linux/lib/xz/xz_dec_lzma2.c
<<
>>
Prefs
   1/*
   2 * LZMA2 decoder
   3 *
   4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
   5 *          Igor Pavlov <https://7-zip.org/>
   6 *
   7 * This file has been put into the public domain.
   8 * You can do whatever you want with this file.
   9 */
  10
  11#include "xz_private.h"
  12#include "xz_lzma2.h"
  13
  14/*
  15 * Range decoder initialization eats the first five bytes of each LZMA chunk.
  16 */
  17#define RC_INIT_BYTES 5
  18
  19/*
  20 * Minimum number of usable input buffer to safely decode one LZMA symbol.
  21 * The worst case is that we decode 22 bits using probabilities and 26
  22 * direct bits. This may decode at maximum of 20 bytes of input. However,
  23 * lzma_main() does an extra normalization before returning, thus we
  24 * need to put 21 here.
  25 */
  26#define LZMA_IN_REQUIRED 21
  27
  28/*
  29 * Dictionary (history buffer)
  30 *
  31 * These are always true:
  32 *    start <= pos <= full <= end
  33 *    pos <= limit <= end
  34 *
  35 * In multi-call mode, also these are true:
  36 *    end == size
  37 *    size <= size_max
  38 *    allocated <= size
  39 *
  40 * Most of these variables are size_t to support single-call mode,
  41 * in which the dictionary variables address the actual output
  42 * buffer directly.
  43 */
  44struct dictionary {
  45        /* Beginning of the history buffer */
  46        uint8_t *buf;
  47
  48        /* Old position in buf (before decoding more data) */
  49        size_t start;
  50
  51        /* Position in buf */
  52        size_t pos;
  53
  54        /*
  55         * How full dictionary is. This is used to detect corrupt input that
  56         * would read beyond the beginning of the uncompressed stream.
  57         */
  58        size_t full;
  59
  60        /* Write limit; we don't write to buf[limit] or later bytes. */
  61        size_t limit;
  62
  63        /*
  64         * End of the dictionary buffer. In multi-call mode, this is
  65         * the same as the dictionary size. In single-call mode, this
  66         * indicates the size of the output buffer.
  67         */
  68        size_t end;
  69
  70        /*
  71         * Size of the dictionary as specified in Block Header. This is used
  72         * together with "full" to detect corrupt input that would make us
  73         * read beyond the beginning of the uncompressed stream.
  74         */
  75        uint32_t size;
  76
  77        /*
  78         * Maximum allowed dictionary size in multi-call mode.
  79         * This is ignored in single-call mode.
  80         */
  81        uint32_t size_max;
  82
  83        /*
  84         * Amount of memory currently allocated for the dictionary.
  85         * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
  86         * size_max is always the same as the allocated size.)
  87         */
  88        uint32_t allocated;
  89
  90        /* Operation mode */
  91        enum xz_mode mode;
  92};
  93
  94/* Range decoder */
  95struct rc_dec {
  96        uint32_t range;
  97        uint32_t code;
  98
  99        /*
 100         * Number of initializing bytes remaining to be read
 101         * by rc_read_init().
 102         */
 103        uint32_t init_bytes_left;
 104
 105        /*
 106         * Buffer from which we read our input. It can be either
 107         * temp.buf or the caller-provided input buffer.
 108         */
 109        const uint8_t *in;
 110        size_t in_pos;
 111        size_t in_limit;
 112};
 113
 114/* Probabilities for a length decoder. */
 115struct lzma_len_dec {
 116        /* Probability of match length being at least 10 */
 117        uint16_t choice;
 118
 119        /* Probability of match length being at least 18 */
 120        uint16_t choice2;
 121
 122        /* Probabilities for match lengths 2-9 */
 123        uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
 124
 125        /* Probabilities for match lengths 10-17 */
 126        uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
 127
 128        /* Probabilities for match lengths 18-273 */
 129        uint16_t high[LEN_HIGH_SYMBOLS];
 130};
 131
 132struct lzma_dec {
 133        /* Distances of latest four matches */
 134        uint32_t rep0;
 135        uint32_t rep1;
 136        uint32_t rep2;
 137        uint32_t rep3;
 138
 139        /* Types of the most recently seen LZMA symbols */
 140        enum lzma_state state;
 141
 142        /*
 143         * Length of a match. This is updated so that dict_repeat can
 144         * be called again to finish repeating the whole match.
 145         */
 146        uint32_t len;
 147
 148        /*
 149         * LZMA properties or related bit masks (number of literal
 150         * context bits, a mask derived from the number of literal
 151         * position bits, and a mask derived from the number
 152         * position bits)
 153         */
 154        uint32_t lc;
 155        uint32_t literal_pos_mask; /* (1 << lp) - 1 */
 156        uint32_t pos_mask;         /* (1 << pb) - 1 */
 157
 158        /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
 159        uint16_t is_match[STATES][POS_STATES_MAX];
 160
 161        /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
 162        uint16_t is_rep[STATES];
 163
 164        /*
 165         * If 0, distance of a repeated match is rep0.
 166         * Otherwise check is_rep1.
 167         */
 168        uint16_t is_rep0[STATES];
 169
 170        /*
 171         * If 0, distance of a repeated match is rep1.
 172         * Otherwise check is_rep2.
 173         */
 174        uint16_t is_rep1[STATES];
 175
 176        /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
 177        uint16_t is_rep2[STATES];
 178
 179        /*
 180         * If 1, the repeated match has length of one byte. Otherwise
 181         * the length is decoded from rep_len_decoder.
 182         */
 183        uint16_t is_rep0_long[STATES][POS_STATES_MAX];
 184
 185        /*
 186         * Probability tree for the highest two bits of the match
 187         * distance. There is a separate probability tree for match
 188         * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
 189         */
 190        uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
 191
 192        /*
 193         * Probility trees for additional bits for match distance
 194         * when the distance is in the range [4, 127].
 195         */
 196        uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
 197
 198        /*
 199         * Probability tree for the lowest four bits of a match
 200         * distance that is equal to or greater than 128.
 201         */
 202        uint16_t dist_align[ALIGN_SIZE];
 203
 204        /* Length of a normal match */
 205        struct lzma_len_dec match_len_dec;
 206
 207        /* Length of a repeated match */
 208        struct lzma_len_dec rep_len_dec;
 209
 210        /* Probabilities of literals */
 211        uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
 212};
 213
 214struct lzma2_dec {
 215        /* Position in xz_dec_lzma2_run(). */
 216        enum lzma2_seq {
 217                SEQ_CONTROL,
 218                SEQ_UNCOMPRESSED_1,
 219                SEQ_UNCOMPRESSED_2,
 220                SEQ_COMPRESSED_0,
 221                SEQ_COMPRESSED_1,
 222                SEQ_PROPERTIES,
 223                SEQ_LZMA_PREPARE,
 224                SEQ_LZMA_RUN,
 225                SEQ_COPY
 226        } sequence;
 227
 228        /* Next position after decoding the compressed size of the chunk. */
 229        enum lzma2_seq next_sequence;
 230
 231        /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
 232        uint32_t uncompressed;
 233
 234        /*
 235         * Compressed size of LZMA chunk or compressed/uncompressed
 236         * size of uncompressed chunk (64 KiB at maximum)
 237         */
 238        uint32_t compressed;
 239
 240        /*
 241         * True if dictionary reset is needed. This is false before
 242         * the first chunk (LZMA or uncompressed).
 243         */
 244        bool need_dict_reset;
 245
 246        /*
 247         * True if new LZMA properties are needed. This is false
 248         * before the first LZMA chunk.
 249         */
 250        bool need_props;
 251
 252#ifdef XZ_DEC_MICROLZMA
 253        bool pedantic_microlzma;
 254#endif
 255};
 256
 257struct xz_dec_lzma2 {
 258        /*
 259         * The order below is important on x86 to reduce code size and
 260         * it shouldn't hurt on other platforms. Everything up to and
 261         * including lzma.pos_mask are in the first 128 bytes on x86-32,
 262         * which allows using smaller instructions to access those
 263         * variables. On x86-64, fewer variables fit into the first 128
 264         * bytes, but this is still the best order without sacrificing
 265         * the readability by splitting the structures.
 266         */
 267        struct rc_dec rc;
 268        struct dictionary dict;
 269        struct lzma2_dec lzma2;
 270        struct lzma_dec lzma;
 271
 272        /*
 273         * Temporary buffer which holds small number of input bytes between
 274         * decoder calls. See lzma2_lzma() for details.
 275         */
 276        struct {
 277                uint32_t size;
 278                uint8_t buf[3 * LZMA_IN_REQUIRED];
 279        } temp;
 280};
 281
 282/**************
 283 * Dictionary *
 284 **************/
 285
 286/*
 287 * Reset the dictionary state. When in single-call mode, set up the beginning
 288 * of the dictionary to point to the actual output buffer.
 289 */
 290static void dict_reset(struct dictionary *dict, struct xz_buf *b)
 291{
 292        if (DEC_IS_SINGLE(dict->mode)) {
 293                dict->buf = b->out + b->out_pos;
 294                dict->end = b->out_size - b->out_pos;
 295        }
 296
 297        dict->start = 0;
 298        dict->pos = 0;
 299        dict->limit = 0;
 300        dict->full = 0;
 301}
 302
 303/* Set dictionary write limit */
 304static void dict_limit(struct dictionary *dict, size_t out_max)
 305{
 306        if (dict->end - dict->pos <= out_max)
 307                dict->limit = dict->end;
 308        else
 309                dict->limit = dict->pos + out_max;
 310}
 311
 312/* Return true if at least one byte can be written into the dictionary. */
 313static inline bool dict_has_space(const struct dictionary *dict)
 314{
 315        return dict->pos < dict->limit;
 316}
 317
 318/*
 319 * Get a byte from the dictionary at the given distance. The distance is
 320 * assumed to valid, or as a special case, zero when the dictionary is
 321 * still empty. This special case is needed for single-call decoding to
 322 * avoid writing a '\0' to the end of the destination buffer.
 323 */
 324static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
 325{
 326        size_t offset = dict->pos - dist - 1;
 327
 328        if (dist >= dict->pos)
 329                offset += dict->end;
 330
 331        return dict->full > 0 ? dict->buf[offset] : 0;
 332}
 333
 334/*
 335 * Put one byte into the dictionary. It is assumed that there is space for it.
 336 */
 337static inline void dict_put(struct dictionary *dict, uint8_t byte)
 338{
 339        dict->buf[dict->pos++] = byte;
 340
 341        if (dict->full < dict->pos)
 342                dict->full = dict->pos;
 343}
 344
 345/*
 346 * Repeat given number of bytes from the given distance. If the distance is
 347 * invalid, false is returned. On success, true is returned and *len is
 348 * updated to indicate how many bytes were left to be repeated.
 349 */
 350static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
 351{
 352        size_t back;
 353        uint32_t left;
 354
 355        if (dist >= dict->full || dist >= dict->size)
 356                return false;
 357
 358        left = min_t(size_t, dict->limit - dict->pos, *len);
 359        *len -= left;
 360
 361        back = dict->pos - dist - 1;
 362        if (dist >= dict->pos)
 363                back += dict->end;
 364
 365        do {
 366                dict->buf[dict->pos++] = dict->buf[back++];
 367                if (back == dict->end)
 368                        back = 0;
 369        } while (--left > 0);
 370
 371        if (dict->full < dict->pos)
 372                dict->full = dict->pos;
 373
 374        return true;
 375}
 376
 377/* Copy uncompressed data as is from input to dictionary and output buffers. */
 378static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
 379                              uint32_t *left)
 380{
 381        size_t copy_size;
 382
 383        while (*left > 0 && b->in_pos < b->in_size
 384                        && b->out_pos < b->out_size) {
 385                copy_size = min(b->in_size - b->in_pos,
 386                                b->out_size - b->out_pos);
 387                if (copy_size > dict->end - dict->pos)
 388                        copy_size = dict->end - dict->pos;
 389                if (copy_size > *left)
 390                        copy_size = *left;
 391
 392                *left -= copy_size;
 393
 394                /*
 395                 * If doing in-place decompression in single-call mode and the
 396                 * uncompressed size of the file is larger than the caller
 397                 * thought (i.e. it is invalid input!), the buffers below may
 398                 * overlap and cause undefined behavior with memcpy().
 399                 * With valid inputs memcpy() would be fine here.
 400                 */
 401                memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
 402                dict->pos += copy_size;
 403
 404                if (dict->full < dict->pos)
 405                        dict->full = dict->pos;
 406
 407                if (DEC_IS_MULTI(dict->mode)) {
 408                        if (dict->pos == dict->end)
 409                                dict->pos = 0;
 410
 411                        /*
 412                         * Like above but for multi-call mode: use memmove()
 413                         * to avoid undefined behavior with invalid input.
 414                         */
 415                        memmove(b->out + b->out_pos, b->in + b->in_pos,
 416                                        copy_size);
 417                }
 418
 419                dict->start = dict->pos;
 420
 421                b->out_pos += copy_size;
 422                b->in_pos += copy_size;
 423        }
 424}
 425
 426#ifdef XZ_DEC_MICROLZMA
 427#       define DICT_FLUSH_SUPPORTS_SKIPPING true
 428#else
 429#       define DICT_FLUSH_SUPPORTS_SKIPPING false
 430#endif
 431
 432/*
 433 * Flush pending data from dictionary to b->out. It is assumed that there is
 434 * enough space in b->out. This is guaranteed because caller uses dict_limit()
 435 * before decoding data into the dictionary.
 436 */
 437static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
 438{
 439        size_t copy_size = dict->pos - dict->start;
 440
 441        if (DEC_IS_MULTI(dict->mode)) {
 442                if (dict->pos == dict->end)
 443                        dict->pos = 0;
 444
 445                /*
 446                 * These buffers cannot overlap even if doing in-place
 447                 * decompression because in multi-call mode dict->buf
 448                 * has been allocated by us in this file; it's not
 449                 * provided by the caller like in single-call mode.
 450                 *
 451                 * With MicroLZMA, b->out can be NULL to skip bytes that
 452                 * the caller doesn't need. This cannot be done with XZ
 453                 * because it would break BCJ filters.
 454                 */
 455                if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL)
 456                        memcpy(b->out + b->out_pos, dict->buf + dict->start,
 457                                        copy_size);
 458        }
 459
 460        dict->start = dict->pos;
 461        b->out_pos += copy_size;
 462        return copy_size;
 463}
 464
 465/*****************
 466 * Range decoder *
 467 *****************/
 468
 469/* Reset the range decoder. */
 470static void rc_reset(struct rc_dec *rc)
 471{
 472        rc->range = (uint32_t)-1;
 473        rc->code = 0;
 474        rc->init_bytes_left = RC_INIT_BYTES;
 475}
 476
 477/*
 478 * Read the first five initial bytes into rc->code if they haven't been
 479 * read already. (Yes, the first byte gets completely ignored.)
 480 */
 481static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
 482{
 483        while (rc->init_bytes_left > 0) {
 484                if (b->in_pos == b->in_size)
 485                        return false;
 486
 487                rc->code = (rc->code << 8) + b->in[b->in_pos++];
 488                --rc->init_bytes_left;
 489        }
 490
 491        return true;
 492}
 493
 494/* Return true if there may not be enough input for the next decoding loop. */
 495static inline bool rc_limit_exceeded(const struct rc_dec *rc)
 496{
 497        return rc->in_pos > rc->in_limit;
 498}
 499
 500/*
 501 * Return true if it is possible (from point of view of range decoder) that
 502 * we have reached the end of the LZMA chunk.
 503 */
 504static inline bool rc_is_finished(const struct rc_dec *rc)
 505{
 506        return rc->code == 0;
 507}
 508
 509/* Read the next input byte if needed. */
 510static __always_inline void rc_normalize(struct rc_dec *rc)
 511{
 512        if (rc->range < RC_TOP_VALUE) {
 513                rc->range <<= RC_SHIFT_BITS;
 514                rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
 515        }
 516}
 517
 518/*
 519 * Decode one bit. In some versions, this function has been split in three
 520 * functions so that the compiler is supposed to be able to more easily avoid
 521 * an extra branch. In this particular version of the LZMA decoder, this
 522 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
 523 * on x86). Using a non-split version results in nicer looking code too.
 524 *
 525 * NOTE: This must return an int. Do not make it return a bool or the speed
 526 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
 527 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
 528 */
 529static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
 530{
 531        uint32_t bound;
 532        int bit;
 533
 534        rc_normalize(rc);
 535        bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
 536        if (rc->code < bound) {
 537                rc->range = bound;
 538                *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
 539                bit = 0;
 540        } else {
 541                rc->range -= bound;
 542                rc->code -= bound;
 543                *prob -= *prob >> RC_MOVE_BITS;
 544                bit = 1;
 545        }
 546
 547        return bit;
 548}
 549
 550/* Decode a bittree starting from the most significant bit. */
 551static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
 552                                           uint16_t *probs, uint32_t limit)
 553{
 554        uint32_t symbol = 1;
 555
 556        do {
 557                if (rc_bit(rc, &probs[symbol]))
 558                        symbol = (symbol << 1) + 1;
 559                else
 560                        symbol <<= 1;
 561        } while (symbol < limit);
 562
 563        return symbol;
 564}
 565
 566/* Decode a bittree starting from the least significant bit. */
 567static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
 568                                               uint16_t *probs,
 569                                               uint32_t *dest, uint32_t limit)
 570{
 571        uint32_t symbol = 1;
 572        uint32_t i = 0;
 573
 574        do {
 575                if (rc_bit(rc, &probs[symbol])) {
 576                        symbol = (symbol << 1) + 1;
 577                        *dest += 1 << i;
 578                } else {
 579                        symbol <<= 1;
 580                }
 581        } while (++i < limit);
 582}
 583
 584/* Decode direct bits (fixed fifty-fifty probability) */
 585static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
 586{
 587        uint32_t mask;
 588
 589        do {
 590                rc_normalize(rc);
 591                rc->range >>= 1;
 592                rc->code -= rc->range;
 593                mask = (uint32_t)0 - (rc->code >> 31);
 594                rc->code += rc->range & mask;
 595                *dest = (*dest << 1) + (mask + 1);
 596        } while (--limit > 0);
 597}
 598
 599/********
 600 * LZMA *
 601 ********/
 602
 603/* Get pointer to literal coder probability array. */
 604static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
 605{
 606        uint32_t prev_byte = dict_get(&s->dict, 0);
 607        uint32_t low = prev_byte >> (8 - s->lzma.lc);
 608        uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
 609        return s->lzma.literal[low + high];
 610}
 611
 612/* Decode a literal (one 8-bit byte) */
 613static void lzma_literal(struct xz_dec_lzma2 *s)
 614{
 615        uint16_t *probs;
 616        uint32_t symbol;
 617        uint32_t match_byte;
 618        uint32_t match_bit;
 619        uint32_t offset;
 620        uint32_t i;
 621
 622        probs = lzma_literal_probs(s);
 623
 624        if (lzma_state_is_literal(s->lzma.state)) {
 625                symbol = rc_bittree(&s->rc, probs, 0x100);
 626        } else {
 627                symbol = 1;
 628                match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
 629                offset = 0x100;
 630
 631                do {
 632                        match_bit = match_byte & offset;
 633                        match_byte <<= 1;
 634                        i = offset + match_bit + symbol;
 635
 636                        if (rc_bit(&s->rc, &probs[i])) {
 637                                symbol = (symbol << 1) + 1;
 638                                offset &= match_bit;
 639                        } else {
 640                                symbol <<= 1;
 641                                offset &= ~match_bit;
 642                        }
 643                } while (symbol < 0x100);
 644        }
 645
 646        dict_put(&s->dict, (uint8_t)symbol);
 647        lzma_state_literal(&s->lzma.state);
 648}
 649
 650/* Decode the length of the match into s->lzma.len. */
 651static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
 652                     uint32_t pos_state)
 653{
 654        uint16_t *probs;
 655        uint32_t limit;
 656
 657        if (!rc_bit(&s->rc, &l->choice)) {
 658                probs = l->low[pos_state];
 659                limit = LEN_LOW_SYMBOLS;
 660                s->lzma.len = MATCH_LEN_MIN;
 661        } else {
 662                if (!rc_bit(&s->rc, &l->choice2)) {
 663                        probs = l->mid[pos_state];
 664                        limit = LEN_MID_SYMBOLS;
 665                        s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
 666                } else {
 667                        probs = l->high;
 668                        limit = LEN_HIGH_SYMBOLS;
 669                        s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
 670                                        + LEN_MID_SYMBOLS;
 671                }
 672        }
 673
 674        s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
 675}
 676
 677/* Decode a match. The distance will be stored in s->lzma.rep0. */
 678static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 679{
 680        uint16_t *probs;
 681        uint32_t dist_slot;
 682        uint32_t limit;
 683
 684        lzma_state_match(&s->lzma.state);
 685
 686        s->lzma.rep3 = s->lzma.rep2;
 687        s->lzma.rep2 = s->lzma.rep1;
 688        s->lzma.rep1 = s->lzma.rep0;
 689
 690        lzma_len(s, &s->lzma.match_len_dec, pos_state);
 691
 692        probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
 693        dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
 694
 695        if (dist_slot < DIST_MODEL_START) {
 696                s->lzma.rep0 = dist_slot;
 697        } else {
 698                limit = (dist_slot >> 1) - 1;
 699                s->lzma.rep0 = 2 + (dist_slot & 1);
 700
 701                if (dist_slot < DIST_MODEL_END) {
 702                        s->lzma.rep0 <<= limit;
 703                        probs = s->lzma.dist_special + s->lzma.rep0
 704                                        - dist_slot - 1;
 705                        rc_bittree_reverse(&s->rc, probs,
 706                                        &s->lzma.rep0, limit);
 707                } else {
 708                        rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
 709                        s->lzma.rep0 <<= ALIGN_BITS;
 710                        rc_bittree_reverse(&s->rc, s->lzma.dist_align,
 711                                        &s->lzma.rep0, ALIGN_BITS);
 712                }
 713        }
 714}
 715
 716/*
 717 * Decode a repeated match. The distance is one of the four most recently
 718 * seen matches. The distance will be stored in s->lzma.rep0.
 719 */
 720static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 721{
 722        uint32_t tmp;
 723
 724        if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
 725                if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
 726                                s->lzma.state][pos_state])) {
 727                        lzma_state_short_rep(&s->lzma.state);
 728                        s->lzma.len = 1;
 729                        return;
 730                }
 731        } else {
 732                if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
 733                        tmp = s->lzma.rep1;
 734                } else {
 735                        if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
 736                                tmp = s->lzma.rep2;
 737                        } else {
 738                                tmp = s->lzma.rep3;
 739                                s->lzma.rep3 = s->lzma.rep2;
 740                        }
 741
 742                        s->lzma.rep2 = s->lzma.rep1;
 743                }
 744
 745                s->lzma.rep1 = s->lzma.rep0;
 746                s->lzma.rep0 = tmp;
 747        }
 748
 749        lzma_state_long_rep(&s->lzma.state);
 750        lzma_len(s, &s->lzma.rep_len_dec, pos_state);
 751}
 752
 753/* LZMA decoder core */
 754static bool lzma_main(struct xz_dec_lzma2 *s)
 755{
 756        uint32_t pos_state;
 757
 758        /*
 759         * If the dictionary was reached during the previous call, try to
 760         * finish the possibly pending repeat in the dictionary.
 761         */
 762        if (dict_has_space(&s->dict) && s->lzma.len > 0)
 763                dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
 764
 765        /*
 766         * Decode more LZMA symbols. One iteration may consume up to
 767         * LZMA_IN_REQUIRED - 1 bytes.
 768         */
 769        while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
 770                pos_state = s->dict.pos & s->lzma.pos_mask;
 771
 772                if (!rc_bit(&s->rc, &s->lzma.is_match[
 773                                s->lzma.state][pos_state])) {
 774                        lzma_literal(s);
 775                } else {
 776                        if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
 777                                lzma_rep_match(s, pos_state);
 778                        else
 779                                lzma_match(s, pos_state);
 780
 781                        if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
 782                                return false;
 783                }
 784        }
 785
 786        /*
 787         * Having the range decoder always normalized when we are outside
 788         * this function makes it easier to correctly handle end of the chunk.
 789         */
 790        rc_normalize(&s->rc);
 791
 792        return true;
 793}
 794
 795/*
 796 * Reset the LZMA decoder and range decoder state. Dictionary is not reset
 797 * here, because LZMA state may be reset without resetting the dictionary.
 798 */
 799static void lzma_reset(struct xz_dec_lzma2 *s)
 800{
 801        uint16_t *probs;
 802        size_t i;
 803
 804        s->lzma.state = STATE_LIT_LIT;
 805        s->lzma.rep0 = 0;
 806        s->lzma.rep1 = 0;
 807        s->lzma.rep2 = 0;
 808        s->lzma.rep3 = 0;
 809        s->lzma.len = 0;
 810
 811        /*
 812         * All probabilities are initialized to the same value. This hack
 813         * makes the code smaller by avoiding a separate loop for each
 814         * probability array.
 815         *
 816         * This could be optimized so that only that part of literal
 817         * probabilities that are actually required. In the common case
 818         * we would write 12 KiB less.
 819         */
 820        probs = s->lzma.is_match[0];
 821        for (i = 0; i < PROBS_TOTAL; ++i)
 822                probs[i] = RC_BIT_MODEL_TOTAL / 2;
 823
 824        rc_reset(&s->rc);
 825}
 826
 827/*
 828 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
 829 * from the decoded lp and pb values. On success, the LZMA decoder state is
 830 * reset and true is returned.
 831 */
 832static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
 833{
 834        if (props > (4 * 5 + 4) * 9 + 8)
 835                return false;
 836
 837        s->lzma.pos_mask = 0;
 838        while (props >= 9 * 5) {
 839                props -= 9 * 5;
 840                ++s->lzma.pos_mask;
 841        }
 842
 843        s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
 844
 845        s->lzma.literal_pos_mask = 0;
 846        while (props >= 9) {
 847                props -= 9;
 848                ++s->lzma.literal_pos_mask;
 849        }
 850
 851        s->lzma.lc = props;
 852
 853        if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
 854                return false;
 855
 856        s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
 857
 858        lzma_reset(s);
 859
 860        return true;
 861}
 862
 863/*********
 864 * LZMA2 *
 865 *********/
 866
 867/*
 868 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
 869 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
 870 * wrapper function takes care of making the LZMA decoder's assumption safe.
 871 *
 872 * As long as there is plenty of input left to be decoded in the current LZMA
 873 * chunk, we decode directly from the caller-supplied input buffer until
 874 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
 875 * s->temp.buf, which (hopefully) gets filled on the next call to this
 876 * function. We decode a few bytes from the temporary buffer so that we can
 877 * continue decoding from the caller-supplied input buffer again.
 878 */
 879static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
 880{
 881        size_t in_avail;
 882        uint32_t tmp;
 883
 884        in_avail = b->in_size - b->in_pos;
 885        if (s->temp.size > 0 || s->lzma2.compressed == 0) {
 886                tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
 887                if (tmp > s->lzma2.compressed - s->temp.size)
 888                        tmp = s->lzma2.compressed - s->temp.size;
 889                if (tmp > in_avail)
 890                        tmp = in_avail;
 891
 892                memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
 893
 894                if (s->temp.size + tmp == s->lzma2.compressed) {
 895                        memzero(s->temp.buf + s->temp.size + tmp,
 896                                        sizeof(s->temp.buf)
 897                                                - s->temp.size - tmp);
 898                        s->rc.in_limit = s->temp.size + tmp;
 899                } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
 900                        s->temp.size += tmp;
 901                        b->in_pos += tmp;
 902                        return true;
 903                } else {
 904                        s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
 905                }
 906
 907                s->rc.in = s->temp.buf;
 908                s->rc.in_pos = 0;
 909
 910                if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
 911                        return false;
 912
 913                s->lzma2.compressed -= s->rc.in_pos;
 914
 915                if (s->rc.in_pos < s->temp.size) {
 916                        s->temp.size -= s->rc.in_pos;
 917                        memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
 918                                        s->temp.size);
 919                        return true;
 920                }
 921
 922                b->in_pos += s->rc.in_pos - s->temp.size;
 923                s->temp.size = 0;
 924        }
 925
 926        in_avail = b->in_size - b->in_pos;
 927        if (in_avail >= LZMA_IN_REQUIRED) {
 928                s->rc.in = b->in;
 929                s->rc.in_pos = b->in_pos;
 930
 931                if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
 932                        s->rc.in_limit = b->in_pos + s->lzma2.compressed;
 933                else
 934                        s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
 935
 936                if (!lzma_main(s))
 937                        return false;
 938
 939                in_avail = s->rc.in_pos - b->in_pos;
 940                if (in_avail > s->lzma2.compressed)
 941                        return false;
 942
 943                s->lzma2.compressed -= in_avail;
 944                b->in_pos = s->rc.in_pos;
 945        }
 946
 947        in_avail = b->in_size - b->in_pos;
 948        if (in_avail < LZMA_IN_REQUIRED) {
 949                if (in_avail > s->lzma2.compressed)
 950                        in_avail = s->lzma2.compressed;
 951
 952                memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
 953                s->temp.size = in_avail;
 954                b->in_pos += in_avail;
 955        }
 956
 957        return true;
 958}
 959
 960/*
 961 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
 962 * decoding or copying of uncompressed chunks to other functions.
 963 */
 964XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
 965                                       struct xz_buf *b)
 966{
 967        uint32_t tmp;
 968
 969        while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
 970                switch (s->lzma2.sequence) {
 971                case SEQ_CONTROL:
 972                        /*
 973                         * LZMA2 control byte
 974                         *
 975                         * Exact values:
 976                         *   0x00   End marker
 977                         *   0x01   Dictionary reset followed by
 978                         *          an uncompressed chunk
 979                         *   0x02   Uncompressed chunk (no dictionary reset)
 980                         *
 981                         * Highest three bits (s->control & 0xE0):
 982                         *   0xE0   Dictionary reset, new properties and state
 983                         *          reset, followed by LZMA compressed chunk
 984                         *   0xC0   New properties and state reset, followed
 985                         *          by LZMA compressed chunk (no dictionary
 986                         *          reset)
 987                         *   0xA0   State reset using old properties,
 988                         *          followed by LZMA compressed chunk (no
 989                         *          dictionary reset)
 990                         *   0x80   LZMA chunk (no dictionary or state reset)
 991                         *
 992                         * For LZMA compressed chunks, the lowest five bits
 993                         * (s->control & 1F) are the highest bits of the
 994                         * uncompressed size (bits 16-20).
 995                         *
 996                         * A new LZMA2 stream must begin with a dictionary
 997                         * reset. The first LZMA chunk must set new
 998                         * properties and reset the LZMA state.
 999                         *
1000                         * Values that don't match anything described above
1001                         * are invalid and we return XZ_DATA_ERROR.
1002                         */
1003                        tmp = b->in[b->in_pos++];
1004
1005                        if (tmp == 0x00)
1006                                return XZ_STREAM_END;
1007
1008                        if (tmp >= 0xE0 || tmp == 0x01) {
1009                                s->lzma2.need_props = true;
1010                                s->lzma2.need_dict_reset = false;
1011                                dict_reset(&s->dict, b);
1012                        } else if (s->lzma2.need_dict_reset) {
1013                                return XZ_DATA_ERROR;
1014                        }
1015
1016                        if (tmp >= 0x80) {
1017                                s->lzma2.uncompressed = (tmp & 0x1F) << 16;
1018                                s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
1019
1020                                if (tmp >= 0xC0) {
1021                                        /*
1022                                         * When there are new properties,
1023                                         * state reset is done at
1024                                         * SEQ_PROPERTIES.
1025                                         */
1026                                        s->lzma2.need_props = false;
1027                                        s->lzma2.next_sequence
1028                                                        = SEQ_PROPERTIES;
1029
1030                                } else if (s->lzma2.need_props) {
1031                                        return XZ_DATA_ERROR;
1032
1033                                } else {
1034                                        s->lzma2.next_sequence
1035                                                        = SEQ_LZMA_PREPARE;
1036                                        if (tmp >= 0xA0)
1037                                                lzma_reset(s);
1038                                }
1039                        } else {
1040                                if (tmp > 0x02)
1041                                        return XZ_DATA_ERROR;
1042
1043                                s->lzma2.sequence = SEQ_COMPRESSED_0;
1044                                s->lzma2.next_sequence = SEQ_COPY;
1045                        }
1046
1047                        break;
1048
1049                case SEQ_UNCOMPRESSED_1:
1050                        s->lzma2.uncompressed
1051                                        += (uint32_t)b->in[b->in_pos++] << 8;
1052                        s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1053                        break;
1054
1055                case SEQ_UNCOMPRESSED_2:
1056                        s->lzma2.uncompressed
1057                                        += (uint32_t)b->in[b->in_pos++] + 1;
1058                        s->lzma2.sequence = SEQ_COMPRESSED_0;
1059                        break;
1060
1061                case SEQ_COMPRESSED_0:
1062                        s->lzma2.compressed
1063                                        = (uint32_t)b->in[b->in_pos++] << 8;
1064                        s->lzma2.sequence = SEQ_COMPRESSED_1;
1065                        break;
1066
1067                case SEQ_COMPRESSED_1:
1068                        s->lzma2.compressed
1069                                        += (uint32_t)b->in[b->in_pos++] + 1;
1070                        s->lzma2.sequence = s->lzma2.next_sequence;
1071                        break;
1072
1073                case SEQ_PROPERTIES:
1074                        if (!lzma_props(s, b->in[b->in_pos++]))
1075                                return XZ_DATA_ERROR;
1076
1077                        s->lzma2.sequence = SEQ_LZMA_PREPARE;
1078
1079                        fallthrough;
1080
1081                case SEQ_LZMA_PREPARE:
1082                        if (s->lzma2.compressed < RC_INIT_BYTES)
1083                                return XZ_DATA_ERROR;
1084
1085                        if (!rc_read_init(&s->rc, b))
1086                                return XZ_OK;
1087
1088                        s->lzma2.compressed -= RC_INIT_BYTES;
1089                        s->lzma2.sequence = SEQ_LZMA_RUN;
1090
1091                        fallthrough;
1092
1093                case SEQ_LZMA_RUN:
1094                        /*
1095                         * Set dictionary limit to indicate how much we want
1096                         * to be encoded at maximum. Decode new data into the
1097                         * dictionary. Flush the new data from dictionary to
1098                         * b->out. Check if we finished decoding this chunk.
1099                         * In case the dictionary got full but we didn't fill
1100                         * the output buffer yet, we may run this loop
1101                         * multiple times without changing s->lzma2.sequence.
1102                         */
1103                        dict_limit(&s->dict, min_t(size_t,
1104                                        b->out_size - b->out_pos,
1105                                        s->lzma2.uncompressed));
1106                        if (!lzma2_lzma(s, b))
1107                                return XZ_DATA_ERROR;
1108
1109                        s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1110
1111                        if (s->lzma2.uncompressed == 0) {
1112                                if (s->lzma2.compressed > 0 || s->lzma.len > 0
1113                                                || !rc_is_finished(&s->rc))
1114                                        return XZ_DATA_ERROR;
1115
1116                                rc_reset(&s->rc);
1117                                s->lzma2.sequence = SEQ_CONTROL;
1118
1119                        } else if (b->out_pos == b->out_size
1120                                        || (b->in_pos == b->in_size
1121                                                && s->temp.size
1122                                                < s->lzma2.compressed)) {
1123                                return XZ_OK;
1124                        }
1125
1126                        break;
1127
1128                case SEQ_COPY:
1129                        dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1130                        if (s->lzma2.compressed > 0)
1131                                return XZ_OK;
1132
1133                        s->lzma2.sequence = SEQ_CONTROL;
1134                        break;
1135                }
1136        }
1137
1138        return XZ_OK;
1139}
1140
1141XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
1142                                                   uint32_t dict_max)
1143{
1144        struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1145        if (s == NULL)
1146                return NULL;
1147
1148        s->dict.mode = mode;
1149        s->dict.size_max = dict_max;
1150
1151        if (DEC_IS_PREALLOC(mode)) {
1152                s->dict.buf = vmalloc(dict_max);
1153                if (s->dict.buf == NULL) {
1154                        kfree(s);
1155                        return NULL;
1156                }
1157        } else if (DEC_IS_DYNALLOC(mode)) {
1158                s->dict.buf = NULL;
1159                s->dict.allocated = 0;
1160        }
1161
1162        return s;
1163}
1164
1165XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1166{
1167        /* This limits dictionary size to 3 GiB to keep parsing simpler. */
1168        if (props > 39)
1169                return XZ_OPTIONS_ERROR;
1170
1171        s->dict.size = 2 + (props & 1);
1172        s->dict.size <<= (props >> 1) + 11;
1173
1174        if (DEC_IS_MULTI(s->dict.mode)) {
1175                if (s->dict.size > s->dict.size_max)
1176                        return XZ_MEMLIMIT_ERROR;
1177
1178                s->dict.end = s->dict.size;
1179
1180                if (DEC_IS_DYNALLOC(s->dict.mode)) {
1181                        if (s->dict.allocated < s->dict.size) {
1182                                s->dict.allocated = s->dict.size;
1183                                vfree(s->dict.buf);
1184                                s->dict.buf = vmalloc(s->dict.size);
1185                                if (s->dict.buf == NULL) {
1186                                        s->dict.allocated = 0;
1187                                        return XZ_MEM_ERROR;
1188                                }
1189                        }
1190                }
1191        }
1192
1193        s->lzma2.sequence = SEQ_CONTROL;
1194        s->lzma2.need_dict_reset = true;
1195
1196        s->temp.size = 0;
1197
1198        return XZ_OK;
1199}
1200
1201XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1202{
1203        if (DEC_IS_MULTI(s->dict.mode))
1204                vfree(s->dict.buf);
1205
1206        kfree(s);
1207}
1208
1209#ifdef XZ_DEC_MICROLZMA
1210/* This is a wrapper struct to have a nice struct name in the public API. */
1211struct xz_dec_microlzma {
1212        struct xz_dec_lzma2 s;
1213};
1214
1215enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr,
1216                                 struct xz_buf *b)
1217{
1218        struct xz_dec_lzma2 *s = &s_ptr->s;
1219
1220        /*
1221         * sequence is SEQ_PROPERTIES before the first input byte,
1222         * SEQ_LZMA_PREPARE until a total of five bytes have been read,
1223         * and SEQ_LZMA_RUN for the rest of the input stream.
1224         */
1225        if (s->lzma2.sequence != SEQ_LZMA_RUN) {
1226                if (s->lzma2.sequence == SEQ_PROPERTIES) {
1227                        /* One byte is needed for the props. */
1228                        if (b->in_pos >= b->in_size)
1229                                return XZ_OK;
1230
1231                        /*
1232                         * Don't increment b->in_pos here. The same byte is
1233                         * also passed to rc_read_init() which will ignore it.
1234                         */
1235                        if (!lzma_props(s, ~b->in[b->in_pos]))
1236                                return XZ_DATA_ERROR;
1237
1238                        s->lzma2.sequence = SEQ_LZMA_PREPARE;
1239                }
1240
1241                /*
1242                 * xz_dec_microlzma_reset() doesn't validate the compressed
1243                 * size so we do it here. We have to limit the maximum size
1244                 * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice
1245                 * round number and much more than users of this code should
1246                 * ever need.
1247                 */
1248                if (s->lzma2.compressed < RC_INIT_BYTES
1249                                || s->lzma2.compressed > (3U << 30))
1250                        return XZ_DATA_ERROR;
1251
1252                if (!rc_read_init(&s->rc, b))
1253                        return XZ_OK;
1254
1255                s->lzma2.compressed -= RC_INIT_BYTES;
1256                s->lzma2.sequence = SEQ_LZMA_RUN;
1257
1258                dict_reset(&s->dict, b);
1259        }
1260
1261        /* This is to allow increasing b->out_size between calls. */
1262        if (DEC_IS_SINGLE(s->dict.mode))
1263                s->dict.end = b->out_size - b->out_pos;
1264
1265        while (true) {
1266                dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos,
1267                                           s->lzma2.uncompressed));
1268
1269                if (!lzma2_lzma(s, b))
1270                        return XZ_DATA_ERROR;
1271
1272                s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1273
1274                if (s->lzma2.uncompressed == 0) {
1275                        if (s->lzma2.pedantic_microlzma) {
1276                                if (s->lzma2.compressed > 0 || s->lzma.len > 0
1277                                                || !rc_is_finished(&s->rc))
1278                                        return XZ_DATA_ERROR;
1279                        }
1280
1281                        return XZ_STREAM_END;
1282                }
1283
1284                if (b->out_pos == b->out_size)
1285                        return XZ_OK;
1286
1287                if (b->in_pos == b->in_size
1288                                && s->temp.size < s->lzma2.compressed)
1289                        return XZ_OK;
1290        }
1291}
1292
1293struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode,
1294                                                uint32_t dict_size)
1295{
1296        struct xz_dec_microlzma *s;
1297
1298        /* Restrict dict_size to the same range as in the LZMA2 code. */
1299        if (dict_size < 4096 || dict_size > (3U << 30))
1300                return NULL;
1301
1302        s = kmalloc(sizeof(*s), GFP_KERNEL);
1303        if (s == NULL)
1304                return NULL;
1305
1306        s->s.dict.mode = mode;
1307        s->s.dict.size = dict_size;
1308
1309        if (DEC_IS_MULTI(mode)) {
1310                s->s.dict.end = dict_size;
1311
1312                s->s.dict.buf = vmalloc(dict_size);
1313                if (s->s.dict.buf == NULL) {
1314                        kfree(s);
1315                        return NULL;
1316                }
1317        }
1318
1319        return s;
1320}
1321
1322void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size,
1323                            uint32_t uncomp_size, int uncomp_size_is_exact)
1324{
1325        /*
1326         * comp_size is validated in xz_dec_microlzma_run().
1327         * uncomp_size can safely be anything.
1328         */
1329        s->s.lzma2.compressed = comp_size;
1330        s->s.lzma2.uncompressed = uncomp_size;
1331        s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact;
1332
1333        s->s.lzma2.sequence = SEQ_PROPERTIES;
1334        s->s.temp.size = 0;
1335}
1336
1337void xz_dec_microlzma_end(struct xz_dec_microlzma *s)
1338{
1339        if (DEC_IS_MULTI(s->s.dict.mode))
1340                vfree(s->s.dict.buf);
1341
1342        kfree(s);
1343}
1344#endif
1345