from_user(kinfo, info);
3805}
3806
3807static struct pid *pidfd_to_pid(const struct file *file)
3808{
3809        struct pid *pid;
3810
3811        pid = pidfd_pid(file);
3812        if (!IS_ERR(pid))
3813                return pid;
3814
3815        return tgid_pidfd_to_pid(file);
3816}
3817
3818/**
3819 * sys_pidfd_send_signal - Signal a process through a pidfd
3820 * @pidfd:  file descriptor of the process
3821 * @sig:    signal to send
3822 * @info:   signal info
3823 * @flags:  future flags
3824 *
3825 * The syscall currently only signals via PIDTYPE_PID which covers
3826 * kill(<positive-pid>, <signal>. It does not signal threads or process
3827 * groups.
3828 * In order to extend the syscall to threads and process groups the @flags
3829 * argument should be used. In essence, the @flags argument will determine
3830 * what is signaled and not the file descriptor itself. Put in other words,
3831 * grouping is a property of the flags argument not a property of the file
3832 * descriptor.
3833 *
3834 * Return: 0 on success, negative errno on failure
3835 */
3836SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3837                siginfo_t __user *, info, unsigned int, flags)
3838{
3839        int ret;
3840        struct fd f;
3841        struct pid *pid;
3842        kernel_siginfo_t kinfo;
3843
3844        /* Enforce flags be set to 0 until we add an extension. */
3845        if (flags)
3846                return -EINVAL;
3847
3848        f = fdget(pidfd);
3849        if (!f.file)
3850                return -EBADF;
3851
3852        /* Is this a pidfd? */
3853        pid = pidfd_to_pid(f.file);
3854        if (IS_ERR(pid)) {
3855                ret = PTR_ERR(pid);
3856                goto err;
3857        }
3858
3859        ret = -EINVAL;
3860        if (!access_pidfd_pidns(pid))
3861                goto err;
3862
3863        if (info) {
3864                ret = copy_siginfo_from_user_any(&kinfo, info);
3865                if (unlikely(ret))
3866                        goto err;
3867
3868                ret = -EINVAL;
3869                if (unlikely(sig != kinfo.si_signo))
3870                        goto err;
3871
3872                /* Only allow sending arbitrary signals to yourself. */
3873                ret = -EPERM;
3874                if ((task_pid(current) != pid) &&
3875                    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3876                        goto err;
3877        } else {
3878                prepare_kill_siginfo(sig, &kinfo);
3879        }
3880
3881        ret = kill_pid_info(sig, &kinfo, pid);
3882
3883err:
3884        fdput(f);
3885        return ret;
3886}
3887
3888static int
3889do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3890{
3891        struct task_struct *p;
3892        int error = -ESRCH;
3893
3894        rcu_read_lock();
3895        p = find_task_by_vpid(pid);
3896        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3897                error = check_kill_permission(sig, info, p);
3898                /*
3899                 * The null signal is a permissions and process existence
3900                 * probe.  No signal is actually delivered.
3901                 */
3902                if (!error && sig) {
3903                        error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3904                        /*
3905                         * If lock_task_sighand() failed we pretend the task
3906                         * dies after receiving the signal. The window is tiny,
3907                         * and the signal is private anyway.
3908                         */
3909                        if (unlikely(error == -ESRCH))
3910                                error = 0;
3911                }
3912        }
3913        rcu_read_unlock();
3914
3915        return error;
3916}
3917
3918static int do_tkill(pid_t tgid, pid_t pid, int sig)
3919{
3920        struct kernel_siginfo info;
3921
3922        clear_siginfo(&info);
3923        info.si_signo = sig;
3924        info.si_errno = 0;
3925        info.si_code = SI_TKILL;
3926        info.si_pid = task_tgid_vnr(current);
3927        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3928
3929        return do_send_specific(tgid, pid, sig, &info);
3930}
3931
3932/**
3933 *  sys_tgkill - send signal to one specific thread
3934 *  @tgid: the thread group ID of the thread
3935 *  @pid: the PID of the thread
3936 *  @sig: signal to be sent
3937 *
3938 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3939 *  exists but it's not belonging to the target process anymore. This
3940 *  method solves the problem of threads exiting and PIDs getting reused.
3941 */
3942SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3943{
3944        /* This is only valid for single tasks */
3945        if (pid <= 0 || tgid <= 0)
3946                return -EINVAL;
3947
3948        return do_tkill(tgid, pid, sig);
3949}
3950
3951/**
3952 *  sys_tkill - send signal to one specific task
3953 *  @pid: the PID of the task
3954 *  @sig: signal to be sent
3955 *
3956 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3957 */
3958SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3959{
3960        /* This is only valid for single tasks */
3961        if (pid <= 0)
3962                return -EINVAL;
3963
3964        return do_tkill(0, pid, sig);
3965}
3966
3967static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3968{
3969        /* Not even root can pretend to send signals from the kernel.
3970         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3971         */
3972        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3973            (task_pid_vnr(current) != pid))
3974                return -EPERM;
3975
3976        /* POSIX.1b doesn't mention process groups.  */
3977        return kill_proc_info(sig, info, pid);
3978}
3979
3980/**
3981 *  sys_rt_sigqueueinfo - send signal information to a signal
3982 *  @pid: the PID of the thread
3983 *  @sig: signal to be sent
3984 *  @uinfo: signal info to be sent
3985 */
3986SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3987                siginfo_t __user *, uinfo)
3988{
3989        kernel_siginfo_t info;
3990        int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3991        if (unlikely(ret))
3992                return ret;
3993        return do_rt_sigqueueinfo(pid, sig, &info);
3994}
3995
3996#ifdef CONFIG_COMPAT
3997COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3998                        compat_pid_t, pid,
3999                        int, sig,
4000                        struct compat_siginfo __user *, uinfo)
4001{
4002        kernel_siginfo_t info;
4003        int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4004        if (unlikely(ret))
4005                return ret;
4006        return do_rt_sigqueueinfo(pid, sig, &info);
4007}
4008#endif
4009
4010static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4011{
4012        /* This is only valid for single tasks */
4013        if (pid <= 0 || tgid <= 0)
4014                return -EINVAL;
4015
4016        /* Not even root can pretend to send signals from the kernel.
4017         * Nor can they impersonate a kill()/tgkill(), which adds source info.
4018         */
4019        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4020            (task_pid_vnr(current) != pid))
4021                return -EPERM;
4022
4023        return do_send_specific(tgid, pid, sig, info);
4024}
4025
4026SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4027                siginfo_t __user *, uinfo)
4028{
4029        kernel_siginfo_t info;
4030        int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4031        if (unlikely(ret))
4032                return ret;
4033        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4034}
4035
4036#ifdef CONFIG_COMPAT
4037COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4038                        compat_pid_t, tgid,
4039                        compat_pid_t, pid,
4040                        int, sig,
4041                        struct compat_siginfo __user *, uinfo)
4042{
4043        kernel_siginfo_t info;
4044        int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4045        if (unlikely(ret))
4046                return ret;
4047        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4048}
4049#endif
4050
4051/*
4052 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4053 */
4054void kernel_sigaction(int sig, __sighandler_t action)
4055{
4056        spin_lock_irq(&current->sighand->siglock);
4057        current->sighand->action[sig - 1].sa.sa_handler = action;
4058        if (action == SIG_IGN) {
4059                sigset_t mask;
4060
4061                sigemptyset(&mask);
4062                sigaddset(&mask, sig);
4063
4064                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4065                flush_sigqueue_mask(&mask, &current->pending);
4066                recalc_sigpending();
4067        }
4068        spin_unlock_irq(&current->sighand->siglock);
4069}
4070EXPORT_SYMBOL(kernel_sigaction);
4071
4072void __weak sigaction_compat_abi(struct k_sigaction *act,
4073                struct k_sigaction *oact)
4074{
4075}
4076
4077int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4078{
4079        struct task_struct *p = current, *t;
4080        struct k_sigaction *k;
4081        sigset_t mask;
4082
4083        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4084                return -EINVAL;
4085
4086        k = &p->sighand->action[sig-1];
4087
4088        spin_lock_irq(&p->sighand->siglock);
4089        if (k->sa.sa_flags & SA_IMMUTABLE) {
4090                spin_unlock_irq(&p->sighand->siglock);
4091                return -EINVAL;
4092        }
4093        if (oact)
4094                *oact = *k;
4095
4096        /*
4097         * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4098         * e.g. by having an architecture use the bit in their uapi.
4099         */
4100        BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4101
4102        /*
4103         * Clear unknown flag bits in order to allow userspace to detect missing
4104         * support for flag bits and to allow the kernel to use non-uapi bits
4105         * internally.
4106         */
4107        if (act)
4108                act->sa.sa_flags &= UAPI_SA_FLAGS;
4109        if (oact)
4110                oact->sa.sa_flags &= UAPI_SA_FLAGS;
4111
4112        sigaction_compat_abi(act, oact);
4113
4114        if (act) {
4115                sigdelsetmask(&act->sa.sa_mask,
4116                              sigmask(SIGKILL) | sigmask(SIGSTOP));
4117                *k = *act;
4118                /*
4119                 * POSIX 3.3.1.3:
4120                 *  "Setting a signal action to SIG_IGN for a signal that is
4121                 *   pending shall cause the pending signal to be discarded,
4122                 *   whether or not it is blocked."
4123                 *
4124                 *  "Setting a signal action to SIG_DFL for a signal that is
4125                 *   pending and whose default action is to ignore the signal
4126                 *   (for example, SIGCHLD), shall cause the pending signal to
4127                 *   be discarded, whether or not it is blocked"
4128                 */
4129                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4130                        sigemptyset(&mask);
4131                        sigaddset(&mask, sig);
4132                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4133                        for_each_thread(p, t)
4134                                flush_sigqueue_mask(&mask, &t->pending);
4135                }
4136        }
4137
4138        spin_unlock_irq(&p->sighand->siglock);
4139        return 0;
4140}
4141
4142#ifdef CONFIG_DYNAMIC_SIGFRAME
4143static inline void sigaltstack_lock(void)
4144        __acquires(&current->sighand->siglock)
4145{
4146        spin_lock_irq(&current->sighand->siglock);
4147}
4148
4149static inline void sigaltstack_unlock(void)
4150        __releases(&current->sighand->siglock)
4151{
4152        spin_unlock_irq(&current->sighand->siglock);
4153}
4154#else
4155static inline void sigaltstack_lock(void) { }
4156static inline void sigaltstack_unlock(void) { }
4157#endif
4158
4159static int
4160do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4161                size_t min_ss_size)
4162{
4163        struct task_struct *t = current;
4164        int ret = 0;
4165
4166        if (oss) {
4167                memset(oss, 0, sizeof(stack_t));
4168                oss->ss_sp = (void __user *) t->sas_ss_sp;
4169                oss->ss_size = t->sas_ss_size;
4170                oss->ss_flags = sas_ss_flags(sp) |
4171                        (current->sas_ss_flags & SS_FLAG_BITS);
4172        }
4173
4174        if (ss) {
4175                void __user *ss_sp = ss->ss_sp;
4176                size_t ss_size = ss->ss_size;
4177                unsigned ss_flags = ss->ss_flags;
4178                int ss_mode;
4179
4180                if (unlikely(on_sig_stack(sp)))
4181                        return -EPERM;
4182
4183                ss_mode = ss_flags & ~SS_FLAG_BITS;
4184                if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4185                                ss_mode != 0))
4186                        return -EINVAL;
4187
4188                /*
4189                 * Return before taking any locks if no actual
4190                 * sigaltstack changes were requested.
4191                 */
4192                if (t->sas_ss_sp == (unsigned long)ss_sp &&
4193                    t->sas_ss_size == ss_size &&
4194                    t->sas_ss_flags == ss_flags)
4195                        return 0;
4196
4197                sigaltstack_lock();
4198                if (ss_mode == SS_DISABLE) {
4199                        ss_size = 0;
4200                        ss_sp = NULL;
4201                } else {
4202                        if (unlikely(ss_size < min_ss_size))
4203                                ret = -ENOMEM;
4204                        if (!sigaltstack_size_valid(ss_size))
4205                                ret = -ENOMEM;
4206                }
4207                if (!ret) {
4208                        t->sas_ss_sp = (unsigned long) ss_sp;
4209                        t->sas_ss_size = ss_size;
4210                        t->sas_ss_flags = ss_flags;
4211                }
4212                sigaltstack_unlock();
4213        }
4214        return ret;
4215}
4216
4217SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4218{
4219        stack_t new, old;
4220        int err;
4221        if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4222                return -EFAULT;
4223        err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4224                              current_user_stack_pointer(),
4225                              MINSIGSTKSZ);
4226        if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4227                err = -EFAULT;
4228        return err;
4229}
4230
4231int restore_altstack(const stack_t __user *uss)
4232{
4233        stack_t new;
4234        if (copy_from_user(&new, uss, sizeof(stack_t)))
4235                return -EFAULT;
4236        (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4237                             MINSIGSTKSZ);
4238        /* squash all but EFAULT for now */
4239        return 0;
4240}
4241
4242int __save_altstack(stack_t __user *uss, unsigned long sp)
4243{
4244        struct task_struct *t = current;
4245        int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4246                __put_user(t->sas_ss_flags, &uss->ss_flags) |
4247                __put_user(t->sas_ss_size, &uss->ss_size);
4248        return err;
4249}
4250
4251#ifdef CONFIG_COMPAT
4252static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4253                                 compat_stack_t __user *uoss_ptr)
4254{
4255        stack_t uss, uoss;
4256        int ret;
4257
4258        if (uss_ptr) {
4259                compat_stack_t uss32;
4260                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4261                        return -EFAULT;
4262                uss.ss_sp = compat_ptr(uss32.ss_sp);
4263                uss.ss_flags = uss32.ss_flags;
4264                uss.ss_size = uss32.ss_size;
4265        }
4266        ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4267                             compat_user_stack_pointer(),
4268                             COMPAT_MINSIGSTKSZ);
4269        if (ret >= 0 && uoss_ptr)  {
4270                compat_stack_t old;
4271                memset(&old, 0, sizeof(old));
4272                old.ss_sp = ptr_to_compat(uoss.ss_sp);
4273                old.ss_flags = uoss.ss_flags;
4274                old.ss_size = uoss.ss_size;
4275                if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4276                        ret = -EFAULT;
4277        }
4278        return ret;
4279}
4280
4281COMPAT_SYSCALL_DEFINE2(sigaltstack,
4282                        const compat_stack_t __user *, uss_ptr,
4283                        compat_stack_t __user *, uoss_ptr)
4284{
4285        return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4286}
4287
4288int compat_restore_altstack(const compat_stack_t __user *uss)
4289{
4290        int err = do_compat_sigaltstack(uss, NULL);
4291        /* squash all but -EFAULT for now */
4292        return err == -EFAULT ? err : 0;
4293}
4294
4295int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4296{
4297        int err;
4298        struct task_struct *t = current;
4299        err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4300                         &uss->ss_sp) |
4301                __put_user(t->sas_ss_flags, &uss->ss_flags) |
4302                __put_user(t->sas_ss_size, &uss->ss_size);
4303        return err;
4304}
4305#endif
4306
4307#ifdef __ARCH_WANT_SYS_SIGPENDING
4308
4309/**
4310 *  sys_sigpending - examine pending signals
4311 *  @uset: where mask of pending signal is returned
4312 */
4313SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4314{
4315        sigset_t set;
4316
4317        if (sizeof(old_sigset_t) > sizeof(*uset))
4318                return -EINVAL;
4319
4320        do_sigpending(&set);
4321
4322        if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4323                return -EFAULT;
4324
4325        return 0;
4326}
4327
4328#ifdef CONFIG_COMPAT
4329COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4330{
4331        sigset_t set;
4332
4333        do_sigpending(&set);
4334
4335        return put_user(set.sig[0], set32);
4336}
4337#endif
4338
4339#endif
4340
4341#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4342/**
4343 *  sys_sigprocmask - examine and change blocked signals
4344 *  @how: whether to add, remove, or set signals
4345 *  @nset: signals to add or remove (if non-null)
4346 *  @oset: previous value of signal mask if non-null
4347 *
4348 * Some platforms have their own version with special arguments;
4349 * others support only sys_rt_sigprocmask.
4350 */
4351
4352SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4353                old_sigset_t __user *, oset)
4354{
4355        old_sigset_t old_set, new_set;
4356        sigset_t new_blocked;
4357
4358        old_set = current->blocked.sig[0];
4359
4360        if (nset) {
4361                if (copy_from_user(&new_set, nset, sizeof(*nset)))
4362                        return -EFAULT;
4363
4364                new_blocked = current->blocked;
4365
4366                switch (how) {
4367                case SIG_BLOCK:
4368                        sigaddsetmask(&new_blocked, new_set);
4369                        break;
4370                case SIG_UNBLOCK:
4371                        sigdelsetmask(&new_blocked, new_set);
4372                        break;
4373                case SIG_SETMASK:
4374                        new_blocked.sig[0] = new_set;
4375                        break;
4376                default:
4377                        return -EINVAL;
4378                }
4379
4380                set_current_blocked(&new_blocked);
4381        }
4382
4383        if (oset) {
4384                if (copy_to_user(oset, &old_set, sizeof(*oset)))
4385                        return -EFAULT;
4386        }
4387
4388        return 0;
4389}
4390#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4391
4392#ifndef CONFIG_ODD_RT_SIGACTION
4393/**
4394 *  sys_rt_sigaction - alter an action taken by a process
4395 *  @sig: signal to be sent
4396 *  @act: new sigaction
4397 *  @oact: used to save the previous sigaction
4398 *  @sigsetsize: size of sigset_t type
4399 */
4400SYSCALL_DEFINE4(rt_sigaction, int, sig,
4401                const struct sigaction __user *, act,
4402                struct sigaction __user *, oact,
4403                size_t, sigsetsize)
4404{
4405        struct k_sigaction new_sa, old_sa;
4406        int ret;
4407
4408        /* XXX: Don't preclude handling different sized sigset_t's.  */
4409        if (sigsetsize != sizeof(sigset_t))
4410                return -EINVAL;
4411
4412        if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4413                return -EFAULT;
4414
4415        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4416        if (ret)
4417                return ret;
4418
4419        if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4420                return -EFAULT;
4421
4422        return 0;
4423}
4424#ifdef CONFIG_COMPAT
4425COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4426                const struct compat_sigaction __user *, act,
4427                struct compat_sigaction __user *, oact,
4428                compat_size_t, sigsetsize)
4429{
4430        struct k_sigaction new_ka, old_ka;
4431#ifdef __ARCH_HAS_SA_RESTORER
4432        compat_uptr_t restorer;
4433#endif
4434        int ret;
4435
4436        /* XXX: Don't preclude handling different sized sigset_t's.  */
4437        if (sigsetsize != sizeof(compat_sigset_t))
4438                return -EINVAL;
4439
4440        if (act) {
4441                compat_uptr_t handler;
4442                ret = get_user(handler, &act->sa_handler);
4443                new_ka.sa.sa_handler = compat_ptr(handler);
4444#ifdef __ARCH_HAS_SA_RESTORER
4445                ret |= get_user(restorer, &act->sa_restorer);
4446                new_ka.sa.sa_restorer = compat_ptr(restorer);
4447#endif
4448                ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4449                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4450                if (ret)
4451                        return -EFAULT;
4452        }
4453
4454        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4455        if (!ret && oact) {
4456                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4457                               &oact->sa_handler);
4458                ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4459                                         sizeof(oact->sa_mask));
4460                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4461#ifdef __ARCH_HAS_SA_RESTORER
4462                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4463                                &oact->sa_restorer);
4464#endif
4465        }
4466        return ret;
4467}
4468#endif
4469#endif /* !CONFIG_ODD_RT_SIGACTION */
4470
4471#ifdef CONFIG_OLD_SIGACTION
4472SYSCALL_DEFINE3(sigaction, int, sig,
4473                const struct old_sigaction __user *, act,
4474                struct old_sigaction __user *, oact)
4475{
4476        struct k_sigaction new_ka, old_ka;
4477        int ret;
4478
4479        if (act) {
4480                old_sigset_t mask;
4481                if (!access_ok(act, sizeof(*act)) ||
4482                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4483                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4484                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4485                    __get_user(mask, &act->sa_mask))
4486                        return -EFAULT;
4487#ifdef __ARCH_HAS_KA_RESTORER
4488                new_ka.ka_restorer = NULL;
4489#endif
4490                siginitset(&new_ka.sa.sa_mask, mask);
4491        }
4492
4493        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4494
4495        if (!ret && oact) {
4496                if (!access_ok(oact, sizeof(*oact)) ||
4497                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4498                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4499                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4500                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4501                        return -EFAULT;
4502        }
4503
4504        return ret;
4505}
4506#endif
4507#ifdef CONFIG_COMPAT_OLD_SIGACTION
4508COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4509                const struct compat_old_sigaction __user *, act,
4510                struct compat_old_sigaction __user *, oact)
4511{
4512        struct k_sigaction new_ka, old_ka;
4513        int ret;
4514        compat_old_sigset_t mask;
4515        compat_uptr_t handler, restorer;
4516
4517        if (act) {
4518                if (!access_ok(act, sizeof(*act)) ||
4519                    __get_user(handler, &act->sa_handler) ||
4520                    __get_user(restorer, &act->sa_restorer) ||
4521                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4522                    __get_user(mask, &act->sa_mask))
4523                        return -EFAULT;
4524
4525#ifdef __ARCH_HAS_KA_RESTORER
4526                new_ka.ka_restorer = NULL;
4527#endif
4528                new_ka.sa.sa_handler = compat_ptr(handler);
4529                new_ka.sa.sa_restorer = compat_ptr(restorer);
4530                siginitset(&new_ka.sa.sa_mask, mask);
4531        }
4532
4533        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4534
4535        if (!ret && oact) {
4536                if (!access_ok(oact, sizeof(*oact)) ||
4537                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4538                               &oact->sa_handler) ||
4539                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4540                               &oact->sa_restorer) ||
4541                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4542                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4543                        return -EFAULT;
4544        }
4545        return ret;
4546}
4547#endif
4548
4549#ifdef CONFIG_SGETMASK_SYSCALL
4550
4551/*
4552 * For backwards compatibility.  Functionality superseded by sigprocmask.
4553 */
4554SYSCALL_DEFINE0(sgetmask)
4555{
4556        /* SMP safe */
4557        return current->blocked.sig[0];
4558}
4559
4560SYSCALL_DEFINE1(ssetmask, int, newmask)
4561{
4562        int old = current->blocked.sig[0];
4563        sigset_t newset;
4564
4565        siginitset(&newset, newmask);
4566        set_current_blocked(&newset);
4567
4568        return old;
4569}
4570#endif /* CONFIG_SGETMASK_SYSCALL */
4571
4572#ifdef __ARCH_WANT_SYS_SIGNAL
4573/*
4574 * For backwards compatibility.  Functionality superseded by sigaction.
4575 */
4576SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4577{
4578        struct k_sigaction new_sa, old_sa;
4579        int ret;
4580
4581        new_sa.sa.sa_handler = handler;
4582        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4583        sigemptyset(&new_sa.sa.sa_mask);
4584
4585        ret = do_sigaction(sig, &new_sa, &old_sa);
4586
4587        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4588}
4589#endif /* __ARCH_WANT_SYS_SIGNAL */
4590
4591#ifdef __ARCH_WANT_SYS_PAUSE
4592
4593SYSCALL_DEFINE0(pause)
4594{
4595        while (!signal_pending(current)) {
4596                __set_current_state(TASK_INTERRUPTIBLE);
4597                schedule();
4598        }
4599        return -ERESTARTNOHAND;
4600}
4601
4602#endif
4603
4604static int sigsuspend(sigset_t *set)
4605{
4606        current->saved_sigmask = current->blocked;
4607        set_current_blocked(set);
4608
4609        while (!signal_pending(current)) {
4610                __set_current_state(TASK_INTERRUPTIBLE);
4611                schedule();
4612        }
4613        set_restore_sigmask();
4614        return -ERESTARTNOHAND;
4615}
4616
4617/**
4618 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4619 *      @unewset value until a signal is received
4620 *  @unewset: new signal mask value
4621 *  @sigsetsize: size of sigset_t type
4622 */
4623SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4624{
4625        sigset_t newset;
4626
4627        /* XXX: Don't preclude handling different sized sigset_t's.  */
4628        if (sigsetsize != sizeof(sigset_t))
4629                return -EINVAL;
4630
4631        if (copy_from_user(&newset, unewset, sizeof(newset)))
4632                return -EFAULT;
4633        return sigsuspend(&newset);
4634}
4635 
4636#ifdef CONFIG_COMPAT
4637COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4638{
4639        sigset_t newset;
4640
4641        /* XXX: Don't preclude handling different sized sigset_t's.  */
4642        if (sigsetsize != sizeof(sigset_t))
4643                return -EINVAL;
4644
4645        if (get_compat_sigset(&newset, unewset))
4646                return -EFAULT;
4647        return sigsuspend(&newset);
4648}
4649#endif
4650
4651#ifdef CONFIG_OLD_SIGSUSPEND
4652SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4653{
4654        sigset_t blocked;
4655        siginitset(&blocked, mask);
4656        return sigsuspend(&blocked);
4657}
4658#endif
4659#ifdef CONFIG_OLD_SIGSUSPEND3
4660SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4661{
4662        sigset_t blocked;
4663        siginitset(&blocked, mask);
4664        return sigsuspend(&blocked);
4665}
4666#endif
4667
4668__weak const char *arch_vma_name(struct vm_area_struct *vma)
4669{
4670        return NULL;
4671}
4672
4673static inline void siginfo_buildtime_checks(void)
4674{
4675        BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4676
4677        /* Verify the offsets in the two siginfos match */
4678#define CHECK_OFFSET(field) \
4679        BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4680
4681        /* kill */
4682        CHECK_OFFSET(si_pid);
4683        CHECK_OFFSET(si_uid);
4684
4685        /* timer */
4686        CHECK_OFFSET(si_tid);
4687        CHECK_OFFSET(si_overrun);
4688        CHECK_OFFSET(si_value);
4689
4690        /* rt */
4691        CHECK_OFFSET(si_pid);
4692        CHECK_OFFSET(si_uid);
4693        CHECK_OFFSET(si_value);
4694
4695        /* sigchld */
4696        CHECK_OFFSET(si_pid);
4697        CHECK_OFFSET(si_uid);
4698        CHECK_OFFSET(si_status);
4699        CHECK_OFFSET(si_utime);
4700        CHECK_OFFSET(si_stime);
4701
4702        /* sigfault */
4703        CHECK_OFFSET(si_addr);
4704        CHECK_OFFSET(si_trapno);
4705        CHECK_OFFSET(si_addr_lsb);
4706        CHECK_OFFSET(si_lower);
4707        CHECK_OFFSET(si_upper);
4708        CHECK_OFFSET(si_pkey);
4709        CHECK_OFFSET(si_perf_data);
4710        CHECK_OFFSET(si_perf_type);
4711
4712        /* sigpoll */
4713        CHECK_OFFSET(si_band);
4714        CHECK_OFFSET(si_fd);
4715
4716        /* sigsys */
4717        CHECK_OFFSET(si_call_addr);
4718        CHECK_OFFSET(si_syscall);
4719        CHECK_OFFSET(si_arch);
4720#undef CHECK_OFFSET
4721
4722        /* usb asyncio */
4723        BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4724                     offsetof(struct siginfo, si_addr));
4725        if (sizeof(int) == sizeof(void __user *)) {
4726                BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4727                             sizeof(void __user *));
4728        } else {
4729                BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4730                              sizeof_field(struct siginfo, si_uid)) !=
4731                             sizeof(void __user *));
4732                BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4733                             offsetof(struct siginfo, si_uid));
4734        }
4735#ifdef CONFIG_COMPAT
4736        BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4737                     offsetof(struct compat_siginfo, si_addr));
4738        BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4739                     sizeof(compat_uptr_t));
4740        BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4741                     sizeof_field(struct siginfo, si_pid));
4742#endif
4743}
4744
4745void __init signals_init(void)
4746{
4747        siginfo_buildtime_checks();
4748
4749        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4750}
4751
4752#ifdef CONFIG_KGDB_KDB
4753#include <linux/kdb.h>
4754/*
4755 * kdb_send_sig - Allows kdb to send signals without exposing
4756 * signal internals.  This function checks if the required locks are
4757 * available before calling the main signal code, to avoid kdb
4758 * deadlocks.
4759 */
4760void kdb_send_sig(struct task_struct *t, int sig)
4761{
4762        static struct task_struct *kdb_prev_t;
4763        int new_t, ret;
4764        if (!spin_trylock(&t->sighand->siglock)) {
4765                kdb_printf("Can't do kill command now.\n"
4766                           "The sigmask lock is held somewhere else in "
4767                           "kernel, try again later\n");
4768                return;
4769        }
4770        new_t = kdb_prev_t != t;
4771        kdb_prev_t = t;
4772        if (!task_is_running(t) && new_t) {
4773                spin_unlock(&t->sighand->siglock);
4774                kdb_printf("Process is not RUNNING, sending a signal from "
4775                           "kdb risks deadlock\n"
4776                           "on the run queue locks. "
4777                           "The signal has _not_ been sent.\n"
4778                           "Reissue the kill command if you want to risk "
4779                           "the deadlock.\n");
4780                return;
4781        }
4782        ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4783        spin_unlock(&t->sighand->siglock);
4784        if (ret)
4785                kdb_printf("Fail to deliver Signal %d to process %d.\n",
4786                           sig, t->pid);
4787        else
4788                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4789}
4790#endif  /* CONFIG_KGDB_KDB */
4791