linux/kernel/workqueue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002           Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010           SUSE Linux Products GmbH
  16 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58        /*
  59         * worker_pool flags
  60         *
  61         * A bound pool is either associated or disassociated with its CPU.
  62         * While associated (!DISASSOCIATED), all workers are bound to the
  63         * CPU and none has %WORKER_UNBOUND set and concurrency management
  64         * is in effect.
  65         *
  66         * While DISASSOCIATED, the cpu may be offline and all workers have
  67         * %WORKER_UNBOUND set and concurrency management disabled, and may
  68         * be executing on any CPU.  The pool behaves as an unbound one.
  69         *
  70         * Note that DISASSOCIATED should be flipped only while holding
  71         * wq_pool_attach_mutex to avoid changing binding state while
  72         * worker_attach_to_pool() is in progress.
  73         */
  74        POOL_MANAGER_ACTIVE     = 1 << 0,       /* being managed */
  75        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  76
  77        /* worker flags */
  78        WORKER_DIE              = 1 << 1,       /* die die die */
  79        WORKER_IDLE             = 1 << 2,       /* is idle */
  80        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  81        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  82        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  83        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  84
  85        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  86                                  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  89
  90        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  91        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  92
  93        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  94        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  95
  96        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97                                                /* call for help after 10ms
  98                                                   (min two ticks) */
  99        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
 100        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
 101
 102        /*
 103         * Rescue workers are used only on emergencies and shared by
 104         * all cpus.  Give MIN_NICE.
 105         */
 106        RESCUER_NICE_LEVEL      = MIN_NICE,
 107        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 108
 109        WQ_NAME_LEN             = 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149        raw_spinlock_t          lock;           /* the pool lock */
 150        int                     cpu;            /* I: the associated cpu */
 151        int                     node;           /* I: the associated node ID */
 152        int                     id;             /* I: pool ID */
 153        unsigned int            flags;          /* X: flags */
 154
 155        unsigned long           watchdog_ts;    /* L: watchdog timestamp */
 156
 157        struct list_head        worklist;       /* L: list of pending works */
 158
 159        int                     nr_workers;     /* L: total number of workers */
 160        int                     nr_idle;        /* L: currently idle workers */
 161
 162        struct list_head        idle_list;      /* X: list of idle workers */
 163        struct timer_list       idle_timer;     /* L: worker idle timeout */
 164        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 165
 166        /* a workers is either on busy_hash or idle_list, or the manager */
 167        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 168                                                /* L: hash of busy workers */
 169
 170        struct worker           *manager;       /* L: purely informational */
 171        struct list_head        workers;        /* A: attached workers */
 172        struct completion       *detach_completion; /* all workers detached */
 173
 174        struct ida              worker_ida;     /* worker IDs for task name */
 175
 176        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 177        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 178        int                     refcnt;         /* PL: refcnt for unbound pools */
 179
 180        /*
 181         * The current concurrency level.  As it's likely to be accessed
 182         * from other CPUs during try_to_wake_up(), put it in a separate
 183         * cacheline.
 184         */
 185        atomic_t                nr_running ____cacheline_aligned_in_smp;
 186
 187        /*
 188         * Destruction of pool is RCU protected to allow dereferences
 189         * from get_work_pool().
 190         */
 191        struct rcu_head         rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201        struct worker_pool      *pool;          /* I: the associated pool */
 202        struct workqueue_struct *wq;            /* I: the owning workqueue */
 203        int                     work_color;     /* L: current color */
 204        int                     flush_color;    /* L: flushing color */
 205        int                     refcnt;         /* L: reference count */
 206        int                     nr_in_flight[WORK_NR_COLORS];
 207                                                /* L: nr of in_flight works */
 208
 209        /*
 210         * nr_active management and WORK_STRUCT_INACTIVE:
 211         *
 212         * When pwq->nr_active >= max_active, new work item is queued to
 213         * pwq->inactive_works instead of pool->worklist and marked with
 214         * WORK_STRUCT_INACTIVE.
 215         *
 216         * All work items marked with WORK_STRUCT_INACTIVE do not participate
 217         * in pwq->nr_active and all work items in pwq->inactive_works are
 218         * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
 219         * work items are in pwq->inactive_works.  Some of them are ready to
 220         * run in pool->worklist or worker->scheduled.  Those work itmes are
 221         * only struct wq_barrier which is used for flush_work() and should
 222         * not participate in pwq->nr_active.  For non-barrier work item, it
 223         * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 224         */
 225        int                     nr_active;      /* L: nr of active works */
 226        int                     max_active;     /* L: max active works */
 227        struct list_head        inactive_works; /* L: inactive works */
 228        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 229        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 230
 231        /*
 232         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 233         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 234         * itself is also RCU protected so that the first pwq can be
 235         * determined without grabbing wq->mutex.
 236         */
 237        struct work_struct      unbound_release_work;
 238        struct rcu_head         rcu;
 239} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 240
 241/*
 242 * Structure used to wait for workqueue flush.
 243 */
 244struct wq_flusher {
 245        struct list_head        list;           /* WQ: list of flushers */
 246        int                     flush_color;    /* WQ: flush color waiting for */
 247        struct completion       done;           /* flush completion */
 248};
 249
 250struct wq_device;
 251
 252/*
 253 * The externally visible workqueue.  It relays the issued work items to
 254 * the appropriate worker_pool through its pool_workqueues.
 255 */
 256struct workqueue_struct {
 257        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 258        struct list_head        list;           /* PR: list of all workqueues */
 259
 260        struct mutex            mutex;          /* protects this wq */
 261        int                     work_color;     /* WQ: current work color */
 262        int                     flush_color;    /* WQ: current flush color */
 263        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 264        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 265        struct list_head        flusher_queue;  /* WQ: flush waiters */
 266        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 267
 268        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 269        struct worker           *rescuer;       /* MD: rescue worker */
 270
 271        int                     nr_drainers;    /* WQ: drain in progress */
 272        int                     saved_max_active; /* WQ: saved pwq max_active */
 273
 274        struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
 275        struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
 276
 277#ifdef CONFIG_SYSFS
 278        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 279#endif
 280#ifdef CONFIG_LOCKDEP
 281        char                    *lock_name;
 282        struct lock_class_key   key;
 283        struct lockdep_map      lockdep_map;
 284#endif
 285        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 286
 287        /*
 288         * Destruction of workqueue_struct is RCU protected to allow walking
 289         * the workqueues list without grabbing wq_pool_mutex.
 290         * This is used to dump all workqueues from sysrq.
 291         */
 292        struct rcu_head         rcu;
 293
 294        /* hot fields used during command issue, aligned to cacheline */
 295        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 296        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 297        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 298};
 299
 300static struct kmem_cache *pwq_cache;
 301
 302static cpumask_var_t *wq_numa_possible_cpumask;
 303                                        /* possible CPUs of each node */
 304
 305static bool wq_disable_numa;
 306module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 307
 308/* see the comment above the definition of WQ_POWER_EFFICIENT */
 309static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 310module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 311
 312static bool wq_online;                  /* can kworkers be created yet? */
 313
 314static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 315
 316/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 317static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 318
 319static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 320static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 321static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
 322/* wait for manager to go away */
 323static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 324
 325static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
 326static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 327
 328/* PL: allowable cpus for unbound wqs and work items */
 329static cpumask_var_t wq_unbound_cpumask;
 330
 331/* CPU where unbound work was last round robin scheduled from this CPU */
 332static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 333
 334/*
 335 * Local execution of unbound work items is no longer guaranteed.  The
 336 * following always forces round-robin CPU selection on unbound work items
 337 * to uncover usages which depend on it.
 338 */
 339#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 340static bool wq_debug_force_rr_cpu = true;
 341#else
 342static bool wq_debug_force_rr_cpu = false;
 343#endif
 344module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 345
 346/* the per-cpu worker pools */
 347static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 348
 349static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 350
 351/* PL: hash of all unbound pools keyed by pool->attrs */
 352static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 353
 354/* I: attributes used when instantiating standard unbound pools on demand */
 355static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 356
 357/* I: attributes used when instantiating ordered pools on demand */
 358static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 359
 360struct workqueue_struct *system_wq __read_mostly;
 361EXPORT_SYMBOL(system_wq);
 362struct workqueue_struct *system_highpri_wq __read_mostly;
 363EXPORT_SYMBOL_GPL(system_highpri_wq);
 364struct workqueue_struct *system_long_wq __read_mostly;
 365EXPORT_SYMBOL_GPL(system_long_wq);
 366struct workqueue_struct *system_unbound_wq __read_mostly;
 367EXPORT_SYMBOL_GPL(system_unbound_wq);
 368struct workqueue_struct *system_freezable_wq __read_mostly;
 369EXPORT_SYMBOL_GPL(system_freezable_wq);
 370struct workqueue_struct *system_power_efficient_wq __read_mostly;
 371EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 372struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 373EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 374
 375static int worker_thread(void *__worker);
 376static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 377static void show_pwq(struct pool_workqueue *pwq);
 378static void show_one_worker_pool(struct worker_pool *pool);
 379
 380#define CREATE_TRACE_POINTS
 381#include <trace/events/workqueue.h>
 382
 383#define assert_rcu_or_pool_mutex()                                      \
 384        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 385                         !lockdep_is_held(&wq_pool_mutex),              \
 386                         "RCU or wq_pool_mutex should be held")
 387
 388#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
 389        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 390                         !lockdep_is_held(&wq->mutex) &&                \
 391                         !lockdep_is_held(&wq_pool_mutex),              \
 392                         "RCU, wq->mutex or wq_pool_mutex should be held")
 393
 394#define for_each_cpu_worker_pool(pool, cpu)                             \
 395        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 396             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 397             (pool)++)
 398
 399/**
 400 * for_each_pool - iterate through all worker_pools in the system
 401 * @pool: iteration cursor
 402 * @pi: integer used for iteration
 403 *
 404 * This must be called either with wq_pool_mutex held or RCU read
 405 * locked.  If the pool needs to be used beyond the locking in effect, the
 406 * caller is responsible for guaranteeing that the pool stays online.
 407 *
 408 * The if/else clause exists only for the lockdep assertion and can be
 409 * ignored.
 410 */
 411#define for_each_pool(pool, pi)                                         \
 412        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 413                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 414                else
 415
 416/**
 417 * for_each_pool_worker - iterate through all workers of a worker_pool
 418 * @worker: iteration cursor
 419 * @pool: worker_pool to iterate workers of
 420 *
 421 * This must be called with wq_pool_attach_mutex.
 422 *
 423 * The if/else clause exists only for the lockdep assertion and can be
 424 * ignored.
 425 */
 426#define for_each_pool_worker(worker, pool)                              \
 427        list_for_each_entry((worker), &(pool)->workers, node)           \
 428                if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 429                else
 430
 431/**
 432 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 433 * @pwq: iteration cursor
 434 * @wq: the target workqueue
 435 *
 436 * This must be called either with wq->mutex held or RCU read locked.
 437 * If the pwq needs to be used beyond the locking in effect, the caller is
 438 * responsible for guaranteeing that the pwq stays online.
 439 *
 440 * The if/else clause exists only for the lockdep assertion and can be
 441 * ignored.
 442 */
 443#define for_each_pwq(pwq, wq)                                           \
 444        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,          \
 445                                 lockdep_is_held(&(wq->mutex)))
 446
 447#ifdef CONFIG_DEBUG_OBJECTS_WORK
 448
 449static const struct debug_obj_descr work_debug_descr;
 450
 451static void *work_debug_hint(void *addr)
 452{
 453        return ((struct work_struct *) addr)->func;
 454}
 455
 456static bool work_is_static_object(void *addr)
 457{
 458        struct work_struct *work = addr;
 459
 460        return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 461}
 462
 463/*
 464 * fixup_init is called when:
 465 * - an active object is initialized
 466 */
 467static bool work_fixup_init(void *addr, enum debug_obj_state state)
 468{
 469        struct work_struct *work = addr;
 470
 471        switch (state) {
 472        case ODEBUG_STATE_ACTIVE:
 473                cancel_work_sync(work);
 474                debug_object_init(work, &work_debug_descr);
 475                return true;
 476        default:
 477                return false;
 478        }
 479}
 480
 481/*
 482 * fixup_free is called when:
 483 * - an active object is freed
 484 */
 485static bool work_fixup_free(void *addr, enum debug_obj_state state)
 486{
 487        struct work_struct *work = addr;
 488
 489        switch (state) {
 490        case ODEBUG_STATE_ACTIVE:
 491                cancel_work_sync(work);
 492                debug_object_free(work, &work_debug_descr);
 493                return true;
 494        default:
 495                return false;
 496        }
 497}
 498
 499static const struct debug_obj_descr work_debug_descr = {
 500        .name           = "work_struct",
 501        .debug_hint     = work_debug_hint,
 502        .is_static_object = work_is_static_object,
 503        .fixup_init     = work_fixup_init,
 504        .fixup_free     = work_fixup_free,
 505};
 506
 507static inline void debug_work_activate(struct work_struct *work)
 508{
 509        debug_object_activate(work, &work_debug_descr);
 510}
 511
 512static inline void debug_work_deactivate(struct work_struct *work)
 513{
 514        debug_object_deactivate(work, &work_debug_descr);
 515}
 516
 517void __init_work(struct work_struct *work, int onstack)
 518{
 519        if (onstack)
 520                debug_object_init_on_stack(work, &work_debug_descr);
 521        else
 522                debug_object_init(work, &work_debug_descr);
 523}
 524EXPORT_SYMBOL_GPL(__init_work);
 525
 526void destroy_work_on_stack(struct work_struct *work)
 527{
 528        debug_object_free(work, &work_debug_descr);
 529}
 530EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 531
 532void destroy_delayed_work_on_stack(struct delayed_work *work)
 533{
 534        destroy_timer_on_stack(&work->timer);
 535        debug_object_free(&work->work, &work_debug_descr);
 536}
 537EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 538
 539#else
 540static inline void debug_work_activate(struct work_struct *work) { }
 541static inline void debug_work_deactivate(struct work_struct *work) { }
 542#endif
 543
 544/**
 545 * worker_pool_assign_id - allocate ID and assign it to @pool
 546 * @pool: the pool pointer of interest
 547 *
 548 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 549 * successfully, -errno on failure.
 550 */
 551static int worker_pool_assign_id(struct worker_pool *pool)
 552{
 553        int ret;
 554
 555        lockdep_assert_held(&wq_pool_mutex);
 556
 557        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 558                        GFP_KERNEL);
 559        if (ret >= 0) {
 560                pool->id = ret;
 561                return 0;
 562        }
 563        return ret;
 564}
 565
 566/**
 567 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 568 * @wq: the target workqueue
 569 * @node: the node ID
 570 *
 571 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 572 * read locked.
 573 * If the pwq needs to be used beyond the locking in effect, the caller is
 574 * responsible for guaranteeing that the pwq stays online.
 575 *
 576 * Return: The unbound pool_workqueue for @node.
 577 */
 578static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 579                                                  int node)
 580{
 581        assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 582
 583        /*
 584         * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 585         * delayed item is pending.  The plan is to keep CPU -> NODE
 586         * mapping valid and stable across CPU on/offlines.  Once that
 587         * happens, this workaround can be removed.
 588         */
 589        if (unlikely(node == NUMA_NO_NODE))
 590                return wq->dfl_pwq;
 591
 592        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 593}
 594
 595static unsigned int work_color_to_flags(int color)
 596{
 597        return color << WORK_STRUCT_COLOR_SHIFT;
 598}
 599
 600static int get_work_color(unsigned long work_data)
 601{
 602        return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 603                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 604}
 605
 606static int work_next_color(int color)
 607{
 608        return (color + 1) % WORK_NR_COLORS;
 609}
 610
 611/*
 612 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 613 * contain the pointer to the queued pwq.  Once execution starts, the flag
 614 * is cleared and the high bits contain OFFQ flags and pool ID.
 615 *
 616 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 617 * and clear_work_data() can be used to set the pwq, pool or clear
 618 * work->data.  These functions should only be called while the work is
 619 * owned - ie. while the PENDING bit is set.
 620 *
 621 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 622 * corresponding to a work.  Pool is available once the work has been
 623 * queued anywhere after initialization until it is sync canceled.  pwq is
 624 * available only while the work item is queued.
 625 *
 626 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 627 * canceled.  While being canceled, a work item may have its PENDING set
 628 * but stay off timer and worklist for arbitrarily long and nobody should
 629 * try to steal the PENDING bit.
 630 */
 631static inline void set_work_data(struct work_struct *work, unsigned long data,
 632                                 unsigned long flags)
 633{
 634        WARN_ON_ONCE(!work_pending(work));
 635        atomic_long_set(&work->data, data | flags | work_static(work));
 636}
 637
 638static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 639                         unsigned long extra_flags)
 640{
 641        set_work_data(work, (unsigned long)pwq,
 642                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 643}
 644
 645static void set_work_pool_and_keep_pending(struct work_struct *work,
 646                                           int pool_id)
 647{
 648        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 649                      WORK_STRUCT_PENDING);
 650}
 651
 652static void set_work_pool_and_clear_pending(struct work_struct *work,
 653                                            int pool_id)
 654{
 655        /*
 656         * The following wmb is paired with the implied mb in
 657         * test_and_set_bit(PENDING) and ensures all updates to @work made
 658         * here are visible to and precede any updates by the next PENDING
 659         * owner.
 660         */
 661        smp_wmb();
 662        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 663        /*
 664         * The following mb guarantees that previous clear of a PENDING bit
 665         * will not be reordered with any speculative LOADS or STORES from
 666         * work->current_func, which is executed afterwards.  This possible
 667         * reordering can lead to a missed execution on attempt to queue
 668         * the same @work.  E.g. consider this case:
 669         *
 670         *   CPU#0                         CPU#1
 671         *   ----------------------------  --------------------------------
 672         *
 673         * 1  STORE event_indicated
 674         * 2  queue_work_on() {
 675         * 3    test_and_set_bit(PENDING)
 676         * 4 }                             set_..._and_clear_pending() {
 677         * 5                                 set_work_data() # clear bit
 678         * 6                                 smp_mb()
 679         * 7                               work->current_func() {
 680         * 8                                  LOAD event_indicated
 681         *                                 }
 682         *
 683         * Without an explicit full barrier speculative LOAD on line 8 can
 684         * be executed before CPU#0 does STORE on line 1.  If that happens,
 685         * CPU#0 observes the PENDING bit is still set and new execution of
 686         * a @work is not queued in a hope, that CPU#1 will eventually
 687         * finish the queued @work.  Meanwhile CPU#1 does not see
 688         * event_indicated is set, because speculative LOAD was executed
 689         * before actual STORE.
 690         */
 691        smp_mb();
 692}
 693
 694static void clear_work_data(struct work_struct *work)
 695{
 696        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 697        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 698}
 699
 700static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 701{
 702        unsigned long data = atomic_long_read(&work->data);
 703
 704        if (data & WORK_STRUCT_PWQ)
 705                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 706        else
 707                return NULL;
 708}
 709
 710/**
 711 * get_work_pool - return the worker_pool a given work was associated with
 712 * @work: the work item of interest
 713 *
 714 * Pools are created and destroyed under wq_pool_mutex, and allows read
 715 * access under RCU read lock.  As such, this function should be
 716 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 717 *
 718 * All fields of the returned pool are accessible as long as the above
 719 * mentioned locking is in effect.  If the returned pool needs to be used
 720 * beyond the critical section, the caller is responsible for ensuring the
 721 * returned pool is and stays online.
 722 *
 723 * Return: The worker_pool @work was last associated with.  %NULL if none.
 724 */
 725static struct worker_pool *get_work_pool(struct work_struct *work)
 726{
 727        unsigned long data = atomic_long_read(&work->data);
 728        int pool_id;
 729
 730        assert_rcu_or_pool_mutex();
 731
 732        if (data & WORK_STRUCT_PWQ)
 733                return ((struct pool_workqueue *)
 734                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 735
 736        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 737        if (pool_id == WORK_OFFQ_POOL_NONE)
 738                return NULL;
 739
 740        return idr_find(&worker_pool_idr, pool_id);
 741}
 742
 743/**
 744 * get_work_pool_id - return the worker pool ID a given work is associated with
 745 * @work: the work item of interest
 746 *
 747 * Return: The worker_pool ID @work was last associated with.
 748 * %WORK_OFFQ_POOL_NONE if none.
 749 */
 750static int get_work_pool_id(struct work_struct *work)
 751{
 752        unsigned long data = atomic_long_read(&work->data);
 753
 754        if (data & WORK_STRUCT_PWQ)
 755                return ((struct pool_workqueue *)
 756                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 757
 758        return data >> WORK_OFFQ_POOL_SHIFT;
 759}
 760
 761static void mark_work_canceling(struct work_struct *work)
 762{
 763        unsigned long pool_id = get_work_pool_id(work);
 764
 765        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 766        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 767}
 768
 769static bool work_is_canceling(struct work_struct *work)
 770{
 771        unsigned long data = atomic_long_read(&work->data);
 772
 773        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 774}
 775
 776/*
 777 * Policy functions.  These define the policies on how the global worker
 778 * pools are managed.  Unless noted otherwise, these functions assume that
 779 * they're being called with pool->lock held.
 780 */
 781
 782static bool __need_more_worker(struct worker_pool *pool)
 783{
 784        return !atomic_read(&pool->nr_running);
 785}
 786
 787/*
 788 * Need to wake up a worker?  Called from anything but currently
 789 * running workers.
 790 *
 791 * Note that, because unbound workers never contribute to nr_running, this
 792 * function will always return %true for unbound pools as long as the
 793 * worklist isn't empty.
 794 */
 795static bool need_more_worker(struct worker_pool *pool)
 796{
 797        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 798}
 799
 800/* Can I start working?  Called from busy but !running workers. */
 801static bool may_start_working(struct worker_pool *pool)
 802{
 803        return pool->nr_idle;
 804}
 805
 806/* Do I need to keep working?  Called from currently running workers. */
 807static bool keep_working(struct worker_pool *pool)
 808{
 809        return !list_empty(&pool->worklist) &&
 810                atomic_read(&pool->nr_running) <= 1;
 811}
 812
 813/* Do we need a new worker?  Called from manager. */
 814static bool need_to_create_worker(struct worker_pool *pool)
 815{
 816        return need_more_worker(pool) && !may_start_working(pool);
 817}
 818
 819/* Do we have too many workers and should some go away? */
 820static bool too_many_workers(struct worker_pool *pool)
 821{
 822        bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 823        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 824        int nr_busy = pool->nr_workers - nr_idle;
 825
 826        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 827}
 828
 829/*
 830 * Wake up functions.
 831 */
 832
 833/* Return the first idle worker.  Safe with preemption disabled */
 834static struct worker *first_idle_worker(struct worker_pool *pool)
 835{
 836        if (unlikely(list_empty(&pool->idle_list)))
 837                return NULL;
 838
 839        return list_first_entry(&pool->idle_list, struct worker, entry);
 840}
 841
 842/**
 843 * wake_up_worker - wake up an idle worker
 844 * @pool: worker pool to wake worker from
 845 *
 846 * Wake up the first idle worker of @pool.
 847 *
 848 * CONTEXT:
 849 * raw_spin_lock_irq(pool->lock).
 850 */
 851static void wake_up_worker(struct worker_pool *pool)
 852{
 853        struct worker *worker = first_idle_worker(pool);
 854
 855        if (likely(worker))
 856                wake_up_process(worker->task);
 857}
 858
 859/**
 860 * wq_worker_running - a worker is running again
 861 * @task: task waking up
 862 *
 863 * This function is called when a worker returns from schedule()
 864 */
 865void wq_worker_running(struct task_struct *task)
 866{
 867        struct worker *worker = kthread_data(task);
 868
 869        if (!worker->sleeping)
 870                return;
 871        if (!(worker->flags & WORKER_NOT_RUNNING))
 872                atomic_inc(&worker->pool->nr_running);
 873        worker->sleeping = 0;
 874}
 875
 876/**
 877 * wq_worker_sleeping - a worker is going to sleep
 878 * @task: task going to sleep
 879 *
 880 * This function is called from schedule() when a busy worker is
 881 * going to sleep. Preemption needs to be disabled to protect ->sleeping
 882 * assignment.
 883 */
 884void wq_worker_sleeping(struct task_struct *task)
 885{
 886        struct worker *next, *worker = kthread_data(task);
 887        struct worker_pool *pool;
 888
 889        /*
 890         * Rescuers, which may not have all the fields set up like normal
 891         * workers, also reach here, let's not access anything before
 892         * checking NOT_RUNNING.
 893         */
 894        if (worker->flags & WORKER_NOT_RUNNING)
 895                return;
 896
 897        pool = worker->pool;
 898
 899        /* Return if preempted before wq_worker_running() was reached */
 900        if (worker->sleeping)
 901                return;
 902
 903        worker->sleeping = 1;
 904        raw_spin_lock_irq(&pool->lock);
 905
 906        /*
 907         * The counterpart of the following dec_and_test, implied mb,
 908         * worklist not empty test sequence is in insert_work().
 909         * Please read comment there.
 910         *
 911         * NOT_RUNNING is clear.  This means that we're bound to and
 912         * running on the local cpu w/ rq lock held and preemption
 913         * disabled, which in turn means that none else could be
 914         * manipulating idle_list, so dereferencing idle_list without pool
 915         * lock is safe.
 916         */
 917        if (atomic_dec_and_test(&pool->nr_running) &&
 918            !list_empty(&pool->worklist)) {
 919                next = first_idle_worker(pool);
 920                if (next)
 921                        wake_up_process(next->task);
 922        }
 923        raw_spin_unlock_irq(&pool->lock);
 924}
 925
 926/**
 927 * wq_worker_last_func - retrieve worker's last work function
 928 * @task: Task to retrieve last work function of.
 929 *
 930 * Determine the last function a worker executed. This is called from
 931 * the scheduler to get a worker's last known identity.
 932 *
 933 * CONTEXT:
 934 * raw_spin_lock_irq(rq->lock)
 935 *
 936 * This function is called during schedule() when a kworker is going
 937 * to sleep. It's used by psi to identify aggregation workers during
 938 * dequeuing, to allow periodic aggregation to shut-off when that
 939 * worker is the last task in the system or cgroup to go to sleep.
 940 *
 941 * As this function doesn't involve any workqueue-related locking, it
 942 * only returns stable values when called from inside the scheduler's
 943 * queuing and dequeuing paths, when @task, which must be a kworker,
 944 * is guaranteed to not be processing any works.
 945 *
 946 * Return:
 947 * The last work function %current executed as a worker, NULL if it
 948 * hasn't executed any work yet.
 949 */
 950work_func_t wq_worker_last_func(struct task_struct *task)
 951{
 952        struct worker *worker = kthread_data(task);
 953
 954        return worker->last_func;
 955}
 956
 957/**
 958 * worker_set_flags - set worker flags and adjust nr_running accordingly
 959 * @worker: self
 960 * @flags: flags to set
 961 *
 962 * Set @flags in @worker->flags and adjust nr_running accordingly.
 963 *
 964 * CONTEXT:
 965 * raw_spin_lock_irq(pool->lock)
 966 */
 967static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 968{
 969        struct worker_pool *pool = worker->pool;
 970
 971        WARN_ON_ONCE(worker->task != current);
 972
 973        /* If transitioning into NOT_RUNNING, adjust nr_running. */
 974        if ((flags & WORKER_NOT_RUNNING) &&
 975            !(worker->flags & WORKER_NOT_RUNNING)) {
 976                atomic_dec(&pool->nr_running);
 977        }
 978
 979        worker->flags |= flags;
 980}
 981
 982/**
 983 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 984 * @worker: self
 985 * @flags: flags to clear
 986 *
 987 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 988 *
 989 * CONTEXT:
 990 * raw_spin_lock_irq(pool->lock)
 991 */
 992static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 993{
 994        struct worker_pool *pool = worker->pool;
 995        unsigned int oflags = worker->flags;
 996
 997        WARN_ON_ONCE(worker->task != current);
 998
 999        worker->flags &= ~flags;
1000
1001        /*
1002         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1003         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1004         * of multiple flags, not a single flag.
1005         */
1006        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1007                if (!(worker->flags & WORKER_NOT_RUNNING))
1008                        atomic_inc(&pool->nr_running);
1009}
1010
1011/**
1012 * find_worker_executing_work - find worker which is executing a work
1013 * @pool: pool of interest
1014 * @work: work to find worker for
1015 *
1016 * Find a worker which is executing @work on @pool by searching
1017 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1018 * to match, its current execution should match the address of @work and
1019 * its work function.  This is to avoid unwanted dependency between
1020 * unrelated work executions through a work item being recycled while still
1021 * being executed.
1022 *
1023 * This is a bit tricky.  A work item may be freed once its execution
1024 * starts and nothing prevents the freed area from being recycled for
1025 * another work item.  If the same work item address ends up being reused
1026 * before the original execution finishes, workqueue will identify the
1027 * recycled work item as currently executing and make it wait until the
1028 * current execution finishes, introducing an unwanted dependency.
1029 *
1030 * This function checks the work item address and work function to avoid
1031 * false positives.  Note that this isn't complete as one may construct a
1032 * work function which can introduce dependency onto itself through a
1033 * recycled work item.  Well, if somebody wants to shoot oneself in the
1034 * foot that badly, there's only so much we can do, and if such deadlock
1035 * actually occurs, it should be easy to locate the culprit work function.
1036 *
1037 * CONTEXT:
1038 * raw_spin_lock_irq(pool->lock).
1039 *
1040 * Return:
1041 * Pointer to worker which is executing @work if found, %NULL
1042 * otherwise.
1043 */
1044static struct worker *find_worker_executing_work(struct worker_pool *pool,
1045                                                 struct work_struct *work)
1046{
1047        struct worker *worker;
1048
1049        hash_for_each_possible(pool->busy_hash, worker, hentry,
1050                               (unsigned long)work)
1051                if (worker->current_work == work &&
1052                    worker->current_func == work->func)
1053                        return worker;
1054
1055        return NULL;
1056}
1057
1058/**
1059 * move_linked_works - move linked works to a list
1060 * @work: start of series of works to be scheduled
1061 * @head: target list to append @work to
1062 * @nextp: out parameter for nested worklist walking
1063 *
1064 * Schedule linked works starting from @work to @head.  Work series to
1065 * be scheduled starts at @work and includes any consecutive work with
1066 * WORK_STRUCT_LINKED set in its predecessor.
1067 *
1068 * If @nextp is not NULL, it's updated to point to the next work of
1069 * the last scheduled work.  This allows move_linked_works() to be
1070 * nested inside outer list_for_each_entry_safe().
1071 *
1072 * CONTEXT:
1073 * raw_spin_lock_irq(pool->lock).
1074 */
1075static void move_linked_works(struct work_struct *work, struct list_head *head,
1076                              struct work_struct **nextp)
1077{
1078        struct work_struct *n;
1079
1080        /*
1081         * Linked worklist will always end before the end of the list,
1082         * use NULL for list head.
1083         */
1084        list_for_each_entry_safe_from(work, n, NULL, entry) {
1085                list_move_tail(&work->entry, head);
1086                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1087                        break;
1088        }
1089
1090        /*
1091         * If we're already inside safe list traversal and have moved
1092         * multiple works to the scheduled queue, the next position
1093         * needs to be updated.
1094         */
1095        if (nextp)
1096                *nextp = n;
1097}
1098
1099/**
1100 * get_pwq - get an extra reference on the specified pool_workqueue
1101 * @pwq: pool_workqueue to get
1102 *
1103 * Obtain an extra reference on @pwq.  The caller should guarantee that
1104 * @pwq has positive refcnt and be holding the matching pool->lock.
1105 */
1106static void get_pwq(struct pool_workqueue *pwq)
1107{
1108        lockdep_assert_held(&pwq->pool->lock);
1109        WARN_ON_ONCE(pwq->refcnt <= 0);
1110        pwq->refcnt++;
1111}
1112
1113/**
1114 * put_pwq - put a pool_workqueue reference
1115 * @pwq: pool_workqueue to put
1116 *
1117 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1118 * destruction.  The caller should be holding the matching pool->lock.
1119 */
1120static void put_pwq(struct pool_workqueue *pwq)
1121{
1122        lockdep_assert_held(&pwq->pool->lock);
1123        if (likely(--pwq->refcnt))
1124                return;
1125        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1126                return;
1127        /*
1128         * @pwq can't be released under pool->lock, bounce to
1129         * pwq_unbound_release_workfn().  This never recurses on the same
1130         * pool->lock as this path is taken only for unbound workqueues and
1131         * the release work item is scheduled on a per-cpu workqueue.  To
1132         * avoid lockdep warning, unbound pool->locks are given lockdep
1133         * subclass of 1 in get_unbound_pool().
1134         */
1135        schedule_work(&pwq->unbound_release_work);
1136}
1137
1138/**
1139 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1140 * @pwq: pool_workqueue to put (can be %NULL)
1141 *
1142 * put_pwq() with locking.  This function also allows %NULL @pwq.
1143 */
1144static void put_pwq_unlocked(struct pool_workqueue *pwq)
1145{
1146        if (pwq) {
1147                /*
1148                 * As both pwqs and pools are RCU protected, the
1149                 * following lock operations are safe.
1150                 */
1151                raw_spin_lock_irq(&pwq->pool->lock);
1152                put_pwq(pwq);
1153                raw_spin_unlock_irq(&pwq->pool->lock);
1154        }
1155}
1156
1157static void pwq_activate_inactive_work(struct work_struct *work)
1158{
1159        struct pool_workqueue *pwq = get_work_pwq(work);
1160
1161        trace_workqueue_activate_work(work);
1162        if (list_empty(&pwq->pool->worklist))
1163                pwq->pool->watchdog_ts = jiffies;
1164        move_linked_works(work, &pwq->pool->worklist, NULL);
1165        __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1166        pwq->nr_active++;
1167}
1168
1169static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1170{
1171        struct work_struct *work = list_first_entry(&pwq->inactive_works,
1172                                                    struct work_struct, entry);
1173
1174        pwq_activate_inactive_work(work);
1175}
1176
1177/**
1178 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1179 * @pwq: pwq of interest
1180 * @work_data: work_data of work which left the queue
1181 *
1182 * A work either has completed or is removed from pending queue,
1183 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1184 *
1185 * CONTEXT:
1186 * raw_spin_lock_irq(pool->lock).
1187 */
1188static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1189{
1190        int color = get_work_color(work_data);
1191
1192        if (!(work_data & WORK_STRUCT_INACTIVE)) {
1193                pwq->nr_active--;
1194                if (!list_empty(&pwq->inactive_works)) {
1195                        /* one down, submit an inactive one */
1196                        if (pwq->nr_active < pwq->max_active)
1197                                pwq_activate_first_inactive(pwq);
1198                }
1199        }
1200
1201        pwq->nr_in_flight[color]--;
1202
1203        /* is flush in progress and are we at the flushing tip? */
1204        if (likely(pwq->flush_color != color))
1205                goto out_put;
1206
1207        /* are there still in-flight works? */
1208        if (pwq->nr_in_flight[color])
1209                goto out_put;
1210
1211        /* this pwq is done, clear flush_color */
1212        pwq->flush_color = -1;
1213
1214        /*
1215         * If this was the last pwq, wake up the first flusher.  It
1216         * will handle the rest.
1217         */
1218        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1219                complete(&pwq->wq->first_flusher->done);
1220out_put:
1221        put_pwq(pwq);
1222}
1223
1224/**
1225 * try_to_grab_pending - steal work item from worklist and disable irq
1226 * @work: work item to steal
1227 * @is_dwork: @work is a delayed_work
1228 * @flags: place to store irq state
1229 *
1230 * Try to grab PENDING bit of @work.  This function can handle @work in any
1231 * stable state - idle, on timer or on worklist.
1232 *
1233 * Return:
1234 *
1235 *  ========    ================================================================
1236 *  1           if @work was pending and we successfully stole PENDING
1237 *  0           if @work was idle and we claimed PENDING
1238 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1239 *  -ENOENT     if someone else is canceling @work, this state may persist
1240 *              for arbitrarily long
1241 *  ========    ================================================================
1242 *
1243 * Note:
1244 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1245 * interrupted while holding PENDING and @work off queue, irq must be
1246 * disabled on entry.  This, combined with delayed_work->timer being
1247 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1248 *
1249 * On successful return, >= 0, irq is disabled and the caller is
1250 * responsible for releasing it using local_irq_restore(*@flags).
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 */
1254static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1255                               unsigned long *flags)
1256{
1257        struct worker_pool *pool;
1258        struct pool_workqueue *pwq;
1259
1260        local_irq_save(*flags);
1261
1262        /* try to steal the timer if it exists */
1263        if (is_dwork) {
1264                struct delayed_work *dwork = to_delayed_work(work);
1265
1266                /*
1267                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1268                 * guaranteed that the timer is not queued anywhere and not
1269                 * running on the local CPU.
1270                 */
1271                if (likely(del_timer(&dwork->timer)))
1272                        return 1;
1273        }
1274
1275        /* try to claim PENDING the normal way */
1276        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1277                return 0;
1278
1279        rcu_read_lock();
1280        /*
1281         * The queueing is in progress, or it is already queued. Try to
1282         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1283         */
1284        pool = get_work_pool(work);
1285        if (!pool)
1286                goto fail;
1287
1288        raw_spin_lock(&pool->lock);
1289        /*
1290         * work->data is guaranteed to point to pwq only while the work
1291         * item is queued on pwq->wq, and both updating work->data to point
1292         * to pwq on queueing and to pool on dequeueing are done under
1293         * pwq->pool->lock.  This in turn guarantees that, if work->data
1294         * points to pwq which is associated with a locked pool, the work
1295         * item is currently queued on that pool.
1296         */
1297        pwq = get_work_pwq(work);
1298        if (pwq && pwq->pool == pool) {
1299                debug_work_deactivate(work);
1300
1301                /*
1302                 * A cancelable inactive work item must be in the
1303                 * pwq->inactive_works since a queued barrier can't be
1304                 * canceled (see the comments in insert_wq_barrier()).
1305                 *
1306                 * An inactive work item cannot be grabbed directly because
1307                 * it might have linked barrier work items which, if left
1308                 * on the inactive_works list, will confuse pwq->nr_active
1309                 * management later on and cause stall.  Make sure the work
1310                 * item is activated before grabbing.
1311                 */
1312                if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1313                        pwq_activate_inactive_work(work);
1314
1315                list_del_init(&work->entry);
1316                pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1317
1318                /* work->data points to pwq iff queued, point to pool */
1319                set_work_pool_and_keep_pending(work, pool->id);
1320
1321                raw_spin_unlock(&pool->lock);
1322                rcu_read_unlock();
1323                return 1;
1324        }
1325        raw_spin_unlock(&pool->lock);
1326fail:
1327        rcu_read_unlock();
1328        local_irq_restore(*flags);
1329        if (work_is_canceling(work))
1330                return -ENOENT;
1331        cpu_relax();
1332        return -EAGAIN;
1333}
1334
1335/**
1336 * insert_work - insert a work into a pool
1337 * @pwq: pwq @work belongs to
1338 * @work: work to insert
1339 * @head: insertion point
1340 * @extra_flags: extra WORK_STRUCT_* flags to set
1341 *
1342 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1343 * work_struct flags.
1344 *
1345 * CONTEXT:
1346 * raw_spin_lock_irq(pool->lock).
1347 */
1348static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1349                        struct list_head *head, unsigned int extra_flags)
1350{
1351        struct worker_pool *pool = pwq->pool;
1352
1353        /* record the work call stack in order to print it in KASAN reports */
1354        kasan_record_aux_stack_noalloc(work);
1355
1356        /* we own @work, set data and link */
1357        set_work_pwq(work, pwq, extra_flags);
1358        list_add_tail(&work->entry, head);
1359        get_pwq(pwq);
1360
1361        /*
1362         * Ensure either wq_worker_sleeping() sees the above
1363         * list_add_tail() or we see zero nr_running to avoid workers lying
1364         * around lazily while there are works to be processed.
1365         */
1366        smp_mb();
1367
1368        if (__need_more_worker(pool))
1369                wake_up_worker(pool);
1370}
1371
1372/*
1373 * Test whether @work is being queued from another work executing on the
1374 * same workqueue.
1375 */
1376static bool is_chained_work(struct workqueue_struct *wq)
1377{
1378        struct worker *worker;
1379
1380        worker = current_wq_worker();
1381        /*
1382         * Return %true iff I'm a worker executing a work item on @wq.  If
1383         * I'm @worker, it's safe to dereference it without locking.
1384         */
1385        return worker && worker->current_pwq->wq == wq;
1386}
1387
1388/*
1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1391 * avoid perturbing sensitive tasks.
1392 */
1393static int wq_select_unbound_cpu(int cpu)
1394{
1395        static bool printed_dbg_warning;
1396        int new_cpu;
1397
1398        if (likely(!wq_debug_force_rr_cpu)) {
1399                if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1400                        return cpu;
1401        } else if (!printed_dbg_warning) {
1402                pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403                printed_dbg_warning = true;
1404        }
1405
1406        if (cpumask_empty(wq_unbound_cpumask))
1407                return cpu;
1408
1409        new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410        new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411        if (unlikely(new_cpu >= nr_cpu_ids)) {
1412                new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413                if (unlikely(new_cpu >= nr_cpu_ids))
1414                        return cpu;
1415        }
1416        __this_cpu_write(wq_rr_cpu_last, new_cpu);
1417
1418        return new_cpu;
1419}
1420
1421static void __queue_work(int cpu, struct workqueue_struct *wq,
1422                         struct work_struct *work)
1423{
1424        struct pool_workqueue *pwq;
1425        struct worker_pool *last_pool;
1426        struct list_head *worklist;
1427        unsigned int work_flags;
1428        unsigned int req_cpu = cpu;
1429
1430        /*
1431         * While a work item is PENDING && off queue, a task trying to
1432         * steal the PENDING will busy-loop waiting for it to either get
1433         * queued or lose PENDING.  Grabbing PENDING and queueing should
1434         * happen with IRQ disabled.
1435         */
1436        lockdep_assert_irqs_disabled();
1437
1438
1439        /* if draining, only works from the same workqueue are allowed */
1440        if (unlikely(wq->flags & __WQ_DRAINING) &&
1441            WARN_ON_ONCE(!is_chained_work(wq)))
1442                return;
1443        rcu_read_lock();
1444retry:
1445        /* pwq which will be used unless @work is executing elsewhere */
1446        if (wq->flags & WQ_UNBOUND) {
1447                if (req_cpu == WORK_CPU_UNBOUND)
1448                        cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1449                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1450        } else {
1451                if (req_cpu == WORK_CPU_UNBOUND)
1452                        cpu = raw_smp_processor_id();
1453                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1454        }
1455
1456        /*
1457         * If @work was previously on a different pool, it might still be
1458         * running there, in which case the work needs to be queued on that
1459         * pool to guarantee non-reentrancy.
1460         */
1461        last_pool = get_work_pool(work);
1462        if (last_pool && last_pool != pwq->pool) {
1463                struct worker *worker;
1464
1465                raw_spin_lock(&last_pool->lock);
1466
1467                worker = find_worker_executing_work(last_pool, work);
1468
1469                if (worker && worker->current_pwq->wq == wq) {
1470                        pwq = worker->current_pwq;
1471                } else {
1472                        /* meh... not running there, queue here */
1473                        raw_spin_unlock(&last_pool->lock);
1474                        raw_spin_lock(&pwq->pool->lock);
1475                }
1476        } else {
1477                raw_spin_lock(&pwq->pool->lock);
1478        }
1479
1480        /*
1481         * pwq is determined and locked.  For unbound pools, we could have
1482         * raced with pwq release and it could already be dead.  If its
1483         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1484         * without another pwq replacing it in the numa_pwq_tbl or while
1485         * work items are executing on it, so the retrying is guaranteed to
1486         * make forward-progress.
1487         */
1488        if (unlikely(!pwq->refcnt)) {
1489                if (wq->flags & WQ_UNBOUND) {
1490                        raw_spin_unlock(&pwq->pool->lock);
1491                        cpu_relax();
1492                        goto retry;
1493                }
1494                /* oops */
1495                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1496                          wq->name, cpu);
1497        }
1498
1499        /* pwq determined, queue */
1500        trace_workqueue_queue_work(req_cpu, pwq, work);
1501
1502        if (WARN_ON(!list_empty(&work->entry)))
1503                goto out;
1504
1505        pwq->nr_in_flight[pwq->work_color]++;
1506        work_flags = work_color_to_flags(pwq->work_color);
1507
1508        if (likely(pwq->nr_active < pwq->max_active)) {
1509                trace_workqueue_activate_work(work);
1510                pwq->nr_active++;
1511                worklist = &pwq->pool->worklist;
1512                if (list_empty(worklist))
1513                        pwq->pool->watchdog_ts = jiffies;
1514        } else {
1515                work_flags |= WORK_STRUCT_INACTIVE;
1516                worklist = &pwq->inactive_works;
1517        }
1518
1519        debug_work_activate(work);
1520        insert_work(pwq, work, worklist, work_flags);
1521
1522out:
1523        raw_spin_unlock(&pwq->pool->lock);
1524        rcu_read_unlock();
1525}
1526
1527/**
1528 * queue_work_on - queue work on specific cpu
1529 * @cpu: CPU number to execute work on
1530 * @wq: workqueue to use
1531 * @work: work to queue
1532 *
1533 * We queue the work to a specific CPU, the caller must ensure it
1534 * can't go away.
1535 *
1536 * Return: %false if @work was already on a queue, %true otherwise.
1537 */
1538bool queue_work_on(int cpu, struct workqueue_struct *wq,
1539                   struct work_struct *work)
1540{
1541        bool ret = false;
1542        unsigned long flags;
1543
1544        local_irq_save(flags);
1545
1546        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1547                __queue_work(cpu, wq, work);
1548                ret = true;
1549        }
1550
1551        local_irq_restore(flags);
1552        return ret;
1553}
1554EXPORT_SYMBOL(queue_work_on);
1555
1556/**
1557 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1558 * @node: NUMA node ID that we want to select a CPU from
1559 *
1560 * This function will attempt to find a "random" cpu available on a given
1561 * node. If there are no CPUs available on the given node it will return
1562 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1563 * available CPU if we need to schedule this work.
1564 */
1565static int workqueue_select_cpu_near(int node)
1566{
1567        int cpu;
1568
1569        /* No point in doing this if NUMA isn't enabled for workqueues */
1570        if (!wq_numa_enabled)
1571                return WORK_CPU_UNBOUND;
1572
1573        /* Delay binding to CPU if node is not valid or online */
1574        if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1575                return WORK_CPU_UNBOUND;
1576
1577        /* Use local node/cpu if we are already there */
1578        cpu = raw_smp_processor_id();
1579        if (node == cpu_to_node(cpu))
1580                return cpu;
1581
1582        /* Use "random" otherwise know as "first" online CPU of node */
1583        cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1584
1585        /* If CPU is valid return that, otherwise just defer */
1586        return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1587}
1588
1589/**
1590 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1591 * @node: NUMA node that we are targeting the work for
1592 * @wq: workqueue to use
1593 * @work: work to queue
1594 *
1595 * We queue the work to a "random" CPU within a given NUMA node. The basic
1596 * idea here is to provide a way to somehow associate work with a given
1597 * NUMA node.
1598 *
1599 * This function will only make a best effort attempt at getting this onto
1600 * the right NUMA node. If no node is requested or the requested node is
1601 * offline then we just fall back to standard queue_work behavior.
1602 *
1603 * Currently the "random" CPU ends up being the first available CPU in the
1604 * intersection of cpu_online_mask and the cpumask of the node, unless we
1605 * are running on the node. In that case we just use the current CPU.
1606 *
1607 * Return: %false if @work was already on a queue, %true otherwise.
1608 */
1609bool queue_work_node(int node, struct workqueue_struct *wq,
1610                     struct work_struct *work)
1611{
1612        unsigned long flags;
1613        bool ret = false;
1614
1615        /*
1616         * This current implementation is specific to unbound workqueues.
1617         * Specifically we only return the first available CPU for a given
1618         * node instead of cycling through individual CPUs within the node.
1619         *
1620         * If this is used with a per-cpu workqueue then the logic in
1621         * workqueue_select_cpu_near would need to be updated to allow for
1622         * some round robin type logic.
1623         */
1624        WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1625
1626        local_irq_save(flags);
1627
1628        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1629                int cpu = workqueue_select_cpu_near(node);
1630
1631                __queue_work(cpu, wq, work);
1632                ret = true;
1633        }
1634
1635        local_irq_restore(flags);
1636        return ret;
1637}
1638EXPORT_SYMBOL_GPL(queue_work_node);
1639
1640void delayed_work_timer_fn(struct timer_list *t)
1641{
1642        struct delayed_work *dwork = from_timer(dwork, t, timer);
1643
1644        /* should have been called from irqsafe timer with irq already off */
1645        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1646}
1647EXPORT_SYMBOL(delayed_work_timer_fn);
1648
1649static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1650                                struct delayed_work *dwork, unsigned long delay)
1651{
1652        struct timer_list *timer = &dwork->timer;
1653        struct work_struct *work = &dwork->work;
1654
1655        WARN_ON_ONCE(!wq);
1656        WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1657        WARN_ON_ONCE(timer_pending(timer));
1658        WARN_ON_ONCE(!list_empty(&work->entry));
1659
1660        /*
1661         * If @delay is 0, queue @dwork->work immediately.  This is for
1662         * both optimization and correctness.  The earliest @timer can
1663         * expire is on the closest next tick and delayed_work users depend
1664         * on that there's no such delay when @delay is 0.
1665         */
1666        if (!delay) {
1667                __queue_work(cpu, wq, &dwork->work);
1668                return;
1669        }
1670
1671        dwork->wq = wq;
1672        dwork->cpu = cpu;
1673        timer->expires = jiffies + delay;
1674
1675        if (unlikely(cpu != WORK_CPU_UNBOUND))
1676                add_timer_on(timer, cpu);
1677        else
1678                add_timer(timer);
1679}
1680
1681/**
1682 * queue_delayed_work_on - queue work on specific CPU after delay
1683 * @cpu: CPU number to execute work on
1684 * @wq: workqueue to use
1685 * @dwork: work to queue
1686 * @delay: number of jiffies to wait before queueing
1687 *
1688 * Return: %false if @work was already on a queue, %true otherwise.  If
1689 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1690 * execution.
1691 */
1692bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1693                           struct delayed_work *dwork, unsigned long delay)
1694{
1695        struct work_struct *work = &dwork->work;
1696        bool ret = false;
1697        unsigned long flags;
1698
1699        /* read the comment in __queue_work() */
1700        local_irq_save(flags);
1701
1702        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1703                __queue_delayed_work(cpu, wq, dwork, delay);
1704                ret = true;
1705        }
1706
1707        local_irq_restore(flags);
1708        return ret;
1709}
1710EXPORT_SYMBOL(queue_delayed_work_on);
1711
1712/**
1713 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1714 * @cpu: CPU number to execute work on
1715 * @wq: workqueue to use
1716 * @dwork: work to queue
1717 * @delay: number of jiffies to wait before queueing
1718 *
1719 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1720 * modify @dwork's timer so that it expires after @delay.  If @delay is
1721 * zero, @work is guaranteed to be scheduled immediately regardless of its
1722 * current state.
1723 *
1724 * Return: %false if @dwork was idle and queued, %true if @dwork was
1725 * pending and its timer was modified.
1726 *
1727 * This function is safe to call from any context including IRQ handler.
1728 * See try_to_grab_pending() for details.
1729 */
1730bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1731                         struct delayed_work *dwork, unsigned long delay)
1732{
1733        unsigned long flags;
1734        int ret;
1735
1736        do {
1737                ret = try_to_grab_pending(&dwork->work, true, &flags);
1738        } while (unlikely(ret == -EAGAIN));
1739
1740        if (likely(ret >= 0)) {
1741                __queue_delayed_work(cpu, wq, dwork, delay);
1742                local_irq_restore(flags);
1743        }
1744
1745        /* -ENOENT from try_to_grab_pending() becomes %true */
1746        return ret;
1747}
1748EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1749
1750static void rcu_work_rcufn(struct rcu_head *rcu)
1751{
1752        struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1753
1754        /* read the comment in __queue_work() */
1755        local_irq_disable();
1756        __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1757        local_irq_enable();
1758}
1759
1760/**
1761 * queue_rcu_work - queue work after a RCU grace period
1762 * @wq: workqueue to use
1763 * @rwork: work to queue
1764 *
1765 * Return: %false if @rwork was already pending, %true otherwise.  Note
1766 * that a full RCU grace period is guaranteed only after a %true return.
1767 * While @rwork is guaranteed to be executed after a %false return, the
1768 * execution may happen before a full RCU grace period has passed.
1769 */
1770bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1771{
1772        struct work_struct *work = &rwork->work;
1773
1774        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1775                rwork->wq = wq;
1776                call_rcu(&rwork->rcu, rcu_work_rcufn);
1777                return true;
1778        }
1779
1780        return false;
1781}
1782EXPORT_SYMBOL(queue_rcu_work);
1783
1784/**
1785 * worker_enter_idle - enter idle state
1786 * @worker: worker which is entering idle state
1787 *
1788 * @worker is entering idle state.  Update stats and idle timer if
1789 * necessary.
1790 *
1791 * LOCKING:
1792 * raw_spin_lock_irq(pool->lock).
1793 */
1794static void worker_enter_idle(struct worker *worker)
1795{
1796        struct worker_pool *pool = worker->pool;
1797
1798        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1799            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1800                         (worker->hentry.next || worker->hentry.pprev)))
1801                return;
1802
1803        /* can't use worker_set_flags(), also called from create_worker() */
1804        worker->flags |= WORKER_IDLE;
1805        pool->nr_idle++;
1806        worker->last_active = jiffies;
1807
1808        /* idle_list is LIFO */
1809        list_add(&worker->entry, &pool->idle_list);
1810
1811        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1812                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1813
1814        /*
1815         * Sanity check nr_running.  Because unbind_workers() releases
1816         * pool->lock between setting %WORKER_UNBOUND and zapping
1817         * nr_running, the warning may trigger spuriously.  Check iff
1818         * unbind is not in progress.
1819         */
1820        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1821                     pool->nr_workers == pool->nr_idle &&
1822                     atomic_read(&pool->nr_running));
1823}
1824
1825/**
1826 * worker_leave_idle - leave idle state
1827 * @worker: worker which is leaving idle state
1828 *
1829 * @worker is leaving idle state.  Update stats.
1830 *
1831 * LOCKING:
1832 * raw_spin_lock_irq(pool->lock).
1833 */
1834static void worker_leave_idle(struct worker *worker)
1835{
1836        struct worker_pool *pool = worker->pool;
1837
1838        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1839                return;
1840        worker_clr_flags(worker, WORKER_IDLE);
1841        pool->nr_idle--;
1842        list_del_init(&worker->entry);
1843}
1844
1845static struct worker *alloc_worker(int node)
1846{
1847        struct worker *worker;
1848
1849        worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1850        if (worker) {
1851                INIT_LIST_HEAD(&worker->entry);
1852                INIT_LIST_HEAD(&worker->scheduled);
1853                INIT_LIST_HEAD(&worker->node);
1854                /* on creation a worker is in !idle && prep state */
1855                worker->flags = WORKER_PREP;
1856        }
1857        return worker;
1858}
1859
1860/**
1861 * worker_attach_to_pool() - attach a worker to a pool
1862 * @worker: worker to be attached
1863 * @pool: the target pool
1864 *
1865 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1866 * cpu-binding of @worker are kept coordinated with the pool across
1867 * cpu-[un]hotplugs.
1868 */
1869static void worker_attach_to_pool(struct worker *worker,
1870                                   struct worker_pool *pool)
1871{
1872        mutex_lock(&wq_pool_attach_mutex);
1873
1874        /*
1875         * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1876         * stable across this function.  See the comments above the flag
1877         * definition for details.
1878         */
1879        if (pool->flags & POOL_DISASSOCIATED)
1880                worker->flags |= WORKER_UNBOUND;
1881        else
1882                kthread_set_per_cpu(worker->task, pool->cpu);
1883
1884        if (worker->rescue_wq)
1885                set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886
1887        list_add_tail(&worker->node, &pool->workers);
1888        worker->pool = pool;
1889
1890        mutex_unlock(&wq_pool_attach_mutex);
1891}
1892
1893/**
1894 * worker_detach_from_pool() - detach a worker from its pool
1895 * @worker: worker which is attached to its pool
1896 *
1897 * Undo the attaching which had been done in worker_attach_to_pool().  The
1898 * caller worker shouldn't access to the pool after detached except it has
1899 * other reference to the pool.
1900 */
1901static void worker_detach_from_pool(struct worker *worker)
1902{
1903        struct worker_pool *pool = worker->pool;
1904        struct completion *detach_completion = NULL;
1905
1906        mutex_lock(&wq_pool_attach_mutex);
1907
1908        kthread_set_per_cpu(worker->task, -1);
1909        list_del(&worker->node);
1910        worker->pool = NULL;
1911
1912        if (list_empty(&pool->workers))
1913                detach_completion = pool->detach_completion;
1914        mutex_unlock(&wq_pool_attach_mutex);
1915
1916        /* clear leftover flags without pool->lock after it is detached */
1917        worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1918
1919        if (detach_completion)
1920                complete(detach_completion);
1921}
1922
1923/**
1924 * create_worker - create a new workqueue worker
1925 * @pool: pool the new worker will belong to
1926 *
1927 * Create and start a new worker which is attached to @pool.
1928 *
1929 * CONTEXT:
1930 * Might sleep.  Does GFP_KERNEL allocations.
1931 *
1932 * Return:
1933 * Pointer to the newly created worker.
1934 */
1935static struct worker *create_worker(struct worker_pool *pool)
1936{
1937        struct worker *worker;
1938        int id;
1939        char id_buf[16];
1940
1941        /* ID is needed to determine kthread name */
1942        id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1943        if (id < 0)
1944                return NULL;
1945
1946        worker = alloc_worker(pool->node);
1947        if (!worker)
1948                goto fail;
1949
1950        worker->id = id;
1951
1952        if (pool->cpu >= 0)
1953                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1954                         pool->attrs->nice < 0  ? "H" : "");
1955        else
1956                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1957
1958        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1959                                              "kworker/%s", id_buf);
1960        if (IS_ERR(worker->task))
1961                goto fail;
1962
1963        set_user_nice(worker->task, pool->attrs->nice);
1964        kthread_bind_mask(worker->task, pool->attrs->cpumask);
1965
1966        /* successful, attach the worker to the pool */
1967        worker_attach_to_pool(worker, pool);
1968
1969        /* start the newly created worker */
1970        raw_spin_lock_irq(&pool->lock);
1971        worker->pool->nr_workers++;
1972        worker_enter_idle(worker);
1973        wake_up_process(worker->task);
1974        raw_spin_unlock_irq(&pool->lock);
1975
1976        return worker;
1977
1978fail:
1979        ida_free(&pool->worker_ida, id);
1980        kfree(worker);
1981        return NULL;
1982}
1983
1984/**
1985 * destroy_worker - destroy a workqueue worker
1986 * @worker: worker to be destroyed
1987 *
1988 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1989 * be idle.
1990 *
1991 * CONTEXT:
1992 * raw_spin_lock_irq(pool->lock).
1993 */
1994static void destroy_worker(struct worker *worker)
1995{
1996        struct worker_pool *pool = worker->pool;
1997
1998        lockdep_assert_held(&pool->lock);
1999
2000        /* sanity check frenzy */
2001        if (WARN_ON(worker->current_work) ||
2002            WARN_ON(!list_empty(&worker->scheduled)) ||
2003            WARN_ON(!(worker->flags & WORKER_IDLE)))
2004                return;
2005
2006        pool->nr_workers--;
2007        pool->nr_idle--;
2008
2009        list_del_init(&worker->entry);
2010        worker->flags |= WORKER_DIE;
2011        wake_up_process(worker->task);
2012}
2013
2014static void idle_worker_timeout(struct timer_list *t)
2015{
2016        struct worker_pool *pool = from_timer(pool, t, idle_timer);
2017
2018        raw_spin_lock_irq(&pool->lock);
2019
2020        while (too_many_workers(pool)) {
2021                struct worker *worker;
2022                unsigned long expires;
2023
2024                /* idle_list is kept in LIFO order, check the last one */
2025                worker = list_entry(pool->idle_list.prev, struct worker, entry);
2026                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2027
2028                if (time_before(jiffies, expires)) {
2029                        mod_timer(&pool->idle_timer, expires);
2030                        break;
2031                }
2032
2033                destroy_worker(worker);
2034        }
2035
2036        raw_spin_unlock_irq(&pool->lock);
2037}
2038
2039static void send_mayday(struct work_struct *work)
2040{
2041        struct pool_workqueue *pwq = get_work_pwq(work);
2042        struct workqueue_struct *wq = pwq->wq;
2043
2044        lockdep_assert_held(&wq_mayday_lock);
2045
2046        if (!wq->rescuer)
2047                return;
2048
2049        /* mayday mayday mayday */
2050        if (list_empty(&pwq->mayday_node)) {
2051                /*
2052                 * If @pwq is for an unbound wq, its base ref may be put at
2053                 * any time due to an attribute change.  Pin @pwq until the
2054                 * rescuer is done with it.
2055                 */
2056                get_pwq(pwq);
2057                list_add_tail(&pwq->mayday_node, &wq->maydays);
2058                wake_up_process(wq->rescuer->task);
2059        }
2060}
2061
2062static void pool_mayday_timeout(struct timer_list *t)
2063{
2064        struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2065        struct work_struct *work;
2066
2067        raw_spin_lock_irq(&pool->lock);
2068        raw_spin_lock(&wq_mayday_lock);         /* for wq->maydays */
2069
2070        if (need_to_create_worker(pool)) {
2071                /*
2072                 * We've been trying to create a new worker but
2073                 * haven't been successful.  We might be hitting an
2074                 * allocation deadlock.  Send distress signals to
2075                 * rescuers.
2076                 */
2077                list_for_each_entry(work, &pool->worklist, entry)
2078                        send_mayday(work);
2079        }
2080
2081        raw_spin_unlock(&wq_mayday_lock);
2082        raw_spin_unlock_irq(&pool->lock);
2083
2084        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2085}
2086
2087/**
2088 * maybe_create_worker - create a new worker if necessary
2089 * @pool: pool to create a new worker for
2090 *
2091 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2092 * have at least one idle worker on return from this function.  If
2093 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2094 * sent to all rescuers with works scheduled on @pool to resolve
2095 * possible allocation deadlock.
2096 *
2097 * On return, need_to_create_worker() is guaranteed to be %false and
2098 * may_start_working() %true.
2099 *
2100 * LOCKING:
2101 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2102 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2103 * manager.
2104 */
2105static void maybe_create_worker(struct worker_pool *pool)
2106__releases(&pool->lock)
2107__acquires(&pool->lock)
2108{
2109restart:
2110        raw_spin_unlock_irq(&pool->lock);
2111
2112        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2113        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2114
2115        while (true) {
2116                if (create_worker(pool) || !need_to_create_worker(pool))
2117                        break;
2118
2119                schedule_timeout_interruptible(CREATE_COOLDOWN);
2120
2121                if (!need_to_create_worker(pool))
2122                        break;
2123        }
2124
2125        del_timer_sync(&pool->mayday_timer);
2126        raw_spin_lock_irq(&pool->lock);
2127        /*
2128         * This is necessary even after a new worker was just successfully
2129         * created as @pool->lock was dropped and the new worker might have
2130         * already become busy.
2131         */
2132        if (need_to_create_worker(pool))
2133                goto restart;
2134}
2135
2136/**
2137 * manage_workers - manage worker pool
2138 * @worker: self
2139 *
2140 * Assume the manager role and manage the worker pool @worker belongs
2141 * to.  At any given time, there can be only zero or one manager per
2142 * pool.  The exclusion is handled automatically by this function.
2143 *
2144 * The caller can safely start processing works on false return.  On
2145 * true return, it's guaranteed that need_to_create_worker() is false
2146 * and may_start_working() is true.
2147 *
2148 * CONTEXT:
2149 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2150 * multiple times.  Does GFP_KERNEL allocations.
2151 *
2152 * Return:
2153 * %false if the pool doesn't need management and the caller can safely
2154 * start processing works, %true if management function was performed and
2155 * the conditions that the caller verified before calling the function may
2156 * no longer be true.
2157 */
2158static bool manage_workers(struct worker *worker)
2159{
2160        struct worker_pool *pool = worker->pool;
2161
2162        if (pool->flags & POOL_MANAGER_ACTIVE)
2163                return false;
2164
2165        pool->flags |= POOL_MANAGER_ACTIVE;
2166        pool->manager = worker;
2167
2168        maybe_create_worker(pool);
2169
2170        pool->manager = NULL;
2171        pool->flags &= ~POOL_MANAGER_ACTIVE;
2172        rcuwait_wake_up(&manager_wait);
2173        return true;
2174}
2175
2176/**
2177 * process_one_work - process single work
2178 * @worker: self
2179 * @work: work to process
2180 *
2181 * Process @work.  This function contains all the logics necessary to
2182 * process a single work including synchronization against and
2183 * interaction with other workers on the same cpu, queueing and
2184 * flushing.  As long as context requirement is met, any worker can
2185 * call this function to process a work.
2186 *
2187 * CONTEXT:
2188 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2189 */
2190static void process_one_work(struct worker *worker, struct work_struct *work)
2191__releases(&pool->lock)
2192__acquires(&pool->lock)
2193{
2194        struct pool_workqueue *pwq = get_work_pwq(work);
2195        struct worker_pool *pool = worker->pool;
2196        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2197        unsigned long work_data;
2198        struct worker *collision;
2199#ifdef CONFIG_LOCKDEP
2200        /*
2201         * It is permissible to free the struct work_struct from
2202         * inside the function that is called from it, this we need to
2203         * take into account for lockdep too.  To avoid bogus "held
2204         * lock freed" warnings as well as problems when looking into
2205         * work->lockdep_map, make a copy and use that here.
2206         */
2207        struct lockdep_map lockdep_map;
2208
2209        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2210#endif
2211        /* ensure we're on the correct CPU */
2212        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2213                     raw_smp_processor_id() != pool->cpu);
2214
2215        /*
2216         * A single work shouldn't be executed concurrently by
2217         * multiple workers on a single cpu.  Check whether anyone is
2218         * already processing the work.  If so, defer the work to the
2219         * currently executing one.
2220         */
2221        collision = find_worker_executing_work(pool, work);
2222        if (unlikely(collision)) {
2223                move_linked_works(work, &collision->scheduled, NULL);
2224                return;
2225        }
2226
2227        /* claim and dequeue */
2228        debug_work_deactivate(work);
2229        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2230        worker->current_work = work;
2231        worker->current_func = work->func;
2232        worker->current_pwq = pwq;
2233        work_data = *work_data_bits(work);
2234        worker->current_color = get_work_color(work_data);
2235
2236        /*
2237         * Record wq name for cmdline and debug reporting, may get
2238         * overridden through set_worker_desc().
2239         */
2240        strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2241
2242        list_del_init(&work->entry);
2243
2244        /*
2245         * CPU intensive works don't participate in concurrency management.
2246         * They're the scheduler's responsibility.  This takes @worker out
2247         * of concurrency management and the next code block will chain
2248         * execution of the pending work items.
2249         */
2250        if (unlikely(cpu_intensive))
2251                worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2252
2253        /*
2254         * Wake up another worker if necessary.  The condition is always
2255         * false for normal per-cpu workers since nr_running would always
2256         * be >= 1 at this point.  This is used to chain execution of the
2257         * pending work items for WORKER_NOT_RUNNING workers such as the
2258         * UNBOUND and CPU_INTENSIVE ones.
2259         */
2260        if (need_more_worker(pool))
2261                wake_up_worker(pool);
2262
2263        /*
2264         * Record the last pool and clear PENDING which should be the last
2265         * update to @work.  Also, do this inside @pool->lock so that
2266         * PENDING and queued state changes happen together while IRQ is
2267         * disabled.
2268         */
2269        set_work_pool_and_clear_pending(work, pool->id);
2270
2271        raw_spin_unlock_irq(&pool->lock);
2272
2273        lock_map_acquire(&pwq->wq->lockdep_map);
2274        lock_map_acquire(&lockdep_map);
2275        /*
2276         * Strictly speaking we should mark the invariant state without holding
2277         * any locks, that is, before these two lock_map_acquire()'s.
2278         *
2279         * However, that would result in:
2280         *
2281         *   A(W1)
2282         *   WFC(C)
2283         *              A(W1)
2284         *              C(C)
2285         *
2286         * Which would create W1->C->W1 dependencies, even though there is no
2287         * actual deadlock possible. There are two solutions, using a
2288         * read-recursive acquire on the work(queue) 'locks', but this will then
2289         * hit the lockdep limitation on recursive locks, or simply discard
2290         * these locks.
2291         *
2292         * AFAICT there is no possible deadlock scenario between the
2293         * flush_work() and complete() primitives (except for single-threaded
2294         * workqueues), so hiding them isn't a problem.
2295         */
2296        lockdep_invariant_state(true);
2297        trace_workqueue_execute_start(work);
2298        worker->current_func(work);
2299        /*
2300         * While we must be careful to not use "work" after this, the trace
2301         * point will only record its address.
2302         */
2303        trace_workqueue_execute_end(work, worker->current_func);
2304        lock_map_release(&lockdep_map);
2305        lock_map_release(&pwq->wq->lockdep_map);
2306
2307        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2308                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2309                       "     last function: %ps\n",
2310                       current->comm, preempt_count(), task_pid_nr(current),
2311                       worker->current_func);
2312                debug_show_held_locks(current);
2313                dump_stack();
2314        }
2315
2316        /*
2317         * The following prevents a kworker from hogging CPU on !PREEMPTION
2318         * kernels, where a requeueing work item waiting for something to
2319         * happen could deadlock with stop_machine as such work item could
2320         * indefinitely requeue itself while all other CPUs are trapped in
2321         * stop_machine. At the same time, report a quiescent RCU state so
2322         * the same condition doesn't freeze RCU.
2323         */
2324        cond_resched();
2325
2326        raw_spin_lock_irq(&pool->lock);
2327
2328        /* clear cpu intensive status */
2329        if (unlikely(cpu_intensive))
2330                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2331
2332        /* tag the worker for identification in schedule() */
2333        worker->last_func = worker->current_func;
2334
2335        /* we're done with it, release */
2336        hash_del(&worker->hentry);
2337        worker->current_work = NULL;
2338        worker->current_func = NULL;
2339        worker->current_pwq = NULL;
2340        worker->current_color = INT_MAX;
2341        pwq_dec_nr_in_flight(pwq, work_data);
2342}
2343
2344/**
2345 * process_scheduled_works - process scheduled works
2346 * @worker: self
2347 *
2348 * Process all scheduled works.  Please note that the scheduled list
2349 * may change while processing a work, so this function repeatedly
2350 * fetches a work from the top and executes it.
2351 *
2352 * CONTEXT:
2353 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2354 * multiple times.
2355 */
2356static void process_scheduled_works(struct worker *worker)
2357{
2358        while (!list_empty(&worker->scheduled)) {
2359                struct work_struct *work = list_first_entry(&worker->scheduled,
2360                                                struct work_struct, entry);
2361                process_one_work(worker, work);
2362        }
2363}
2364
2365static void set_pf_worker(bool val)
2366{
2367        mutex_lock(&wq_pool_attach_mutex);
2368        if (val)
2369                current->flags |= PF_WQ_WORKER;
2370        else
2371                current->flags &= ~PF_WQ_WORKER;
2372        mutex_unlock(&wq_pool_attach_mutex);
2373}
2374
2375/**
2376 * worker_thread - the worker thread function
2377 * @__worker: self
2378 *
2379 * The worker thread function.  All workers belong to a worker_pool -
2380 * either a per-cpu one or dynamic unbound one.  These workers process all
2381 * work items regardless of their specific target workqueue.  The only
2382 * exception is work items which belong to workqueues with a rescuer which
2383 * will be explained in rescuer_thread().
2384 *
2385 * Return: 0
2386 */
2387static int worker_thread(void *__worker)
2388{
2389        struct worker *worker = __worker;
2390        struct worker_pool *pool = worker->pool;
2391
2392        /* tell the scheduler that this is a workqueue worker */
2393        set_pf_worker(true);
2394woke_up:
2395        raw_spin_lock_irq(&pool->lock);
2396
2397        /* am I supposed to die? */
2398        if (unlikely(worker->flags & WORKER_DIE)) {
2399                raw_spin_unlock_irq(&pool->lock);
2400                WARN_ON_ONCE(!list_empty(&worker->entry));
2401                set_pf_worker(false);
2402
2403                set_task_comm(worker->task, "kworker/dying");
2404                ida_free(&pool->worker_ida, worker->id);
2405                worker_detach_from_pool(worker);
2406                kfree(worker);
2407                return 0;
2408        }
2409
2410        worker_leave_idle(worker);
2411recheck:
2412        /* no more worker necessary? */
2413        if (!need_more_worker(pool))
2414                goto sleep;
2415
2416        /* do we need to manage? */
2417        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2418                goto recheck;
2419
2420        /*
2421         * ->scheduled list can only be filled while a worker is
2422         * preparing to process a work or actually processing it.
2423         * Make sure nobody diddled with it while I was sleeping.
2424         */
2425        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2426
2427        /*
2428         * Finish PREP stage.  We're guaranteed to have at least one idle
2429         * worker or that someone else has already assumed the manager
2430         * role.  This is where @worker starts participating in concurrency
2431         * management if applicable and concurrency management is restored
2432         * after being rebound.  See rebind_workers() for details.
2433         */
2434        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2435
2436        do {
2437                struct work_struct *work =
2438                        list_first_entry(&pool->worklist,
2439                                         struct work_struct, entry);
2440
2441                pool->watchdog_ts = jiffies;
2442
2443                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2444                        /* optimization path, not strictly necessary */
2445                        process_one_work(worker, work);
2446                        if (unlikely(!list_empty(&worker->scheduled)))
2447                                process_scheduled_works(worker);
2448                } else {
2449                        move_linked_works(work, &worker->scheduled, NULL);
2450                        process_scheduled_works(worker);
2451                }
2452        } while (keep_working(pool));
2453
2454        worker_set_flags(worker, WORKER_PREP);
2455sleep:
2456        /*
2457         * pool->lock is held and there's no work to process and no need to
2458         * manage, sleep.  Workers are woken up only while holding
2459         * pool->lock or from local cpu, so setting the current state
2460         * before releasing pool->lock is enough to prevent losing any
2461         * event.
2462         */
2463        worker_enter_idle(worker);
2464        __set_current_state(TASK_IDLE);
2465        raw_spin_unlock_irq(&pool->lock);
2466        schedule();
2467        goto woke_up;
2468}
2469
2470/**
2471 * rescuer_thread - the rescuer thread function
2472 * @__rescuer: self
2473 *
2474 * Workqueue rescuer thread function.  There's one rescuer for each
2475 * workqueue which has WQ_MEM_RECLAIM set.
2476 *
2477 * Regular work processing on a pool may block trying to create a new
2478 * worker which uses GFP_KERNEL allocation which has slight chance of
2479 * developing into deadlock if some works currently on the same queue
2480 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2481 * the problem rescuer solves.
2482 *
2483 * When such condition is possible, the pool summons rescuers of all
2484 * workqueues which have works queued on the pool and let them process
2485 * those works so that forward progress can be guaranteed.
2486 *
2487 * This should happen rarely.
2488 *
2489 * Return: 0
2490 */
2491static int rescuer_thread(void *__rescuer)
2492{
2493        struct worker *rescuer = __rescuer;
2494        struct workqueue_struct *wq = rescuer->rescue_wq;
2495        struct list_head *scheduled = &rescuer->scheduled;
2496        bool should_stop;
2497
2498        set_user_nice(current, RESCUER_NICE_LEVEL);
2499
2500        /*
2501         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2502         * doesn't participate in concurrency management.
2503         */
2504        set_pf_worker(true);
2505repeat:
2506        set_current_state(TASK_IDLE);
2507
2508        /*
2509         * By the time the rescuer is requested to stop, the workqueue
2510         * shouldn't have any work pending, but @wq->maydays may still have
2511         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2512         * all the work items before the rescuer got to them.  Go through
2513         * @wq->maydays processing before acting on should_stop so that the
2514         * list is always empty on exit.
2515         */
2516        should_stop = kthread_should_stop();
2517
2518        /* see whether any pwq is asking for help */
2519        raw_spin_lock_irq(&wq_mayday_lock);
2520
2521        while (!list_empty(&wq->maydays)) {
2522                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2523                                        struct pool_workqueue, mayday_node);
2524                struct worker_pool *pool = pwq->pool;
2525                struct work_struct *work, *n;
2526                bool first = true;
2527
2528                __set_current_state(TASK_RUNNING);
2529                list_del_init(&pwq->mayday_node);
2530
2531                raw_spin_unlock_irq(&wq_mayday_lock);
2532
2533                worker_attach_to_pool(rescuer, pool);
2534
2535                raw_spin_lock_irq(&pool->lock);
2536
2537                /*
2538                 * Slurp in all works issued via this workqueue and
2539                 * process'em.
2540                 */
2541                WARN_ON_ONCE(!list_empty(scheduled));
2542                list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2543                        if (get_work_pwq(work) == pwq) {
2544                                if (first)
2545                                        pool->watchdog_ts = jiffies;
2546                                move_linked_works(work, scheduled, &n);
2547                        }
2548                        first = false;
2549                }
2550
2551                if (!list_empty(scheduled)) {
2552                        process_scheduled_works(rescuer);
2553
2554                        /*
2555                         * The above execution of rescued work items could
2556                         * have created more to rescue through
2557                         * pwq_activate_first_inactive() or chained
2558                         * queueing.  Let's put @pwq back on mayday list so
2559                         * that such back-to-back work items, which may be
2560                         * being used to relieve memory pressure, don't
2561                         * incur MAYDAY_INTERVAL delay inbetween.
2562                         */
2563                        if (pwq->nr_active && need_to_create_worker(pool)) {
2564                                raw_spin_lock(&wq_mayday_lock);
2565                                /*
2566                                 * Queue iff we aren't racing destruction
2567                                 * and somebody else hasn't queued it already.
2568                                 */
2569                                if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2570                                        get_pwq(pwq);
2571                                        list_add_tail(&pwq->mayday_node, &wq->maydays);
2572                                }
2573                                raw_spin_unlock(&wq_mayday_lock);
2574                        }
2575                }
2576
2577                /*
2578                 * Put the reference grabbed by send_mayday().  @pool won't
2579                 * go away while we're still attached to it.
2580                 */
2581                put_pwq(pwq);
2582
2583                /*
2584                 * Leave this pool.  If need_more_worker() is %true, notify a
2585                 * regular worker; otherwise, we end up with 0 concurrency
2586                 * and stalling the execution.
2587                 */
2588                if (need_more_worker(pool))
2589                        wake_up_worker(pool);
2590
2591                raw_spin_unlock_irq(&pool->lock);
2592
2593                worker_detach_from_pool(rescuer);
2594
2595                raw_spin_lock_irq(&wq_mayday_lock);
2596        }
2597
2598        raw_spin_unlock_irq(&wq_mayday_lock);
2599
2600        if (should_stop) {
2601                __set_current_state(TASK_RUNNING);
2602                set_pf_worker(false);
2603                return 0;
2604        }
2605
2606        /* rescuers should never participate in concurrency management */
2607        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2608        schedule();
2609        goto repeat;
2610}
2611
2612/**
2613 * check_flush_dependency - check for flush dependency sanity
2614 * @target_wq: workqueue being flushed
2615 * @target_work: work item being flushed (NULL for workqueue flushes)
2616 *
2617 * %current is trying to flush the whole @target_wq or @target_work on it.
2618 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2619 * reclaiming memory or running on a workqueue which doesn't have
2620 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2621 * a deadlock.
2622 */
2623static void check_flush_dependency(struct workqueue_struct *target_wq,
2624                                   struct work_struct *target_work)
2625{
2626        work_func_t target_func = target_work ? target_work->func : NULL;
2627        struct worker *worker;
2628
2629        if (target_wq->flags & WQ_MEM_RECLAIM)
2630                return;
2631
2632        worker = current_wq_worker();
2633
2634        WARN_ONCE(current->flags & PF_MEMALLOC,
2635                  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2636                  current->pid, current->comm, target_wq->name, target_func);
2637        WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2638                              (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2639                  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2640                  worker->current_pwq->wq->name, worker->current_func,
2641                  target_wq->name, target_func);
2642}
2643
2644struct wq_barrier {
2645        struct work_struct      work;
2646        struct completion       done;
2647        struct task_struct      *task;  /* purely informational */
2648};
2649
2650static void wq_barrier_func(struct work_struct *work)
2651{
2652        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2653        complete(&barr->done);
2654}
2655
2656/**
2657 * insert_wq_barrier - insert a barrier work
2658 * @pwq: pwq to insert barrier into
2659 * @barr: wq_barrier to insert
2660 * @target: target work to attach @barr to
2661 * @worker: worker currently executing @target, NULL if @target is not executing
2662 *
2663 * @barr is linked to @target such that @barr is completed only after
2664 * @target finishes execution.  Please note that the ordering
2665 * guarantee is observed only with respect to @target and on the local
2666 * cpu.
2667 *
2668 * Currently, a queued barrier can't be canceled.  This is because
2669 * try_to_grab_pending() can't determine whether the work to be
2670 * grabbed is at the head of the queue and thus can't clear LINKED
2671 * flag of the previous work while there must be a valid next work
2672 * after a work with LINKED flag set.
2673 *
2674 * Note that when @worker is non-NULL, @target may be modified
2675 * underneath us, so we can't reliably determine pwq from @target.
2676 *
2677 * CONTEXT:
2678 * raw_spin_lock_irq(pool->lock).
2679 */
2680static void insert_wq_barrier(struct pool_workqueue *pwq,
2681                              struct wq_barrier *barr,
2682                              struct work_struct *target, struct worker *worker)
2683{
2684        unsigned int work_flags = 0;
2685        unsigned int work_color;
2686        struct list_head *head;
2687
2688        /*
2689         * debugobject calls are safe here even with pool->lock locked
2690         * as we know for sure that this will not trigger any of the
2691         * checks and call back into the fixup functions where we
2692         * might deadlock.
2693         */
2694        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2695        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2696
2697        init_completion_map(&barr->done, &target->lockdep_map);
2698
2699        barr->task = current;
2700
2701        /* The barrier work item does not participate in pwq->nr_active. */
2702        work_flags |= WORK_STRUCT_INACTIVE;
2703
2704        /*
2705         * If @target is currently being executed, schedule the
2706         * barrier to the worker; otherwise, put it after @target.
2707         */
2708        if (worker) {
2709                head = worker->scheduled.next;
2710                work_color = worker->current_color;
2711        } else {
2712                unsigned long *bits = work_data_bits(target);
2713
2714                head = target->entry.next;
2715                /* there can already be other linked works, inherit and set */
2716                work_flags |= *bits & WORK_STRUCT_LINKED;
2717                work_color = get_work_color(*bits);
2718                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2719        }
2720
2721        pwq->nr_in_flight[work_color]++;
2722        work_flags |= work_color_to_flags(work_color);
2723
2724        debug_work_activate(&barr->work);
2725        insert_work(pwq, &barr->work, head, work_flags);
2726}
2727
2728/**
2729 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2730 * @wq: workqueue being flushed
2731 * @flush_color: new flush color, < 0 for no-op
2732 * @work_color: new work color, < 0 for no-op
2733 *
2734 * Prepare pwqs for workqueue flushing.
2735 *
2736 * If @flush_color is non-negative, flush_color on all pwqs should be
2737 * -1.  If no pwq has in-flight commands at the specified color, all
2738 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2739 * has in flight commands, its pwq->flush_color is set to
2740 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2741 * wakeup logic is armed and %true is returned.
2742 *
2743 * The caller should have initialized @wq->first_flusher prior to
2744 * calling this function with non-negative @flush_color.  If
2745 * @flush_color is negative, no flush color update is done and %false
2746 * is returned.
2747 *
2748 * If @work_color is non-negative, all pwqs should have the same
2749 * work_color which is previous to @work_color and all will be
2750 * advanced to @work_color.
2751 *
2752 * CONTEXT:
2753 * mutex_lock(wq->mutex).
2754 *
2755 * Return:
2756 * %true if @flush_color >= 0 and there's something to flush.  %false
2757 * otherwise.
2758 */
2759static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2760                                      int flush_color, int work_color)
2761{
2762        bool wait = false;
2763        struct pool_workqueue *pwq;
2764
2765        if (flush_color >= 0) {
2766                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2767                atomic_set(&wq->nr_pwqs_to_flush, 1);
2768        }
2769
2770        for_each_pwq(pwq, wq) {
2771                struct worker_pool *pool = pwq->pool;
2772
2773                raw_spin_lock_irq(&pool->lock);
2774
2775                if (flush_color >= 0) {
2776                        WARN_ON_ONCE(pwq->flush_color != -1);
2777
2778                        if (pwq->nr_in_flight[flush_color]) {
2779                                pwq->flush_color = flush_color;
2780                                atomic_inc(&wq->nr_pwqs_to_flush);
2781                                wait = true;
2782                        }
2783                }
2784
2785                if (work_color >= 0) {
2786                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2787                        pwq->work_color = work_color;
2788                }
2789
2790                raw_spin_unlock_irq(&pool->lock);
2791        }
2792
2793        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2794                complete(&wq->first_flusher->done);
2795
2796        return wait;
2797}
2798
2799/**
2800 * flush_workqueue - ensure that any scheduled work has run to completion.
2801 * @wq: workqueue to flush
2802 *
2803 * This function sleeps until all work items which were queued on entry
2804 * have finished execution, but it is not livelocked by new incoming ones.
2805 */
2806void flush_workqueue(struct workqueue_struct *wq)
2807{
2808        struct wq_flusher this_flusher = {
2809                .list = LIST_HEAD_INIT(this_flusher.list),
2810                .flush_color = -1,
2811                .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2812        };
2813        int next_color;
2814
2815        if (WARN_ON(!wq_online))
2816                return;
2817
2818        lock_map_acquire(&wq->lockdep_map);
2819        lock_map_release(&wq->lockdep_map);
2820
2821        mutex_lock(&wq->mutex);
2822
2823        /*
2824         * Start-to-wait phase
2825         */
2826        next_color = work_next_color(wq->work_color);
2827
2828        if (next_color != wq->flush_color) {
2829                /*
2830                 * Color space is not full.  The current work_color
2831                 * becomes our flush_color and work_color is advanced
2832                 * by one.
2833                 */
2834                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2835                this_flusher.flush_color = wq->work_color;
2836                wq->work_color = next_color;
2837
2838                if (!wq->first_flusher) {
2839                        /* no flush in progress, become the first flusher */
2840                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2841
2842                        wq->first_flusher = &this_flusher;
2843
2844                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2845                                                       wq->work_color)) {
2846                                /* nothing to flush, done */
2847                                wq->flush_color = next_color;
2848                                wq->first_flusher = NULL;
2849                                goto out_unlock;
2850                        }
2851                } else {
2852                        /* wait in queue */
2853                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2854                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2855                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2856                }
2857        } else {
2858                /*
2859                 * Oops, color space is full, wait on overflow queue.
2860                 * The next flush completion will assign us
2861                 * flush_color and transfer to flusher_queue.
2862                 */
2863                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2864        }
2865
2866        check_flush_dependency(wq, NULL);
2867
2868        mutex_unlock(&wq->mutex);
2869
2870        wait_for_completion(&this_flusher.done);
2871
2872        /*
2873         * Wake-up-and-cascade phase
2874         *
2875         * First flushers are responsible for cascading flushes and
2876         * handling overflow.  Non-first flushers can simply return.
2877         */
2878        if (READ_ONCE(wq->first_flusher) != &this_flusher)
2879                return;
2880
2881        mutex_lock(&wq->mutex);
2882
2883        /* we might have raced, check again with mutex held */
2884        if (wq->first_flusher != &this_flusher)
2885                goto out_unlock;
2886
2887        WRITE_ONCE(wq->first_flusher, NULL);
2888
2889        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2890        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2891
2892        while (true) {
2893                struct wq_flusher *next, *tmp;
2894
2895                /* complete all the flushers sharing the current flush color */
2896                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2897                        if (next->flush_color != wq->flush_color)
2898                                break;
2899                        list_del_init(&next->list);
2900                        complete(&next->done);
2901                }
2902
2903                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2904                             wq->flush_color != work_next_color(wq->work_color));
2905
2906                /* this flush_color is finished, advance by one */
2907                wq->flush_color = work_next_color(wq->flush_color);
2908
2909                /* one color has been freed, handle overflow queue */
2910                if (!list_empty(&wq->flusher_overflow)) {
2911                        /*
2912                         * Assign the same color to all overflowed
2913                         * flushers, advance work_color and append to
2914                         * flusher_queue.  This is the start-to-wait
2915                         * phase for these overflowed flushers.
2916                         */
2917                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2918                                tmp->flush_color = wq->work_color;
2919
2920                        wq->work_color = work_next_color(wq->work_color);
2921
2922                        list_splice_tail_init(&wq->flusher_overflow,
2923                                              &wq->flusher_queue);
2924                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2925                }
2926
2927                if (list_empty(&wq->flusher_queue)) {
2928                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2929                        break;
2930                }
2931
2932                /*
2933                 * Need to flush more colors.  Make the next flusher
2934                 * the new first flusher and arm pwqs.
2935                 */
2936                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2937                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2938
2939                list_del_init(&next->list);
2940                wq->first_flusher = next;
2941
2942                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2943                        break;
2944
2945                /*
2946                 * Meh... this color is already done, clear first
2947                 * flusher and repeat cascading.
2948                 */
2949                wq->first_flusher = NULL;
2950        }
2951
2952out_unlock:
2953        mutex_unlock(&wq->mutex);
2954}
2955EXPORT_SYMBOL(flush_workqueue);
2956
2957/**
2958 * drain_workqueue - drain a workqueue
2959 * @wq: workqueue to drain
2960 *
2961 * Wait until the workqueue becomes empty.  While draining is in progress,
2962 * only chain queueing is allowed.  IOW, only currently pending or running
2963 * work items on @wq can queue further work items on it.  @wq is flushed
2964 * repeatedly until it becomes empty.  The number of flushing is determined
2965 * by the depth of chaining and should be relatively short.  Whine if it
2966 * takes too long.
2967 */
2968void drain_workqueue(struct workqueue_struct *wq)
2969{
2970        unsigned int flush_cnt = 0;
2971        struct pool_workqueue *pwq;
2972
2973        /*
2974         * __queue_work() needs to test whether there are drainers, is much
2975         * hotter than drain_workqueue() and already looks at @wq->flags.
2976         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2977         */
2978        mutex_lock(&wq->mutex);
2979        if (!wq->nr_drainers++)
2980                wq->flags |= __WQ_DRAINING;
2981        mutex_unlock(&wq->mutex);
2982reflush:
2983        flush_workqueue(wq);
2984
2985        mutex_lock(&wq->mutex);
2986
2987        for_each_pwq(pwq, wq) {
2988                bool drained;
2989
2990                raw_spin_lock_irq(&pwq->pool->lock);
2991                drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2992                raw_spin_unlock_irq(&pwq->pool->lock);
2993
2994                if (drained)
2995                        continue;
2996
2997                if (++flush_cnt == 10 ||
2998                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2999                        pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3000                                wq->name, __func__, flush_cnt);
3001
3002                mutex_unlock(&wq->mutex);
3003                goto reflush;
3004        }
3005
3006        if (!--wq->nr_drainers)
3007                wq->flags &= ~__WQ_DRAINING;
3008        mutex_unlock(&wq->mutex);
3009}
3010EXPORT_SYMBOL_GPL(drain_workqueue);
3011
3012static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3013                             bool from_cancel)
3014{
3015        struct worker *worker = NULL;
3016        struct worker_pool *pool;
3017        struct pool_workqueue *pwq;
3018
3019        might_sleep();
3020
3021        rcu_read_lock();
3022        pool = get_work_pool(work);
3023        if (!pool) {
3024                rcu_read_unlock();
3025                return false;
3026        }
3027
3028        raw_spin_lock_irq(&pool->lock);
3029        /* see the comment in try_to_grab_pending() with the same code */
3030        pwq = get_work_pwq(work);
3031        if (pwq) {
3032                if (unlikely(pwq->pool != pool))
3033                        goto already_gone;
3034        } else {
3035                worker = find_worker_executing_work(pool, work);
3036                if (!worker)
3037                        goto already_gone;
3038                pwq = worker->current_pwq;
3039        }
3040
3041        check_flush_dependency(pwq->wq, work);
3042
3043        insert_wq_barrier(pwq, barr, work, worker);
3044        raw_spin_unlock_irq(&pool->lock);
3045
3046        /*
3047         * Force a lock recursion deadlock when using flush_work() inside a
3048         * single-threaded or rescuer equipped workqueue.
3049         *
3050         * For single threaded workqueues the deadlock happens when the work
3051         * is after the work issuing the flush_work(). For rescuer equipped
3052         * workqueues the deadlock happens when the rescuer stalls, blocking
3053         * forward progress.
3054         */
3055        if (!from_cancel &&
3056            (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3057                lock_map_acquire(&pwq->wq->lockdep_map);
3058                lock_map_release(&pwq->wq->lockdep_map);
3059        }
3060        rcu_read_unlock();
3061        return true;
3062already_gone:
3063        raw_spin_unlock_irq(&pool->lock);
3064        rcu_read_unlock();
3065        return false;
3066}
3067
3068static bool __flush_work(struct work_struct *work, bool from_cancel)
3069{
3070        struct wq_barrier barr;
3071
3072        if (WARN_ON(!wq_online))
3073                return false;
3074
3075        if (WARN_ON(!work->func))
3076                return false;
3077
3078        if (!from_cancel) {
3079                lock_map_acquire(&work->lockdep_map);
3080                lock_map_release(&work->lockdep_map);
3081        }
3082
3083        if (start_flush_work(work, &barr, from_cancel)) {
3084                wait_for_completion(&barr.done);
3085                destroy_work_on_stack(&barr.work);
3086                return true;
3087        } else {
3088                return false;
3089        }
3090}
3091
3092/**
3093 * flush_work - wait for a work to finish executing the last queueing instance
3094 * @work: the work to flush
3095 *
3096 * Wait until @work has finished execution.  @work is guaranteed to be idle
3097 * on return if it hasn't been requeued since flush started.
3098 *
3099 * Return:
3100 * %true if flush_work() waited for the work to finish execution,
3101 * %false if it was already idle.
3102 */
3103bool flush_work(struct work_struct *work)
3104{
3105        return __flush_work(work, false);
3106}
3107EXPORT_SYMBOL_GPL(flush_work);
3108
3109struct cwt_wait {
3110        wait_queue_entry_t              wait;
3111        struct work_struct      *work;
3112};
3113
3114static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3115{
3116        struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3117
3118        if (cwait->work != key)
3119                return 0;
3120        return autoremove_wake_function(wait, mode, sync, key);
3121}
3122
3123static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3124{
3125        static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3126        unsigned long flags;
3127        int ret;
3128
3129        do {
3130                ret = try_to_grab_pending(work, is_dwork, &flags);
3131                /*
3132                 * If someone else is already canceling, wait for it to
3133                 * finish.  flush_work() doesn't work for PREEMPT_NONE
3134                 * because we may get scheduled between @work's completion
3135                 * and the other canceling task resuming and clearing
3136                 * CANCELING - flush_work() will return false immediately
3137                 * as @work is no longer busy, try_to_grab_pending() will
3138                 * return -ENOENT as @work is still being canceled and the
3139                 * other canceling task won't be able to clear CANCELING as
3140                 * we're hogging the CPU.
3141                 *
3142                 * Let's wait for completion using a waitqueue.  As this
3143                 * may lead to the thundering herd problem, use a custom
3144                 * wake function which matches @work along with exclusive
3145                 * wait and wakeup.
3146                 */
3147                if (unlikely(ret == -ENOENT)) {
3148                        struct cwt_wait cwait;
3149
3150                        init_wait(&cwait.wait);
3151                        cwait.wait.func = cwt_wakefn;
3152                        cwait.work = work;
3153
3154                        prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3155                                                  TASK_UNINTERRUPTIBLE);
3156                        if (work_is_canceling(work))
3157                                schedule();
3158                        finish_wait(&cancel_waitq, &cwait.wait);
3159                }
3160        } while (unlikely(ret < 0));
3161
3162        /* tell other tasks trying to grab @work to back off */
3163        mark_work_canceling(work);
3164        local_irq_restore(flags);
3165
3166        /*
3167         * This allows canceling during early boot.  We know that @work
3168         * isn't executing.
3169         */
3170        if (wq_online)
3171                __flush_work(work, true);
3172
3173        clear_work_data(work);
3174
3175        /*
3176         * Paired with prepare_to_wait() above so that either
3177         * waitqueue_active() is visible here or !work_is_canceling() is
3178         * visible there.
3179         */
3180        smp_mb();
3181        if (waitqueue_active(&cancel_waitq))
3182                __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3183
3184        return ret;
3185}
3186
3187/**
3188 * cancel_work_sync - cancel a work and wait for it to finish
3189 * @work: the work to cancel
3190 *
3191 * Cancel @work and wait for its execution to finish.  This function
3192 * can be used even if the work re-queues itself or migrates to
3193 * another workqueue.  On return from this function, @work is
3194 * guaranteed to be not pending or executing on any CPU.
3195 *
3196 * cancel_work_sync(&delayed_work->work) must not be used for
3197 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3198 *
3199 * The caller must ensure that the workqueue on which @work was last
3200 * queued can't be destroyed before this function returns.
3201 *
3202 * Return:
3203 * %true if @work was pending, %false otherwise.
3204 */
3205bool cancel_work_sync(struct work_struct *work)
3206{
3207        return __cancel_work_timer(work, false);
3208}
3209EXPORT_SYMBOL_GPL(cancel_work_sync);
3210
3211/**
3212 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3213 * @dwork: the delayed work to flush
3214 *
3215 * Delayed timer is cancelled and the pending work is queued for
3216 * immediate execution.  Like flush_work(), this function only
3217 * considers the last queueing instance of @dwork.
3218 *
3219 * Return:
3220 * %true if flush_work() waited for the work to finish execution,
3221 * %false if it was already idle.
3222 */
3223bool flush_delayed_work(struct delayed_work *dwork)
3224{
3225        local_irq_disable();
3226        if (del_timer_sync(&dwork->timer))
3227                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3228        local_irq_enable();
3229        return flush_work(&dwork->work);
3230}
3231EXPORT_SYMBOL(flush_delayed_work);
3232
3233/**
3234 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3235 * @rwork: the rcu work to flush
3236 *
3237 * Return:
3238 * %true if flush_rcu_work() waited for the work to finish execution,
3239 * %false if it was already idle.
3240 */
3241bool flush_rcu_work(struct rcu_work *rwork)
3242{
3243        if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3244                rcu_barrier();
3245                flush_work(&rwork->work);
3246                return true;
3247        } else {
3248                return flush_work(&rwork->work);
3249        }
3250}
3251EXPORT_SYMBOL(flush_rcu_work);
3252
3253static bool __cancel_work(struct work_struct *work, bool is_dwork)
3254{
3255        unsigned long flags;
3256        int ret;
3257
3258        do {
3259                ret = try_to_grab_pending(work, is_dwork, &flags);
3260        } while (unlikely(ret == -EAGAIN));
3261
3262        if (unlikely(ret < 0))
3263                return false;
3264
3265        set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3266        local_irq_restore(flags);
3267        return ret;
3268}
3269
3270/**
3271 * cancel_delayed_work - cancel a delayed work
3272 * @dwork: delayed_work to cancel
3273 *
3274 * Kill off a pending delayed_work.
3275 *
3276 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3277 * pending.
3278 *
3279 * Note:
3280 * The work callback function may still be running on return, unless
3281 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3282 * use cancel_delayed_work_sync() to wait on it.
3283 *
3284 * This function is safe to call from any context including IRQ handler.
3285 */
3286bool cancel_delayed_work(struct delayed_work *dwork)
3287{
3288        return __cancel_work(&dwork->work, true);
3289}
3290EXPORT_SYMBOL(cancel_delayed_work);
3291
3292/**
3293 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3294 * @dwork: the delayed work cancel
3295 *
3296 * This is cancel_work_sync() for delayed works.
3297 *
3298 * Return:
3299 * %true if @dwork was pending, %false otherwise.
3300 */
3301bool cancel_delayed_work_sync(struct delayed_work *dwork)
3302{
3303        return __cancel_work_timer(&dwork->work, true);
3304}
3305EXPORT_SYMBOL(cancel_delayed_work_sync);
3306
3307/**
3308 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3309 * @func: the function to call
3310 *
3311 * schedule_on_each_cpu() executes @func on each online CPU using the
3312 * system workqueue and blocks until all CPUs have completed.
3313 * schedule_on_each_cpu() is very slow.
3314 *
3315 * Return:
3316 * 0 on success, -errno on failure.
3317 */
3318int schedule_on_each_cpu(work_func_t func)
3319{
3320        int cpu;
3321        struct work_struct __percpu *works;
3322
3323        works = alloc_percpu(struct work_struct);
3324        if (!works)
3325                return -ENOMEM;
3326
3327        cpus_read_lock();
3328
3329        for_each_online_cpu(cpu) {
3330                struct work_struct *work = per_cpu_ptr(works, cpu);
3331
3332                INIT_WORK(work, func);
3333                schedule_work_on(cpu, work);
3334        }
3335
3336        for_each_online_cpu(cpu)
3337                flush_work(per_cpu_ptr(works, cpu));
3338
3339        cpus_read_unlock();
3340        free_percpu(works);
3341        return 0;
3342}
3343
3344/**
3345 * execute_in_process_context - reliably execute the routine with user context
3346 * @fn:         the function to execute
3347 * @ew:         guaranteed storage for the execute work structure (must
3348 *              be available when the work executes)
3349 *
3350 * Executes the function immediately if process context is available,
3351 * otherwise schedules the function for delayed execution.
3352 *
3353 * Return:      0 - function was executed
3354 *              1 - function was scheduled for execution
3355 */
3356int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3357{
3358        if (!in_interrupt()) {
3359                fn(&ew->work);
3360                return 0;
3361        }
3362
3363        INIT_WORK(&ew->work, fn);
3364        schedule_work(&ew->work);
3365
3366        return 1;
3367}
3368EXPORT_SYMBOL_GPL(execute_in_process_context);
3369
3370/**
3371 * free_workqueue_attrs - free a workqueue_attrs
3372 * @attrs: workqueue_attrs to free
3373 *
3374 * Undo alloc_workqueue_attrs().
3375 */
3376void free_workqueue_attrs(struct workqueue_attrs *attrs)
3377{
3378        if (attrs) {
3379                free_cpumask_var(attrs->cpumask);
3380                kfree(attrs);
3381        }
3382}
3383
3384/**
3385 * alloc_workqueue_attrs - allocate a workqueue_attrs
3386 *
3387 * Allocate a new workqueue_attrs, initialize with default settings and
3388 * return it.
3389 *
3390 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3391 */
3392struct workqueue_attrs *alloc_workqueue_attrs(void)
3393{
3394        struct workqueue_attrs *attrs;
3395
3396        attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3397        if (!attrs)
3398                goto fail;
3399        if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3400                goto fail;
3401
3402        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3403        return attrs;
3404fail:
3405        free_workqueue_attrs(attrs);
3406        return NULL;
3407}
3408
3409static void copy_workqueue_attrs(struct workqueue_attrs *to,
3410                                 const struct workqueue_attrs *from)
3411{
3412        to->nice = from->nice;
3413        cpumask_copy(to->cpumask, from->cpumask);
3414        /*
3415         * Unlike hash and equality test, this function doesn't ignore
3416         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3417         * get_unbound_pool() explicitly clears ->no_numa after copying.
3418         */
3419        to->no_numa = from->no_numa;
3420}
3421
3422/* hash value of the content of @attr */
3423static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3424{
3425        u32 hash = 0;
3426
3427        hash = jhash_1word(attrs->nice, hash);
3428        hash = jhash(cpumask_bits(attrs->cpumask),
3429                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3430        return hash;
3431}
3432
3433/* content equality test */
3434static bool wqattrs_equal(const struct workqueue_attrs *a,
3435                          const struct workqueue_attrs *b)
3436{
3437        if (a->nice != b->nice)
3438                return false;
3439        if (!cpumask_equal(a->cpumask, b->cpumask))
3440                return false;
3441        return true;
3442}
3443
3444/**
3445 * init_worker_pool - initialize a newly zalloc'd worker_pool
3446 * @pool: worker_pool to initialize
3447 *
3448 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3449 *
3450 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3451 * inside @pool proper are initialized and put_unbound_pool() can be called
3452 * on @pool safely to release it.
3453 */
3454static int init_worker_pool(struct worker_pool *pool)
3455{
3456        raw_spin_lock_init(&pool->lock);
3457        pool->id = -1;
3458        pool->cpu = -1;
3459        pool->node = NUMA_NO_NODE;
3460        pool->flags |= POOL_DISASSOCIATED;
3461        pool->watchdog_ts = jiffies;
3462        INIT_LIST_HEAD(&pool->worklist);
3463        INIT_LIST_HEAD(&pool->idle_list);
3464        hash_init(pool->busy_hash);
3465
3466        timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3467
3468        timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3469
3470        INIT_LIST_HEAD(&pool->workers);
3471
3472        ida_init(&pool->worker_ida);
3473        INIT_HLIST_NODE(&pool->hash_node);
3474        pool->refcnt = 1;
3475
3476        /* shouldn't fail above this point */
3477        pool->attrs = alloc_workqueue_attrs();
3478        if (!pool->attrs)
3479                return -ENOMEM;
3480        return 0;
3481}
3482
3483#ifdef CONFIG_LOCKDEP
3484static void wq_init_lockdep(struct workqueue_struct *wq)
3485{
3486        char *lock_name;
3487
3488        lockdep_register_key(&wq->key);
3489        lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3490        if (!lock_name)
3491                lock_name = wq->name;
3492
3493        wq->lock_name = lock_name;
3494        lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3495}
3496
3497static void wq_unregister_lockdep(struct workqueue_struct *wq)
3498{
3499        lockdep_unregister_key(&wq->key);
3500}
3501
3502static void wq_free_lockdep(struct workqueue_struct *wq)
3503{
3504        if (wq->lock_name != wq->name)
3505                kfree(wq->lock_name);
3506}
3507#else
3508static void wq_init_lockdep(struct workqueue_struct *wq)
3509{
3510}
3511
3512static void wq_unregister_lockdep(struct workqueue_struct *wq)
3513{
3514}
3515
3516static void wq_free_lockdep(struct workqueue_struct *wq)
3517{
3518}
3519#endif
3520
3521static void rcu_free_wq(struct rcu_head *rcu)
3522{
3523        struct workqueue_struct *wq =
3524                container_of(rcu, struct workqueue_struct, rcu);
3525
3526        wq_free_lockdep(wq);
3527
3528        if (!(wq->flags & WQ_UNBOUND))
3529                free_percpu(wq->cpu_pwqs);
3530        else
3531                free_workqueue_attrs(wq->unbound_attrs);
3532
3533        kfree(wq);
3534}
3535
3536static void rcu_free_pool(struct rcu_head *rcu)
3537{
3538        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3539
3540        ida_destroy(&pool->worker_ida);
3541        free_workqueue_attrs(pool->attrs);
3542        kfree(pool);
3543}
3544
3545/* This returns with the lock held on success (pool manager is inactive). */
3546static bool wq_manager_inactive(struct worker_pool *pool)
3547{
3548        raw_spin_lock_irq(&pool->lock);
3549
3550        if (pool->flags & POOL_MANAGER_ACTIVE) {
3551                raw_spin_unlock_irq(&pool->lock);
3552                return false;
3553        }
3554        return true;
3555}
3556
3557/**
3558 * put_unbound_pool - put a worker_pool
3559 * @pool: worker_pool to put
3560 *
3561 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3562 * safe manner.  get_unbound_pool() calls this function on its failure path
3563 * and this function should be able to release pools which went through,
3564 * successfully or not, init_worker_pool().
3565 *
3566 * Should be called with wq_pool_mutex held.
3567 */
3568static void put_unbound_pool(struct worker_pool *pool)
3569{
3570        DECLARE_COMPLETION_ONSTACK(detach_completion);
3571        struct worker *worker;
3572
3573        lockdep_assert_held(&wq_pool_mutex);
3574
3575        if (--pool->refcnt)
3576                return;
3577
3578        /* sanity checks */
3579        if (WARN_ON(!(pool->cpu < 0)) ||
3580            WARN_ON(!list_empty(&pool->worklist)))
3581                return;
3582
3583        /* release id and unhash */
3584        if (pool->id >= 0)
3585                idr_remove(&worker_pool_idr, pool->id);
3586        hash_del(&pool->hash_node);
3587
3588        /*
3589         * Become the manager and destroy all workers.  This prevents
3590         * @pool's workers from blocking on attach_mutex.  We're the last
3591         * manager and @pool gets freed with the flag set.
3592         * Because of how wq_manager_inactive() works, we will hold the
3593         * spinlock after a successful wait.
3594         */
3595        rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3596                           TASK_UNINTERRUPTIBLE);
3597        pool->flags |= POOL_MANAGER_ACTIVE;
3598
3599        while ((worker = first_idle_worker(pool)))
3600                destroy_worker(worker);
3601        WARN_ON(pool->nr_workers || pool->nr_idle);
3602        raw_spin_unlock_irq(&pool->lock);
3603
3604        mutex_lock(&wq_pool_attach_mutex);
3605        if (!list_empty(&pool->workers))
3606                pool->detach_completion = &detach_completion;
3607        mutex_unlock(&wq_pool_attach_mutex);
3608
3609        if (pool->detach_completion)
3610                wait_for_completion(pool->detach_completion);
3611
3612        /* shut down the timers */
3613        del_timer_sync(&pool->idle_timer);
3614        del_timer_sync(&pool->mayday_timer);
3615
3616        /* RCU protected to allow dereferences from get_work_pool() */
3617        call_rcu(&pool->rcu, rcu_free_pool);
3618}
3619
3620/**
3621 * get_unbound_pool - get a worker_pool with the specified attributes
3622 * @attrs: the attributes of the worker_pool to get
3623 *
3624 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3625 * reference count and return it.  If there already is a matching
3626 * worker_pool, it will be used; otherwise, this function attempts to
3627 * create a new one.
3628 *
3629 * Should be called with wq_pool_mutex held.
3630 *
3631 * Return: On success, a worker_pool with the same attributes as @attrs.
3632 * On failure, %NULL.
3633 */
3634static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3635{
3636        u32 hash = wqattrs_hash(attrs);
3637        struct worker_pool *pool;
3638        int node;
3639        int target_node = NUMA_NO_NODE;
3640
3641        lockdep_assert_held(&wq_pool_mutex);
3642
3643        /* do we already have a matching pool? */
3644        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3645                if (wqattrs_equal(pool->attrs, attrs)) {
3646                        pool->refcnt++;
3647                        return pool;
3648                }
3649        }
3650
3651        /* if cpumask is contained inside a NUMA node, we belong to that node */
3652        if (wq_numa_enabled) {
3653                for_each_node(node) {
3654                        if (cpumask_subset(attrs->cpumask,
3655                                           wq_numa_possible_cpumask[node])) {
3656                                target_node = node;
3657                                break;
3658                        }
3659                }
3660        }
3661
3662        /* nope, create a new one */
3663        pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3664        if (!pool || init_worker_pool(pool) < 0)
3665                goto fail;
3666
3667        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3668        copy_workqueue_attrs(pool->attrs, attrs);
3669        pool->node = target_node;
3670
3671        /*
3672         * no_numa isn't a worker_pool attribute, always clear it.  See
3673         * 'struct workqueue_attrs' comments for detail.
3674         */
3675        pool->attrs->no_numa = false;
3676
3677        if (worker_pool_assign_id(pool) < 0)
3678                goto fail;
3679
3680        /* create and start the initial worker */
3681        if (wq_online && !create_worker(pool))
3682                goto fail;
3683
3684        /* install */
3685        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3686
3687        return pool;
3688fail:
3689        if (pool)
3690                put_unbound_pool(pool);
3691        return NULL;
3692}
3693
3694static void rcu_free_pwq(struct rcu_head *rcu)
3695{
3696        kmem_cache_free(pwq_cache,
3697                        container_of(rcu, struct pool_workqueue, rcu));
3698}
3699
3700/*
3701 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3702 * and needs to be destroyed.
3703 */
3704static void pwq_unbound_release_workfn(struct work_struct *work)
3705{
3706        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3707                                                  unbound_release_work);
3708        struct workqueue_struct *wq = pwq->wq;
3709        struct worker_pool *pool = pwq->pool;
3710        bool is_last = false;
3711
3712        /*
3713         * when @pwq is not linked, it doesn't hold any reference to the
3714         * @wq, and @wq is invalid to access.
3715         */
3716        if (!list_empty(&pwq->pwqs_node)) {
3717                if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3718                        return;
3719
3720                mutex_lock(&wq->mutex);
3721                list_del_rcu(&pwq->pwqs_node);
3722                is_last = list_empty(&wq->pwqs);
3723                mutex_unlock(&wq->mutex);
3724        }
3725
3726        mutex_lock(&wq_pool_mutex);
3727        put_unbound_pool(pool);
3728        mutex_unlock(&wq_pool_mutex);
3729
3730        call_rcu(&pwq->rcu, rcu_free_pwq);
3731
3732        /*
3733         * If we're the last pwq going away, @wq is already dead and no one
3734         * is gonna access it anymore.  Schedule RCU free.
3735         */
3736        if (is_last) {
3737                wq_unregister_lockdep(wq);
3738                call_rcu(&wq->rcu, rcu_free_wq);
3739        }
3740}
3741
3742/**
3743 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3744 * @pwq: target pool_workqueue
3745 *
3746 * If @pwq isn't freezing, set @pwq->max_active to the associated
3747 * workqueue's saved_max_active and activate inactive work items
3748 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3749 */
3750static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3751{
3752        struct workqueue_struct *wq = pwq->wq;
3753        bool freezable = wq->flags & WQ_FREEZABLE;
3754        unsigned long flags;
3755
3756        /* for @wq->saved_max_active */
3757        lockdep_assert_held(&wq->mutex);
3758
3759        /* fast exit for non-freezable wqs */
3760        if (!freezable && pwq->max_active == wq->saved_max_active)
3761                return;
3762
3763        /* this function can be called during early boot w/ irq disabled */
3764        raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3765
3766        /*
3767         * During [un]freezing, the caller is responsible for ensuring that
3768         * this function is called at least once after @workqueue_freezing
3769         * is updated and visible.
3770         */
3771        if (!freezable || !workqueue_freezing) {
3772                bool kick = false;
3773
3774                pwq->max_active = wq->saved_max_active;
3775
3776                while (!list_empty(&pwq->inactive_works) &&
3777                       pwq->nr_active < pwq->max_active) {
3778                        pwq_activate_first_inactive(pwq);
3779                        kick = true;
3780                }
3781
3782                /*
3783                 * Need to kick a worker after thawed or an unbound wq's
3784                 * max_active is bumped. In realtime scenarios, always kicking a
3785                 * worker will cause interference on the isolated cpu cores, so
3786                 * let's kick iff work items were activated.
3787                 */
3788                if (kick)
3789                        wake_up_worker(pwq->pool);
3790        } else {
3791                pwq->max_active = 0;
3792        }
3793
3794        raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3795}
3796
3797/* initialize newly allocated @pwq which is associated with @wq and @pool */
3798static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3799                     struct worker_pool *pool)
3800{
3801        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3802
3803        memset(pwq, 0, sizeof(*pwq));
3804
3805        pwq->pool = pool;
3806        pwq->wq = wq;
3807        pwq->flush_color = -1;
3808        pwq->refcnt = 1;
3809        INIT_LIST_HEAD(&pwq->inactive_works);
3810        INIT_LIST_HEAD(&pwq->pwqs_node);
3811        INIT_LIST_HEAD(&pwq->mayday_node);
3812        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3813}
3814
3815/* sync @pwq with the current state of its associated wq and link it */
3816static void link_pwq(struct pool_workqueue *pwq)
3817{
3818        struct workqueue_struct *wq = pwq->wq;
3819
3820        lockdep_assert_held(&wq->mutex);
3821
3822        /* may be called multiple times, ignore if already linked */
3823        if (!list_empty(&pwq->pwqs_node))
3824                return;
3825
3826        /* set the matching work_color */
3827        pwq->work_color = wq->work_color;
3828
3829        /* sync max_active to the current setting */
3830        pwq_adjust_max_active(pwq);
3831
3832        /* link in @pwq */
3833        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3834}
3835
3836/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3837static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3838                                        const struct workqueue_attrs *attrs)
3839{
3840        struct worker_pool *pool;
3841        struct pool_workqueue *pwq;
3842
3843        lockdep_assert_held(&wq_pool_mutex);
3844
3845        pool = get_unbound_pool(attrs);
3846        if (!pool)
3847                return NULL;
3848
3849        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3850        if (!pwq) {
3851                put_unbound_pool(pool);
3852                return NULL;
3853        }
3854
3855        init_pwq(pwq, wq, pool);
3856        return pwq;
3857}
3858
3859/**
3860 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3861 * @attrs: the wq_attrs of the default pwq of the target workqueue
3862 * @node: the target NUMA node
3863 * @cpu_going_down: if >= 0, the CPU to consider as offline
3864 * @cpumask: outarg, the resulting cpumask
3865 *
3866 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3867 * @cpu_going_down is >= 0, that cpu is considered offline during
3868 * calculation.  The result is stored in @cpumask.
3869 *
3870 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3871 * enabled and @node has online CPUs requested by @attrs, the returned
3872 * cpumask is the intersection of the possible CPUs of @node and
3873 * @attrs->cpumask.
3874 *
3875 * The caller is responsible for ensuring that the cpumask of @node stays
3876 * stable.
3877 *
3878 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3879 * %false if equal.
3880 */
3881static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3882                                 int cpu_going_down, cpumask_t *cpumask)
3883{
3884        if (!wq_numa_enabled || attrs->no_numa)
3885                goto use_dfl;
3886
3887        /* does @node have any online CPUs @attrs wants? */
3888        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3889        if (cpu_going_down >= 0)
3890                cpumask_clear_cpu(cpu_going_down, cpumask);
3891
3892        if (cpumask_empty(cpumask))
3893                goto use_dfl;
3894
3895        /* yeap, return possible CPUs in @node that @attrs wants */
3896        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3897
3898        if (cpumask_empty(cpumask)) {
3899                pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3900                                "possible intersect\n");
3901                return false;
3902        }
3903
3904        return !cpumask_equal(cpumask, attrs->cpumask);
3905
3906use_dfl:
3907        cpumask_copy(cpumask, attrs->cpumask);
3908        return false;
3909}
3910
3911/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3912static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3913                                                   int node,
3914                                                   struct pool_workqueue *pwq)
3915{
3916        struct pool_workqueue *old_pwq;
3917
3918        lockdep_assert_held(&wq_pool_mutex);
3919        lockdep_assert_held(&wq->mutex);
3920
3921        /* link_pwq() can handle duplicate calls */
3922        link_pwq(pwq);
3923
3924        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3925        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3926        return old_pwq;
3927}
3928
3929/* context to store the prepared attrs & pwqs before applying */
3930struct apply_wqattrs_ctx {
3931        struct workqueue_struct *wq;            /* target workqueue */
3932        struct workqueue_attrs  *attrs;         /* attrs to apply */
3933        struct list_head        list;           /* queued for batching commit */
3934        struct pool_workqueue   *dfl_pwq;
3935        struct pool_workqueue   *pwq_tbl[];
3936};
3937
3938/* free the resources after success or abort */
3939static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3940{
3941        if (ctx) {
3942                int node;
3943
3944                for_each_node(node)
3945                        put_pwq_unlocked(ctx->pwq_tbl[node]);
3946                put_pwq_unlocked(ctx->dfl_pwq);
3947
3948                free_workqueue_attrs(ctx->attrs);
3949
3950                kfree(ctx);
3951        }
3952}
3953
3954/* allocate the attrs and pwqs for later installation */
3955static struct apply_wqattrs_ctx *
3956apply_wqattrs_prepare(struct workqueue_struct *wq,
3957                      const struct workqueue_attrs *attrs)
3958{
3959        struct apply_wqattrs_ctx *ctx;
3960        struct workqueue_attrs *new_attrs, *tmp_attrs;
3961        int node;
3962
3963        lockdep_assert_held(&wq_pool_mutex);
3964
3965        ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3966
3967        new_attrs = alloc_workqueue_attrs();
3968        tmp_attrs = alloc_workqueue_attrs();
3969        if (!ctx || !new_attrs || !tmp_attrs)
3970                goto out_free;
3971
3972        /*
3973         * Calculate the attrs of the default pwq.
3974         * If the user configured cpumask doesn't overlap with the
3975         * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3976         */
3977        copy_workqueue_attrs(new_attrs, attrs);
3978        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3979        if (unlikely(cpumask_empty(new_attrs->cpumask)))
3980                cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3981
3982        /*
3983         * We may create multiple pwqs with differing cpumasks.  Make a
3984         * copy of @new_attrs which will be modified and used to obtain
3985         * pools.
3986         */
3987        copy_workqueue_attrs(tmp_attrs, new_attrs);
3988
3989        /*
3990         * If something goes wrong during CPU up/down, we'll fall back to
3991         * the default pwq covering whole @attrs->cpumask.  Always create
3992         * it even if we don't use it immediately.
3993         */
3994        ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3995        if (!ctx->dfl_pwq)
3996                goto out_free;
3997
3998        for_each_node(node) {
3999                if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4000                        ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4001                        if (!ctx->pwq_tbl[node])
4002                                goto out_free;
4003                } else {
4004                        ctx->dfl_pwq->refcnt++;
4005                        ctx->pwq_tbl[node] = ctx->dfl_pwq;
4006                }
4007        }
4008
4009        /* save the user configured attrs and sanitize it. */
4010        copy_workqueue_attrs(new_attrs, attrs);
4011        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4012        ctx->attrs = new_attrs;
4013
4014        ctx->wq = wq;
4015        free_workqueue_attrs(tmp_attrs);
4016        return ctx;
4017
4018out_free:
4019        free_workqueue_attrs(tmp_attrs);
4020        free_workqueue_attrs(new_attrs);
4021        apply_wqattrs_cleanup(ctx);
4022        return NULL;
4023}
4024
4025/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4026static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4027{
4028        int node;
4029
4030        /* all pwqs have been created successfully, let's install'em */
4031        mutex_lock(&ctx->wq->mutex);
4032
4033        copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4034
4035        /* save the previous pwq and install the new one */
4036        for_each_node(node)
4037                ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4038                                                          ctx->pwq_tbl[node]);
4039
4040        /* @dfl_pwq might not have been used, ensure it's linked */
4041        link_pwq(ctx->dfl_pwq);
4042        swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4043
4044        mutex_unlock(&ctx->wq->mutex);
4045}
4046
4047static void apply_wqattrs_lock(void)
4048{
4049        /* CPUs should stay stable across pwq creations and installations */
4050        cpus_read_lock();
4051        mutex_lock(&wq_pool_mutex);
4052}
4053
4054static void apply_wqattrs_unlock(void)
4055{
4056        mutex_unlock(&wq_pool_mutex);
4057        cpus_read_unlock();
4058}
4059
4060static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4061                                        const struct workqueue_attrs *attrs)
4062{
4063        struct apply_wqattrs_ctx *ctx;
4064
4065        /* only unbound workqueues can change attributes */
4066        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4067                return -EINVAL;
4068
4069        /* creating multiple pwqs breaks ordering guarantee */
4070        if (!list_empty(&wq->pwqs)) {
4071                if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4072                        return -EINVAL;
4073
4074                wq->flags &= ~__WQ_ORDERED;
4075        }
4076
4077        ctx = apply_wqattrs_prepare(wq, attrs);
4078        if (!ctx)
4079                return -ENOMEM;
4080
4081        /* the ctx has been prepared successfully, let's commit it */
4082        apply_wqattrs_commit(ctx);
4083        apply_wqattrs_cleanup(ctx);
4084
4085        return 0;
4086}
4087
4088/**
4089 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4090 * @wq: the target workqueue
4091 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4092 *
4093 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4094 * machines, this function maps a separate pwq to each NUMA node with
4095 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4096 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4097 * items finish.  Note that a work item which repeatedly requeues itself
4098 * back-to-back will stay on its current pwq.
4099 *
4100 * Performs GFP_KERNEL allocations.
4101 *
4102 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4103 *
4104 * Return: 0 on success and -errno on failure.
4105 */
4106int apply_workqueue_attrs(struct workqueue_struct *wq,
4107                          const struct workqueue_attrs *attrs)
4108{
4109        int ret;
4110
4111        lockdep_assert_cpus_held();
4112
4113        mutex_lock(&wq_pool_mutex);
4114        ret = apply_workqueue_attrs_locked(wq, attrs);
4115        mutex_unlock(&wq_pool_mutex);
4116
4117        return ret;
4118}
4119
4120/**
4121 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4122 * @wq: the target workqueue
4123 * @cpu: the CPU coming up or going down
4124 * @online: whether @cpu is coming up or going down
4125 *
4126 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4127 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4128 * @wq accordingly.
4129 *
4130 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4131 * falls back to @wq->dfl_pwq which may not be optimal but is always
4132 * correct.
4133 *
4134 * Note that when the last allowed CPU of a NUMA node goes offline for a
4135 * workqueue with a cpumask spanning multiple nodes, the workers which were
4136 * already executing the work items for the workqueue will lose their CPU
4137 * affinity and may execute on any CPU.  This is similar to how per-cpu
4138 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4139 * affinity, it's the user's responsibility to flush the work item from
4140 * CPU_DOWN_PREPARE.
4141 */
4142static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4143                                   bool online)
4144{
4145        int node = cpu_to_node(cpu);
4146        int cpu_off = online ? -1 : cpu;
4147        struct pool_workqueue *old_pwq = NULL, *pwq;
4148        struct workqueue_attrs *target_attrs;
4149        cpumask_t *cpumask;
4150
4151        lockdep_assert_held(&wq_pool_mutex);
4152
4153        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4154            wq->unbound_attrs->no_numa)
4155                return;
4156
4157        /*
4158         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4159         * Let's use a preallocated one.  The following buf is protected by
4160         * CPU hotplug exclusion.
4161         */
4162        target_attrs = wq_update_unbound_numa_attrs_buf;
4163        cpumask = target_attrs->cpumask;
4164
4165        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4166        pwq = unbound_pwq_by_node(wq, node);
4167
4168        /*
4169         * Let's determine what needs to be done.  If the target cpumask is
4170         * different from the default pwq's, we need to compare it to @pwq's
4171         * and create a new one if they don't match.  If the target cpumask
4172         * equals the default pwq's, the default pwq should be used.
4173         */
4174        if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4175                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4176                        return;
4177        } else {
4178                goto use_dfl_pwq;
4179        }
4180
4181        /* create a new pwq */
4182        pwq = alloc_unbound_pwq(wq, target_attrs);
4183        if (!pwq) {
4184                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4185                        wq->name);
4186                goto use_dfl_pwq;
4187        }
4188
4189        /* Install the new pwq. */
4190        mutex_lock(&wq->mutex);
4191        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4192        goto out_unlock;
4193
4194use_dfl_pwq:
4195        mutex_lock(&wq->mutex);
4196        raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4197        get_pwq(wq->dfl_pwq);
4198        raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4199        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4200out_unlock:
4201        mutex_unlock(&wq->mutex);
4202        put_pwq_unlocked(old_pwq);
4203}
4204
4205static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4206{
4207        bool highpri = wq->flags & WQ_HIGHPRI;
4208        int cpu, ret;
4209
4210        if (!(wq->flags & WQ_UNBOUND)) {
4211                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4212                if (!wq->cpu_pwqs)
4213                        return -ENOMEM;
4214
4215                for_each_possible_cpu(cpu) {
4216                        struct pool_workqueue *pwq =
4217                                per_cpu_ptr(wq->cpu_pwqs, cpu);
4218                        struct worker_pool *cpu_pools =
4219                                per_cpu(cpu_worker_pools, cpu);
4220
4221                        init_pwq(pwq, wq, &cpu_pools[highpri]);
4222
4223                        mutex_lock(&wq->mutex);
4224                        link_pwq(pwq);
4225                        mutex_unlock(&wq->mutex);
4226                }
4227                return 0;
4228        }
4229
4230        cpus_read_lock();
4231        if (wq->flags & __WQ_ORDERED) {
4232                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4233                /* there should only be single pwq for ordering guarantee */
4234                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4235                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4236                     "ordering guarantee broken for workqueue %s\n", wq->name);
4237        } else {
4238                ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4239        }
4240        cpus_read_unlock();
4241
4242        return ret;
4243}
4244
4245static int wq_clamp_max_active(int max_active, unsigned int flags,
4246                               const char *name)
4247{
4248        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4249
4250        if (max_active < 1 || max_active > lim)
4251                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4252                        max_active, name, 1, lim);
4253
4254        return clamp_val(max_active, 1, lim);
4255}
4256
4257/*
4258 * Workqueues which may be used during memory reclaim should have a rescuer
4259 * to guarantee forward progress.
4260 */
4261static int init_rescuer(struct workqueue_struct *wq)
4262{
4263        struct worker *rescuer;
4264        int ret;
4265
4266        if (!(wq->flags & WQ_MEM_RECLAIM))
4267                return 0;
4268
4269        rescuer = alloc_worker(NUMA_NO_NODE);
4270        if (!rescuer)
4271                return -ENOMEM;
4272
4273        rescuer->rescue_wq = wq;
4274        rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4275        if (IS_ERR(rescuer->task)) {
4276                ret = PTR_ERR(rescuer->task);
4277                kfree(rescuer);
4278                return ret;
4279        }
4280
4281        wq->rescuer = rescuer;
4282        kthread_bind_mask(rescuer->task, cpu_possible_mask);
4283        wake_up_process(rescuer->task);
4284
4285        return 0;
4286}
4287
4288__printf(1, 4)
4289struct workqueue_struct *alloc_workqueue(const char *fmt,
4290                                         unsigned int flags,
4291                                         int max_active, ...)
4292{
4293        size_t tbl_size = 0;
4294        va_list args;
4295        struct workqueue_struct *wq;
4296        struct pool_workqueue *pwq;
4297
4298        /*
4299         * Unbound && max_active == 1 used to imply ordered, which is no
4300         * longer the case on NUMA machines due to per-node pools.  While
4301         * alloc_ordered_workqueue() is the right way to create an ordered
4302         * workqueue, keep the previous behavior to avoid subtle breakages
4303         * on NUMA.
4304         */
4305        if ((flags & WQ_UNBOUND) && max_active == 1)
4306                flags |= __WQ_ORDERED;
4307
4308        /* see the comment above the definition of WQ_POWER_EFFICIENT */
4309        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4310                flags |= WQ_UNBOUND;
4311
4312        /* allocate wq and format name */
4313        if (flags & WQ_UNBOUND)
4314                tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4315
4316        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4317        if (!wq)
4318                return NULL;
4319
4320        if (flags & WQ_UNBOUND) {
4321                wq->unbound_attrs = alloc_workqueue_attrs();
4322                if (!wq->unbound_attrs)
4323                        goto err_free_wq;
4324        }
4325
4326        va_start(args, max_active);
4327        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4328        va_end(args);
4329
4330        max_active = max_active ?: WQ_DFL_ACTIVE;
4331        max_active = wq_clamp_max_active(max_active, flags, wq->name);
4332
4333        /* init wq */
4334        wq->flags = flags;
4335        wq->saved_max_active = max_active;
4336        mutex_init(&wq->mutex);
4337        atomic_set(&wq->nr_pwqs_to_flush, 0);
4338        INIT_LIST_HEAD(&wq->pwqs);
4339        INIT_LIST_HEAD(&wq->flusher_queue);
4340        INIT_LIST_HEAD(&wq->flusher_overflow);
4341        INIT_LIST_HEAD(&wq->maydays);
4342
4343        wq_init_lockdep(wq);
4344        INIT_LIST_HEAD(&wq->list);
4345
4346        if (alloc_and_link_pwqs(wq) < 0)
4347                goto err_unreg_lockdep;
4348
4349        if (wq_online && init_rescuer(wq) < 0)
4350                goto err_destroy;
4351
4352        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4353                goto err_destroy;
4354
4355        /*
4356         * wq_pool_mutex protects global freeze state and workqueues list.
4357         * Grab it, adjust max_active and add the new @wq to workqueues
4358         * list.
4359         */
4360        mutex_lock(&wq_pool_mutex);
4361
4362        mutex_lock(&wq->mutex);
4363        for_each_pwq(pwq, wq)
4364                pwq_adjust_max_active(pwq);
4365        mutex_unlock(&wq->mutex);
4366
4367        list_add_tail_rcu(&wq->list, &workqueues);
4368
4369        mutex_unlock(&wq_pool_mutex);
4370
4371        return wq;
4372
4373err_unreg_lockdep:
4374        wq_unregister_lockdep(wq);
4375        wq_free_lockdep(wq);
4376err_free_wq:
4377        free_workqueue_attrs(wq->unbound_attrs);
4378        kfree(wq);
4379        return NULL;
4380err_destroy:
4381        destroy_workqueue(wq);
4382        return NULL;
4383}
4384EXPORT_SYMBOL_GPL(alloc_workqueue);
4385
4386static bool pwq_busy(struct pool_workqueue *pwq)
4387{
4388        int i;
4389
4390        for (i = 0; i < WORK_NR_COLORS; i++)
4391                if (pwq->nr_in_flight[i])
4392                        return true;
4393
4394        if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4395                return true;
4396        if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4397                return true;
4398
4399        return false;
4400}
4401
4402/**
4403 * destroy_workqueue - safely terminate a workqueue
4404 * @wq: target workqueue
4405 *
4406 * Safely destroy a workqueue. All work currently pending will be done first.
4407 */
4408void destroy_workqueue(struct workqueue_struct *wq)
4409{
4410        struct pool_workqueue *pwq;
4411        int node;
4412
4413        /*
4414         * Remove it from sysfs first so that sanity check failure doesn't
4415         * lead to sysfs name conflicts.
4416         */
4417        workqueue_sysfs_unregister(wq);
4418
4419        /* drain it before proceeding with destruction */
4420        drain_workqueue(wq);
4421
4422        /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4423        if (wq->rescuer) {
4424                struct worker *rescuer = wq->rescuer;
4425
4426                /* this prevents new queueing */
4427                raw_spin_lock_irq(&wq_mayday_lock);
4428                wq->rescuer = NULL;
4429                raw_spin_unlock_irq(&wq_mayday_lock);
4430
4431                /* rescuer will empty maydays list before exiting */
4432                kthread_stop(rescuer->task);
4433                kfree(rescuer);
4434        }
4435
4436        /*
4437         * Sanity checks - grab all the locks so that we wait for all
4438         * in-flight operations which may do put_pwq().
4439         */
4440        mutex_lock(&wq_pool_mutex);
4441        mutex_lock(&wq->mutex);
4442        for_each_pwq(pwq, wq) {
4443                raw_spin_lock_irq(&pwq->pool->lock);
4444                if (WARN_ON(pwq_busy(pwq))) {
4445                        pr_warn("%s: %s has the following busy pwq\n",
4446                                __func__, wq->name);
4447                        show_pwq(pwq);
4448                        raw_spin_unlock_irq(&pwq->pool->lock);
4449                        mutex_unlock(&wq->mutex);
4450                        mutex_unlock(&wq_pool_mutex);
4451                        show_one_workqueue(wq);
4452                        return;
4453                }
4454                raw_spin_unlock_irq(&pwq->pool->lock);
4455        }
4456        mutex_unlock(&wq->mutex);
4457
4458        /*
4459         * wq list is used to freeze wq, remove from list after
4460         * flushing is complete in case freeze races us.
4461         */
4462        list_del_rcu(&wq->list);
4463        mutex_unlock(&wq_pool_mutex);
4464
4465        if (!(wq->flags & WQ_UNBOUND)) {
4466                wq_unregister_lockdep(wq);
4467                /*
4468                 * The base ref is never dropped on per-cpu pwqs.  Directly
4469                 * schedule RCU free.
4470                 */
4471                call_rcu(&wq->rcu, rcu_free_wq);
4472        } else {
4473                /*
4474                 * We're the sole accessor of @wq at this point.  Directly
4475                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4476                 * @wq will be freed when the last pwq is released.
4477                 */
4478                for_each_node(node) {
4479                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4480                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4481                        put_pwq_unlocked(pwq);
4482                }
4483
4484                /*
4485                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4486                 * put.  Don't access it afterwards.
4487                 */
4488                pwq = wq->dfl_pwq;
4489                wq->dfl_pwq = NULL;
4490                put_pwq_unlocked(pwq);
4491        }
4492}
4493EXPORT_SYMBOL_GPL(destroy_workqueue);
4494
4495/**
4496 * workqueue_set_max_active - adjust max_active of a workqueue
4497 * @wq: target workqueue
4498 * @max_active: new max_active value.
4499 *
4500 * Set max_active of @wq to @max_active.
4501 *
4502 * CONTEXT:
4503 * Don't call from IRQ context.
4504 */
4505void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4506{
4507        struct pool_workqueue *pwq;
4508
4509        /* disallow meddling with max_active for ordered workqueues */
4510        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4511                return;
4512
4513        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4514
4515        mutex_lock(&wq->mutex);
4516
4517        wq->flags &= ~__WQ_ORDERED;
4518        wq->saved_max_active = max_active;
4519
4520        for_each_pwq(pwq, wq)
4521                pwq_adjust_max_active(pwq);
4522
4523        mutex_unlock(&wq->mutex);
4524}
4525EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4526
4527/**
4528 * current_work - retrieve %current task's work struct
4529 *
4530 * Determine if %current task is a workqueue worker and what it's working on.
4531 * Useful to find out the context that the %current task is running in.
4532 *
4533 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4534 */
4535struct work_struct *current_work(void)
4536{
4537        struct worker *worker = current_wq_worker();
4538
4539        return worker ? worker->current_work : NULL;
4540}
4541EXPORT_SYMBOL(current_work);
4542
4543/**
4544 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4545 *
4546 * Determine whether %current is a workqueue rescuer.  Can be used from
4547 * work functions to determine whether it's being run off the rescuer task.
4548 *
4549 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4550 */
4551bool current_is_workqueue_rescuer(void)
4552{
4553        struct worker *worker = current_wq_worker();
4554
4555        return worker && worker->rescue_wq;
4556}
4557
4558/**
4559 * workqueue_congested - test whether a workqueue is congested
4560 * @cpu: CPU in question
4561 * @wq: target workqueue
4562 *
4563 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4564 * no synchronization around this function and the test result is
4565 * unreliable and only useful as advisory hints or for debugging.
4566 *
4567 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4568 * Note that both per-cpu and unbound workqueues may be associated with
4569 * multiple pool_workqueues which have separate congested states.  A
4570 * workqueue being congested on one CPU doesn't mean the workqueue is also
4571 * contested on other CPUs / NUMA nodes.
4572 *
4573 * Return:
4574 * %true if congested, %false otherwise.
4575 */
4576bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4577{
4578        struct pool_workqueue *pwq;
4579        bool ret;
4580
4581        rcu_read_lock();
4582        preempt_disable();
4583
4584        if (cpu == WORK_CPU_UNBOUND)
4585                cpu = smp_processor_id();
4586
4587        if (!(wq->flags & WQ_UNBOUND))
4588                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4589        else
4590                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4591
4592        ret = !list_empty(&pwq->inactive_works);
4593        preempt_enable();
4594        rcu_read_unlock();
4595
4596        return ret;
4597}
4598EXPORT_SYMBOL_GPL(workqueue_congested);
4599
4600/**
4601 * work_busy - test whether a work is currently pending or running
4602 * @work: the work to be tested
4603 *
4604 * Test whether @work is currently pending or running.  There is no
4605 * synchronization around this function and the test result is
4606 * unreliable and only useful as advisory hints or for debugging.
4607 *
4608 * Return:
4609 * OR'd bitmask of WORK_BUSY_* bits.
4610 */
4611unsigned int work_busy(struct work_struct *work)
4612{
4613        struct worker_pool *pool;
4614        unsigned long flags;
4615        unsigned int ret = 0;
4616
4617        if (work_pending(work))
4618                ret |= WORK_BUSY_PENDING;
4619
4620        rcu_read_lock();
4621        pool = get_work_pool(work);
4622        if (pool) {
4623                raw_spin_lock_irqsave(&pool->lock, flags);
4624                if (find_worker_executing_work(pool, work))
4625                        ret |= WORK_BUSY_RUNNING;
4626                raw_spin_unlock_irqrestore(&pool->lock, flags);
4627        }
4628        rcu_read_unlock();
4629
4630        return ret;
4631}
4632EXPORT_SYMBOL_GPL(work_busy);
4633
4634/**
4635 * set_worker_desc - set description for the current work item
4636 * @fmt: printf-style format string
4637 * @...: arguments for the format string
4638 *
4639 * This function can be called by a running work function to describe what
4640 * the work item is about.  If the worker task gets dumped, this
4641 * information will be printed out together to help debugging.  The
4642 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4643 */
4644void set_worker_desc(const char *fmt, ...)
4645{
4646        struct worker *worker = current_wq_worker();
4647        va_list args;
4648
4649        if (worker) {
4650                va_start(args, fmt);
4651                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4652                va_end(args);
4653        }
4654}
4655EXPORT_SYMBOL_GPL(set_worker_desc);
4656
4657/**
4658 * print_worker_info - print out worker information and description
4659 * @log_lvl: the log level to use when printing
4660 * @task: target task
4661 *
4662 * If @task is a worker and currently executing a work item, print out the
4663 * name of the workqueue being serviced and worker description set with
4664 * set_worker_desc() by the currently executing work item.
4665 *
4666 * This function can be safely called on any task as long as the
4667 * task_struct itself is accessible.  While safe, this function isn't
4668 * synchronized and may print out mixups or garbages of limited length.
4669 */
4670void print_worker_info(const char *log_lvl, struct task_struct *task)
4671{
4672        work_func_t *fn = NULL;
4673        char name[WQ_NAME_LEN] = { };
4674        char desc[WORKER_DESC_LEN] = { };
4675        struct pool_workqueue *pwq = NULL;
4676        struct workqueue_struct *wq = NULL;
4677        struct worker *worker;
4678
4679        if (!(task->flags & PF_WQ_WORKER))
4680                return;
4681
4682        /*
4683         * This function is called without any synchronization and @task
4684         * could be in any state.  Be careful with dereferences.
4685         */
4686        worker = kthread_probe_data(task);
4687
4688        /*
4689         * Carefully copy the associated workqueue's workfn, name and desc.
4690         * Keep the original last '\0' in case the original is garbage.
4691         */
4692        copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4693        copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4694        copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4695        copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4696        copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4697
4698        if (fn || name[0] || desc[0]) {
4699                printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4700                if (strcmp(name, desc))
4701                        pr_cont(" (%s)", desc);
4702                pr_cont("\n");
4703        }
4704}
4705
4706static void pr_cont_pool_info(struct worker_pool *pool)
4707{
4708        pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4709        if (pool->node != NUMA_NO_NODE)
4710                pr_cont(" node=%d", pool->node);
4711        pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4712}
4713
4714static void pr_cont_work(bool comma, struct work_struct *work)
4715{
4716        if (work->func == wq_barrier_func) {
4717                struct wq_barrier *barr;
4718
4719                barr = container_of(work, struct wq_barrier, work);
4720
4721                pr_cont("%s BAR(%d)", comma ? "," : "",
4722                        task_pid_nr(barr->task));
4723        } else {
4724                pr_cont("%s %ps", comma ? "," : "", work->func);
4725        }
4726}
4727
4728static void show_pwq(struct pool_workqueue *pwq)
4729{
4730        struct worker_pool *pool = pwq->pool;
4731        struct work_struct *work;
4732        struct worker *worker;
4733        bool has_in_flight = false, has_pending = false;
4734        int bkt;
4735
4736        pr_info("  pwq %d:", pool->id);
4737        pr_cont_pool_info(pool);
4738
4739        pr_cont(" active=%d/%d refcnt=%d%s\n",
4740                pwq->nr_active, pwq->max_active, pwq->refcnt,
4741                !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4742
4743        hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4744                if (worker->current_pwq == pwq) {
4745                        has_in_flight = true;
4746                        break;
4747                }
4748        }
4749        if (has_in_flight) {
4750                bool comma = false;
4751
4752                pr_info("    in-flight:");
4753                hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4754                        if (worker->current_pwq != pwq)
4755                                continue;
4756
4757                        pr_cont("%s %d%s:%ps", comma ? "," : "",
4758                                task_pid_nr(worker->task),
4759                                worker->rescue_wq ? "(RESCUER)" : "",
4760                                worker->current_func);
4761                        list_for_each_entry(work, &worker->scheduled, entry)
4762                                pr_cont_work(false, work);
4763                        comma = true;
4764                }
4765                pr_cont("\n");
4766        }
4767
4768        list_for_each_entry(work, &pool->worklist, entry) {
4769                if (get_work_pwq(work) == pwq) {
4770                        has_pending = true;
4771                        break;
4772                }
4773        }
4774        if (has_pending) {
4775                bool comma = false;
4776
4777                pr_info("    pending:");
4778                list_for_each_entry(work, &pool->worklist, entry) {
4779                        if (get_work_pwq(work) != pwq)
4780                                continue;
4781
4782                        pr_cont_work(comma, work);
4783                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4784                }
4785                pr_cont("\n");
4786        }
4787
4788        if (!list_empty(&pwq->inactive_works)) {
4789                bool comma = false;
4790
4791                pr_info("    inactive:");
4792                list_for_each_entry(work, &pwq->inactive_works, entry) {
4793                        pr_cont_work(comma, work);
4794                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4795                }
4796                pr_cont("\n");
4797        }
4798}
4799
4800/**
4801 * show_one_workqueue - dump state of specified workqueue
4802 * @wq: workqueue whose state will be printed
4803 */
4804void show_one_workqueue(struct workqueue_struct *wq)
4805{
4806        struct pool_workqueue *pwq;
4807        bool idle = true;
4808        unsigned long flags;
4809
4810        for_each_pwq(pwq, wq) {
4811                if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4812                        idle = false;
4813                        break;
4814                }
4815        }
4816        if (idle) /* Nothing to print for idle workqueue */
4817                return;
4818
4819        pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4820
4821        for_each_pwq(pwq, wq) {
4822                raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4823                if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4824                        /*
4825                         * Defer printing to avoid deadlocks in console
4826                         * drivers that queue work while holding locks
4827                         * also taken in their write paths.
4828                         */
4829                        printk_deferred_enter();
4830                        show_pwq(pwq);
4831                        printk_deferred_exit();
4832                }
4833                raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4834                /*
4835                 * We could be printing a lot from atomic context, e.g.
4836                 * sysrq-t -> show_all_workqueues(). Avoid triggering
4837                 * hard lockup.
4838                 */
4839                touch_nmi_watchdog();
4840        }
4841
4842}
4843
4844/**
4845 * show_one_worker_pool - dump state of specified worker pool
4846 * @pool: worker pool whose state will be printed
4847 */
4848static void show_one_worker_pool(struct worker_pool *pool)
4849{
4850        struct worker *worker;
4851        bool first = true;
4852        unsigned long flags;
4853
4854        raw_spin_lock_irqsave(&pool->lock, flags);
4855        if (pool->nr_workers == pool->nr_idle)
4856                goto next_pool;
4857        /*
4858         * Defer printing to avoid deadlocks in console drivers that
4859         * queue work while holding locks also taken in their write
4860         * paths.
4861         */
4862        printk_deferred_enter();
4863        pr_info("pool %d:", pool->id);
4864        pr_cont_pool_info(pool);
4865        pr_cont(" hung=%us workers=%d",
4866                jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4867                pool->nr_workers);
4868        if (pool->manager)
4869                pr_cont(" manager: %d",
4870                        task_pid_nr(pool->manager->task));
4871        list_for_each_entry(worker, &pool->idle_list, entry) {
4872                pr_cont(" %s%d", first ? "idle: " : "",
4873                        task_pid_nr(worker->task));
4874                first = false;
4875        }
4876        pr_cont("\n");
4877        printk_deferred_exit();
4878next_pool:
4879        raw_spin_unlock_irqrestore(&pool->lock, flags);
4880        /*
4881         * We could be printing a lot from atomic context, e.g.
4882         * sysrq-t -> show_all_workqueues(). Avoid triggering
4883         * hard lockup.
4884         */
4885        touch_nmi_watchdog();
4886
4887}
4888
4889/**
4890 * show_all_workqueues - dump workqueue state
4891 *
4892 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4893 * all busy workqueues and pools.
4894 */
4895void show_all_workqueues(void)
4896{
4897        struct workqueue_struct *wq;
4898        struct worker_pool *pool;
4899        int pi;
4900
4901        rcu_read_lock();
4902
4903        pr_info("Showing busy workqueues and worker pools:\n");
4904
4905        list_for_each_entry_rcu(wq, &workqueues, list)
4906                show_one_workqueue(wq);
4907
4908        for_each_pool(pool, pi)
4909                show_one_worker_pool(pool);
4910
4911        rcu_read_unlock();
4912}
4913
4914/* used to show worker information through /proc/PID/{comm,stat,status} */
4915void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4916{
4917        int off;
4918
4919        /* always show the actual comm */
4920        off = strscpy(buf, task->comm, size);
4921        if (off < 0)
4922                return;
4923
4924        /* stabilize PF_WQ_WORKER and worker pool association */
4925        mutex_lock(&wq_pool_attach_mutex);
4926
4927        if (task->flags & PF_WQ_WORKER) {
4928                struct worker *worker = kthread_data(task);
4929                struct worker_pool *pool = worker->pool;
4930
4931                if (pool) {
4932                        raw_spin_lock_irq(&pool->lock);
4933                        /*
4934                         * ->desc tracks information (wq name or
4935                         * set_worker_desc()) for the latest execution.  If
4936                         * current, prepend '+', otherwise '-'.
4937                         */
4938                        if (worker->desc[0] != '\0') {
4939                                if (worker->current_work)
4940                                        scnprintf(buf + off, size - off, "+%s",
4941                                                  worker->desc);
4942                                else
4943                                        scnprintf(buf + off, size - off, "-%s",
4944                                                  worker->desc);
4945                        }
4946                        raw_spin_unlock_irq(&pool->lock);
4947                }
4948        }
4949
4950        mutex_unlock(&wq_pool_attach_mutex);
4951}
4952
4953#ifdef CONFIG_SMP
4954
4955/*
4956 * CPU hotplug.
4957 *
4958 * There are two challenges in supporting CPU hotplug.  Firstly, there
4959 * are a lot of assumptions on strong associations among work, pwq and
4960 * pool which make migrating pending and scheduled works very
4961 * difficult to implement without impacting hot paths.  Secondly,
4962 * worker pools serve mix of short, long and very long running works making
4963 * blocked draining impractical.
4964 *
4965 * This is solved by allowing the pools to be disassociated from the CPU
4966 * running as an unbound one and allowing it to be reattached later if the
4967 * cpu comes back online.
4968 */
4969
4970static void unbind_workers(int cpu)
4971{
4972        struct worker_pool *pool;
4973        struct worker *worker;
4974
4975        for_each_cpu_worker_pool(pool, cpu) {
4976                mutex_lock(&wq_pool_attach_mutex);
4977                raw_spin_lock_irq(&pool->lock);
4978
4979                /*
4980                 * We've blocked all attach/detach operations. Make all workers
4981                 * unbound and set DISASSOCIATED.  Before this, all workers
4982                 * except for the ones which are still executing works from
4983                 * before the last CPU down must be on the cpu.  After
4984                 * this, they may become diasporas.
4985                 */
4986                for_each_pool_worker(worker, pool)
4987                        worker->flags |= WORKER_UNBOUND;
4988
4989                pool->flags |= POOL_DISASSOCIATED;
4990
4991                raw_spin_unlock_irq(&pool->lock);
4992
4993                for_each_pool_worker(worker, pool) {
4994                        kthread_set_per_cpu(worker->task, -1);
4995                        WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4996                }
4997
4998                mutex_unlock(&wq_pool_attach_mutex);
4999
5000                /*
5001                 * Call schedule() so that we cross rq->lock and thus can
5002                 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
5003                 * This is necessary as scheduler callbacks may be invoked
5004                 * from other cpus.
5005                 */
5006                schedule();
5007
5008                /*
5009                 * Sched callbacks are disabled now.  Zap nr_running.
5010                 * After this, nr_running stays zero and need_more_worker()
5011                 * and keep_working() are always true as long as the
5012                 * worklist is not empty.  This pool now behaves as an
5013                 * unbound (in terms of concurrency management) pool which
5014                 * are served by workers tied to the pool.
5015                 */
5016                atomic_set(&pool->nr_running, 0);
5017
5018                /*
5019                 * With concurrency management just turned off, a busy
5020                 * worker blocking could lead to lengthy stalls.  Kick off
5021                 * unbound chain execution of currently pending work items.
5022                 */
5023                raw_spin_lock_irq(&pool->lock);
5024                wake_up_worker(pool);
5025                raw_spin_unlock_irq(&pool->lock);
5026        }
5027}
5028
5029/**
5030 * rebind_workers - rebind all workers of a pool to the associated CPU
5031 * @pool: pool of interest
5032 *
5033 * @pool->cpu is coming online.  Rebind all workers to the CPU.
5034 */
5035static void rebind_workers(struct worker_pool *pool)
5036{
5037        struct worker *worker;
5038
5039        lockdep_assert_held(&wq_pool_attach_mutex);
5040
5041        /*
5042         * Restore CPU affinity of all workers.  As all idle workers should
5043         * be on the run-queue of the associated CPU before any local
5044         * wake-ups for concurrency management happen, restore CPU affinity
5045         * of all workers first and then clear UNBOUND.  As we're called
5046         * from CPU_ONLINE, the following shouldn't fail.
5047         */
5048        for_each_pool_worker(worker, pool) {
5049                kthread_set_per_cpu(worker->task, pool->cpu);
5050                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5051                                                  pool->attrs->cpumask) < 0);
5052        }
5053
5054        raw_spin_lock_irq(&pool->lock);
5055
5056        pool->flags &= ~POOL_DISASSOCIATED;
5057
5058        for_each_pool_worker(worker, pool) {
5059                unsigned int worker_flags = worker->flags;
5060
5061                /*
5062                 * A bound idle worker should actually be on the runqueue
5063                 * of the associated CPU for local wake-ups targeting it to
5064                 * work.  Kick all idle workers so that they migrate to the
5065                 * associated CPU.  Doing this in the same loop as
5066                 * replacing UNBOUND with REBOUND is safe as no worker will
5067                 * be bound before @pool->lock is released.
5068                 */
5069                if (worker_flags & WORKER_IDLE)
5070                        wake_up_process(worker->task);
5071
5072                /*
5073                 * We want to clear UNBOUND but can't directly call
5074                 * worker_clr_flags() or adjust nr_running.  Atomically
5075                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5076                 * @worker will clear REBOUND using worker_clr_flags() when
5077                 * it initiates the next execution cycle thus restoring
5078                 * concurrency management.  Note that when or whether
5079                 * @worker clears REBOUND doesn't affect correctness.
5080                 *
5081                 * WRITE_ONCE() is necessary because @worker->flags may be
5082                 * tested without holding any lock in
5083                 * wq_worker_running().  Without it, NOT_RUNNING test may
5084                 * fail incorrectly leading to premature concurrency
5085                 * management operations.
5086                 */
5087                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5088                worker_flags |= WORKER_REBOUND;
5089                worker_flags &= ~WORKER_UNBOUND;
5090                WRITE_ONCE(worker->flags, worker_flags);
5091        }
5092
5093        raw_spin_unlock_irq(&pool->lock);
5094}
5095
5096/**
5097 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5098 * @pool: unbound pool of interest
5099 * @cpu: the CPU which is coming up
5100 *
5101 * An unbound pool may end up with a cpumask which doesn't have any online
5102 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5103 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5104 * online CPU before, cpus_allowed of all its workers should be restored.
5105 */
5106static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5107{
5108        static cpumask_t cpumask;
5109        struct worker *worker;
5110
5111        lockdep_assert_held(&wq_pool_attach_mutex);
5112
5113        /* is @cpu allowed for @pool? */
5114        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5115                return;
5116
5117        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5118
5119        /* as we're called from CPU_ONLINE, the following shouldn't fail */
5120        for_each_pool_worker(worker, pool)
5121                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5122}
5123
5124int workqueue_prepare_cpu(unsigned int cpu)
5125{
5126        struct worker_pool *pool;
5127
5128        for_each_cpu_worker_pool(pool, cpu) {
5129                if (pool->nr_workers)
5130                        continue;
5131                if (!create_worker(pool))
5132                        return -ENOMEM;
5133        }
5134        return 0;
5135}
5136
5137int workqueue_online_cpu(unsigned int cpu)
5138{
5139        struct worker_pool *pool;
5140        struct workqueue_struct *wq;
5141        int pi;
5142
5143        mutex_lock(&wq_pool_mutex);
5144
5145        for_each_pool(pool, pi) {
5146                mutex_lock(&wq_pool_attach_mutex);
5147
5148                if (pool->cpu == cpu)
5149                        rebind_workers(pool);
5150                else if (pool->cpu < 0)
5151                        restore_unbound_workers_cpumask(pool, cpu);
5152
5153                mutex_unlock(&wq_pool_attach_mutex);
5154        }
5155
5156        /* update NUMA affinity of unbound workqueues */
5157        list_for_each_entry(wq, &workqueues, list)
5158                wq_update_unbound_numa(wq, cpu, true);
5159
5160        mutex_unlock(&wq_pool_mutex);
5161        return 0;
5162}
5163
5164int workqueue_offline_cpu(unsigned int cpu)
5165{
5166        struct workqueue_struct *wq;
5167
5168        /* unbinding per-cpu workers should happen on the local CPU */
5169        if (WARN_ON(cpu != smp_processor_id()))
5170                return -1;
5171
5172        unbind_workers(cpu);
5173
5174        /* update NUMA affinity of unbound workqueues */
5175        mutex_lock(&wq_pool_mutex);
5176        list_for_each_entry(wq, &workqueues, list)
5177                wq_update_unbound_numa(wq, cpu, false);
5178        mutex_unlock(&wq_pool_mutex);
5179
5180        return 0;
5181}
5182
5183struct work_for_cpu {
5184        struct work_struct work;
5185        long (*fn)(void *);
5186        void *arg;
5187        long ret;
5188};
5189
5190static void work_for_cpu_fn(struct work_struct *work)
5191{
5192        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5193
5194        wfc->ret = wfc->fn(wfc->arg);
5195}
5196
5197/**
5198 * work_on_cpu - run a function in thread context on a particular cpu
5199 * @cpu: the cpu to run on
5200 * @fn: the function to run
5201 * @arg: the function arg
5202 *
5203 * It is up to the caller to ensure that the cpu doesn't go offline.
5204 * The caller must not hold any locks which would prevent @fn from completing.
5205 *
5206 * Return: The value @fn returns.
5207 */
5208long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5209{
5210        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5211
5212        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5213        schedule_work_on(cpu, &wfc.work);
5214        flush_work(&wfc.work);
5215        destroy_work_on_stack(&wfc.work);
5216        return wfc.ret;
5217}
5218EXPORT_SYMBOL_GPL(work_on_cpu);
5219
5220/**
5221 * work_on_cpu_safe - run a function in thread context on a particular cpu
5222 * @cpu: the cpu to run on
5223 * @fn:  the function to run
5224 * @arg: the function argument
5225 *
5226 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5227 * any locks which would prevent @fn from completing.
5228 *
5229 * Return: The value @fn returns.
5230 */
5231long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5232{
5233        long ret = -ENODEV;
5234
5235        cpus_read_lock();
5236        if (cpu_online(cpu))
5237                ret = work_on_cpu(cpu, fn, arg);
5238        cpus_read_unlock();
5239        return ret;
5240}
5241EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5242#endif /* CONFIG_SMP */
5243
5244#ifdef CONFIG_FREEZER
5245
5246/**
5247 * freeze_workqueues_begin - begin freezing workqueues
5248 *
5249 * Start freezing workqueues.  After this function returns, all freezable
5250 * workqueues will queue new works to their inactive_works list instead of
5251 * pool->worklist.
5252 *
5253 * CONTEXT:
5254 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5255 */
5256void freeze_workqueues_begin(void)
5257{
5258        struct workqueue_struct *wq;
5259        struct pool_workqueue *pwq;
5260
5261        mutex_lock(&wq_pool_mutex);
5262
5263        WARN_ON_ONCE(workqueue_freezing);
5264        workqueue_freezing = true;
5265
5266        list_for_each_entry(wq, &workqueues, list) {
5267                mutex_lock(&wq->mutex);
5268                for_each_pwq(pwq, wq)
5269                        pwq_adjust_max_active(pwq);
5270                mutex_unlock(&wq->mutex);
5271        }
5272
5273        mutex_unlock(&wq_pool_mutex);
5274}
5275
5276/**
5277 * freeze_workqueues_busy - are freezable workqueues still busy?
5278 *
5279 * Check whether freezing is complete.  This function must be called
5280 * between freeze_workqueues_begin() and thaw_workqueues().
5281 *
5282 * CONTEXT:
5283 * Grabs and releases wq_pool_mutex.
5284 *
5285 * Return:
5286 * %true if some freezable workqueues are still busy.  %false if freezing
5287 * is complete.
5288 */
5289bool freeze_workqueues_busy(void)
5290{
5291        bool busy = false;
5292        struct workqueue_struct *wq;
5293        struct pool_workqueue *pwq;
5294
5295        mutex_lock(&wq_pool_mutex);
5296
5297        WARN_ON_ONCE(!workqueue_freezing);
5298
5299        list_for_each_entry(wq, &workqueues, list) {
5300                if (!(wq->flags & WQ_FREEZABLE))
5301                        continue;
5302                /*
5303                 * nr_active is monotonically decreasing.  It's safe
5304                 * to peek without lock.
5305                 */
5306                rcu_read_lock();
5307                for_each_pwq(pwq, wq) {
5308                        WARN_ON_ONCE(pwq->nr_active < 0);
5309                        if (pwq->nr_active) {
5310                                busy = true;
5311                                rcu_read_unlock();
5312                                goto out_unlock;
5313                        }
5314                }
5315                rcu_read_unlock();
5316        }
5317out_unlock:
5318        mutex_unlock(&wq_pool_mutex);
5319        return busy;
5320}
5321
5322/**
5323 * thaw_workqueues - thaw workqueues
5324 *
5325 * Thaw workqueues.  Normal queueing is restored and all collected
5326 * frozen works are transferred to their respective pool worklists.
5327 *
5328 * CONTEXT:
5329 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5330 */
5331void thaw_workqueues(void)
5332{
5333        struct workqueue_struct *wq;
5334        struct pool_workqueue *pwq;
5335
5336        mutex_lock(&wq_pool_mutex);
5337
5338        if (!workqueue_freezing)
5339                goto out_unlock;
5340
5341        workqueue_freezing = false;
5342
5343        /* restore max_active and repopulate worklist */
5344        list_for_each_entry(wq, &workqueues, list) {
5345                mutex_lock(&wq->mutex);
5346                for_each_pwq(pwq, wq)
5347                        pwq_adjust_max_active(pwq);
5348                mutex_unlock(&wq->mutex);
5349        }
5350
5351out_unlock:
5352        mutex_unlock(&wq_pool_mutex);
5353}
5354#endif /* CONFIG_FREEZER */
5355
5356static int workqueue_apply_unbound_cpumask(void)
5357{
5358        LIST_HEAD(ctxs);
5359        int ret = 0;
5360        struct workqueue_struct *wq;
5361        struct apply_wqattrs_ctx *ctx, *n;
5362
5363        lockdep_assert_held(&wq_pool_mutex);
5364
5365        list_for_each_entry(wq, &workqueues, list) {
5366                if (!(wq->flags & WQ_UNBOUND))
5367                        continue;
5368                /* creating multiple pwqs breaks ordering guarantee */
5369                if (wq->flags & __WQ_ORDERED)
5370                        continue;
5371
5372                ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5373                if (!ctx) {
5374                        ret = -ENOMEM;
5375                        break;
5376                }
5377
5378                list_add_tail(&ctx->list, &ctxs);
5379        }
5380
5381        list_for_each_entry_safe(ctx, n, &ctxs, list) {
5382                if (!ret)
5383                        apply_wqattrs_commit(ctx);
5384                apply_wqattrs_cleanup(ctx);
5385        }
5386
5387        return ret;
5388}
5389
5390/**
5391 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5392 *  @cpumask: the cpumask to set
5393 *
5394 *  The low-level workqueues cpumask is a global cpumask that limits
5395 *  the affinity of all unbound workqueues.  This function check the @cpumask
5396 *  and apply it to all unbound workqueues and updates all pwqs of them.
5397 *
5398 *  Return:     0       - Success
5399 *              -EINVAL - Invalid @cpumask
5400 *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
5401 */
5402int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5403{
5404        int ret = -EINVAL;
5405        cpumask_var_t saved_cpumask;
5406
5407        /*
5408         * Not excluding isolated cpus on purpose.
5409         * If the user wishes to include them, we allow that.
5410         */
5411        cpumask_and(cpumask, cpumask, cpu_possible_mask);
5412        if (!cpumask_empty(cpumask)) {
5413                apply_wqattrs_lock();
5414                if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5415                        ret = 0;
5416                        goto out_unlock;
5417                }
5418
5419                if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5420                        ret = -ENOMEM;
5421                        goto out_unlock;
5422                }
5423
5424                /* save the old wq_unbound_cpumask. */
5425                cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5426
5427                /* update wq_unbound_cpumask at first and apply it to wqs. */
5428                cpumask_copy(wq_unbound_cpumask, cpumask);
5429                ret = workqueue_apply_unbound_cpumask();
5430
5431                /* restore the wq_unbound_cpumask when failed. */
5432                if (ret < 0)
5433                        cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5434
5435                free_cpumask_var(saved_cpumask);
5436out_unlock:
5437                apply_wqattrs_unlock();
5438        }
5439
5440        return ret;
5441}
5442
5443#ifdef CONFIG_SYSFS
5444/*
5445 * Workqueues with WQ_SYSFS flag set is visible to userland via
5446 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5447 * following attributes.
5448 *
5449 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
5450 *  max_active  RW int  : maximum number of in-flight work items
5451 *
5452 * Unbound workqueues have the following extra attributes.
5453 *
5454 *  pool_ids    RO int  : the associated pool IDs for each node
5455 *  nice        RW int  : nice value of the workers
5456 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
5457 *  numa        RW bool : whether enable NUMA affinity
5458 */
5459struct wq_device {
5460        struct workqueue_struct         *wq;
5461        struct device                   dev;
5462};
5463
5464static struct workqueue_struct *dev_to_wq(struct device *dev)
5465{
5466        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5467
5468        return wq_dev->wq;
5469}
5470
5471static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5472                            char *buf)
5473{
5474        struct workqueue_struct *wq = dev_to_wq(dev);
5475
5476        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5477}
5478static DEVICE_ATTR_RO(per_cpu);
5479
5480static ssize_t max_active_show(struct device *dev,
5481                               struct device_attribute *attr, char *buf)
5482{
5483        struct workqueue_struct *wq = dev_to_wq(dev);
5484
5485        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5486}
5487
5488static ssize_t max_active_store(struct device *dev,
5489                                struct device_attribute *attr, const char *buf,
5490                                size_t count)
5491{
5492        struct workqueue_struct *wq = dev_to_wq(dev);
5493        int val;
5494
5495        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5496                return -EINVAL;
5497
5498        workqueue_set_max_active(wq, val);
5499        return count;
5500}
5501static DEVICE_ATTR_RW(max_active);
5502
5503static struct attribute *wq_sysfs_attrs[] = {
5504        &dev_attr_per_cpu.attr,
5505        &dev_attr_max_active.attr,
5506        NULL,
5507};
5508ATTRIBUTE_GROUPS(wq_sysfs);
5509
5510static ssize_t wq_pool_ids_show(struct device *dev,
5511                                struct device_attribute *attr, char *buf)
5512{
5513        struct workqueue_struct *wq = dev_to_wq(dev);
5514        const char *delim = "";
5515        int node, written = 0;
5516
5517        cpus_read_lock();
5518        rcu_read_lock();
5519        for_each_node(node) {
5520                written += scnprintf(buf + written, PAGE_SIZE - written,
5521                                     "%s%d:%d", delim, node,
5522                                     unbound_pwq_by_node(wq, node)->pool->id);
5523                delim = " ";
5524        }
5525        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5526        rcu_read_unlock();
5527        cpus_read_unlock();
5528
5529        return written;
5530}
5531
5532static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5533                            char *buf)
5534{
5535        struct workqueue_struct *wq = dev_to_wq(dev);
5536        int written;
5537
5538        mutex_lock(&wq->mutex);
5539        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5540        mutex_unlock(&wq->mutex);
5541
5542        return written;
5543}
5544
5545/* prepare workqueue_attrs for sysfs store operations */
5546static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5547{
5548        struct workqueue_attrs *attrs;
5549
5550        lockdep_assert_held(&wq_pool_mutex);
5551
5552        attrs = alloc_workqueue_attrs();
5553        if (!attrs)
5554                return NULL;
5555
5556        copy_workqueue_attrs(attrs, wq->unbound_attrs);
5557        return attrs;
5558}
5559
5560static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5561                             const char *buf, size_t count)
5562{
5563        struct workqueue_struct *wq = dev_to_wq(dev);
5564        struct workqueue_attrs *attrs;
5565        int ret = -ENOMEM;
5566
5567        apply_wqattrs_lock();
5568
5569        attrs = wq_sysfs_prep_attrs(wq);
5570        if (!attrs)
5571                goto out_unlock;
5572
5573        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5574            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5575                ret = apply_workqueue_attrs_locked(wq, attrs);
5576        else
5577                ret = -EINVAL;
5578
5579out_unlock:
5580        apply_wqattrs_unlock();
5581        free_workqueue_attrs(attrs);
5582        return ret ?: count;
5583}
5584
5585static ssize_t wq_cpumask_show(struct device *dev,
5586                               struct device_attribute *attr, char *buf)
5587{
5588        struct workqueue_struct *wq = dev_to_wq(dev);
5589        int written;
5590
5591        mutex_lock(&wq->mutex);
5592        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5593                            cpumask_pr_args(wq->unbound_attrs->cpumask));
5594        mutex_unlock(&wq->mutex);
5595        return written;
5596}
5597
5598static ssize_t wq_cpumask_store(struct device *dev,
5599                                struct device_attribute *attr,
5600                                const char *buf, size_t count)
5601{
5602        struct workqueue_struct *wq = dev_to_wq(dev);
5603        struct workqueue_attrs *attrs;
5604        int ret = -ENOMEM;
5605
5606        apply_wqattrs_lock();
5607
5608        attrs = wq_sysfs_prep_attrs(wq);
5609        if (!attrs)
5610                goto out_unlock;
5611
5612        ret = cpumask_parse(buf, attrs->cpumask);
5613        if (!ret)
5614                ret = apply_workqueue_attrs_locked(wq, attrs);
5615
5616out_unlock:
5617        apply_wqattrs_unlock();
5618        free_workqueue_attrs(attrs);
5619        return ret ?: count;
5620}
5621
5622static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5623                            char *buf)
5624{
5625        struct workqueue_struct *wq = dev_to_wq(dev);
5626        int written;
5627
5628        mutex_lock(&wq->mutex);
5629        written = scnprintf(buf, PAGE_SIZE, "%d\n",
5630                            !wq->unbound_attrs->no_numa);
5631        mutex_unlock(&wq->mutex);
5632
5633        return written;
5634}
5635
5636static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5637                             const char *buf, size_t count)
5638{
5639        struct workqueue_struct *wq = dev_to_wq(dev);
5640        struct workqueue_attrs *attrs;
5641        int v, ret = -ENOMEM;
5642
5643        apply_wqattrs_lock();
5644
5645        attrs = wq_sysfs_prep_attrs(wq);
5646        if (!attrs)
5647                goto out_unlock;
5648
5649        ret = -EINVAL;
5650        if (sscanf(buf, "%d", &v) == 1) {
5651                attrs->no_numa = !v;
5652                ret = apply_workqueue_attrs_locked(wq, attrs);
5653        }
5654
5655out_unlock:
5656        apply_wqattrs_unlock();
5657        free_workqueue_attrs(attrs);
5658        return ret ?: count;
5659}
5660
5661static struct device_attribute wq_sysfs_unbound_attrs[] = {
5662        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5663        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5664        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5665        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5666        __ATTR_NULL,
5667};
5668
5669static struct bus_type wq_subsys = {
5670        .name                           = "workqueue",
5671        .dev_groups                     = wq_sysfs_groups,
5672};
5673
5674static ssize_t wq_unbound_cpumask_show(struct device *dev,
5675                struct device_attribute *attr, char *buf)
5676{
5677        int written;
5678
5679        mutex_lock(&wq_pool_mutex);
5680        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5681                            cpumask_pr_args(wq_unbound_cpumask));
5682        mutex_unlock(&wq_pool_mutex);
5683
5684        return written;
5685}
5686
5687static ssize_t wq_unbound_cpumask_store(struct device *dev,
5688                struct device_attribute *attr, const char *buf, size_t count)
5689{
5690        cpumask_var_t cpumask;
5691        int ret;
5692
5693        if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5694                return -ENOMEM;
5695
5696        ret = cpumask_parse(buf, cpumask);
5697        if (!ret)
5698                ret = workqueue_set_unbound_cpumask(cpumask);
5699
5700        free_cpumask_var(cpumask);
5701        return ret ? ret : count;
5702}
5703
5704static struct device_attribute wq_sysfs_cpumask_attr =
5705        __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5706               wq_unbound_cpumask_store);
5707
5708static int __init wq_sysfs_init(void)
5709{
5710        int err;
5711
5712        err = subsys_virtual_register(&wq_subsys, NULL);
5713        if (err)
5714                return err;
5715
5716        return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5717}
5718core_initcall(wq_sysfs_init);
5719
5720static void wq_device_release(struct device *dev)
5721{
5722        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5723
5724        kfree(wq_dev);
5725}
5726
5727/**
5728 * workqueue_sysfs_register - make a workqueue visible in sysfs
5729 * @wq: the workqueue to register
5730 *
5731 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5732 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5733 * which is the preferred method.
5734 *
5735 * Workqueue user should use this function directly iff it wants to apply
5736 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5737 * apply_workqueue_attrs() may race against userland updating the
5738 * attributes.
5739 *
5740 * Return: 0 on success, -errno on failure.
5741 */
5742int workqueue_sysfs_register(struct workqueue_struct *wq)
5743{
5744        struct wq_device *wq_dev;
5745        int ret;
5746
5747        /*
5748         * Adjusting max_active or creating new pwqs by applying
5749         * attributes breaks ordering guarantee.  Disallow exposing ordered
5750         * workqueues.
5751         */
5752        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5753                return -EINVAL;
5754
5755        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5756        if (!wq_dev)
5757                return -ENOMEM;
5758
5759        wq_dev->wq = wq;
5760        wq_dev->dev.bus = &wq_subsys;
5761        wq_dev->dev.release = wq_device_release;
5762        dev_set_name(&wq_dev->dev, "%s", wq->name);
5763
5764        /*
5765         * unbound_attrs are created separately.  Suppress uevent until
5766         * everything is ready.
5767         */
5768        dev_set_uevent_suppress(&wq_dev->dev, true);
5769
5770        ret = device_register(&wq_dev->dev);
5771        if (ret) {
5772                put_device(&wq_dev->dev);
5773                wq->wq_dev = NULL;
5774                return ret;
5775        }
5776
5777        if (wq->flags & WQ_UNBOUND) {
5778                struct device_attribute *attr;
5779
5780                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5781                        ret = device_create_file(&wq_dev->dev, attr);
5782                        if (ret) {
5783                                device_unregister(&wq_dev->dev);
5784                                wq->wq_dev = NULL;
5785                                return ret;
5786                        }
5787                }
5788        }
5789
5790        dev_set_uevent_suppress(&wq_dev->dev, false);
5791        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5792        return 0;
5793}
5794
5795/**
5796 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5797 * @wq: the workqueue to unregister
5798 *
5799 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5800 */
5801static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5802{
5803        struct wq_device *wq_dev = wq->wq_dev;
5804
5805        if (!wq->wq_dev)
5806                return;
5807
5808        wq->wq_dev = NULL;
5809        device_unregister(&wq_dev->dev);
5810}
5811#else   /* CONFIG_SYSFS */
5812static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
5813#endif  /* CONFIG_SYSFS */
5814
5815/*
5816 * Workqueue watchdog.
5817 *
5818 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5819 * flush dependency, a concurrency managed work item which stays RUNNING
5820 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5821 * usual warning mechanisms don't trigger and internal workqueue state is
5822 * largely opaque.
5823 *
5824 * Workqueue watchdog monitors all worker pools periodically and dumps
5825 * state if some pools failed to make forward progress for a while where
5826 * forward progress is defined as the first item on ->worklist changing.
5827 *
5828 * This mechanism is controlled through the kernel parameter
5829 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5830 * corresponding sysfs parameter file.
5831 */
5832#ifdef CONFIG_WQ_WATCHDOG
5833
5834static unsigned long wq_watchdog_thresh = 30;
5835static struct timer_list wq_watchdog_timer;
5836
5837static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5838static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5839
5840static void wq_watchdog_reset_touched(void)
5841{
5842        int cpu;
5843
5844        wq_watchdog_touched = jiffies;
5845        for_each_possible_cpu(cpu)
5846                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5847}
5848
5849static void wq_watchdog_timer_fn(struct timer_list *unused)
5850{
5851        unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5852        bool lockup_detected = false;
5853        unsigned long now = jiffies;
5854        struct worker_pool *pool;
5855        int pi;
5856
5857        if (!thresh)
5858                return;
5859
5860        rcu_read_lock();
5861
5862        for_each_pool(pool, pi) {
5863                unsigned long pool_ts, touched, ts;
5864
5865                if (list_empty(&pool->worklist))
5866                        continue;
5867
5868                /*
5869                 * If a virtual machine is stopped by the host it can look to
5870                 * the watchdog like a stall.
5871                 */
5872                kvm_check_and_clear_guest_paused();
5873
5874                /* get the latest of pool and touched timestamps */
5875                if (pool->cpu >= 0)
5876                        touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5877                else
5878                        touched = READ_ONCE(wq_watchdog_touched);
5879                pool_ts = READ_ONCE(pool->watchdog_ts);
5880
5881                if (time_after(pool_ts, touched))
5882                        ts = pool_ts;
5883                else
5884                        ts = touched;
5885
5886                /* did we stall? */
5887                if (time_after(now, ts + thresh)) {
5888                        lockup_detected = true;
5889                        pr_emerg("BUG: workqueue lockup - pool");
5890                        pr_cont_pool_info(pool);
5891                        pr_cont(" stuck for %us!\n",
5892                                jiffies_to_msecs(now - pool_ts) / 1000);
5893                }
5894        }
5895
5896        rcu_read_unlock();
5897
5898        if (lockup_detected)
5899                show_all_workqueues();
5900
5901        wq_watchdog_reset_touched();
5902        mod_timer(&wq_watchdog_timer, jiffies + thresh);
5903}
5904
5905notrace void wq_watchdog_touch(int cpu)
5906{
5907        if (cpu >= 0)
5908                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5909
5910        wq_watchdog_touched = jiffies;
5911}
5912
5913static void wq_watchdog_set_thresh(unsigned long thresh)
5914{
5915        wq_watchdog_thresh = 0;
5916        del_timer_sync(&wq_watchdog_timer);
5917
5918        if (thresh) {
5919                wq_watchdog_thresh = thresh;
5920                wq_watchdog_reset_touched();
5921                mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5922        }
5923}
5924
5925static int wq_watchdog_param_set_thresh(const char *val,
5926                                        const struct kernel_param *kp)
5927{
5928        unsigned long thresh;
5929        int ret;
5930
5931        ret = kstrtoul(val, 0, &thresh);
5932        if (ret)
5933                return ret;
5934
5935        if (system_wq)
5936                wq_watchdog_set_thresh(thresh);
5937        else
5938                wq_watchdog_thresh = thresh;
5939
5940        return 0;
5941}
5942
5943static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5944        .set    = wq_watchdog_param_set_thresh,
5945        .get    = param_get_ulong,
5946};
5947
5948module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5949                0644);
5950
5951static void wq_watchdog_init(void)
5952{
5953        timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5954        wq_watchdog_set_thresh(wq_watchdog_thresh);
5955}
5956
5957#else   /* CONFIG_WQ_WATCHDOG */
5958
5959static inline void wq_watchdog_init(void) { }
5960
5961#endif  /* CONFIG_WQ_WATCHDOG */
5962
5963static void __init wq_numa_init(void)
5964{
5965        cpumask_var_t *tbl;
5966        int node, cpu;
5967
5968        if (num_possible_nodes() <= 1)
5969                return;
5970
5971        if (wq_disable_numa) {
5972                pr_info("workqueue: NUMA affinity support disabled\n");
5973                return;
5974        }
5975
5976        for_each_possible_cpu(cpu) {
5977                if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5978                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5979                        return;
5980                }
5981        }
5982
5983        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5984        BUG_ON(!wq_update_unbound_numa_attrs_buf);
5985
5986        /*
5987         * We want masks of possible CPUs of each node which isn't readily
5988         * available.  Build one from cpu_to_node() which should have been
5989         * fully initialized by now.
5990         */
5991        tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5992        BUG_ON(!tbl);
5993
5994        for_each_node(node)
5995                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5996                                node_online(node) ? node : NUMA_NO_NODE));
5997
5998        for_each_possible_cpu(cpu) {
5999                node = cpu_to_node(cpu);
6000                cpumask_set_cpu(cpu, tbl[node]);
6001        }
6002
6003        wq_numa_possible_cpumask = tbl;
6004        wq_numa_enabled = true;
6005}
6006
6007/**
6008 * workqueue_init_early - early init for workqueue subsystem
6009 *
6010 * This is the first half of two-staged workqueue subsystem initialization
6011 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6012 * idr are up.  It sets up all the data structures and system workqueues
6013 * and allows early boot code to create workqueues and queue/cancel work
6014 * items.  Actual work item execution starts only after kthreads can be
6015 * created and scheduled right before early initcalls.
6016 */
6017void __init workqueue_init_early(void)
6018{
6019        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6020        int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6021        int i, cpu;
6022
6023        BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6024
6025        BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6026        cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6027
6028        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6029
6030        /* initialize CPU pools */
6031        for_each_possible_cpu(cpu) {
6032                struct worker_pool *pool;
6033
6034                i = 0;
6035                for_each_cpu_worker_pool(pool, cpu) {
6036                        BUG_ON(init_worker_pool(pool));
6037                        pool->cpu = cpu;
6038                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6039                        pool->attrs->nice = std_nice[i++];
6040                        pool->node = cpu_to_node(cpu);
6041
6042                        /* alloc pool ID */
6043                        mutex_lock(&wq_pool_mutex);
6044                        BUG_ON(worker_pool_assign_id(pool));
6045                        mutex_unlock(&wq_pool_mutex);
6046                }
6047        }
6048
6049        /* create default unbound and ordered wq attrs */
6050        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6051                struct workqueue_attrs *attrs;
6052
6053                BUG_ON(!(attrs = alloc_workqueue_attrs()));
6054                attrs->nice = std_nice[i];
6055                unbound_std_wq_attrs[i] = attrs;
6056
6057                /*
6058                 * An ordered wq should have only one pwq as ordering is
6059                 * guaranteed by max_active which is enforced by pwqs.
6060                 * Turn off NUMA so that dfl_pwq is used for all nodes.
6061                 */
6062                BUG_ON(!(attrs = alloc_workqueue_attrs()));
6063                attrs->nice = std_nice[i];
6064                attrs->no_numa = true;
6065                ordered_wq_attrs[i] = attrs;
6066        }
6067
6068        system_wq = alloc_workqueue("events", 0, 0);
6069        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6070        system_long_wq = alloc_workqueue("events_long", 0, 0);
6071        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6072                                            WQ_UNBOUND_MAX_ACTIVE);
6073        system_freezable_wq = alloc_workqueue("events_freezable",
6074                                              WQ_FREEZABLE, 0);
6075        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6076                                              WQ_POWER_EFFICIENT, 0);
6077        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6078                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6079                                              0);
6080        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6081               !system_unbound_wq || !system_freezable_wq ||
6082               !system_power_efficient_wq ||
6083               !system_freezable_power_efficient_wq);
6084}
6085
6086/**
6087 * workqueue_init - bring workqueue subsystem fully online
6088 *
6089 * This is the latter half of two-staged workqueue subsystem initialization
6090 * and invoked as soon as kthreads can be created and scheduled.
6091 * Workqueues have been created and work items queued on them, but there
6092 * are no kworkers executing the work items yet.  Populate the worker pools
6093 * with the initial workers and enable future kworker creations.
6094 */
6095void __init workqueue_init(void)
6096{
6097        struct workqueue_struct *wq;
6098        struct worker_pool *pool;
6099        int cpu, bkt;
6100
6101        /*
6102         * It'd be simpler to initialize NUMA in workqueue_init_early() but
6103         * CPU to node mapping may not be available that early on some
6104         * archs such as power and arm64.  As per-cpu pools created
6105         * previously could be missing node hint and unbound pools NUMA
6106         * affinity, fix them up.
6107         *
6108         * Also, while iterating workqueues, create rescuers if requested.
6109         */
6110        wq_numa_init();
6111
6112        mutex_lock(&wq_pool_mutex);
6113
6114        for_each_possible_cpu(cpu) {
6115                for_each_cpu_worker_pool(pool, cpu) {
6116                        pool->node = cpu_to_node(cpu);
6117                }
6118        }
6119
6120        list_for_each_entry(wq, &workqueues, list) {
6121                wq_update_unbound_numa(wq, smp_processor_id(), true);
6122                WARN(init_rescuer(wq),
6123                     "workqueue: failed to create early rescuer for %s",
6124                     wq->name);
6125        }
6126
6127        mutex_unlock(&wq_pool_mutex);
6128
6129        /* create the initial workers */
6130        for_each_online_cpu(cpu) {
6131                for_each_cpu_worker_pool(pool, cpu) {
6132                        pool->flags &= ~POOL_DISASSOCIATED;
6133                        BUG_ON(!create_worker(pool));
6134                }
6135        }
6136
6137        hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6138                BUG_ON(!create_worker(pool));
6139
6140        wq_online = true;
6141        wq_watchdog_init();
6142}
6143