linux/mm/memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *              Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *              (Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72#include <linux/numa.h>
  73#include <linux/perf_event.h>
  74#include <linux/ptrace.h>
  75#include <linux/vmalloc.h>
  76
  77#include <trace/events/kmem.h>
  78
  79#include <asm/io.h>
  80#include <asm/mmu_context.h>
  81#include <asm/pgalloc.h>
  82#include <linux/uaccess.h>
  83#include <asm/tlb.h>
  84#include <asm/tlbflush.h>
  85
  86#include "pgalloc-track.h"
  87#include "internal.h"
  88
  89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  91#endif
  92
  93#ifndef CONFIG_NUMA
  94unsigned long max_mapnr;
  95EXPORT_SYMBOL(max_mapnr);
  96
  97struct page *mem_map;
  98EXPORT_SYMBOL(mem_map);
  99#endif
 100
 101/*
 102 * A number of key systems in x86 including ioremap() rely on the assumption
 103 * that high_memory defines the upper bound on direct map memory, then end
 104 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 106 * and ZONE_HIGHMEM.
 107 */
 108void *high_memory;
 109EXPORT_SYMBOL(high_memory);
 110
 111/*
 112 * Randomize the address space (stacks, mmaps, brk, etc.).
 113 *
 114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 115 *   as ancient (libc5 based) binaries can segfault. )
 116 */
 117int randomize_va_space __read_mostly =
 118#ifdef CONFIG_COMPAT_BRK
 119                                        1;
 120#else
 121                                        2;
 122#endif
 123
 124#ifndef arch_faults_on_old_pte
 125static inline bool arch_faults_on_old_pte(void)
 126{
 127        /*
 128         * Those arches which don't have hw access flag feature need to
 129         * implement their own helper. By default, "true" means pagefault
 130         * will be hit on old pte.
 131         */
 132        return true;
 133}
 134#endif
 135
 136#ifndef arch_wants_old_prefaulted_pte
 137static inline bool arch_wants_old_prefaulted_pte(void)
 138{
 139        /*
 140         * Transitioning a PTE from 'old' to 'young' can be expensive on
 141         * some architectures, even if it's performed in hardware. By
 142         * default, "false" means prefaulted entries will be 'young'.
 143         */
 144        return false;
 145}
 146#endif
 147
 148static int __init disable_randmaps(char *s)
 149{
 150        randomize_va_space = 0;
 151        return 1;
 152}
 153__setup("norandmaps", disable_randmaps);
 154
 155unsigned long zero_pfn __read_mostly;
 156EXPORT_SYMBOL(zero_pfn);
 157
 158unsigned long highest_memmap_pfn __read_mostly;
 159
 160/*
 161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 162 */
 163static int __init init_zero_pfn(void)
 164{
 165        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 166        return 0;
 167}
 168early_initcall(init_zero_pfn);
 169
 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
 171{
 172        trace_rss_stat(mm, member, count);
 173}
 174
 175#if defined(SPLIT_RSS_COUNTING)
 176
 177void sync_mm_rss(struct mm_struct *mm)
 178{
 179        int i;
 180
 181        for (i = 0; i < NR_MM_COUNTERS; i++) {
 182                if (current->rss_stat.count[i]) {
 183                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 184                        current->rss_stat.count[i] = 0;
 185                }
 186        }
 187        current->rss_stat.events = 0;
 188}
 189
 190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 191{
 192        struct task_struct *task = current;
 193
 194        if (likely(task->mm == mm))
 195                task->rss_stat.count[member] += val;
 196        else
 197                add_mm_counter(mm, member, val);
 198}
 199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 201
 202/* sync counter once per 64 page faults */
 203#define TASK_RSS_EVENTS_THRESH  (64)
 204static void check_sync_rss_stat(struct task_struct *task)
 205{
 206        if (unlikely(task != current))
 207                return;
 208        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 209                sync_mm_rss(task->mm);
 210}
 211#else /* SPLIT_RSS_COUNTING */
 212
 213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 215
 216static void check_sync_rss_stat(struct task_struct *task)
 217{
 218}
 219
 220#endif /* SPLIT_RSS_COUNTING */
 221
 222/*
 223 * Note: this doesn't free the actual pages themselves. That
 224 * has been handled earlier when unmapping all the memory regions.
 225 */
 226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 227                           unsigned long addr)
 228{
 229        pgtable_t token = pmd_pgtable(*pmd);
 230        pmd_clear(pmd);
 231        pte_free_tlb(tlb, token, addr);
 232        mm_dec_nr_ptes(tlb->mm);
 233}
 234
 235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 236                                unsigned long addr, unsigned long end,
 237                                unsigned long floor, unsigned long ceiling)
 238{
 239        pmd_t *pmd;
 240        unsigned long next;
 241        unsigned long start;
 242
 243        start = addr;
 244        pmd = pmd_offset(pud, addr);
 245        do {
 246                next = pmd_addr_end(addr, end);
 247                if (pmd_none_or_clear_bad(pmd))
 248                        continue;
 249                free_pte_range(tlb, pmd, addr);
 250        } while (pmd++, addr = next, addr != end);
 251
 252        start &= PUD_MASK;
 253        if (start < floor)
 254                return;
 255        if (ceiling) {
 256                ceiling &= PUD_MASK;
 257                if (!ceiling)
 258                        return;
 259        }
 260        if (end - 1 > ceiling - 1)
 261                return;
 262
 263        pmd = pmd_offset(pud, start);
 264        pud_clear(pud);
 265        pmd_free_tlb(tlb, pmd, start);
 266        mm_dec_nr_pmds(tlb->mm);
 267}
 268
 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 270                                unsigned long addr, unsigned long end,
 271                                unsigned long floor, unsigned long ceiling)
 272{
 273        pud_t *pud;
 274        unsigned long next;
 275        unsigned long start;
 276
 277        start = addr;
 278        pud = pud_offset(p4d, addr);
 279        do {
 280                next = pud_addr_end(addr, end);
 281                if (pud_none_or_clear_bad(pud))
 282                        continue;
 283                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 284        } while (pud++, addr = next, addr != end);
 285
 286        start &= P4D_MASK;
 287        if (start < floor)
 288                return;
 289        if (ceiling) {
 290                ceiling &= P4D_MASK;
 291                if (!ceiling)
 292                        return;
 293        }
 294        if (end - 1 > ceiling - 1)
 295                return;
 296
 297        pud = pud_offset(p4d, start);
 298        p4d_clear(p4d);
 299        pud_free_tlb(tlb, pud, start);
 300        mm_dec_nr_puds(tlb->mm);
 301}
 302
 303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 304                                unsigned long addr, unsigned long end,
 305                                unsigned long floor, unsigned long ceiling)
 306{
 307        p4d_t *p4d;
 308        unsigned long next;
 309        unsigned long start;
 310
 311        start = addr;
 312        p4d = p4d_offset(pgd, addr);
 313        do {
 314                next = p4d_addr_end(addr, end);
 315                if (p4d_none_or_clear_bad(p4d))
 316                        continue;
 317                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 318        } while (p4d++, addr = next, addr != end);
 319
 320        start &= PGDIR_MASK;
 321        if (start < floor)
 322                return;
 323        if (ceiling) {
 324                ceiling &= PGDIR_MASK;
 325                if (!ceiling)
 326                        return;
 327        }
 328        if (end - 1 > ceiling - 1)
 329                return;
 330
 331        p4d = p4d_offset(pgd, start);
 332        pgd_clear(pgd);
 333        p4d_free_tlb(tlb, p4d, start);
 334}
 335
 336/*
 337 * This function frees user-level page tables of a process.
 338 */
 339void free_pgd_range(struct mmu_gather *tlb,
 340                        unsigned long addr, unsigned long end,
 341                        unsigned long floor, unsigned long ceiling)
 342{
 343        pgd_t *pgd;
 344        unsigned long next;
 345
 346        /*
 347         * The next few lines have given us lots of grief...
 348         *
 349         * Why are we testing PMD* at this top level?  Because often
 350         * there will be no work to do at all, and we'd prefer not to
 351         * go all the way down to the bottom just to discover that.
 352         *
 353         * Why all these "- 1"s?  Because 0 represents both the bottom
 354         * of the address space and the top of it (using -1 for the
 355         * top wouldn't help much: the masks would do the wrong thing).
 356         * The rule is that addr 0 and floor 0 refer to the bottom of
 357         * the address space, but end 0 and ceiling 0 refer to the top
 358         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 359         * that end 0 case should be mythical).
 360         *
 361         * Wherever addr is brought up or ceiling brought down, we must
 362         * be careful to reject "the opposite 0" before it confuses the
 363         * subsequent tests.  But what about where end is brought down
 364         * by PMD_SIZE below? no, end can't go down to 0 there.
 365         *
 366         * Whereas we round start (addr) and ceiling down, by different
 367         * masks at different levels, in order to test whether a table
 368         * now has no other vmas using it, so can be freed, we don't
 369         * bother to round floor or end up - the tests don't need that.
 370         */
 371
 372        addr &= PMD_MASK;
 373        if (addr < floor) {
 374                addr += PMD_SIZE;
 375                if (!addr)
 376                        return;
 377        }
 378        if (ceiling) {
 379                ceiling &= PMD_MASK;
 380                if (!ceiling)
 381                        return;
 382        }
 383        if (end - 1 > ceiling - 1)
 384                end -= PMD_SIZE;
 385        if (addr > end - 1)
 386                return;
 387        /*
 388         * We add page table cache pages with PAGE_SIZE,
 389         * (see pte_free_tlb()), flush the tlb if we need
 390         */
 391        tlb_change_page_size(tlb, PAGE_SIZE);
 392        pgd = pgd_offset(tlb->mm, addr);
 393        do {
 394                next = pgd_addr_end(addr, end);
 395                if (pgd_none_or_clear_bad(pgd))
 396                        continue;
 397                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 398        } while (pgd++, addr = next, addr != end);
 399}
 400
 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 402                unsigned long floor, unsigned long ceiling)
 403{
 404        while (vma) {
 405                struct vm_area_struct *next = vma->vm_next;
 406                unsigned long addr = vma->vm_start;
 407
 408                /*
 409                 * Hide vma from rmap and truncate_pagecache before freeing
 410                 * pgtables
 411                 */
 412                unlink_anon_vmas(vma);
 413                unlink_file_vma(vma);
 414
 415                if (is_vm_hugetlb_page(vma)) {
 416                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 417                                floor, next ? next->vm_start : ceiling);
 418                } else {
 419                        /*
 420                         * Optimization: gather nearby vmas into one call down
 421                         */
 422                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 423                               && !is_vm_hugetlb_page(next)) {
 424                                vma = next;
 425                                next = vma->vm_next;
 426                                unlink_anon_vmas(vma);
 427                                unlink_file_vma(vma);
 428                        }
 429                        free_pgd_range(tlb, addr, vma->vm_end,
 430                                floor, next ? next->vm_start : ceiling);
 431                }
 432                vma = next;
 433        }
 434}
 435
 436void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
 437{
 438        spinlock_t *ptl = pmd_lock(mm, pmd);
 439
 440        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 441                mm_inc_nr_ptes(mm);
 442                /*
 443                 * Ensure all pte setup (eg. pte page lock and page clearing) are
 444                 * visible before the pte is made visible to other CPUs by being
 445                 * put into page tables.
 446                 *
 447                 * The other side of the story is the pointer chasing in the page
 448                 * table walking code (when walking the page table without locking;
 449                 * ie. most of the time). Fortunately, these data accesses consist
 450                 * of a chain of data-dependent loads, meaning most CPUs (alpha
 451                 * being the notable exception) will already guarantee loads are
 452                 * seen in-order. See the alpha page table accessors for the
 453                 * smp_rmb() barriers in page table walking code.
 454                 */
 455                smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 456                pmd_populate(mm, pmd, *pte);
 457                *pte = NULL;
 458        }
 459        spin_unlock(ptl);
 460}
 461
 462int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 463{
 464        pgtable_t new = pte_alloc_one(mm);
 465        if (!new)
 466                return -ENOMEM;
 467
 468        pmd_install(mm, pmd, &new);
 469        if (new)
 470                pte_free(mm, new);
 471        return 0;
 472}
 473
 474int __pte_alloc_kernel(pmd_t *pmd)
 475{
 476        pte_t *new = pte_alloc_one_kernel(&init_mm);
 477        if (!new)
 478                return -ENOMEM;
 479
 480        spin_lock(&init_mm.page_table_lock);
 481        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 482                smp_wmb(); /* See comment in pmd_install() */
 483                pmd_populate_kernel(&init_mm, pmd, new);
 484                new = NULL;
 485        }
 486        spin_unlock(&init_mm.page_table_lock);
 487        if (new)
 488                pte_free_kernel(&init_mm, new);
 489        return 0;
 490}
 491
 492static inline void init_rss_vec(int *rss)
 493{
 494        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 495}
 496
 497static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 498{
 499        int i;
 500
 501        if (current->mm == mm)
 502                sync_mm_rss(mm);
 503        for (i = 0; i < NR_MM_COUNTERS; i++)
 504                if (rss[i])
 505                        add_mm_counter(mm, i, rss[i]);
 506}
 507
 508/*
 509 * This function is called to print an error when a bad pte
 510 * is found. For example, we might have a PFN-mapped pte in
 511 * a region that doesn't allow it.
 512 *
 513 * The calling function must still handle the error.
 514 */
 515static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 516                          pte_t pte, struct page *page)
 517{
 518        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 519        p4d_t *p4d = p4d_offset(pgd, addr);
 520        pud_t *pud = pud_offset(p4d, addr);
 521        pmd_t *pmd = pmd_offset(pud, addr);
 522        struct address_space *mapping;
 523        pgoff_t index;
 524        static unsigned long resume;
 525        static unsigned long nr_shown;
 526        static unsigned long nr_unshown;
 527
 528        /*
 529         * Allow a burst of 60 reports, then keep quiet for that minute;
 530         * or allow a steady drip of one report per second.
 531         */
 532        if (nr_shown == 60) {
 533                if (time_before(jiffies, resume)) {
 534                        nr_unshown++;
 535                        return;
 536                }
 537                if (nr_unshown) {
 538                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 539                                 nr_unshown);
 540                        nr_unshown = 0;
 541                }
 542                nr_shown = 0;
 543        }
 544        if (nr_shown++ == 0)
 545                resume = jiffies + 60 * HZ;
 546
 547        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 548        index = linear_page_index(vma, addr);
 549
 550        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 551                 current->comm,
 552                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 553        if (page)
 554                dump_page(page, "bad pte");
 555        pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 556                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 557        pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 558                 vma->vm_file,
 559                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 560                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 561                 mapping ? mapping->a_ops->readpage : NULL);
 562        dump_stack();
 563        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 564}
 565
 566/*
 567 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 568 *
 569 * "Special" mappings do not wish to be associated with a "struct page" (either
 570 * it doesn't exist, or it exists but they don't want to touch it). In this
 571 * case, NULL is returned here. "Normal" mappings do have a struct page.
 572 *
 573 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 574 * pte bit, in which case this function is trivial. Secondly, an architecture
 575 * may not have a spare pte bit, which requires a more complicated scheme,
 576 * described below.
 577 *
 578 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 579 * special mapping (even if there are underlying and valid "struct pages").
 580 * COWed pages of a VM_PFNMAP are always normal.
 581 *
 582 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 583 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 584 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 585 * mapping will always honor the rule
 586 *
 587 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 588 *
 589 * And for normal mappings this is false.
 590 *
 591 * This restricts such mappings to be a linear translation from virtual address
 592 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 593 * as the vma is not a COW mapping; in that case, we know that all ptes are
 594 * special (because none can have been COWed).
 595 *
 596 *
 597 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 598 *
 599 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 600 * page" backing, however the difference is that _all_ pages with a struct
 601 * page (that is, those where pfn_valid is true) are refcounted and considered
 602 * normal pages by the VM. The disadvantage is that pages are refcounted
 603 * (which can be slower and simply not an option for some PFNMAP users). The
 604 * advantage is that we don't have to follow the strict linearity rule of
 605 * PFNMAP mappings in order to support COWable mappings.
 606 *
 607 */
 608struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 609                            pte_t pte)
 610{
 611        unsigned long pfn = pte_pfn(pte);
 612
 613        if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 614                if (likely(!pte_special(pte)))
 615                        goto check_pfn;
 616                if (vma->vm_ops && vma->vm_ops->find_special_page)
 617                        return vma->vm_ops->find_special_page(vma, addr);
 618                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 619                        return NULL;
 620                if (is_zero_pfn(pfn))
 621                        return NULL;
 622                if (pte_devmap(pte))
 623                        return NULL;
 624
 625                print_bad_pte(vma, addr, pte, NULL);
 626                return NULL;
 627        }
 628
 629        /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 630
 631        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 632                if (vma->vm_flags & VM_MIXEDMAP) {
 633                        if (!pfn_valid(pfn))
 634                                return NULL;
 635                        goto out;
 636                } else {
 637                        unsigned long off;
 638                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 639                        if (pfn == vma->vm_pgoff + off)
 640                                return NULL;
 641                        if (!is_cow_mapping(vma->vm_flags))
 642                                return NULL;
 643                }
 644        }
 645
 646        if (is_zero_pfn(pfn))
 647                return NULL;
 648
 649check_pfn:
 650        if (unlikely(pfn > highest_memmap_pfn)) {
 651                print_bad_pte(vma, addr, pte, NULL);
 652                return NULL;
 653        }
 654
 655        /*
 656         * NOTE! We still have PageReserved() pages in the page tables.
 657         * eg. VDSO mappings can cause them to exist.
 658         */
 659out:
 660        return pfn_to_page(pfn);
 661}
 662
 663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 664struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 665                                pmd_t pmd)
 666{
 667        unsigned long pfn = pmd_pfn(pmd);
 668
 669        /*
 670         * There is no pmd_special() but there may be special pmds, e.g.
 671         * in a direct-access (dax) mapping, so let's just replicate the
 672         * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 673         */
 674        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 675                if (vma->vm_flags & VM_MIXEDMAP) {
 676                        if (!pfn_valid(pfn))
 677                                return NULL;
 678                        goto out;
 679                } else {
 680                        unsigned long off;
 681                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 682                        if (pfn == vma->vm_pgoff + off)
 683                                return NULL;
 684                        if (!is_cow_mapping(vma->vm_flags))
 685                                return NULL;
 686                }
 687        }
 688
 689        if (pmd_devmap(pmd))
 690                return NULL;
 691        if (is_huge_zero_pmd(pmd))
 692                return NULL;
 693        if (unlikely(pfn > highest_memmap_pfn))
 694                return NULL;
 695
 696        /*
 697         * NOTE! We still have PageReserved() pages in the page tables.
 698         * eg. VDSO mappings can cause them to exist.
 699         */
 700out:
 701        return pfn_to_page(pfn);
 702}
 703#endif
 704
 705static void restore_exclusive_pte(struct vm_area_struct *vma,
 706                                  struct page *page, unsigned long address,
 707                                  pte_t *ptep)
 708{
 709        pte_t pte;
 710        swp_entry_t entry;
 711
 712        pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
 713        if (pte_swp_soft_dirty(*ptep))
 714                pte = pte_mksoft_dirty(pte);
 715
 716        entry = pte_to_swp_entry(*ptep);
 717        if (pte_swp_uffd_wp(*ptep))
 718                pte = pte_mkuffd_wp(pte);
 719        else if (is_writable_device_exclusive_entry(entry))
 720                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 721
 722        set_pte_at(vma->vm_mm, address, ptep, pte);
 723
 724        /*
 725         * No need to take a page reference as one was already
 726         * created when the swap entry was made.
 727         */
 728        if (PageAnon(page))
 729                page_add_anon_rmap(page, vma, address, false);
 730        else
 731                /*
 732                 * Currently device exclusive access only supports anonymous
 733                 * memory so the entry shouldn't point to a filebacked page.
 734                 */
 735                WARN_ON_ONCE(!PageAnon(page));
 736
 737        if (vma->vm_flags & VM_LOCKED)
 738                mlock_vma_page(page);
 739
 740        /*
 741         * No need to invalidate - it was non-present before. However
 742         * secondary CPUs may have mappings that need invalidating.
 743         */
 744        update_mmu_cache(vma, address, ptep);
 745}
 746
 747/*
 748 * Tries to restore an exclusive pte if the page lock can be acquired without
 749 * sleeping.
 750 */
 751static int
 752try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
 753                        unsigned long addr)
 754{
 755        swp_entry_t entry = pte_to_swp_entry(*src_pte);
 756        struct page *page = pfn_swap_entry_to_page(entry);
 757
 758        if (trylock_page(page)) {
 759                restore_exclusive_pte(vma, page, addr, src_pte);
 760                unlock_page(page);
 761                return 0;
 762        }
 763
 764        return -EBUSY;
 765}
 766
 767/*
 768 * copy one vm_area from one task to the other. Assumes the page tables
 769 * already present in the new task to be cleared in the whole range
 770 * covered by this vma.
 771 */
 772
 773static unsigned long
 774copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 775                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
 776                struct vm_area_struct *src_vma, unsigned long addr, int *rss)
 777{
 778        unsigned long vm_flags = dst_vma->vm_flags;
 779        pte_t pte = *src_pte;
 780        struct page *page;
 781        swp_entry_t entry = pte_to_swp_entry(pte);
 782
 783        if (likely(!non_swap_entry(entry))) {
 784                if (swap_duplicate(entry) < 0)
 785                        return -EIO;
 786
 787                /* make sure dst_mm is on swapoff's mmlist. */
 788                if (unlikely(list_empty(&dst_mm->mmlist))) {
 789                        spin_lock(&mmlist_lock);
 790                        if (list_empty(&dst_mm->mmlist))
 791                                list_add(&dst_mm->mmlist,
 792                                                &src_mm->mmlist);
 793                        spin_unlock(&mmlist_lock);
 794                }
 795                rss[MM_SWAPENTS]++;
 796        } else if (is_migration_entry(entry)) {
 797                page = pfn_swap_entry_to_page(entry);
 798
 799                rss[mm_counter(page)]++;
 800
 801                if (is_writable_migration_entry(entry) &&
 802                                is_cow_mapping(vm_flags)) {
 803                        /*
 804                         * COW mappings require pages in both
 805                         * parent and child to be set to read.
 806                         */
 807                        entry = make_readable_migration_entry(
 808                                                        swp_offset(entry));
 809                        pte = swp_entry_to_pte(entry);
 810                        if (pte_swp_soft_dirty(*src_pte))
 811                                pte = pte_swp_mksoft_dirty(pte);
 812                        if (pte_swp_uffd_wp(*src_pte))
 813                                pte = pte_swp_mkuffd_wp(pte);
 814                        set_pte_at(src_mm, addr, src_pte, pte);
 815                }
 816        } else if (is_device_private_entry(entry)) {
 817                page = pfn_swap_entry_to_page(entry);
 818
 819                /*
 820                 * Update rss count even for unaddressable pages, as
 821                 * they should treated just like normal pages in this
 822                 * respect.
 823                 *
 824                 * We will likely want to have some new rss counters
 825                 * for unaddressable pages, at some point. But for now
 826                 * keep things as they are.
 827                 */
 828                get_page(page);
 829                rss[mm_counter(page)]++;
 830                page_dup_rmap(page, false);
 831
 832                /*
 833                 * We do not preserve soft-dirty information, because so
 834                 * far, checkpoint/restore is the only feature that
 835                 * requires that. And checkpoint/restore does not work
 836                 * when a device driver is involved (you cannot easily
 837                 * save and restore device driver state).
 838                 */
 839                if (is_writable_device_private_entry(entry) &&
 840                    is_cow_mapping(vm_flags)) {
 841                        entry = make_readable_device_private_entry(
 842                                                        swp_offset(entry));
 843                        pte = swp_entry_to_pte(entry);
 844                        if (pte_swp_uffd_wp(*src_pte))
 845                                pte = pte_swp_mkuffd_wp(pte);
 846                        set_pte_at(src_mm, addr, src_pte, pte);
 847                }
 848        } else if (is_device_exclusive_entry(entry)) {
 849                /*
 850                 * Make device exclusive entries present by restoring the
 851                 * original entry then copying as for a present pte. Device
 852                 * exclusive entries currently only support private writable
 853                 * (ie. COW) mappings.
 854                 */
 855                VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
 856                if (try_restore_exclusive_pte(src_pte, src_vma, addr))
 857                        return -EBUSY;
 858                return -ENOENT;
 859        }
 860        if (!userfaultfd_wp(dst_vma))
 861                pte = pte_swp_clear_uffd_wp(pte);
 862        set_pte_at(dst_mm, addr, dst_pte, pte);
 863        return 0;
 864}
 865
 866/*
 867 * Copy a present and normal page if necessary.
 868 *
 869 * NOTE! The usual case is that this doesn't need to do
 870 * anything, and can just return a positive value. That
 871 * will let the caller know that it can just increase
 872 * the page refcount and re-use the pte the traditional
 873 * way.
 874 *
 875 * But _if_ we need to copy it because it needs to be
 876 * pinned in the parent (and the child should get its own
 877 * copy rather than just a reference to the same page),
 878 * we'll do that here and return zero to let the caller
 879 * know we're done.
 880 *
 881 * And if we need a pre-allocated page but don't yet have
 882 * one, return a negative error to let the preallocation
 883 * code know so that it can do so outside the page table
 884 * lock.
 885 */
 886static inline int
 887copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 888                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 889                  struct page **prealloc, pte_t pte, struct page *page)
 890{
 891        struct page *new_page;
 892
 893        /*
 894         * What we want to do is to check whether this page may
 895         * have been pinned by the parent process.  If so,
 896         * instead of wrprotect the pte on both sides, we copy
 897         * the page immediately so that we'll always guarantee
 898         * the pinned page won't be randomly replaced in the
 899         * future.
 900         *
 901         * The page pinning checks are just "has this mm ever
 902         * seen pinning", along with the (inexact) check of
 903         * the page count. That might give false positives for
 904         * for pinning, but it will work correctly.
 905         */
 906        if (likely(!page_needs_cow_for_dma(src_vma, page)))
 907                return 1;
 908
 909        new_page = *prealloc;
 910        if (!new_page)
 911                return -EAGAIN;
 912
 913        /*
 914         * We have a prealloc page, all good!  Take it
 915         * over and copy the page & arm it.
 916         */
 917        *prealloc = NULL;
 918        copy_user_highpage(new_page, page, addr, src_vma);
 919        __SetPageUptodate(new_page);
 920        page_add_new_anon_rmap(new_page, dst_vma, addr, false);
 921        lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
 922        rss[mm_counter(new_page)]++;
 923
 924        /* All done, just insert the new page copy in the child */
 925        pte = mk_pte(new_page, dst_vma->vm_page_prot);
 926        pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
 927        if (userfaultfd_pte_wp(dst_vma, *src_pte))
 928                /* Uffd-wp needs to be delivered to dest pte as well */
 929                pte = pte_wrprotect(pte_mkuffd_wp(pte));
 930        set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 931        return 0;
 932}
 933
 934/*
 935 * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
 936 * is required to copy this pte.
 937 */
 938static inline int
 939copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 940                 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 941                 struct page **prealloc)
 942{
 943        struct mm_struct *src_mm = src_vma->vm_mm;
 944        unsigned long vm_flags = src_vma->vm_flags;
 945        pte_t pte = *src_pte;
 946        struct page *page;
 947
 948        page = vm_normal_page(src_vma, addr, pte);
 949        if (page) {
 950                int retval;
 951
 952                retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
 953                                           addr, rss, prealloc, pte, page);
 954                if (retval <= 0)
 955                        return retval;
 956
 957                get_page(page);
 958                page_dup_rmap(page, false);
 959                rss[mm_counter(page)]++;
 960        }
 961
 962        /*
 963         * If it's a COW mapping, write protect it both
 964         * in the parent and the child
 965         */
 966        if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 967                ptep_set_wrprotect(src_mm, addr, src_pte);
 968                pte = pte_wrprotect(pte);
 969        }
 970
 971        /*
 972         * If it's a shared mapping, mark it clean in
 973         * the child
 974         */
 975        if (vm_flags & VM_SHARED)
 976                pte = pte_mkclean(pte);
 977        pte = pte_mkold(pte);
 978
 979        if (!userfaultfd_wp(dst_vma))
 980                pte = pte_clear_uffd_wp(pte);
 981
 982        set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 983        return 0;
 984}
 985
 986static inline struct page *
 987page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
 988                   unsigned long addr)
 989{
 990        struct page *new_page;
 991
 992        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
 993        if (!new_page)
 994                return NULL;
 995
 996        if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
 997                put_page(new_page);
 998                return NULL;
 999        }
1000        cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1001
1002        return new_page;
1003}
1004
1005static int
1006copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1007               pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1008               unsigned long end)
1009{
1010        struct mm_struct *dst_mm = dst_vma->vm_mm;
1011        struct mm_struct *src_mm = src_vma->vm_mm;
1012        pte_t *orig_src_pte, *orig_dst_pte;
1013        pte_t *src_pte, *dst_pte;
1014        spinlock_t *src_ptl, *dst_ptl;
1015        int progress, ret = 0;
1016        int rss[NR_MM_COUNTERS];
1017        swp_entry_t entry = (swp_entry_t){0};
1018        struct page *prealloc = NULL;
1019
1020again:
1021        progress = 0;
1022        init_rss_vec(rss);
1023
1024        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1025        if (!dst_pte) {
1026                ret = -ENOMEM;
1027                goto out;
1028        }
1029        src_pte = pte_offset_map(src_pmd, addr);
1030        src_ptl = pte_lockptr(src_mm, src_pmd);
1031        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032        orig_src_pte = src_pte;
1033        orig_dst_pte = dst_pte;
1034        arch_enter_lazy_mmu_mode();
1035
1036        do {
1037                /*
1038                 * We are holding two locks at this point - either of them
1039                 * could generate latencies in another task on another CPU.
1040                 */
1041                if (progress >= 32) {
1042                        progress = 0;
1043                        if (need_resched() ||
1044                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1045                                break;
1046                }
1047                if (pte_none(*src_pte)) {
1048                        progress++;
1049                        continue;
1050                }
1051                if (unlikely(!pte_present(*src_pte))) {
1052                        ret = copy_nonpresent_pte(dst_mm, src_mm,
1053                                                  dst_pte, src_pte,
1054                                                  dst_vma, src_vma,
1055                                                  addr, rss);
1056                        if (ret == -EIO) {
1057                                entry = pte_to_swp_entry(*src_pte);
1058                                break;
1059                        } else if (ret == -EBUSY) {
1060                                break;
1061                        } else if (!ret) {
1062                                progress += 8;
1063                                continue;
1064                        }
1065
1066                        /*
1067                         * Device exclusive entry restored, continue by copying
1068                         * the now present pte.
1069                         */
1070                        WARN_ON_ONCE(ret != -ENOENT);
1071                }
1072                /* copy_present_pte() will clear `*prealloc' if consumed */
1073                ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074                                       addr, rss, &prealloc);
1075                /*
1076                 * If we need a pre-allocated page for this pte, drop the
1077                 * locks, allocate, and try again.
1078                 */
1079                if (unlikely(ret == -EAGAIN))
1080                        break;
1081                if (unlikely(prealloc)) {
1082                        /*
1083                         * pre-alloc page cannot be reused by next time so as
1084                         * to strictly follow mempolicy (e.g., alloc_page_vma()
1085                         * will allocate page according to address).  This
1086                         * could only happen if one pinned pte changed.
1087                         */
1088                        put_page(prealloc);
1089                        prealloc = NULL;
1090                }
1091                progress += 8;
1092        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1093
1094        arch_leave_lazy_mmu_mode();
1095        spin_unlock(src_ptl);
1096        pte_unmap(orig_src_pte);
1097        add_mm_rss_vec(dst_mm, rss);
1098        pte_unmap_unlock(orig_dst_pte, dst_ptl);
1099        cond_resched();
1100
1101        if (ret == -EIO) {
1102                VM_WARN_ON_ONCE(!entry.val);
1103                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1104                        ret = -ENOMEM;
1105                        goto out;
1106                }
1107                entry.val = 0;
1108        } else if (ret == -EBUSY) {
1109                goto out;
1110        } else if (ret ==  -EAGAIN) {
1111                prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1112                if (!prealloc)
1113                        return -ENOMEM;
1114        } else if (ret) {
1115                VM_WARN_ON_ONCE(1);
1116        }
1117
1118        /* We've captured and resolved the error. Reset, try again. */
1119        ret = 0;
1120
1121        if (addr != end)
1122                goto again;
1123out:
1124        if (unlikely(prealloc))
1125                put_page(prealloc);
1126        return ret;
1127}
1128
1129static inline int
1130copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131               pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132               unsigned long end)
1133{
1134        struct mm_struct *dst_mm = dst_vma->vm_mm;
1135        struct mm_struct *src_mm = src_vma->vm_mm;
1136        pmd_t *src_pmd, *dst_pmd;
1137        unsigned long next;
1138
1139        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140        if (!dst_pmd)
1141                return -ENOMEM;
1142        src_pmd = pmd_offset(src_pud, addr);
1143        do {
1144                next = pmd_addr_end(addr, end);
1145                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146                        || pmd_devmap(*src_pmd)) {
1147                        int err;
1148                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1149                        err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150                                            addr, dst_vma, src_vma);
1151                        if (err == -ENOMEM)
1152                                return -ENOMEM;
1153                        if (!err)
1154                                continue;
1155                        /* fall through */
1156                }
1157                if (pmd_none_or_clear_bad(src_pmd))
1158                        continue;
1159                if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160                                   addr, next))
1161                        return -ENOMEM;
1162        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1163        return 0;
1164}
1165
1166static inline int
1167copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168               p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169               unsigned long end)
1170{
1171        struct mm_struct *dst_mm = dst_vma->vm_mm;
1172        struct mm_struct *src_mm = src_vma->vm_mm;
1173        pud_t *src_pud, *dst_pud;
1174        unsigned long next;
1175
1176        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1177        if (!dst_pud)
1178                return -ENOMEM;
1179        src_pud = pud_offset(src_p4d, addr);
1180        do {
1181                next = pud_addr_end(addr, end);
1182                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183                        int err;
1184
1185                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1186                        err = copy_huge_pud(dst_mm, src_mm,
1187                                            dst_pud, src_pud, addr, src_vma);
1188                        if (err == -ENOMEM)
1189                                return -ENOMEM;
1190                        if (!err)
1191                                continue;
1192                        /* fall through */
1193                }
1194                if (pud_none_or_clear_bad(src_pud))
1195                        continue;
1196                if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197                                   addr, next))
1198                        return -ENOMEM;
1199        } while (dst_pud++, src_pud++, addr = next, addr != end);
1200        return 0;
1201}
1202
1203static inline int
1204copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205               pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206               unsigned long end)
1207{
1208        struct mm_struct *dst_mm = dst_vma->vm_mm;
1209        p4d_t *src_p4d, *dst_p4d;
1210        unsigned long next;
1211
1212        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213        if (!dst_p4d)
1214                return -ENOMEM;
1215        src_p4d = p4d_offset(src_pgd, addr);
1216        do {
1217                next = p4d_addr_end(addr, end);
1218                if (p4d_none_or_clear_bad(src_p4d))
1219                        continue;
1220                if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221                                   addr, next))
1222                        return -ENOMEM;
1223        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1224        return 0;
1225}
1226
1227int
1228copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1229{
1230        pgd_t *src_pgd, *dst_pgd;
1231        unsigned long next;
1232        unsigned long addr = src_vma->vm_start;
1233        unsigned long end = src_vma->vm_end;
1234        struct mm_struct *dst_mm = dst_vma->vm_mm;
1235        struct mm_struct *src_mm = src_vma->vm_mm;
1236        struct mmu_notifier_range range;
1237        bool is_cow;
1238        int ret;
1239
1240        /*
1241         * Don't copy ptes where a page fault will fill them correctly.
1242         * Fork becomes much lighter when there are big shared or private
1243         * readonly mappings. The tradeoff is that copy_page_range is more
1244         * efficient than faulting.
1245         */
1246        if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247            !src_vma->anon_vma)
1248                return 0;
1249
1250        if (is_vm_hugetlb_page(src_vma))
1251                return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1252
1253        if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1254                /*
1255                 * We do not free on error cases below as remove_vma
1256                 * gets called on error from higher level routine
1257                 */
1258                ret = track_pfn_copy(src_vma);
1259                if (ret)
1260                        return ret;
1261        }
1262
1263        /*
1264         * We need to invalidate the secondary MMU mappings only when
1265         * there could be a permission downgrade on the ptes of the
1266         * parent mm. And a permission downgrade will only happen if
1267         * is_cow_mapping() returns true.
1268         */
1269        is_cow = is_cow_mapping(src_vma->vm_flags);
1270
1271        if (is_cow) {
1272                mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1273                                        0, src_vma, src_mm, addr, end);
1274                mmu_notifier_invalidate_range_start(&range);
1275                /*
1276                 * Disabling preemption is not needed for the write side, as
1277                 * the read side doesn't spin, but goes to the mmap_lock.
1278                 *
1279                 * Use the raw variant of the seqcount_t write API to avoid
1280                 * lockdep complaining about preemptibility.
1281                 */
1282                mmap_assert_write_locked(src_mm);
1283                raw_write_seqcount_begin(&src_mm->write_protect_seq);
1284        }
1285
1286        ret = 0;
1287        dst_pgd = pgd_offset(dst_mm, addr);
1288        src_pgd = pgd_offset(src_mm, addr);
1289        do {
1290                next = pgd_addr_end(addr, end);
1291                if (pgd_none_or_clear_bad(src_pgd))
1292                        continue;
1293                if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1294                                            addr, next))) {
1295                        ret = -ENOMEM;
1296                        break;
1297                }
1298        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299
1300        if (is_cow) {
1301                raw_write_seqcount_end(&src_mm->write_protect_seq);
1302                mmu_notifier_invalidate_range_end(&range);
1303        }
1304        return ret;
1305}
1306
1307static unsigned long zap_pte_range(struct mmu_gather *tlb,
1308                                struct vm_area_struct *vma, pmd_t *pmd,
1309                                unsigned long addr, unsigned long end,
1310                                struct zap_details *details)
1311{
1312        struct mm_struct *mm = tlb->mm;
1313        int force_flush = 0;
1314        int rss[NR_MM_COUNTERS];
1315        spinlock_t *ptl;
1316        pte_t *start_pte;
1317        pte_t *pte;
1318        swp_entry_t entry;
1319
1320        tlb_change_page_size(tlb, PAGE_SIZE);
1321again:
1322        init_rss_vec(rss);
1323        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1324        pte = start_pte;
1325        flush_tlb_batched_pending(mm);
1326        arch_enter_lazy_mmu_mode();
1327        do {
1328                pte_t ptent = *pte;
1329                if (pte_none(ptent))
1330                        continue;
1331
1332                if (need_resched())
1333                        break;
1334
1335                if (pte_present(ptent)) {
1336                        struct page *page;
1337
1338                        page = vm_normal_page(vma, addr, ptent);
1339                        if (unlikely(zap_skip_check_mapping(details, page)))
1340                                continue;
1341                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1342                                                        tlb->fullmm);
1343                        tlb_remove_tlb_entry(tlb, pte, addr);
1344                        if (unlikely(!page))
1345                                continue;
1346
1347                        if (!PageAnon(page)) {
1348                                if (pte_dirty(ptent)) {
1349                                        force_flush = 1;
1350                                        set_page_dirty(page);
1351                                }
1352                                if (pte_young(ptent) &&
1353                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1354                                        mark_page_accessed(page);
1355                        }
1356                        rss[mm_counter(page)]--;
1357                        page_remove_rmap(page, false);
1358                        if (unlikely(page_mapcount(page) < 0))
1359                                print_bad_pte(vma, addr, ptent, page);
1360                        if (unlikely(__tlb_remove_page(tlb, page))) {
1361                                force_flush = 1;
1362                                addr += PAGE_SIZE;
1363                                break;
1364                        }
1365                        continue;
1366                }
1367
1368                entry = pte_to_swp_entry(ptent);
1369                if (is_device_private_entry(entry) ||
1370                    is_device_exclusive_entry(entry)) {
1371                        struct page *page = pfn_swap_entry_to_page(entry);
1372
1373                        if (unlikely(zap_skip_check_mapping(details, page)))
1374                                continue;
1375                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1376                        rss[mm_counter(page)]--;
1377
1378                        if (is_device_private_entry(entry))
1379                                page_remove_rmap(page, false);
1380
1381                        put_page(page);
1382                        continue;
1383                }
1384
1385                /* If details->check_mapping, we leave swap entries. */
1386                if (unlikely(details))
1387                        continue;
1388
1389                if (!non_swap_entry(entry))
1390                        rss[MM_SWAPENTS]--;
1391                else if (is_migration_entry(entry)) {
1392                        struct page *page;
1393
1394                        page = pfn_swap_entry_to_page(entry);
1395                        rss[mm_counter(page)]--;
1396                }
1397                if (unlikely(!free_swap_and_cache(entry)))
1398                        print_bad_pte(vma, addr, ptent, NULL);
1399                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1400        } while (pte++, addr += PAGE_SIZE, addr != end);
1401
1402        add_mm_rss_vec(mm, rss);
1403        arch_leave_lazy_mmu_mode();
1404
1405        /* Do the actual TLB flush before dropping ptl */
1406        if (force_flush)
1407                tlb_flush_mmu_tlbonly(tlb);
1408        pte_unmap_unlock(start_pte, ptl);
1409
1410        /*
1411         * If we forced a TLB flush (either due to running out of
1412         * batch buffers or because we needed to flush dirty TLB
1413         * entries before releasing the ptl), free the batched
1414         * memory too. Restart if we didn't do everything.
1415         */
1416        if (force_flush) {
1417                force_flush = 0;
1418                tlb_flush_mmu(tlb);
1419        }
1420
1421        if (addr != end) {
1422                cond_resched();
1423                goto again;
1424        }
1425
1426        return addr;
1427}
1428
1429static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1430                                struct vm_area_struct *vma, pud_t *pud,
1431                                unsigned long addr, unsigned long end,
1432                                struct zap_details *details)
1433{
1434        pmd_t *pmd;
1435        unsigned long next;
1436
1437        pmd = pmd_offset(pud, addr);
1438        do {
1439                next = pmd_addr_end(addr, end);
1440                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1441                        if (next - addr != HPAGE_PMD_SIZE)
1442                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1443                        else if (zap_huge_pmd(tlb, vma, pmd, addr))
1444                                goto next;
1445                        /* fall through */
1446                } else if (details && details->single_page &&
1447                           PageTransCompound(details->single_page) &&
1448                           next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1449                        spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1450                        /*
1451                         * Take and drop THP pmd lock so that we cannot return
1452                         * prematurely, while zap_huge_pmd() has cleared *pmd,
1453                         * but not yet decremented compound_mapcount().
1454                         */
1455                        spin_unlock(ptl);
1456                }
1457
1458                /*
1459                 * Here there can be other concurrent MADV_DONTNEED or
1460                 * trans huge page faults running, and if the pmd is
1461                 * none or trans huge it can change under us. This is
1462                 * because MADV_DONTNEED holds the mmap_lock in read
1463                 * mode.
1464                 */
1465                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1466                        goto next;
1467                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1468next:
1469                cond_resched();
1470        } while (pmd++, addr = next, addr != end);
1471
1472        return addr;
1473}
1474
1475static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1476                                struct vm_area_struct *vma, p4d_t *p4d,
1477                                unsigned long addr, unsigned long end,
1478                                struct zap_details *details)
1479{
1480        pud_t *pud;
1481        unsigned long next;
1482
1483        pud = pud_offset(p4d, addr);
1484        do {
1485                next = pud_addr_end(addr, end);
1486                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1487                        if (next - addr != HPAGE_PUD_SIZE) {
1488                                mmap_assert_locked(tlb->mm);
1489                                split_huge_pud(vma, pud, addr);
1490                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1491                                goto next;
1492                        /* fall through */
1493                }
1494                if (pud_none_or_clear_bad(pud))
1495                        continue;
1496                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1497next:
1498                cond_resched();
1499        } while (pud++, addr = next, addr != end);
1500
1501        return addr;
1502}
1503
1504static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1505                                struct vm_area_struct *vma, pgd_t *pgd,
1506                                unsigned long addr, unsigned long end,
1507                                struct zap_details *details)
1508{
1509        p4d_t *p4d;
1510        unsigned long next;
1511
1512        p4d = p4d_offset(pgd, addr);
1513        do {
1514                next = p4d_addr_end(addr, end);
1515                if (p4d_none_or_clear_bad(p4d))
1516                        continue;
1517                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1518        } while (p4d++, addr = next, addr != end);
1519
1520        return addr;
1521}
1522
1523void unmap_page_range(struct mmu_gather *tlb,
1524                             struct vm_area_struct *vma,
1525                             unsigned long addr, unsigned long end,
1526                             struct zap_details *details)
1527{
1528        pgd_t *pgd;
1529        unsigned long next;
1530
1531        BUG_ON(addr >= end);
1532        tlb_start_vma(tlb, vma);
1533        pgd = pgd_offset(vma->vm_mm, addr);
1534        do {
1535                next = pgd_addr_end(addr, end);
1536                if (pgd_none_or_clear_bad(pgd))
1537                        continue;
1538                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1539        } while (pgd++, addr = next, addr != end);
1540        tlb_end_vma(tlb, vma);
1541}
1542
1543
1544static void unmap_single_vma(struct mmu_gather *tlb,
1545                struct vm_area_struct *vma, unsigned long start_addr,
1546                unsigned long end_addr,
1547                struct zap_details *details)
1548{
1549        unsigned long start = max(vma->vm_start, start_addr);
1550        unsigned long end;
1551
1552        if (start >= vma->vm_end)
1553                return;
1554        end = min(vma->vm_end, end_addr);
1555        if (end <= vma->vm_start)
1556                return;
1557
1558        if (vma->vm_file)
1559                uprobe_munmap(vma, start, end);
1560
1561        if (unlikely(vma->vm_flags & VM_PFNMAP))
1562                untrack_pfn(vma, 0, 0);
1563
1564        if (start != end) {
1565                if (unlikely(is_vm_hugetlb_page(vma))) {
1566                        /*
1567                         * It is undesirable to test vma->vm_file as it
1568                         * should be non-null for valid hugetlb area.
1569                         * However, vm_file will be NULL in the error
1570                         * cleanup path of mmap_region. When
1571                         * hugetlbfs ->mmap method fails,
1572                         * mmap_region() nullifies vma->vm_file
1573                         * before calling this function to clean up.
1574                         * Since no pte has actually been setup, it is
1575                         * safe to do nothing in this case.
1576                         */
1577                        if (vma->vm_file) {
1578                                i_mmap_lock_write(vma->vm_file->f_mapping);
1579                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1580                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1581                        }
1582                } else
1583                        unmap_page_range(tlb, vma, start, end, details);
1584        }
1585}
1586
1587/**
1588 * unmap_vmas - unmap a range of memory covered by a list of vma's
1589 * @tlb: address of the caller's struct mmu_gather
1590 * @vma: the starting vma
1591 * @start_addr: virtual address at which to start unmapping
1592 * @end_addr: virtual address at which to end unmapping
1593 *
1594 * Unmap all pages in the vma list.
1595 *
1596 * Only addresses between `start' and `end' will be unmapped.
1597 *
1598 * The VMA list must be sorted in ascending virtual address order.
1599 *
1600 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1601 * range after unmap_vmas() returns.  So the only responsibility here is to
1602 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1603 * drops the lock and schedules.
1604 */
1605void unmap_vmas(struct mmu_gather *tlb,
1606                struct vm_area_struct *vma, unsigned long start_addr,
1607                unsigned long end_addr)
1608{
1609        struct mmu_notifier_range range;
1610
1611        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1612                                start_addr, end_addr);
1613        mmu_notifier_invalidate_range_start(&range);
1614        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1615                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1616        mmu_notifier_invalidate_range_end(&range);
1617}
1618
1619/**
1620 * zap_page_range - remove user pages in a given range
1621 * @vma: vm_area_struct holding the applicable pages
1622 * @start: starting address of pages to zap
1623 * @size: number of bytes to zap
1624 *
1625 * Caller must protect the VMA list
1626 */
1627void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1628                unsigned long size)
1629{
1630        struct mmu_notifier_range range;
1631        struct mmu_gather tlb;
1632
1633        lru_add_drain();
1634        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1635                                start, start + size);
1636        tlb_gather_mmu(&tlb, vma->vm_mm);
1637        update_hiwater_rss(vma->vm_mm);
1638        mmu_notifier_invalidate_range_start(&range);
1639        for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1640                unmap_single_vma(&tlb, vma, start, range.end, NULL);
1641        mmu_notifier_invalidate_range_end(&range);
1642        tlb_finish_mmu(&tlb);
1643}
1644
1645/**
1646 * zap_page_range_single - remove user pages in a given range
1647 * @vma: vm_area_struct holding the applicable pages
1648 * @address: starting address of pages to zap
1649 * @size: number of bytes to zap
1650 * @details: details of shared cache invalidation
1651 *
1652 * The range must fit into one VMA.
1653 */
1654static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1655                unsigned long size, struct zap_details *details)
1656{
1657        struct mmu_notifier_range range;
1658        struct mmu_gather tlb;
1659
1660        lru_add_drain();
1661        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662                                address, address + size);
1663        tlb_gather_mmu(&tlb, vma->vm_mm);
1664        update_hiwater_rss(vma->vm_mm);
1665        mmu_notifier_invalidate_range_start(&range);
1666        unmap_single_vma(&tlb, vma, address, range.end, details);
1667        mmu_notifier_invalidate_range_end(&range);
1668        tlb_finish_mmu(&tlb);
1669}
1670
1671/**
1672 * zap_vma_ptes - remove ptes mapping the vma
1673 * @vma: vm_area_struct holding ptes to be zapped
1674 * @address: starting address of pages to zap
1675 * @size: number of bytes to zap
1676 *
1677 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1678 *
1679 * The entire address range must be fully contained within the vma.
1680 *
1681 */
1682void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1683                unsigned long size)
1684{
1685        if (address < vma->vm_start || address + size > vma->vm_end ||
1686                        !(vma->vm_flags & VM_PFNMAP))
1687                return;
1688
1689        zap_page_range_single(vma, address, size, NULL);
1690}
1691EXPORT_SYMBOL_GPL(zap_vma_ptes);
1692
1693static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1694{
1695        pgd_t *pgd;
1696        p4d_t *p4d;
1697        pud_t *pud;
1698        pmd_t *pmd;
1699
1700        pgd = pgd_offset(mm, addr);
1701        p4d = p4d_alloc(mm, pgd, addr);
1702        if (!p4d)
1703                return NULL;
1704        pud = pud_alloc(mm, p4d, addr);
1705        if (!pud)
1706                return NULL;
1707        pmd = pmd_alloc(mm, pud, addr);
1708        if (!pmd)
1709                return NULL;
1710
1711        VM_BUG_ON(pmd_trans_huge(*pmd));
1712        return pmd;
1713}
1714
1715pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1716                        spinlock_t **ptl)
1717{
1718        pmd_t *pmd = walk_to_pmd(mm, addr);
1719
1720        if (!pmd)
1721                return NULL;
1722        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1723}
1724
1725static int validate_page_before_insert(struct page *page)
1726{
1727        if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1728                return -EINVAL;
1729        flush_dcache_page(page);
1730        return 0;
1731}
1732
1733static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1734                        unsigned long addr, struct page *page, pgprot_t prot)
1735{
1736        if (!pte_none(*pte))
1737                return -EBUSY;
1738        /* Ok, finally just insert the thing.. */
1739        get_page(page);
1740        inc_mm_counter_fast(mm, mm_counter_file(page));
1741        page_add_file_rmap(page, false);
1742        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1743        return 0;
1744}
1745
1746/*
1747 * This is the old fallback for page remapping.
1748 *
1749 * For historical reasons, it only allows reserved pages. Only
1750 * old drivers should use this, and they needed to mark their
1751 * pages reserved for the old functions anyway.
1752 */
1753static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1754                        struct page *page, pgprot_t prot)
1755{
1756        struct mm_struct *mm = vma->vm_mm;
1757        int retval;
1758        pte_t *pte;
1759        spinlock_t *ptl;
1760
1761        retval = validate_page_before_insert(page);
1762        if (retval)
1763                goto out;
1764        retval = -ENOMEM;
1765        pte = get_locked_pte(mm, addr, &ptl);
1766        if (!pte)
1767                goto out;
1768        retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1769        pte_unmap_unlock(pte, ptl);
1770out:
1771        return retval;
1772}
1773
1774#ifdef pte_index
1775static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1776                        unsigned long addr, struct page *page, pgprot_t prot)
1777{
1778        int err;
1779
1780        if (!page_count(page))
1781                return -EINVAL;
1782        err = validate_page_before_insert(page);
1783        if (err)
1784                return err;
1785        return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1786}
1787
1788/* insert_pages() amortizes the cost of spinlock operations
1789 * when inserting pages in a loop. Arch *must* define pte_index.
1790 */
1791static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1792                        struct page **pages, unsigned long *num, pgprot_t prot)
1793{
1794        pmd_t *pmd = NULL;
1795        pte_t *start_pte, *pte;
1796        spinlock_t *pte_lock;
1797        struct mm_struct *const mm = vma->vm_mm;
1798        unsigned long curr_page_idx = 0;
1799        unsigned long remaining_pages_total = *num;
1800        unsigned long pages_to_write_in_pmd;
1801        int ret;
1802more:
1803        ret = -EFAULT;
1804        pmd = walk_to_pmd(mm, addr);
1805        if (!pmd)
1806                goto out;
1807
1808        pages_to_write_in_pmd = min_t(unsigned long,
1809                remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1810
1811        /* Allocate the PTE if necessary; takes PMD lock once only. */
1812        ret = -ENOMEM;
1813        if (pte_alloc(mm, pmd))
1814                goto out;
1815
1816        while (pages_to_write_in_pmd) {
1817                int pte_idx = 0;
1818                const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1819
1820                start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1821                for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1822                        int err = insert_page_in_batch_locked(mm, pte,
1823                                addr, pages[curr_page_idx], prot);
1824                        if (unlikely(err)) {
1825                                pte_unmap_unlock(start_pte, pte_lock);
1826                                ret = err;
1827                                remaining_pages_total -= pte_idx;
1828                                goto out;
1829                        }
1830                        addr += PAGE_SIZE;
1831                        ++curr_page_idx;
1832                }
1833                pte_unmap_unlock(start_pte, pte_lock);
1834                pages_to_write_in_pmd -= batch_size;
1835                remaining_pages_total -= batch_size;
1836        }
1837        if (remaining_pages_total)
1838                goto more;
1839        ret = 0;
1840out:
1841        *num = remaining_pages_total;
1842        return ret;
1843}
1844#endif  /* ifdef pte_index */
1845
1846/**
1847 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1848 * @vma: user vma to map to
1849 * @addr: target start user address of these pages
1850 * @pages: source kernel pages
1851 * @num: in: number of pages to map. out: number of pages that were *not*
1852 * mapped. (0 means all pages were successfully mapped).
1853 *
1854 * Preferred over vm_insert_page() when inserting multiple pages.
1855 *
1856 * In case of error, we may have mapped a subset of the provided
1857 * pages. It is the caller's responsibility to account for this case.
1858 *
1859 * The same restrictions apply as in vm_insert_page().
1860 */
1861int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1862                        struct page **pages, unsigned long *num)
1863{
1864#ifdef pte_index
1865        const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1866
1867        if (addr < vma->vm_start || end_addr >= vma->vm_end)
1868                return -EFAULT;
1869        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1870                BUG_ON(mmap_read_trylock(vma->vm_mm));
1871                BUG_ON(vma->vm_flags & VM_PFNMAP);
1872                vma->vm_flags |= VM_MIXEDMAP;
1873        }
1874        /* Defer page refcount checking till we're about to map that page. */
1875        return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1876#else
1877        unsigned long idx = 0, pgcount = *num;
1878        int err = -EINVAL;
1879
1880        for (; idx < pgcount; ++idx) {
1881                err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1882                if (err)
1883                        break;
1884        }
1885        *num = pgcount - idx;
1886        return err;
1887#endif  /* ifdef pte_index */
1888}
1889EXPORT_SYMBOL(vm_insert_pages);
1890
1891/**
1892 * vm_insert_page - insert single page into user vma
1893 * @vma: user vma to map to
1894 * @addr: target user address of this page
1895 * @page: source kernel page
1896 *
1897 * This allows drivers to insert individual pages they've allocated
1898 * into a user vma.
1899 *
1900 * The page has to be a nice clean _individual_ kernel allocation.
1901 * If you allocate a compound page, you need to have marked it as
1902 * such (__GFP_COMP), or manually just split the page up yourself
1903 * (see split_page()).
1904 *
1905 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1906 * took an arbitrary page protection parameter. This doesn't allow
1907 * that. Your vma protection will have to be set up correctly, which
1908 * means that if you want a shared writable mapping, you'd better
1909 * ask for a shared writable mapping!
1910 *
1911 * The page does not need to be reserved.
1912 *
1913 * Usually this function is called from f_op->mmap() handler
1914 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1915 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1916 * function from other places, for example from page-fault handler.
1917 *
1918 * Return: %0 on success, negative error code otherwise.
1919 */
1920int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1921                        struct page *page)
1922{
1923        if (addr < vma->vm_start || addr >= vma->vm_end)
1924                return -EFAULT;
1925        if (!page_count(page))
1926                return -EINVAL;
1927        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1928                BUG_ON(mmap_read_trylock(vma->vm_mm));
1929                BUG_ON(vma->vm_flags & VM_PFNMAP);
1930                vma->vm_flags |= VM_MIXEDMAP;
1931        }
1932        return insert_page(vma, addr, page, vma->vm_page_prot);
1933}
1934EXPORT_SYMBOL(vm_insert_page);
1935
1936/*
1937 * __vm_map_pages - maps range of kernel pages into user vma
1938 * @vma: user vma to map to
1939 * @pages: pointer to array of source kernel pages
1940 * @num: number of pages in page array
1941 * @offset: user's requested vm_pgoff
1942 *
1943 * This allows drivers to map range of kernel pages into a user vma.
1944 *
1945 * Return: 0 on success and error code otherwise.
1946 */
1947static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1948                                unsigned long num, unsigned long offset)
1949{
1950        unsigned long count = vma_pages(vma);
1951        unsigned long uaddr = vma->vm_start;
1952        int ret, i;
1953
1954        /* Fail if the user requested offset is beyond the end of the object */
1955        if (offset >= num)
1956                return -ENXIO;
1957
1958        /* Fail if the user requested size exceeds available object size */
1959        if (count > num - offset)
1960                return -ENXIO;
1961
1962        for (i = 0; i < count; i++) {
1963                ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1964                if (ret < 0)
1965                        return ret;
1966                uaddr += PAGE_SIZE;
1967        }
1968
1969        return 0;
1970}
1971
1972/**
1973 * vm_map_pages - maps range of kernel pages starts with non zero offset
1974 * @vma: user vma to map to
1975 * @pages: pointer to array of source kernel pages
1976 * @num: number of pages in page array
1977 *
1978 * Maps an object consisting of @num pages, catering for the user's
1979 * requested vm_pgoff
1980 *
1981 * If we fail to insert any page into the vma, the function will return
1982 * immediately leaving any previously inserted pages present.  Callers
1983 * from the mmap handler may immediately return the error as their caller
1984 * will destroy the vma, removing any successfully inserted pages. Other
1985 * callers should make their own arrangements for calling unmap_region().
1986 *
1987 * Context: Process context. Called by mmap handlers.
1988 * Return: 0 on success and error code otherwise.
1989 */
1990int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1991                                unsigned long num)
1992{
1993        return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1994}
1995EXPORT_SYMBOL(vm_map_pages);
1996
1997/**
1998 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1999 * @vma: user vma to map to
2000 * @pages: pointer to array of source kernel pages
2001 * @num: number of pages in page array
2002 *
2003 * Similar to vm_map_pages(), except that it explicitly sets the offset
2004 * to 0. This function is intended for the drivers that did not consider
2005 * vm_pgoff.
2006 *
2007 * Context: Process context. Called by mmap handlers.
2008 * Return: 0 on success and error code otherwise.
2009 */
2010int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2011                                unsigned long num)
2012{
2013        return __vm_map_pages(vma, pages, num, 0);
2014}
2015EXPORT_SYMBOL(vm_map_pages_zero);
2016
2017static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2018                        pfn_t pfn, pgprot_t prot, bool mkwrite)
2019{
2020        struct mm_struct *mm = vma->vm_mm;
2021        pte_t *pte, entry;
2022        spinlock_t *ptl;
2023
2024        pte = get_locked_pte(mm, addr, &ptl);
2025        if (!pte)
2026                return VM_FAULT_OOM;
2027        if (!pte_none(*pte)) {
2028                if (mkwrite) {
2029                        /*
2030                         * For read faults on private mappings the PFN passed
2031                         * in may not match the PFN we have mapped if the
2032                         * mapped PFN is a writeable COW page.  In the mkwrite
2033                         * case we are creating a writable PTE for a shared
2034                         * mapping and we expect the PFNs to match. If they
2035                         * don't match, we are likely racing with block
2036                         * allocation and mapping invalidation so just skip the
2037                         * update.
2038                         */
2039                        if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2040                                WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2041                                goto out_unlock;
2042                        }
2043                        entry = pte_mkyoung(*pte);
2044                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045                        if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2046                                update_mmu_cache(vma, addr, pte);
2047                }
2048                goto out_unlock;
2049        }
2050
2051        /* Ok, finally just insert the thing.. */
2052        if (pfn_t_devmap(pfn))
2053                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2054        else
2055                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2056
2057        if (mkwrite) {
2058                entry = pte_mkyoung(entry);
2059                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060        }
2061
2062        set_pte_at(mm, addr, pte, entry);
2063        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2064
2065out_unlock:
2066        pte_unmap_unlock(pte, ptl);
2067        return VM_FAULT_NOPAGE;
2068}
2069
2070/**
2071 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2072 * @vma: user vma to map to
2073 * @addr: target user address of this page
2074 * @pfn: source kernel pfn
2075 * @pgprot: pgprot flags for the inserted page
2076 *
2077 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2078 * to override pgprot on a per-page basis.
2079 *
2080 * This only makes sense for IO mappings, and it makes no sense for
2081 * COW mappings.  In general, using multiple vmas is preferable;
2082 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2083 * impractical.
2084 *
2085 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2086 * a value of @pgprot different from that of @vma->vm_page_prot.
2087 *
2088 * Context: Process context.  May allocate using %GFP_KERNEL.
2089 * Return: vm_fault_t value.
2090 */
2091vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2092                        unsigned long pfn, pgprot_t pgprot)
2093{
2094        /*
2095         * Technically, architectures with pte_special can avoid all these
2096         * restrictions (same for remap_pfn_range).  However we would like
2097         * consistency in testing and feature parity among all, so we should
2098         * try to keep these invariants in place for everybody.
2099         */
2100        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2101        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2102                                                (VM_PFNMAP|VM_MIXEDMAP));
2103        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2104        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2105
2106        if (addr < vma->vm_start || addr >= vma->vm_end)
2107                return VM_FAULT_SIGBUS;
2108
2109        if (!pfn_modify_allowed(pfn, pgprot))
2110                return VM_FAULT_SIGBUS;
2111
2112        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2113
2114        return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2115                        false);
2116}
2117EXPORT_SYMBOL(vmf_insert_pfn_prot);
2118
2119/**
2120 * vmf_insert_pfn - insert single pfn into user vma
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2124 *
2125 * Similar to vm_insert_page, this allows drivers to insert individual pages
2126 * they've allocated into a user vma. Same comments apply.
2127 *
2128 * This function should only be called from a vm_ops->fault handler, and
2129 * in that case the handler should return the result of this function.
2130 *
2131 * vma cannot be a COW mapping.
2132 *
2133 * As this is called only for pages that do not currently exist, we
2134 * do not need to flush old virtual caches or the TLB.
2135 *
2136 * Context: Process context.  May allocate using %GFP_KERNEL.
2137 * Return: vm_fault_t value.
2138 */
2139vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140                        unsigned long pfn)
2141{
2142        return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2143}
2144EXPORT_SYMBOL(vmf_insert_pfn);
2145
2146static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2147{
2148        /* these checks mirror the abort conditions in vm_normal_page */
2149        if (vma->vm_flags & VM_MIXEDMAP)
2150                return true;
2151        if (pfn_t_devmap(pfn))
2152                return true;
2153        if (pfn_t_special(pfn))
2154                return true;
2155        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2156                return true;
2157        return false;
2158}
2159
2160static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2161                unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2162                bool mkwrite)
2163{
2164        int err;
2165
2166        BUG_ON(!vm_mixed_ok(vma, pfn));
2167
2168        if (addr < vma->vm_start || addr >= vma->vm_end)
2169                return VM_FAULT_SIGBUS;
2170
2171        track_pfn_insert(vma, &pgprot, pfn);
2172
2173        if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2174                return VM_FAULT_SIGBUS;
2175
2176        /*
2177         * If we don't have pte special, then we have to use the pfn_valid()
2178         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2179         * refcount the page if pfn_valid is true (hence insert_page rather
2180         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2181         * without pte special, it would there be refcounted as a normal page.
2182         */
2183        if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2184            !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2185                struct page *page;
2186
2187                /*
2188                 * At this point we are committed to insert_page()
2189                 * regardless of whether the caller specified flags that
2190                 * result in pfn_t_has_page() == false.
2191                 */
2192                page = pfn_to_page(pfn_t_to_pfn(pfn));
2193                err = insert_page(vma, addr, page, pgprot);
2194        } else {
2195                return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2196        }
2197
2198        if (err == -ENOMEM)
2199                return VM_FAULT_OOM;
2200        if (err < 0 && err != -EBUSY)
2201                return VM_FAULT_SIGBUS;
2202
2203        return VM_FAULT_NOPAGE;
2204}
2205
2206/**
2207 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2208 * @vma: user vma to map to
2209 * @addr: target user address of this page
2210 * @pfn: source kernel pfn
2211 * @pgprot: pgprot flags for the inserted page
2212 *
2213 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2214 * to override pgprot on a per-page basis.
2215 *
2216 * Typically this function should be used by drivers to set caching- and
2217 * encryption bits different than those of @vma->vm_page_prot, because
2218 * the caching- or encryption mode may not be known at mmap() time.
2219 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2220 * to set caching and encryption bits for those vmas (except for COW pages).
2221 * This is ensured by core vm only modifying these page table entries using
2222 * functions that don't touch caching- or encryption bits, using pte_modify()
2223 * if needed. (See for example mprotect()).
2224 * Also when new page-table entries are created, this is only done using the
2225 * fault() callback, and never using the value of vma->vm_page_prot,
2226 * except for page-table entries that point to anonymous pages as the result
2227 * of COW.
2228 *
2229 * Context: Process context.  May allocate using %GFP_KERNEL.
2230 * Return: vm_fault_t value.
2231 */
2232vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2233                                 pfn_t pfn, pgprot_t pgprot)
2234{
2235        return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2236}
2237EXPORT_SYMBOL(vmf_insert_mixed_prot);
2238
2239vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2240                pfn_t pfn)
2241{
2242        return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2243}
2244EXPORT_SYMBOL(vmf_insert_mixed);
2245
2246/*
2247 *  If the insertion of PTE failed because someone else already added a
2248 *  different entry in the mean time, we treat that as success as we assume
2249 *  the same entry was actually inserted.
2250 */
2251vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2252                unsigned long addr, pfn_t pfn)
2253{
2254        return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2255}
2256EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2257
2258/*
2259 * maps a range of physical memory into the requested pages. the old
2260 * mappings are removed. any references to nonexistent pages results
2261 * in null mappings (currently treated as "copy-on-access")
2262 */
2263static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2264                        unsigned long addr, unsigned long end,
2265                        unsigned long pfn, pgprot_t prot)
2266{
2267        pte_t *pte, *mapped_pte;
2268        spinlock_t *ptl;
2269        int err = 0;
2270
2271        mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2272        if (!pte)
2273                return -ENOMEM;
2274        arch_enter_lazy_mmu_mode();
2275        do {
2276                BUG_ON(!pte_none(*pte));
2277                if (!pfn_modify_allowed(pfn, prot)) {
2278                        err = -EACCES;
2279                        break;
2280                }
2281                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2282                pfn++;
2283        } while (pte++, addr += PAGE_SIZE, addr != end);
2284        arch_leave_lazy_mmu_mode();
2285        pte_unmap_unlock(mapped_pte, ptl);
2286        return err;
2287}
2288
2289static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2290                        unsigned long addr, unsigned long end,
2291                        unsigned long pfn, pgprot_t prot)
2292{
2293        pmd_t *pmd;
2294        unsigned long next;
2295        int err;
2296
2297        pfn -= addr >> PAGE_SHIFT;
2298        pmd = pmd_alloc(mm, pud, addr);
2299        if (!pmd)
2300                return -ENOMEM;
2301        VM_BUG_ON(pmd_trans_huge(*pmd));
2302        do {
2303                next = pmd_addr_end(addr, end);
2304                err = remap_pte_range(mm, pmd, addr, next,
2305                                pfn + (addr >> PAGE_SHIFT), prot);
2306                if (err)
2307                        return err;
2308        } while (pmd++, addr = next, addr != end);
2309        return 0;
2310}
2311
2312static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2313                        unsigned long addr, unsigned long end,
2314                        unsigned long pfn, pgprot_t prot)
2315{
2316        pud_t *pud;
2317        unsigned long next;
2318        int err;
2319
2320        pfn -= addr >> PAGE_SHIFT;
2321        pud = pud_alloc(mm, p4d, addr);
2322        if (!pud)
2323                return -ENOMEM;
2324        do {
2325                next = pud_addr_end(addr, end);
2326                err = remap_pmd_range(mm, pud, addr, next,
2327                                pfn + (addr >> PAGE_SHIFT), prot);
2328                if (err)
2329                        return err;
2330        } while (pud++, addr = next, addr != end);
2331        return 0;
2332}
2333
2334static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2335                        unsigned long addr, unsigned long end,
2336                        unsigned long pfn, pgprot_t prot)
2337{
2338        p4d_t *p4d;
2339        unsigned long next;
2340        int err;
2341
2342        pfn -= addr >> PAGE_SHIFT;
2343        p4d = p4d_alloc(mm, pgd, addr);
2344        if (!p4d)
2345                return -ENOMEM;
2346        do {
2347                next = p4d_addr_end(addr, end);
2348                err = remap_pud_range(mm, p4d, addr, next,
2349                                pfn + (addr >> PAGE_SHIFT), prot);
2350                if (err)
2351                        return err;
2352        } while (p4d++, addr = next, addr != end);
2353        return 0;
2354}
2355
2356/*
2357 * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2358 * must have pre-validated the caching bits of the pgprot_t.
2359 */
2360int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2361                unsigned long pfn, unsigned long size, pgprot_t prot)
2362{
2363        pgd_t *pgd;
2364        unsigned long next;
2365        unsigned long end = addr + PAGE_ALIGN(size);
2366        struct mm_struct *mm = vma->vm_mm;
2367        int err;
2368
2369        if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2370                return -EINVAL;
2371
2372        /*
2373         * Physically remapped pages are special. Tell the
2374         * rest of the world about it:
2375         *   VM_IO tells people not to look at these pages
2376         *      (accesses can have side effects).
2377         *   VM_PFNMAP tells the core MM that the base pages are just
2378         *      raw PFN mappings, and do not have a "struct page" associated
2379         *      with them.
2380         *   VM_DONTEXPAND
2381         *      Disable vma merging and expanding with mremap().
2382         *   VM_DONTDUMP
2383         *      Omit vma from core dump, even when VM_IO turned off.
2384         *
2385         * There's a horrible special case to handle copy-on-write
2386         * behaviour that some programs depend on. We mark the "original"
2387         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2388         * See vm_normal_page() for details.
2389         */
2390        if (is_cow_mapping(vma->vm_flags)) {
2391                if (addr != vma->vm_start || end != vma->vm_end)
2392                        return -EINVAL;
2393                vma->vm_pgoff = pfn;
2394        }
2395
2396        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2397
2398        BUG_ON(addr >= end);
2399        pfn -= addr >> PAGE_SHIFT;
2400        pgd = pgd_offset(mm, addr);
2401        flush_cache_range(vma, addr, end);
2402        do {
2403                next = pgd_addr_end(addr, end);
2404                err = remap_p4d_range(mm, pgd, addr, next,
2405                                pfn + (addr >> PAGE_SHIFT), prot);
2406                if (err)
2407                        return err;
2408        } while (pgd++, addr = next, addr != end);
2409
2410        return 0;
2411}
2412
2413/**
2414 * remap_pfn_range - remap kernel memory to userspace
2415 * @vma: user vma to map to
2416 * @addr: target page aligned user address to start at
2417 * @pfn: page frame number of kernel physical memory address
2418 * @size: size of mapping area
2419 * @prot: page protection flags for this mapping
2420 *
2421 * Note: this is only safe if the mm semaphore is held when called.
2422 *
2423 * Return: %0 on success, negative error code otherwise.
2424 */
2425int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2426                    unsigned long pfn, unsigned long size, pgprot_t prot)
2427{
2428        int err;
2429
2430        err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2431        if (err)
2432                return -EINVAL;
2433
2434        err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2435        if (err)
2436                untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2437        return err;
2438}
2439EXPORT_SYMBOL(remap_pfn_range);
2440
2441/**
2442 * vm_iomap_memory - remap memory to userspace
2443 * @vma: user vma to map to
2444 * @start: start of the physical memory to be mapped
2445 * @len: size of area
2446 *
2447 * This is a simplified io_remap_pfn_range() for common driver use. The
2448 * driver just needs to give us the physical memory range to be mapped,
2449 * we'll figure out the rest from the vma information.
2450 *
2451 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2452 * whatever write-combining details or similar.
2453 *
2454 * Return: %0 on success, negative error code otherwise.
2455 */
2456int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2457{
2458        unsigned long vm_len, pfn, pages;
2459
2460        /* Check that the physical memory area passed in looks valid */
2461        if (start + len < start)
2462                return -EINVAL;
2463        /*
2464         * You *really* shouldn't map things that aren't page-aligned,
2465         * but we've historically allowed it because IO memory might
2466         * just have smaller alignment.
2467         */
2468        len += start & ~PAGE_MASK;
2469        pfn = start >> PAGE_SHIFT;
2470        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2471        if (pfn + pages < pfn)
2472                return -EINVAL;
2473
2474        /* We start the mapping 'vm_pgoff' pages into the area */
2475        if (vma->vm_pgoff > pages)
2476                return -EINVAL;
2477        pfn += vma->vm_pgoff;
2478        pages -= vma->vm_pgoff;
2479
2480        /* Can we fit all of the mapping? */
2481        vm_len = vma->vm_end - vma->vm_start;
2482        if (vm_len >> PAGE_SHIFT > pages)
2483                return -EINVAL;
2484
2485        /* Ok, let it rip */
2486        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2487}
2488EXPORT_SYMBOL(vm_iomap_memory);
2489
2490static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2491                                     unsigned long addr, unsigned long end,
2492                                     pte_fn_t fn, void *data, bool create,
2493                                     pgtbl_mod_mask *mask)
2494{
2495        pte_t *pte, *mapped_pte;
2496        int err = 0;
2497        spinlock_t *ptl;
2498
2499        if (create) {
2500                mapped_pte = pte = (mm == &init_mm) ?
2501                        pte_alloc_kernel_track(pmd, addr, mask) :
2502                        pte_alloc_map_lock(mm, pmd, addr, &ptl);
2503                if (!pte)
2504                        return -ENOMEM;
2505        } else {
2506                mapped_pte = pte = (mm == &init_mm) ?
2507                        pte_offset_kernel(pmd, addr) :
2508                        pte_offset_map_lock(mm, pmd, addr, &ptl);
2509        }
2510
2511        BUG_ON(pmd_huge(*pmd));
2512
2513        arch_enter_lazy_mmu_mode();
2514
2515        if (fn) {
2516                do {
2517                        if (create || !pte_none(*pte)) {
2518                                err = fn(pte++, addr, data);
2519                                if (err)
2520                                        break;
2521                        }
2522                } while (addr += PAGE_SIZE, addr != end);
2523        }
2524        *mask |= PGTBL_PTE_MODIFIED;
2525
2526        arch_leave_lazy_mmu_mode();
2527
2528        if (mm != &init_mm)
2529                pte_unmap_unlock(mapped_pte, ptl);
2530        return err;
2531}
2532
2533static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2534                                     unsigned long addr, unsigned long end,
2535                                     pte_fn_t fn, void *data, bool create,
2536                                     pgtbl_mod_mask *mask)
2537{
2538        pmd_t *pmd;
2539        unsigned long next;
2540        int err = 0;
2541
2542        BUG_ON(pud_huge(*pud));
2543
2544        if (create) {
2545                pmd = pmd_alloc_track(mm, pud, addr, mask);
2546                if (!pmd)
2547                        return -ENOMEM;
2548        } else {
2549                pmd = pmd_offset(pud, addr);
2550        }
2551        do {
2552                next = pmd_addr_end(addr, end);
2553                if (pmd_none(*pmd) && !create)
2554                        continue;
2555                if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2556                        return -EINVAL;
2557                if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2558                        if (!create)
2559                                continue;
2560                        pmd_clear_bad(pmd);
2561                }
2562                err = apply_to_pte_range(mm, pmd, addr, next,
2563                                         fn, data, create, mask);
2564                if (err)
2565                        break;
2566        } while (pmd++, addr = next, addr != end);
2567
2568        return err;
2569}
2570
2571static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2572                                     unsigned long addr, unsigned long end,
2573                                     pte_fn_t fn, void *data, bool create,
2574                                     pgtbl_mod_mask *mask)
2575{
2576        pud_t *pud;
2577        unsigned long next;
2578        int err = 0;
2579
2580        if (create) {
2581                pud = pud_alloc_track(mm, p4d, addr, mask);
2582                if (!pud)
2583                        return -ENOMEM;
2584        } else {
2585                pud = pud_offset(p4d, addr);
2586        }
2587        do {
2588                next = pud_addr_end(addr, end);
2589                if (pud_none(*pud) && !create)
2590                        continue;
2591                if (WARN_ON_ONCE(pud_leaf(*pud)))
2592                        return -EINVAL;
2593                if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2594                        if (!create)
2595                                continue;
2596                        pud_clear_bad(pud);
2597                }
2598                err = apply_to_pmd_range(mm, pud, addr, next,
2599                                         fn, data, create, mask);
2600                if (err)
2601                        break;
2602        } while (pud++, addr = next, addr != end);
2603
2604        return err;
2605}
2606
2607static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2608                                     unsigned long addr, unsigned long end,
2609                                     pte_fn_t fn, void *data, bool create,
2610                                     pgtbl_mod_mask *mask)
2611{
2612        p4d_t *p4d;
2613        unsigned long next;
2614        int err = 0;
2615
2616        if (create) {
2617                p4d = p4d_alloc_track(mm, pgd, addr, mask);
2618                if (!p4d)
2619                        return -ENOMEM;
2620        } else {
2621                p4d = p4d_offset(pgd, addr);
2622        }
2623        do {
2624                next = p4d_addr_end(addr, end);
2625                if (p4d_none(*p4d) && !create)
2626                        continue;
2627                if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2628                        return -EINVAL;
2629                if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2630                        if (!create)
2631                                continue;
2632                        p4d_clear_bad(p4d);
2633                }
2634                err = apply_to_pud_range(mm, p4d, addr, next,
2635                                         fn, data, create, mask);
2636                if (err)
2637                        break;
2638        } while (p4d++, addr = next, addr != end);
2639
2640        return err;
2641}
2642
2643static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2644                                 unsigned long size, pte_fn_t fn,
2645                                 void *data, bool create)
2646{
2647        pgd_t *pgd;
2648        unsigned long start = addr, next;
2649        unsigned long end = addr + size;
2650        pgtbl_mod_mask mask = 0;
2651        int err = 0;
2652
2653        if (WARN_ON(addr >= end))
2654                return -EINVAL;
2655
2656        pgd = pgd_offset(mm, addr);
2657        do {
2658                next = pgd_addr_end(addr, end);
2659                if (pgd_none(*pgd) && !create)
2660                        continue;
2661                if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2662                        return -EINVAL;
2663                if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2664                        if (!create)
2665                                continue;
2666                        pgd_clear_bad(pgd);
2667                }
2668                err = apply_to_p4d_range(mm, pgd, addr, next,
2669                                         fn, data, create, &mask);
2670                if (err)
2671                        break;
2672        } while (pgd++, addr = next, addr != end);
2673
2674        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2675                arch_sync_kernel_mappings(start, start + size);
2676
2677        return err;
2678}
2679
2680/*
2681 * Scan a region of virtual memory, filling in page tables as necessary
2682 * and calling a provided function on each leaf page table.
2683 */
2684int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2685                        unsigned long size, pte_fn_t fn, void *data)
2686{
2687        return __apply_to_page_range(mm, addr, size, fn, data, true);
2688}
2689EXPORT_SYMBOL_GPL(apply_to_page_range);
2690
2691/*
2692 * Scan a region of virtual memory, calling a provided function on
2693 * each leaf page table where it exists.
2694 *
2695 * Unlike apply_to_page_range, this does _not_ fill in page tables
2696 * where they are absent.
2697 */
2698int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2699                                 unsigned long size, pte_fn_t fn, void *data)
2700{
2701        return __apply_to_page_range(mm, addr, size, fn, data, false);
2702}
2703EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2704
2705/*
2706 * handle_pte_fault chooses page fault handler according to an entry which was
2707 * read non-atomically.  Before making any commitment, on those architectures
2708 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2709 * parts, do_swap_page must check under lock before unmapping the pte and
2710 * proceeding (but do_wp_page is only called after already making such a check;
2711 * and do_anonymous_page can safely check later on).
2712 */
2713static inline int pte_unmap_same(struct vm_fault *vmf)
2714{
2715        int same = 1;
2716#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2717        if (sizeof(pte_t) > sizeof(unsigned long)) {
2718                spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2719                spin_lock(ptl);
2720                same = pte_same(*vmf->pte, vmf->orig_pte);
2721                spin_unlock(ptl);
2722        }
2723#endif
2724        pte_unmap(vmf->pte);
2725        vmf->pte = NULL;
2726        return same;
2727}
2728
2729static inline bool cow_user_page(struct page *dst, struct page *src,
2730                                 struct vm_fault *vmf)
2731{
2732        bool ret;
2733        void *kaddr;
2734        void __user *uaddr;
2735        bool locked = false;
2736        struct vm_area_struct *vma = vmf->vma;
2737        struct mm_struct *mm = vma->vm_mm;
2738        unsigned long addr = vmf->address;
2739
2740        if (likely(src)) {
2741                copy_user_highpage(dst, src, addr, vma);
2742                return true;
2743        }
2744
2745        /*
2746         * If the source page was a PFN mapping, we don't have
2747         * a "struct page" for it. We do a best-effort copy by
2748         * just copying from the original user address. If that
2749         * fails, we just zero-fill it. Live with it.
2750         */
2751        kaddr = kmap_atomic(dst);
2752        uaddr = (void __user *)(addr & PAGE_MASK);
2753
2754        /*
2755         * On architectures with software "accessed" bits, we would
2756         * take a double page fault, so mark it accessed here.
2757         */
2758        if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2759                pte_t entry;
2760
2761                vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2762                locked = true;
2763                if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2764                        /*
2765                         * Other thread has already handled the fault
2766                         * and update local tlb only
2767                         */
2768                        update_mmu_tlb(vma, addr, vmf->pte);
2769                        ret = false;
2770                        goto pte_unlock;
2771                }
2772
2773                entry = pte_mkyoung(vmf->orig_pte);
2774                if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2775                        update_mmu_cache(vma, addr, vmf->pte);
2776        }
2777
2778        /*
2779         * This really shouldn't fail, because the page is there
2780         * in the page tables. But it might just be unreadable,
2781         * in which case we just give up and fill the result with
2782         * zeroes.
2783         */
2784        if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2785                if (locked)
2786                        goto warn;
2787
2788                /* Re-validate under PTL if the page is still mapped */
2789                vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2790                locked = true;
2791                if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2792                        /* The PTE changed under us, update local tlb */
2793                        update_mmu_tlb(vma, addr, vmf->pte);
2794                        ret = false;
2795                        goto pte_unlock;
2796                }
2797
2798                /*
2799                 * The same page can be mapped back since last copy attempt.
2800                 * Try to copy again under PTL.
2801                 */
2802                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2803                        /*
2804                         * Give a warn in case there can be some obscure
2805                         * use-case
2806                         */
2807warn:
2808                        WARN_ON_ONCE(1);
2809                        clear_page(kaddr);
2810                }
2811        }
2812
2813        ret = true;
2814
2815pte_unlock:
2816        if (locked)
2817                pte_unmap_unlock(vmf->pte, vmf->ptl);
2818        kunmap_atomic(kaddr);
2819        flush_dcache_page(dst);
2820
2821        return ret;
2822}
2823
2824static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2825{
2826        struct file *vm_file = vma->vm_file;
2827
2828        if (vm_file)
2829                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2830
2831        /*
2832         * Special mappings (e.g. VDSO) do not have any file so fake
2833         * a default GFP_KERNEL for them.
2834         */
2835        return GFP_KERNEL;
2836}
2837
2838/*
2839 * Notify the address space that the page is about to become writable so that
2840 * it can prohibit this or wait for the page to get into an appropriate state.
2841 *
2842 * We do this without the lock held, so that it can sleep if it needs to.
2843 */
2844static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2845{
2846        vm_fault_t ret;
2847        struct page *page = vmf->page;
2848        unsigned int old_flags = vmf->flags;
2849
2850        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2851
2852        if (vmf->vma->vm_file &&
2853            IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2854                return VM_FAULT_SIGBUS;
2855
2856        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2857        /* Restore original flags so that caller is not surprised */
2858        vmf->flags = old_flags;
2859        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2860                return ret;
2861        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2862                lock_page(page);
2863                if (!page->mapping) {
2864                        unlock_page(page);
2865                        return 0; /* retry */
2866                }
2867                ret |= VM_FAULT_LOCKED;
2868        } else
2869                VM_BUG_ON_PAGE(!PageLocked(page), page);
2870        return ret;
2871}
2872
2873/*
2874 * Handle dirtying of a page in shared file mapping on a write fault.
2875 *
2876 * The function expects the page to be locked and unlocks it.
2877 */
2878static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2879{
2880        struct vm_area_struct *vma = vmf->vma;
2881        struct address_space *mapping;
2882        struct page *page = vmf->page;
2883        bool dirtied;
2884        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2885
2886        dirtied = set_page_dirty(page);
2887        VM_BUG_ON_PAGE(PageAnon(page), page);
2888        /*
2889         * Take a local copy of the address_space - page.mapping may be zeroed
2890         * by truncate after unlock_page().   The address_space itself remains
2891         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2892         * release semantics to prevent the compiler from undoing this copying.
2893         */
2894        mapping = page_rmapping(page);
2895        unlock_page(page);
2896
2897        if (!page_mkwrite)
2898                file_update_time(vma->vm_file);
2899
2900        /*
2901         * Throttle page dirtying rate down to writeback speed.
2902         *
2903         * mapping may be NULL here because some device drivers do not
2904         * set page.mapping but still dirty their pages
2905         *
2906         * Drop the mmap_lock before waiting on IO, if we can. The file
2907         * is pinning the mapping, as per above.
2908         */
2909        if ((dirtied || page_mkwrite) && mapping) {
2910                struct file *fpin;
2911
2912                fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2913                balance_dirty_pages_ratelimited(mapping);
2914                if (fpin) {
2915                        fput(fpin);
2916                        return VM_FAULT_RETRY;
2917                }
2918        }
2919
2920        return 0;
2921}
2922
2923/*
2924 * Handle write page faults for pages that can be reused in the current vma
2925 *
2926 * This can happen either due to the mapping being with the VM_SHARED flag,
2927 * or due to us being the last reference standing to the page. In either
2928 * case, all we need to do here is to mark the page as writable and update
2929 * any related book-keeping.
2930 */
2931static inline void wp_page_reuse(struct vm_fault *vmf)
2932        __releases(vmf->ptl)
2933{
2934        struct vm_area_struct *vma = vmf->vma;
2935        struct page *page = vmf->page;
2936        pte_t entry;
2937        /*
2938         * Clear the pages cpupid information as the existing
2939         * information potentially belongs to a now completely
2940         * unrelated process.
2941         */
2942        if (page)
2943                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2944
2945        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2946        entry = pte_mkyoung(vmf->orig_pte);
2947        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2948        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2949                update_mmu_cache(vma, vmf->address, vmf->pte);
2950        pte_unmap_unlock(vmf->pte, vmf->ptl);
2951        count_vm_event(PGREUSE);
2952}
2953
2954/*
2955 * Handle the case of a page which we actually need to copy to a new page.
2956 *
2957 * Called with mmap_lock locked and the old page referenced, but
2958 * without the ptl held.
2959 *
2960 * High level logic flow:
2961 *
2962 * - Allocate a page, copy the content of the old page to the new one.
2963 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2964 * - Take the PTL. If the pte changed, bail out and release the allocated page
2965 * - If the pte is still the way we remember it, update the page table and all
2966 *   relevant references. This includes dropping the reference the page-table
2967 *   held to the old page, as well as updating the rmap.
2968 * - In any case, unlock the PTL and drop the reference we took to the old page.
2969 */
2970static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2971{
2972        struct vm_area_struct *vma = vmf->vma;
2973        struct mm_struct *mm = vma->vm_mm;
2974        struct page *old_page = vmf->page;
2975        struct page *new_page = NULL;
2976        pte_t entry;
2977        int page_copied = 0;
2978        struct mmu_notifier_range range;
2979
2980        if (unlikely(anon_vma_prepare(vma)))
2981                goto oom;
2982
2983        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2984                new_page = alloc_zeroed_user_highpage_movable(vma,
2985                                                              vmf->address);
2986                if (!new_page)
2987                        goto oom;
2988        } else {
2989                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2990                                vmf->address);
2991                if (!new_page)
2992                        goto oom;
2993
2994                if (!cow_user_page(new_page, old_page, vmf)) {
2995                        /*
2996                         * COW failed, if the fault was solved by other,
2997                         * it's fine. If not, userspace would re-fault on
2998                         * the same address and we will handle the fault
2999                         * from the second attempt.
3000                         */
3001                        put_page(new_page);
3002                        if (old_page)
3003                                put_page(old_page);
3004                        return 0;
3005                }
3006        }
3007
3008        if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3009                goto oom_free_new;
3010        cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3011
3012        __SetPageUptodate(new_page);
3013
3014        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3015                                vmf->address & PAGE_MASK,
3016                                (vmf->address & PAGE_MASK) + PAGE_SIZE);
3017        mmu_notifier_invalidate_range_start(&range);
3018
3019        /*
3020         * Re-check the pte - we dropped the lock
3021         */
3022        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3023        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3024                if (old_page) {
3025                        if (!PageAnon(old_page)) {
3026                                dec_mm_counter_fast(mm,
3027                                                mm_counter_file(old_page));
3028                                inc_mm_counter_fast(mm, MM_ANONPAGES);
3029                        }
3030                } else {
3031                        inc_mm_counter_fast(mm, MM_ANONPAGES);
3032                }
3033                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3034                entry = mk_pte(new_page, vma->vm_page_prot);
3035                entry = pte_sw_mkyoung(entry);
3036                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3037
3038                /*
3039                 * Clear the pte entry and flush it first, before updating the
3040                 * pte with the new entry, to keep TLBs on different CPUs in
3041                 * sync. This code used to set the new PTE then flush TLBs, but
3042                 * that left a window where the new PTE could be loaded into
3043                 * some TLBs while the old PTE remains in others.
3044                 */
3045                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3046                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3047                lru_cache_add_inactive_or_unevictable(new_page, vma);
3048                /*
3049                 * We call the notify macro here because, when using secondary
3050                 * mmu page tables (such as kvm shadow page tables), we want the
3051                 * new page to be mapped directly into the secondary page table.
3052                 */
3053                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3054                update_mmu_cache(vma, vmf->address, vmf->pte);
3055                if (old_page) {
3056                        /*
3057                         * Only after switching the pte to the new page may
3058                         * we remove the mapcount here. Otherwise another
3059                         * process may come and find the rmap count decremented
3060                         * before the pte is switched to the new page, and
3061                         * "reuse" the old page writing into it while our pte
3062                         * here still points into it and can be read by other
3063                         * threads.
3064                         *
3065                         * The critical issue is to order this
3066                         * page_remove_rmap with the ptp_clear_flush above.
3067                         * Those stores are ordered by (if nothing else,)
3068                         * the barrier present in the atomic_add_negative
3069                         * in page_remove_rmap.
3070                         *
3071                         * Then the TLB flush in ptep_clear_flush ensures that
3072                         * no process can access the old page before the
3073                         * decremented mapcount is visible. And the old page
3074                         * cannot be reused until after the decremented
3075                         * mapcount is visible. So transitively, TLBs to
3076                         * old page will be flushed before it can be reused.
3077                         */
3078                        page_remove_rmap(old_page, false);
3079                }
3080
3081                /* Free the old page.. */
3082                new_page = old_page;
3083                page_copied = 1;
3084        } else {
3085                update_mmu_tlb(vma, vmf->address, vmf->pte);
3086        }
3087
3088        if (new_page)
3089                put_page(new_page);
3090
3091        pte_unmap_unlock(vmf->pte, vmf->ptl);
3092        /*
3093         * No need to double call mmu_notifier->invalidate_range() callback as
3094         * the above ptep_clear_flush_notify() did already call it.
3095         */
3096        mmu_notifier_invalidate_range_only_end(&range);
3097        if (old_page) {
3098                /*
3099                 * Don't let another task, with possibly unlocked vma,
3100                 * keep the mlocked page.
3101                 */
3102                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3103                        lock_page(old_page);    /* LRU manipulation */
3104                        if (PageMlocked(old_page))
3105                                munlock_vma_page(old_page);
3106                        unlock_page(old_page);
3107                }
3108                if (page_copied)
3109                        free_swap_cache(old_page);
3110                put_page(old_page);
3111        }
3112        return page_copied ? VM_FAULT_WRITE : 0;
3113oom_free_new:
3114        put_page(new_page);
3115oom:
3116        if (old_page)
3117                put_page(old_page);
3118        return VM_FAULT_OOM;
3119}
3120
3121/**
3122 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3123 *                        writeable once the page is prepared
3124 *
3125 * @vmf: structure describing the fault
3126 *
3127 * This function handles all that is needed to finish a write page fault in a
3128 * shared mapping due to PTE being read-only once the mapped page is prepared.
3129 * It handles locking of PTE and modifying it.
3130 *
3131 * The function expects the page to be locked or other protection against
3132 * concurrent faults / writeback (such as DAX radix tree locks).
3133 *
3134 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3135 * we acquired PTE lock.
3136 */
3137vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3138{
3139        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3140        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3141                                       &vmf->ptl);
3142        /*
3143         * We might have raced with another page fault while we released the
3144         * pte_offset_map_lock.
3145         */
3146        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3147                update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3148                pte_unmap_unlock(vmf->pte, vmf->ptl);
3149                return VM_FAULT_NOPAGE;
3150        }
3151        wp_page_reuse(vmf);
3152        return 0;
3153}
3154
3155/*
3156 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3157 * mapping
3158 */
3159static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3160{
3161        struct vm_area_struct *vma = vmf->vma;
3162
3163        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3164                vm_fault_t ret;
3165
3166                pte_unmap_unlock(vmf->pte, vmf->ptl);
3167                vmf->flags |= FAULT_FLAG_MKWRITE;
3168                ret = vma->vm_ops->pfn_mkwrite(vmf);
3169                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3170                        return ret;
3171                return finish_mkwrite_fault(vmf);
3172        }
3173        wp_page_reuse(vmf);
3174        return VM_FAULT_WRITE;
3175}
3176
3177static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3178        __releases(vmf->ptl)
3179{
3180        struct vm_area_struct *vma = vmf->vma;
3181        vm_fault_t ret = VM_FAULT_WRITE;
3182
3183        get_page(vmf->page);
3184
3185        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3186                vm_fault_t tmp;
3187
3188                pte_unmap_unlock(vmf->pte, vmf->ptl);
3189                tmp = do_page_mkwrite(vmf);
3190                if (unlikely(!tmp || (tmp &
3191                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3192                        put_page(vmf->page);
3193                        return tmp;
3194                }
3195                tmp = finish_mkwrite_fault(vmf);
3196                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3197                        unlock_page(vmf->page);
3198                        put_page(vmf->page);
3199                        return tmp;
3200                }
3201        } else {
3202                wp_page_reuse(vmf);
3203                lock_page(vmf->page);
3204        }
3205        ret |= fault_dirty_shared_page(vmf);
3206        put_page(vmf->page);
3207
3208        return ret;
3209}
3210
3211/*
3212 * This routine handles present pages, when users try to write
3213 * to a shared page. It is done by copying the page to a new address
3214 * and decrementing the shared-page counter for the old page.
3215 *
3216 * Note that this routine assumes that the protection checks have been
3217 * done by the caller (the low-level page fault routine in most cases).
3218 * Thus we can safely just mark it writable once we've done any necessary
3219 * COW.
3220 *
3221 * We also mark the page dirty at this point even though the page will
3222 * change only once the write actually happens. This avoids a few races,
3223 * and potentially makes it more efficient.
3224 *
3225 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3226 * but allow concurrent faults), with pte both mapped and locked.
3227 * We return with mmap_lock still held, but pte unmapped and unlocked.
3228 */
3229static vm_fault_t do_wp_page(struct vm_fault *vmf)
3230        __releases(vmf->ptl)
3231{
3232        struct vm_area_struct *vma = vmf->vma;
3233
3234        if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3235                pte_unmap_unlock(vmf->pte, vmf->ptl);
3236                return handle_userfault(vmf, VM_UFFD_WP);
3237        }
3238
3239        /*
3240         * Userfaultfd write-protect can defer flushes. Ensure the TLB
3241         * is flushed in this case before copying.
3242         */
3243        if (unlikely(userfaultfd_wp(vmf->vma) &&
3244                     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3245                flush_tlb_page(vmf->vma, vmf->address);
3246
3247        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3248        if (!vmf->page) {
3249                /*
3250                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3251                 * VM_PFNMAP VMA.
3252                 *
3253                 * We should not cow pages in a shared writeable mapping.
3254                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3255                 */
3256                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3257                                     (VM_WRITE|VM_SHARED))
3258                        return wp_pfn_shared(vmf);
3259
3260                pte_unmap_unlock(vmf->pte, vmf->ptl);
3261                return wp_page_copy(vmf);
3262        }
3263
3264        /*
3265         * Take out anonymous pages first, anonymous shared vmas are
3266         * not dirty accountable.
3267         */
3268        if (PageAnon(vmf->page)) {
3269                struct page *page = vmf->page;
3270
3271                /* PageKsm() doesn't necessarily raise the page refcount */
3272                if (PageKsm(page) || page_count(page) != 1)
3273                        goto copy;
3274                if (!trylock_page(page))
3275                        goto copy;
3276                if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3277                        unlock_page(page);
3278                        goto copy;
3279                }
3280                /*
3281                 * Ok, we've got the only map reference, and the only
3282                 * page count reference, and the page is locked,
3283                 * it's dark out, and we're wearing sunglasses. Hit it.
3284                 */
3285                unlock_page(page);
3286                wp_page_reuse(vmf);
3287                return VM_FAULT_WRITE;
3288        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3289                                        (VM_WRITE|VM_SHARED))) {
3290                return wp_page_shared(vmf);
3291        }
3292copy:
3293        /*
3294         * Ok, we need to copy. Oh, well..
3295         */
3296        get_page(vmf->page);
3297
3298        pte_unmap_unlock(vmf->pte, vmf->ptl);
3299        return wp_page_copy(vmf);
3300}
3301
3302static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3303                unsigned long start_addr, unsigned long end_addr,
3304                struct zap_details *details)
3305{
3306        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3307}
3308
3309static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3310                                            pgoff_t first_index,
3311                                            pgoff_t last_index,
3312                                            struct zap_details *details)
3313{
3314        struct vm_area_struct *vma;
3315        pgoff_t vba, vea, zba, zea;
3316
3317        vma_interval_tree_foreach(vma, root, first_index, last_index) {
3318                vba = vma->vm_pgoff;
3319                vea = vba + vma_pages(vma) - 1;
3320                zba = first_index;
3321                if (zba < vba)
3322                        zba = vba;
3323                zea = last_index;
3324                if (zea > vea)
3325                        zea = vea;
3326
3327                unmap_mapping_range_vma(vma,
3328                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3329                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3330                                details);
3331        }
3332}
3333
3334/**
3335 * unmap_mapping_page() - Unmap single page from processes.
3336 * @page: The locked page to be unmapped.
3337 *
3338 * Unmap this page from any userspace process which still has it mmaped.
3339 * Typically, for efficiency, the range of nearby pages has already been
3340 * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3341 * truncation or invalidation holds the lock on a page, it may find that
3342 * the page has been remapped again: and then uses unmap_mapping_page()
3343 * to unmap it finally.
3344 */
3345void unmap_mapping_page(struct page *page)
3346{
3347        struct address_space *mapping = page->mapping;
3348        struct zap_details details = { };
3349        pgoff_t first_index;
3350        pgoff_t last_index;
3351
3352        VM_BUG_ON(!PageLocked(page));
3353        VM_BUG_ON(PageTail(page));
3354
3355        first_index = page->index;
3356        last_index = page->index + thp_nr_pages(page) - 1;
3357
3358        details.zap_mapping = mapping;
3359        details.single_page = page;
3360
3361        i_mmap_lock_write(mapping);
3362        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3363                unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3364                                         last_index, &details);
3365        i_mmap_unlock_write(mapping);
3366}
3367
3368/**
3369 * unmap_mapping_pages() - Unmap pages from processes.
3370 * @mapping: The address space containing pages to be unmapped.
3371 * @start: Index of first page to be unmapped.
3372 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3373 * @even_cows: Whether to unmap even private COWed pages.
3374 *
3375 * Unmap the pages in this address space from any userspace process which
3376 * has them mmaped.  Generally, you want to remove COWed pages as well when
3377 * a file is being truncated, but not when invalidating pages from the page
3378 * cache.
3379 */
3380void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3381                pgoff_t nr, bool even_cows)
3382{
3383        struct zap_details details = { };
3384        pgoff_t first_index = start;
3385        pgoff_t last_index = start + nr - 1;
3386
3387        details.zap_mapping = even_cows ? NULL : mapping;
3388        if (last_index < first_index)
3389                last_index = ULONG_MAX;
3390
3391        i_mmap_lock_write(mapping);
3392        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3393                unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394                                         last_index, &details);
3395        i_mmap_unlock_write(mapping);
3396}
3397EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3398
3399/**
3400 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3401 * address_space corresponding to the specified byte range in the underlying
3402 * file.
3403 *
3404 * @mapping: the address space containing mmaps to be unmapped.
3405 * @holebegin: byte in first page to unmap, relative to the start of
3406 * the underlying file.  This will be rounded down to a PAGE_SIZE
3407 * boundary.  Note that this is different from truncate_pagecache(), which
3408 * must keep the partial page.  In contrast, we must get rid of
3409 * partial pages.
3410 * @holelen: size of prospective hole in bytes.  This will be rounded
3411 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3412 * end of the file.
3413 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3414 * but 0 when invalidating pagecache, don't throw away private data.
3415 */
3416void unmap_mapping_range(struct address_space *mapping,
3417                loff_t const holebegin, loff_t const holelen, int even_cows)
3418{
3419        pgoff_t hba = holebegin >> PAGE_SHIFT;
3420        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3421
3422        /* Check for overflow. */
3423        if (sizeof(holelen) > sizeof(hlen)) {
3424                long long holeend =
3425                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3426                if (holeend & ~(long long)ULONG_MAX)
3427                        hlen = ULONG_MAX - hba + 1;
3428        }
3429
3430        unmap_mapping_pages(mapping, hba, hlen, even_cows);
3431}
3432EXPORT_SYMBOL(unmap_mapping_range);
3433
3434/*
3435 * Restore a potential device exclusive pte to a working pte entry
3436 */
3437static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3438{
3439        struct page *page = vmf->page;
3440        struct vm_area_struct *vma = vmf->vma;
3441        struct mmu_notifier_range range;
3442
3443        if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3444                return VM_FAULT_RETRY;
3445        mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3446                                vma->vm_mm, vmf->address & PAGE_MASK,
3447                                (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3448        mmu_notifier_invalidate_range_start(&range);
3449
3450        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3451                                &vmf->ptl);
3452        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3453                restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3454
3455        pte_unmap_unlock(vmf->pte, vmf->ptl);
3456        unlock_page(page);
3457
3458        mmu_notifier_invalidate_range_end(&range);
3459        return 0;
3460}
3461
3462/*
3463 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3464 * but allow concurrent faults), and pte mapped but not yet locked.
3465 * We return with pte unmapped and unlocked.
3466 *
3467 * We return with the mmap_lock locked or unlocked in the same cases
3468 * as does filemap_fault().
3469 */
3470vm_fault_t do_swap_page(struct vm_fault *vmf)
3471{
3472        struct vm_area_struct *vma = vmf->vma;
3473        struct page *page = NULL, *swapcache;
3474        struct swap_info_struct *si = NULL;
3475        swp_entry_t entry;
3476        pte_t pte;
3477        int locked;
3478        int exclusive = 0;
3479        vm_fault_t ret = 0;
3480        void *shadow = NULL;
3481
3482        if (!pte_unmap_same(vmf))
3483                goto out;
3484
3485        entry = pte_to_swp_entry(vmf->orig_pte);
3486        if (unlikely(non_swap_entry(entry))) {
3487                if (is_migration_entry(entry)) {
3488                        migration_entry_wait(vma->vm_mm, vmf->pmd,
3489                                             vmf->address);
3490                } else if (is_device_exclusive_entry(entry)) {
3491                        vmf->page = pfn_swap_entry_to_page(entry);
3492                        ret = remove_device_exclusive_entry(vmf);
3493                } else if (is_device_private_entry(entry)) {
3494                        vmf->page = pfn_swap_entry_to_page(entry);
3495                        ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3496                } else if (is_hwpoison_entry(entry)) {
3497                        ret = VM_FAULT_HWPOISON;
3498                } else {
3499                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3500                        ret = VM_FAULT_SIGBUS;
3501                }
3502                goto out;
3503        }
3504
3505        /* Prevent swapoff from happening to us. */
3506        si = get_swap_device(entry);
3507        if (unlikely(!si))
3508                goto out;
3509
3510        delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3511        page = lookup_swap_cache(entry, vma, vmf->address);
3512        swapcache = page;
3513
3514        if (!page) {
3515                if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3516                    __swap_count(entry) == 1) {
3517                        /* skip swapcache */
3518                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3519                                                        vmf->address);
3520                        if (page) {
3521                                __SetPageLocked(page);
3522                                __SetPageSwapBacked(page);
3523
3524                                if (mem_cgroup_swapin_charge_page(page,
3525                                        vma->vm_mm, GFP_KERNEL, entry)) {
3526                                        ret = VM_FAULT_OOM;
3527                                        goto out_page;
3528                                }
3529                                mem_cgroup_swapin_uncharge_swap(entry);
3530
3531                                shadow = get_shadow_from_swap_cache(entry);
3532                                if (shadow)
3533                                        workingset_refault(page_folio(page),
3534                                                                shadow);
3535
3536                                lru_cache_add(page);
3537
3538                                /* To provide entry to swap_readpage() */
3539                                set_page_private(page, entry.val);
3540                                swap_readpage(page, true);
3541                                set_page_private(page, 0);
3542                        }
3543                } else {
3544                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3545                                                vmf);
3546                        swapcache = page;
3547                }
3548
3549                if (!page) {
3550                        /*
3551                         * Back out if somebody else faulted in this pte
3552                         * while we released the pte lock.
3553                         */
3554                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3555                                        vmf->address, &vmf->ptl);
3556                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3557                                ret = VM_FAULT_OOM;
3558                        delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3559                        goto unlock;
3560                }
3561
3562                /* Had to read the page from swap area: Major fault */
3563                ret = VM_FAULT_MAJOR;
3564                count_vm_event(PGMAJFAULT);
3565                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3566        } else if (PageHWPoison(page)) {
3567                /*
3568                 * hwpoisoned dirty swapcache pages are kept for killing
3569                 * owner processes (which may be unknown at hwpoison time)
3570                 */
3571                ret = VM_FAULT_HWPOISON;
3572                delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3573                goto out_release;
3574        }
3575
3576        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3577
3578        delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3579        if (!locked) {
3580                ret |= VM_FAULT_RETRY;
3581                goto out_release;
3582        }
3583
3584        /*
3585         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3586         * release the swapcache from under us.  The page pin, and pte_same
3587         * test below, are not enough to exclude that.  Even if it is still
3588         * swapcache, we need to check that the page's swap has not changed.
3589         */
3590        if (unlikely((!PageSwapCache(page) ||
3591                        page_private(page) != entry.val)) && swapcache)
3592                goto out_page;
3593
3594        page = ksm_might_need_to_copy(page, vma, vmf->address);
3595        if (unlikely(!page)) {
3596                ret = VM_FAULT_OOM;
3597                page = swapcache;
3598                goto out_page;
3599        }
3600
3601        cgroup_throttle_swaprate(page, GFP_KERNEL);
3602
3603        /*
3604         * Back out if somebody else already faulted in this pte.
3605         */
3606        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3607                        &vmf->ptl);
3608        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3609                goto out_nomap;
3610
3611        if (unlikely(!PageUptodate(page))) {
3612                ret = VM_FAULT_SIGBUS;
3613                goto out_nomap;
3614        }
3615
3616        /*
3617         * The page isn't present yet, go ahead with the fault.
3618         *
3619         * Be careful about the sequence of operations here.
3620         * To get its accounting right, reuse_swap_page() must be called
3621         * while the page is counted on swap but not yet in mapcount i.e.
3622         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3623         * must be called after the swap_free(), or it will never succeed.
3624         */
3625
3626        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3627        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3628        pte = mk_pte(page, vma->vm_page_prot);
3629        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3630                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3631                vmf->flags &= ~FAULT_FLAG_WRITE;
3632                ret |= VM_FAULT_WRITE;
3633                exclusive = RMAP_EXCLUSIVE;
3634        }
3635        flush_icache_page(vma, page);
3636        if (pte_swp_soft_dirty(vmf->orig_pte))
3637                pte = pte_mksoft_dirty(pte);
3638        if (pte_swp_uffd_wp(vmf->orig_pte)) {
3639                pte = pte_mkuffd_wp(pte);
3640                pte = pte_wrprotect(pte);
3641        }
3642        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3643        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3644        vmf->orig_pte = pte;
3645
3646        /* ksm created a completely new copy */
3647        if (unlikely(page != swapcache && swapcache)) {
3648                page_add_new_anon_rmap(page, vma, vmf->address, false);
3649                lru_cache_add_inactive_or_unevictable(page, vma);
3650        } else {
3651                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3652        }
3653
3654        swap_free(entry);
3655        if (mem_cgroup_swap_full(page) ||
3656            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3657                try_to_free_swap(page);
3658        unlock_page(page);
3659        if (page != swapcache && swapcache) {
3660                /*
3661                 * Hold the lock to avoid the swap entry to be reused
3662                 * until we take the PT lock for the pte_same() check
3663                 * (to avoid false positives from pte_same). For
3664                 * further safety release the lock after the swap_free
3665                 * so that the swap count won't change under a
3666                 * parallel locked swapcache.
3667                 */
3668                unlock_page(swapcache);
3669                put_page(swapcache);
3670        }
3671
3672        if (vmf->flags & FAULT_FLAG_WRITE) {
3673                ret |= do_wp_page(vmf);
3674                if (ret & VM_FAULT_ERROR)
3675                        ret &= VM_FAULT_ERROR;
3676                goto out;
3677        }
3678
3679        /* No need to invalidate - it was non-present before */
3680        update_mmu_cache(vma, vmf->address, vmf->pte);
3681unlock:
3682        pte_unmap_unlock(vmf->pte, vmf->ptl);
3683out:
3684        if (si)
3685                put_swap_device(si);
3686        return ret;
3687out_nomap:
3688        pte_unmap_unlock(vmf->pte, vmf->ptl);
3689out_page:
3690        unlock_page(page);
3691out_release:
3692        put_page(page);
3693        if (page != swapcache && swapcache) {
3694                unlock_page(swapcache);
3695                put_page(swapcache);
3696        }
3697        if (si)
3698                put_swap_device(si);
3699        return ret;
3700}
3701
3702/*
3703 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3704 * but allow concurrent faults), and pte mapped but not yet locked.
3705 * We return with mmap_lock still held, but pte unmapped and unlocked.
3706 */
3707static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3708{
3709        struct vm_area_struct *vma = vmf->vma;
3710        struct page *page;
3711        vm_fault_t ret = 0;
3712        pte_t entry;
3713
3714        /* File mapping without ->vm_ops ? */
3715        if (vma->vm_flags & VM_SHARED)
3716                return VM_FAULT_SIGBUS;
3717
3718        /*
3719         * Use pte_alloc() instead of pte_alloc_map().  We can't run
3720         * pte_offset_map() on pmds where a huge pmd might be created
3721         * from a different thread.
3722         *
3723         * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3724         * parallel threads are excluded by other means.
3725         *
3726         * Here we only have mmap_read_lock(mm).
3727         */
3728        if (pte_alloc(vma->vm_mm, vmf->pmd))
3729                return VM_FAULT_OOM;
3730
3731        /* See comment in handle_pte_fault() */
3732        if (unlikely(pmd_trans_unstable(vmf->pmd)))
3733                return 0;
3734
3735        /* Use the zero-page for reads */
3736        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3737                        !mm_forbids_zeropage(vma->vm_mm)) {
3738                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3739                                                vma->vm_page_prot));
3740                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3741                                vmf->address, &vmf->ptl);
3742                if (!pte_none(*vmf->pte)) {
3743                        update_mmu_tlb(vma, vmf->address, vmf->pte);
3744                        goto unlock;
3745                }
3746                ret = check_stable_address_space(vma->vm_mm);
3747                if (ret)
3748                        goto unlock;
3749                /* Deliver the page fault to userland, check inside PT lock */
3750                if (userfaultfd_missing(vma)) {
3751                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3752                        return handle_userfault(vmf, VM_UFFD_MISSING);
3753                }
3754                goto setpte;
3755        }
3756
3757        /* Allocate our own private page. */
3758        if (unlikely(anon_vma_prepare(vma)))
3759                goto oom;
3760        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3761        if (!page)
3762                goto oom;
3763
3764        if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3765                goto oom_free_page;
3766        cgroup_throttle_swaprate(page, GFP_KERNEL);
3767
3768        /*
3769         * The memory barrier inside __SetPageUptodate makes sure that
3770         * preceding stores to the page contents become visible before
3771         * the set_pte_at() write.
3772         */
3773        __SetPageUptodate(page);
3774
3775        entry = mk_pte(page, vma->vm_page_prot);
3776        entry = pte_sw_mkyoung(entry);
3777        if (vma->vm_flags & VM_WRITE)
3778                entry = pte_mkwrite(pte_mkdirty(entry));
3779
3780        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3781                        &vmf->ptl);
3782        if (!pte_none(*vmf->pte)) {
3783                update_mmu_cache(vma, vmf->address, vmf->pte);
3784                goto release;
3785        }
3786
3787        ret = check_stable_address_space(vma->vm_mm);
3788        if (ret)
3789                goto release;
3790
3791        /* Deliver the page fault to userland, check inside PT lock */
3792        if (userfaultfd_missing(vma)) {
3793                pte_unmap_unlock(vmf->pte, vmf->ptl);
3794                put_page(page);
3795                return handle_userfault(vmf, VM_UFFD_MISSING);
3796        }
3797
3798        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3799        page_add_new_anon_rmap(page, vma, vmf->address, false);
3800        lru_cache_add_inactive_or_unevictable(page, vma);
3801setpte:
3802        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3803
3804        /* No need to invalidate - it was non-present before */
3805        update_mmu_cache(vma, vmf->address, vmf->pte);
3806unlock:
3807        pte_unmap_unlock(vmf->pte, vmf->ptl);
3808        return ret;
3809release:
3810        put_page(page);
3811        goto unlock;
3812oom_free_page:
3813        put_page(page);
3814oom:
3815        return VM_FAULT_OOM;
3816}
3817
3818/*
3819 * The mmap_lock must have been held on entry, and may have been
3820 * released depending on flags and vma->vm_ops->fault() return value.
3821 * See filemap_fault() and __lock_page_retry().
3822 */
3823static vm_fault_t __do_fault(struct vm_fault *vmf)
3824{
3825        struct vm_area_struct *vma = vmf->vma;
3826        vm_fault_t ret;
3827
3828        /*
3829         * Preallocate pte before we take page_lock because this might lead to
3830         * deadlocks for memcg reclaim which waits for pages under writeback:
3831         *                              lock_page(A)
3832         *                              SetPageWriteback(A)
3833         *                              unlock_page(A)
3834         * lock_page(B)
3835         *                              lock_page(B)
3836         * pte_alloc_one
3837         *   shrink_page_list
3838         *     wait_on_page_writeback(A)
3839         *                              SetPageWriteback(B)
3840         *                              unlock_page(B)
3841         *                              # flush A, B to clear the writeback
3842         */
3843        if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3844                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3845                if (!vmf->prealloc_pte)
3846                        return VM_FAULT_OOM;
3847        }
3848
3849        ret = vma->vm_ops->fault(vmf);
3850        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3851                            VM_FAULT_DONE_COW)))
3852                return ret;
3853
3854        if (unlikely(PageHWPoison(vmf->page))) {
3855                if (ret & VM_FAULT_LOCKED)
3856                        unlock_page(vmf->page);
3857                put_page(vmf->page);
3858                vmf->page = NULL;
3859                return VM_FAULT_HWPOISON;
3860        }
3861
3862        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3863                lock_page(vmf->page);
3864        else
3865                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3866
3867        return ret;
3868}
3869
3870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3871static void deposit_prealloc_pte(struct vm_fault *vmf)
3872{
3873        struct vm_area_struct *vma = vmf->vma;
3874
3875        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3876        /*
3877         * We are going to consume the prealloc table,
3878         * count that as nr_ptes.
3879         */
3880        mm_inc_nr_ptes(vma->vm_mm);
3881        vmf->prealloc_pte = NULL;
3882}
3883
3884vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3885{
3886        struct vm_area_struct *vma = vmf->vma;
3887        bool write = vmf->flags & FAULT_FLAG_WRITE;
3888        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3889        pmd_t entry;
3890        int i;
3891        vm_fault_t ret = VM_FAULT_FALLBACK;
3892
3893        if (!transhuge_vma_suitable(vma, haddr))
3894                return ret;
3895
3896        page = compound_head(page);
3897        if (compound_order(page) != HPAGE_PMD_ORDER)
3898                return ret;
3899
3900        /*
3901         * Just backoff if any subpage of a THP is corrupted otherwise
3902         * the corrupted page may mapped by PMD silently to escape the
3903         * check.  This kind of THP just can be PTE mapped.  Access to
3904         * the corrupted subpage should trigger SIGBUS as expected.
3905         */
3906        if (unlikely(PageHasHWPoisoned(page)))
3907                return ret;
3908
3909        /*
3910         * Archs like ppc64 need additional space to store information
3911         * related to pte entry. Use the preallocated table for that.
3912         */
3913        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3914                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3915                if (!vmf->prealloc_pte)
3916                        return VM_FAULT_OOM;
3917        }
3918
3919        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3920        if (unlikely(!pmd_none(*vmf->pmd)))
3921                goto out;
3922
3923        for (i = 0; i < HPAGE_PMD_NR; i++)
3924                flush_icache_page(vma, page + i);
3925
3926        entry = mk_huge_pmd(page, vma->vm_page_prot);
3927        if (write)
3928                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3929
3930        add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3931        page_add_file_rmap(page, true);
3932        /*
3933         * deposit and withdraw with pmd lock held
3934         */
3935        if (arch_needs_pgtable_deposit())
3936                deposit_prealloc_pte(vmf);
3937
3938        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3939
3940        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3941
3942        /* fault is handled */
3943        ret = 0;
3944        count_vm_event(THP_FILE_MAPPED);
3945out:
3946        spin_unlock(vmf->ptl);
3947        return ret;
3948}
3949#else
3950vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3951{
3952        return VM_FAULT_FALLBACK;
3953}
3954#endif
3955
3956void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3957{
3958        struct vm_area_struct *vma = vmf->vma;
3959        bool write = vmf->flags & FAULT_FLAG_WRITE;
3960        bool prefault = vmf->address != addr;
3961        pte_t entry;
3962
3963        flush_icache_page(vma, page);
3964        entry = mk_pte(page, vma->vm_page_prot);
3965
3966        if (prefault && arch_wants_old_prefaulted_pte())
3967                entry = pte_mkold(entry);
3968        else
3969                entry = pte_sw_mkyoung(entry);
3970
3971        if (write)
3972                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3973        /* copy-on-write page */
3974        if (write && !(vma->vm_flags & VM_SHARED)) {
3975                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3976                page_add_new_anon_rmap(page, vma, addr, false);
3977                lru_cache_add_inactive_or_unevictable(page, vma);
3978        } else {
3979                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3980                page_add_file_rmap(page, false);
3981        }
3982        set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3983}
3984
3985/**
3986 * finish_fault - finish page fault once we have prepared the page to fault
3987 *
3988 * @vmf: structure describing the fault
3989 *
3990 * This function handles all that is needed to finish a page fault once the
3991 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3992 * given page, adds reverse page mapping, handles memcg charges and LRU
3993 * addition.
3994 *
3995 * The function expects the page to be locked and on success it consumes a
3996 * reference of a page being mapped (for the PTE which maps it).
3997 *
3998 * Return: %0 on success, %VM_FAULT_ code in case of error.
3999 */
4000vm_fault_t finish_fault(struct vm_fault *vmf)
4001{
4002        struct vm_area_struct *vma = vmf->vma;
4003        struct page *page;
4004        vm_fault_t ret;
4005
4006        /* Did we COW the page? */
4007        if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4008                page = vmf->cow_page;
4009        else
4010                page = vmf->page;
4011
4012        /*
4013         * check even for read faults because we might have lost our CoWed
4014         * page
4015         */
4016        if (!(vma->vm_flags & VM_SHARED)) {
4017                ret = check_stable_address_space(vma->vm_mm);
4018                if (ret)
4019                        return ret;
4020        }
4021
4022        if (pmd_none(*vmf->pmd)) {
4023                if (PageTransCompound(page)) {
4024                        ret = do_set_pmd(vmf, page);
4025                        if (ret != VM_FAULT_FALLBACK)
4026                                return ret;
4027                }
4028
4029                if (vmf->prealloc_pte)
4030                        pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4031                else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4032                        return VM_FAULT_OOM;
4033        }
4034
4035        /* See comment in handle_pte_fault() */
4036        if (pmd_devmap_trans_unstable(vmf->pmd))
4037                return 0;
4038
4039        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4040                                      vmf->address, &vmf->ptl);
4041        ret = 0;
4042        /* Re-check under ptl */
4043        if (likely(pte_none(*vmf->pte)))
4044                do_set_pte(vmf, page, vmf->address);
4045        else
4046                ret = VM_FAULT_NOPAGE;
4047
4048        update_mmu_tlb(vma, vmf->address, vmf->pte);
4049        pte_unmap_unlock(vmf->pte, vmf->ptl);
4050        return ret;
4051}
4052
4053static unsigned long fault_around_bytes __read_mostly =
4054        rounddown_pow_of_two(65536);
4055
4056#ifdef CONFIG_DEBUG_FS
4057static int fault_around_bytes_get(void *data, u64 *val)
4058{
4059        *val = fault_around_bytes;
4060        return 0;
4061}
4062
4063/*
4064 * fault_around_bytes must be rounded down to the nearest page order as it's
4065 * what do_fault_around() expects to see.
4066 */
4067static int fault_around_bytes_set(void *data, u64 val)
4068{
4069        if (val / PAGE_SIZE > PTRS_PER_PTE)
4070                return -EINVAL;
4071        if (val > PAGE_SIZE)
4072                fault_around_bytes = rounddown_pow_of_two(val);
4073        else
4074                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4075        return 0;
4076}
4077DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4078                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4079
4080static int __init fault_around_debugfs(void)
4081{
4082        debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4083                                   &fault_around_bytes_fops);
4084        return 0;
4085}
4086late_initcall(fault_around_debugfs);
4087#endif
4088
4089/*
4090 * do_fault_around() tries to map few pages around the fault address. The hope
4091 * is that the pages will be needed soon and this will lower the number of
4092 * faults to handle.
4093 *
4094 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4095 * not ready to be mapped: not up-to-date, locked, etc.
4096 *
4097 * This function is called with the page table lock taken. In the split ptlock
4098 * case the page table lock only protects only those entries which belong to
4099 * the page table corresponding to the fault address.
4100 *
4101 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4102 * only once.
4103 *
4104 * fault_around_bytes defines how many bytes we'll try to map.
4105 * do_fault_around() expects it to be set to a power of two less than or equal
4106 * to PTRS_PER_PTE.
4107 *
4108 * The virtual address of the area that we map is naturally aligned to
4109 * fault_around_bytes rounded down to the machine page size
4110 * (and therefore to page order).  This way it's easier to guarantee
4111 * that we don't cross page table boundaries.
4112 */
4113static vm_fault_t do_fault_around(struct vm_fault *vmf)
4114{
4115        unsigned long address = vmf->address, nr_pages, mask;
4116        pgoff_t start_pgoff = vmf->pgoff;
4117        pgoff_t end_pgoff;
4118        int off;
4119
4120        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4121        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4122
4123        address = max(address & mask, vmf->vma->vm_start);
4124        off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4125        start_pgoff -= off;
4126
4127        /*
4128         *  end_pgoff is either the end of the page table, the end of
4129         *  the vma or nr_pages from start_pgoff, depending what is nearest.
4130         */
4131        end_pgoff = start_pgoff -
4132                ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4133                PTRS_PER_PTE - 1;
4134        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4135                        start_pgoff + nr_pages - 1);
4136
4137        if (pmd_none(*vmf->pmd)) {
4138                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4139                if (!vmf->prealloc_pte)
4140                        return VM_FAULT_OOM;
4141        }
4142
4143        return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4144}
4145
4146static vm_fault_t do_read_fault(struct vm_fault *vmf)
4147{
4148        struct vm_area_struct *vma = vmf->vma;
4149        vm_fault_t ret = 0;
4150
4151        /*
4152         * Let's call ->map_pages() first and use ->fault() as fallback
4153         * if page by the offset is not ready to be mapped (cold cache or
4154         * something).
4155         */
4156        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4157                if (likely(!userfaultfd_minor(vmf->vma))) {
4158                        ret = do_fault_around(vmf);
4159                        if (ret)
4160                                return ret;
4161                }
4162        }
4163
4164        ret = __do_fault(vmf);
4165        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4166                return ret;
4167
4168        ret |= finish_fault(vmf);
4169        unlock_page(vmf->page);
4170        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4171                put_page(vmf->page);
4172        return ret;
4173}
4174
4175static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4176{
4177        struct vm_area_struct *vma = vmf->vma;
4178        vm_fault_t ret;
4179
4180        if (unlikely(anon_vma_prepare(vma)))
4181                return VM_FAULT_OOM;
4182
4183        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4184        if (!vmf->cow_page)
4185                return VM_FAULT_OOM;
4186
4187        if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4188                                GFP_KERNEL)) {
4189                put_page(vmf->cow_page);
4190                return VM_FAULT_OOM;
4191        }
4192        cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4193
4194        ret = __do_fault(vmf);
4195        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4196                goto uncharge_out;
4197        if (ret & VM_FAULT_DONE_COW)
4198                return ret;
4199
4200        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4201        __SetPageUptodate(vmf->cow_page);
4202
4203        ret |= finish_fault(vmf);
4204        unlock_page(vmf->page);
4205        put_page(vmf->page);
4206        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4207                goto uncharge_out;
4208        return ret;
4209uncharge_out:
4210        put_page(vmf->cow_page);
4211        return ret;
4212}
4213
4214static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4215{
4216        struct vm_area_struct *vma = vmf->vma;
4217        vm_fault_t ret, tmp;
4218
4219        ret = __do_fault(vmf);
4220        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4221                return ret;
4222
4223        /*
4224         * Check if the backing address space wants to know that the page is
4225         * about to become writable
4226         */
4227        if (vma->vm_ops->page_mkwrite) {
4228                unlock_page(vmf->page);
4229                tmp = do_page_mkwrite(vmf);
4230                if (unlikely(!tmp ||
4231                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4232                        put_page(vmf->page);
4233                        return tmp;
4234                }
4235        }
4236
4237        ret |= finish_fault(vmf);
4238        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4239                                        VM_FAULT_RETRY))) {
4240                unlock_page(vmf->page);
4241                put_page(vmf->page);
4242                return ret;
4243        }
4244
4245        ret |= fault_dirty_shared_page(vmf);
4246        return ret;
4247}
4248
4249/*
4250 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4251 * but allow concurrent faults).
4252 * The mmap_lock may have been released depending on flags and our
4253 * return value.  See filemap_fault() and __folio_lock_or_retry().
4254 * If mmap_lock is released, vma may become invalid (for example
4255 * by other thread calling munmap()).
4256 */
4257static vm_fault_t do_fault(struct vm_fault *vmf)
4258{
4259        struct vm_area_struct *vma = vmf->vma;
4260        struct mm_struct *vm_mm = vma->vm_mm;
4261        vm_fault_t ret;
4262
4263        /*
4264         * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4265         */
4266        if (!vma->vm_ops->fault) {
4267                /*
4268                 * If we find a migration pmd entry or a none pmd entry, which
4269                 * should never happen, return SIGBUS
4270                 */
4271                if (unlikely(!pmd_present(*vmf->pmd)))
4272                        ret = VM_FAULT_SIGBUS;
4273                else {
4274                        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4275                                                       vmf->pmd,
4276                                                       vmf->address,
4277                                                       &vmf->ptl);
4278                        /*
4279                         * Make sure this is not a temporary clearing of pte
4280                         * by holding ptl and checking again. A R/M/W update
4281                         * of pte involves: take ptl, clearing the pte so that
4282                         * we don't have concurrent modification by hardware
4283                         * followed by an update.
4284                         */
4285                        if (unlikely(pte_none(*vmf->pte)))
4286                                ret = VM_FAULT_SIGBUS;
4287                        else
4288                                ret = VM_FAULT_NOPAGE;
4289
4290                        pte_unmap_unlock(vmf->pte, vmf->ptl);
4291                }
4292        } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4293                ret = do_read_fault(vmf);
4294        else if (!(vma->vm_flags & VM_SHARED))
4295                ret = do_cow_fault(vmf);
4296        else
4297                ret = do_shared_fault(vmf);
4298
4299        /* preallocated pagetable is unused: free it */
4300        if (vmf->prealloc_pte) {
4301                pte_free(vm_mm, vmf->prealloc_pte);
4302                vmf->prealloc_pte = NULL;
4303        }
4304        return ret;
4305}
4306
4307int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4308                      unsigned long addr, int page_nid, int *flags)
4309{
4310        get_page(page);
4311
4312        count_vm_numa_event(NUMA_HINT_FAULTS);
4313        if (page_nid == numa_node_id()) {
4314                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4315                *flags |= TNF_FAULT_LOCAL;
4316        }
4317
4318        return mpol_misplaced(page, vma, addr);
4319}
4320
4321static vm_fault_t do_numa_page(struct vm_fault *vmf)
4322{
4323        struct vm_area_struct *vma = vmf->vma;
4324        struct page *page = NULL;
4325        int page_nid = NUMA_NO_NODE;
4326        int last_cpupid;
4327        int target_nid;
4328        pte_t pte, old_pte;
4329        bool was_writable = pte_savedwrite(vmf->orig_pte);
4330        int flags = 0;
4331
4332        /*
4333         * The "pte" at this point cannot be used safely without
4334         * validation through pte_unmap_same(). It's of NUMA type but
4335         * the pfn may be screwed if the read is non atomic.
4336         */
4337        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4338        spin_lock(vmf->ptl);
4339        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4340                pte_unmap_unlock(vmf->pte, vmf->ptl);
4341                goto out;
4342        }
4343
4344        /* Get the normal PTE  */
4345        old_pte = ptep_get(vmf->pte);
4346        pte = pte_modify(old_pte, vma->vm_page_prot);
4347
4348        page = vm_normal_page(vma, vmf->address, pte);
4349        if (!page)
4350                goto out_map;
4351
4352        /* TODO: handle PTE-mapped THP */
4353        if (PageCompound(page))
4354                goto out_map;
4355
4356        /*
4357         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4358         * much anyway since they can be in shared cache state. This misses
4359         * the case where a mapping is writable but the process never writes
4360         * to it but pte_write gets cleared during protection updates and
4361         * pte_dirty has unpredictable behaviour between PTE scan updates,
4362         * background writeback, dirty balancing and application behaviour.
4363         */
4364        if (!was_writable)
4365                flags |= TNF_NO_GROUP;
4366
4367        /*
4368         * Flag if the page is shared between multiple address spaces. This
4369         * is later used when determining whether to group tasks together
4370         */
4371        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4372                flags |= TNF_SHARED;
4373
4374        last_cpupid = page_cpupid_last(page);
4375        page_nid = page_to_nid(page);
4376        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4377                        &flags);
4378        if (target_nid == NUMA_NO_NODE) {
4379                put_page(page);
4380                goto out_map;
4381        }
4382        pte_unmap_unlock(vmf->pte, vmf->ptl);
4383
4384        /* Migrate to the requested node */
4385        if (migrate_misplaced_page(page, vma, target_nid)) {
4386                page_nid = target_nid;
4387                flags |= TNF_MIGRATED;
4388        } else {
4389                flags |= TNF_MIGRATE_FAIL;
4390                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4391                spin_lock(vmf->ptl);
4392                if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4393                        pte_unmap_unlock(vmf->pte, vmf->ptl);
4394                        goto out;
4395                }
4396                goto out_map;
4397        }
4398
4399out:
4400        if (page_nid != NUMA_NO_NODE)
4401                task_numa_fault(last_cpupid, page_nid, 1, flags);
4402        return 0;
4403out_map:
4404        /*
4405         * Make it present again, depending on how arch implements
4406         * non-accessible ptes, some can allow access by kernel mode.
4407         */
4408        old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4409        pte = pte_modify(old_pte, vma->vm_page_prot);
4410        pte = pte_mkyoung(pte);
4411        if (was_writable)
4412                pte = pte_mkwrite(pte);
4413        ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4414        update_mmu_cache(vma, vmf->address, vmf->pte);
4415        pte_unmap_unlock(vmf->pte, vmf->ptl);
4416        goto out;
4417}
4418
4419static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4420{
4421        if (vma_is_anonymous(vmf->vma))
4422                return do_huge_pmd_anonymous_page(vmf);
4423        if (vmf->vma->vm_ops->huge_fault)
4424                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4425        return VM_FAULT_FALLBACK;
4426}
4427
4428/* `inline' is required to avoid gcc 4.1.2 build error */
4429static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4430{
4431        if (vma_is_anonymous(vmf->vma)) {
4432                if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4433                        return handle_userfault(vmf, VM_UFFD_WP);
4434                return do_huge_pmd_wp_page(vmf);
4435        }
4436        if (vmf->vma->vm_ops->huge_fault) {
4437                vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4438
4439                if (!(ret & VM_FAULT_FALLBACK))
4440                        return ret;
4441        }
4442
4443        /* COW or write-notify handled on pte level: split pmd. */
4444        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4445
4446        return VM_FAULT_FALLBACK;
4447}
4448
4449static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4450{
4451#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4452        defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4453        /* No support for anonymous transparent PUD pages yet */
4454        if (vma_is_anonymous(vmf->vma))
4455                goto split;
4456        if (vmf->vma->vm_ops->huge_fault) {
4457                vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4458
4459                if (!(ret & VM_FAULT_FALLBACK))
4460                        return ret;
4461        }
4462split:
4463        /* COW or write-notify not handled on PUD level: split pud.*/
4464        __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4465#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4466        return VM_FAULT_FALLBACK;
4467}
4468
4469static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4470{
4471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4472        /* No support for anonymous transparent PUD pages yet */
4473        if (vma_is_anonymous(vmf->vma))
4474                return VM_FAULT_FALLBACK;
4475        if (vmf->vma->vm_ops->huge_fault)
4476                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4477#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4478        return VM_FAULT_FALLBACK;
4479}
4480
4481/*
4482 * These routines also need to handle stuff like marking pages dirty
4483 * and/or accessed for architectures that don't do it in hardware (most
4484 * RISC architectures).  The early dirtying is also good on the i386.
4485 *
4486 * There is also a hook called "update_mmu_cache()" that architectures
4487 * with external mmu caches can use to update those (ie the Sparc or
4488 * PowerPC hashed page tables that act as extended TLBs).
4489 *
4490 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4491 * concurrent faults).
4492 *
4493 * The mmap_lock may have been released depending on flags and our return value.
4494 * See filemap_fault() and __folio_lock_or_retry().
4495 */
4496static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4497{
4498        pte_t entry;
4499
4500        if (unlikely(pmd_none(*vmf->pmd))) {
4501                /*
4502                 * Leave __pte_alloc() until later: because vm_ops->fault may
4503                 * want to allocate huge page, and if we expose page table
4504                 * for an instant, it will be difficult to retract from
4505                 * concurrent faults and from rmap lookups.
4506                 */
4507                vmf->pte = NULL;
4508        } else {
4509                /*
4510                 * If a huge pmd materialized under us just retry later.  Use
4511                 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4512                 * of pmd_trans_huge() to ensure the pmd didn't become
4513                 * pmd_trans_huge under us and then back to pmd_none, as a
4514                 * result of MADV_DONTNEED running immediately after a huge pmd
4515                 * fault in a different thread of this mm, in turn leading to a
4516                 * misleading pmd_trans_huge() retval. All we have to ensure is
4517                 * that it is a regular pmd that we can walk with
4518                 * pte_offset_map() and we can do that through an atomic read
4519                 * in C, which is what pmd_trans_unstable() provides.
4520                 */
4521                if (pmd_devmap_trans_unstable(vmf->pmd))
4522                        return 0;
4523                /*
4524                 * A regular pmd is established and it can't morph into a huge
4525                 * pmd from under us anymore at this point because we hold the
4526                 * mmap_lock read mode and khugepaged takes it in write mode.
4527                 * So now it's safe to run pte_offset_map().
4528                 */
4529                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4530                vmf->orig_pte = *vmf->pte;
4531
4532                /*
4533                 * some architectures can have larger ptes than wordsize,
4534                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4535                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4536                 * accesses.  The code below just needs a consistent view
4537                 * for the ifs and we later double check anyway with the
4538                 * ptl lock held. So here a barrier will do.
4539                 */
4540                barrier();
4541                if (pte_none(vmf->orig_pte)) {
4542                        pte_unmap(vmf->pte);
4543                        vmf->pte = NULL;
4544                }
4545        }
4546
4547        if (!vmf->pte) {
4548                if (vma_is_anonymous(vmf->vma))
4549                        return do_anonymous_page(vmf);
4550                else
4551                        return do_fault(vmf);
4552        }
4553
4554        if (!pte_present(vmf->orig_pte))
4555                return do_swap_page(vmf);
4556
4557        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4558                return do_numa_page(vmf);
4559
4560        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4561        spin_lock(vmf->ptl);
4562        entry = vmf->orig_pte;
4563        if (unlikely(!pte_same(*vmf->pte, entry))) {
4564                update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4565                goto unlock;
4566        }
4567        if (vmf->flags & FAULT_FLAG_WRITE) {
4568                if (!pte_write(entry))
4569                        return do_wp_page(vmf);
4570                entry = pte_mkdirty(entry);
4571        }
4572        entry = pte_mkyoung(entry);
4573        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4574                                vmf->flags & FAULT_FLAG_WRITE)) {
4575                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4576        } else {
4577                /* Skip spurious TLB flush for retried page fault */
4578                if (vmf->flags & FAULT_FLAG_TRIED)
4579                        goto unlock;
4580                /*
4581                 * This is needed only for protection faults but the arch code
4582                 * is not yet telling us if this is a protection fault or not.
4583                 * This still avoids useless tlb flushes for .text page faults
4584                 * with threads.
4585                 */
4586                if (vmf->flags & FAULT_FLAG_WRITE)
4587                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4588        }
4589unlock:
4590        pte_unmap_unlock(vmf->pte, vmf->ptl);
4591        return 0;
4592}
4593
4594/*
4595 * By the time we get here, we already hold the mm semaphore
4596 *
4597 * The mmap_lock may have been released depending on flags and our
4598 * return value.  See filemap_fault() and __folio_lock_or_retry().
4599 */
4600static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4601                unsigned long address, unsigned int flags)
4602{
4603        struct vm_fault vmf = {
4604                .vma = vma,
4605                .address = address & PAGE_MASK,
4606                .flags = flags,
4607                .pgoff = linear_page_index(vma, address),
4608                .gfp_mask = __get_fault_gfp_mask(vma),
4609        };
4610        unsigned int dirty = flags & FAULT_FLAG_WRITE;
4611        struct mm_struct *mm = vma->vm_mm;
4612        pgd_t *pgd;
4613        p4d_t *p4d;
4614        vm_fault_t ret;
4615
4616        pgd = pgd_offset(mm, address);
4617        p4d = p4d_alloc(mm, pgd, address);
4618        if (!p4d)
4619                return VM_FAULT_OOM;
4620
4621        vmf.pud = pud_alloc(mm, p4d, address);
4622        if (!vmf.pud)
4623                return VM_FAULT_OOM;
4624retry_pud:
4625        if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4626                ret = create_huge_pud(&vmf);
4627                if (!(ret & VM_FAULT_FALLBACK))
4628                        return ret;
4629        } else {
4630                pud_t orig_pud = *vmf.pud;
4631
4632                barrier();
4633                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4634
4635                        /* NUMA case for anonymous PUDs would go here */
4636
4637                        if (dirty && !pud_write(orig_pud)) {
4638                                ret = wp_huge_pud(&vmf, orig_pud);
4639                                if (!(ret & VM_FAULT_FALLBACK))
4640                                        return ret;
4641                        } else {
4642                                huge_pud_set_accessed(&vmf, orig_pud);
4643                                return 0;
4644                        }
4645                }
4646        }
4647
4648        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4649        if (!vmf.pmd)
4650                return VM_FAULT_OOM;
4651
4652        /* Huge pud page fault raced with pmd_alloc? */
4653        if (pud_trans_unstable(vmf.pud))
4654                goto retry_pud;
4655
4656        if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4657                ret = create_huge_pmd(&vmf);
4658                if (!(ret & VM_FAULT_FALLBACK))
4659                        return ret;
4660        } else {
4661                vmf.orig_pmd = *vmf.pmd;
4662
4663                barrier();
4664                if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4665                        VM_BUG_ON(thp_migration_supported() &&
4666                                          !is_pmd_migration_entry(vmf.orig_pmd));
4667                        if (is_pmd_migration_entry(vmf.orig_pmd))
4668                                pmd_migration_entry_wait(mm, vmf.pmd);
4669                        return 0;
4670                }
4671                if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4672                        if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4673                                return do_huge_pmd_numa_page(&vmf);
4674
4675                        if (dirty && !pmd_write(vmf.orig_pmd)) {
4676                                ret = wp_huge_pmd(&vmf);
4677                                if (!(ret & VM_FAULT_FALLBACK))
4678                                        return ret;
4679                        } else {
4680                                huge_pmd_set_accessed(&vmf);
4681                                return 0;
4682                        }
4683                }
4684        }
4685
4686        return handle_pte_fault(&vmf);
4687}
4688
4689/**
4690 * mm_account_fault - Do page fault accounting
4691 *
4692 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4693 *        of perf event counters, but we'll still do the per-task accounting to
4694 *        the task who triggered this page fault.
4695 * @address: the faulted address.
4696 * @flags: the fault flags.
4697 * @ret: the fault retcode.
4698 *
4699 * This will take care of most of the page fault accounting.  Meanwhile, it
4700 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4701 * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4702 * still be in per-arch page fault handlers at the entry of page fault.
4703 */
4704static inline void mm_account_fault(struct pt_regs *regs,
4705                                    unsigned long address, unsigned int flags,
4706                                    vm_fault_t ret)
4707{
4708        bool major;
4709
4710        /*
4711         * We don't do accounting for some specific faults:
4712         *
4713         * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4714         *   includes arch_vma_access_permitted() failing before reaching here.
4715         *   So this is not a "this many hardware page faults" counter.  We
4716         *   should use the hw profiling for that.
4717         *
4718         * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4719         *   once they're completed.
4720         */
4721        if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4722                return;
4723
4724        /*
4725         * We define the fault as a major fault when the final successful fault
4726         * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4727         * handle it immediately previously).
4728         */
4729        major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4730
4731        if (major)
4732                current->maj_flt++;
4733        else
4734                current->min_flt++;
4735
4736        /*
4737         * If the fault is done for GUP, regs will be NULL.  We only do the
4738         * accounting for the per thread fault counters who triggered the
4739         * fault, and we skip the perf event updates.
4740         */
4741        if (!regs)
4742                return;
4743
4744        if (major)
4745                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4746        else
4747                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4748}
4749
4750/*
4751 * By the time we get here, we already hold the mm semaphore
4752 *
4753 * The mmap_lock may have been released depending on flags and our
4754 * return value.  See filemap_fault() and __folio_lock_or_retry().
4755 */
4756vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4757                           unsigned int flags, struct pt_regs *regs)
4758{
4759        vm_fault_t ret;
4760
4761        __set_current_state(TASK_RUNNING);
4762
4763        count_vm_event(PGFAULT);
4764        count_memcg_event_mm(vma->vm_mm, PGFAULT);
4765
4766        /* do counter updates before entering really critical section. */
4767        check_sync_rss_stat(current);
4768
4769        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4770                                            flags & FAULT_FLAG_INSTRUCTION,
4771                                            flags & FAULT_FLAG_REMOTE))
4772                return VM_FAULT_SIGSEGV;
4773
4774        /*
4775         * Enable the memcg OOM handling for faults triggered in user
4776         * space.  Kernel faults are handled more gracefully.
4777         */
4778        if (flags & FAULT_FLAG_USER)
4779                mem_cgroup_enter_user_fault();
4780
4781        if (unlikely(is_vm_hugetlb_page(vma)))
4782                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4783        else
4784                ret = __handle_mm_fault(vma, address, flags);
4785
4786        if (flags & FAULT_FLAG_USER) {
4787                mem_cgroup_exit_user_fault();
4788                /*
4789                 * The task may have entered a memcg OOM situation but
4790                 * if the allocation error was handled gracefully (no
4791                 * VM_FAULT_OOM), there is no need to kill anything.
4792                 * Just clean up the OOM state peacefully.
4793                 */
4794                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4795                        mem_cgroup_oom_synchronize(false);
4796        }
4797
4798        mm_account_fault(regs, address, flags, ret);
4799
4800        return ret;
4801}
4802EXPORT_SYMBOL_GPL(handle_mm_fault);
4803
4804#ifndef __PAGETABLE_P4D_FOLDED
4805/*
4806 * Allocate p4d page table.
4807 * We've already handled the fast-path in-line.
4808 */
4809int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4810{
4811        p4d_t *new = p4d_alloc_one(mm, address);
4812        if (!new)
4813                return -ENOMEM;
4814
4815        spin_lock(&mm->page_table_lock);
4816        if (pgd_present(*pgd)) {        /* Another has populated it */
4817                p4d_free(mm, new);
4818        } else {
4819                smp_wmb(); /* See comment in pmd_install() */
4820                pgd_populate(mm, pgd, new);
4821        }
4822        spin_unlock(&mm->page_table_lock);
4823        return 0;
4824}
4825#endif /* __PAGETABLE_P4D_FOLDED */
4826
4827#ifndef __PAGETABLE_PUD_FOLDED
4828/*
4829 * Allocate page upper directory.
4830 * We've already handled the fast-path in-line.
4831 */
4832int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4833{
4834        pud_t *new = pud_alloc_one(mm, address);
4835        if (!new)
4836                return -ENOMEM;
4837
4838        spin_lock(&mm->page_table_lock);
4839        if (!p4d_present(*p4d)) {
4840                mm_inc_nr_puds(mm);
4841                smp_wmb(); /* See comment in pmd_install() */
4842                p4d_populate(mm, p4d, new);
4843        } else  /* Another has populated it */
4844                pud_free(mm, new);
4845        spin_unlock(&mm->page_table_lock);
4846        return 0;
4847}
4848#endif /* __PAGETABLE_PUD_FOLDED */
4849
4850#ifndef __PAGETABLE_PMD_FOLDED
4851/*
4852 * Allocate page middle directory.
4853 * We've already handled the fast-path in-line.
4854 */
4855int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4856{
4857        spinlock_t *ptl;
4858        pmd_t *new = pmd_alloc_one(mm, address);
4859        if (!new)
4860                return -ENOMEM;
4861
4862        ptl = pud_lock(mm, pud);
4863        if (!pud_present(*pud)) {
4864                mm_inc_nr_pmds(mm);
4865                smp_wmb(); /* See comment in pmd_install() */
4866                pud_populate(mm, pud, new);
4867        } else {        /* Another has populated it */
4868                pmd_free(mm, new);
4869        }
4870        spin_unlock(ptl);
4871        return 0;
4872}
4873#endif /* __PAGETABLE_PMD_FOLDED */
4874
4875int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4876                          struct mmu_notifier_range *range, pte_t **ptepp,
4877                          pmd_t **pmdpp, spinlock_t **ptlp)
4878{
4879        pgd_t *pgd;
4880        p4d_t *p4d;
4881        pud_t *pud;
4882        pmd_t *pmd;
4883        pte_t *ptep;
4884
4885        pgd = pgd_offset(mm, address);
4886        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4887                goto out;
4888
4889        p4d = p4d_offset(pgd, address);
4890        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4891                goto out;
4892
4893        pud = pud_offset(p4d, address);
4894        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4895                goto out;
4896
4897        pmd = pmd_offset(pud, address);
4898        VM_BUG_ON(pmd_trans_huge(*pmd));
4899
4900        if (pmd_huge(*pmd)) {
4901                if (!pmdpp)
4902                        goto out;
4903
4904                if (range) {
4905                        mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4906                                                NULL, mm, address & PMD_MASK,
4907                                                (address & PMD_MASK) + PMD_SIZE);
4908                        mmu_notifier_invalidate_range_start(range);
4909                }
4910                *ptlp = pmd_lock(mm, pmd);
4911                if (pmd_huge(*pmd)) {
4912                        *pmdpp = pmd;
4913                        return 0;
4914                }
4915                spin_unlock(*ptlp);
4916                if (range)
4917                        mmu_notifier_invalidate_range_end(range);
4918        }
4919
4920        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4921                goto out;
4922
4923        if (range) {
4924                mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4925                                        address & PAGE_MASK,
4926                                        (address & PAGE_MASK) + PAGE_SIZE);
4927                mmu_notifier_invalidate_range_start(range);
4928        }
4929        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4930        if (!pte_present(*ptep))
4931                goto unlock;
4932        *ptepp = ptep;
4933        return 0;
4934unlock:
4935        pte_unmap_unlock(ptep, *ptlp);
4936        if (range)
4937                mmu_notifier_invalidate_range_end(range);
4938out:
4939        return -EINVAL;
4940}
4941
4942/**
4943 * follow_pte - look up PTE at a user virtual address
4944 * @mm: the mm_struct of the target address space
4945 * @address: user virtual address
4946 * @ptepp: location to store found PTE
4947 * @ptlp: location to store the lock for the PTE
4948 *
4949 * On a successful return, the pointer to the PTE is stored in @ptepp;
4950 * the corresponding lock is taken and its location is stored in @ptlp.
4951 * The contents of the PTE are only stable until @ptlp is released;
4952 * any further use, if any, must be protected against invalidation
4953 * with MMU notifiers.
4954 *
4955 * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4956 * should be taken for read.
4957 *
4958 * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4959 * it is not a good general-purpose API.
4960 *
4961 * Return: zero on success, -ve otherwise.
4962 */
4963int follow_pte(struct mm_struct *mm, unsigned long address,
4964               pte_t **ptepp, spinlock_t **ptlp)
4965{
4966        return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4967}
4968EXPORT_SYMBOL_GPL(follow_pte);
4969
4970/**
4971 * follow_pfn - look up PFN at a user virtual address
4972 * @vma: memory mapping
4973 * @address: user virtual address
4974 * @pfn: location to store found PFN
4975 *
4976 * Only IO mappings and raw PFN mappings are allowed.
4977 *
4978 * This function does not allow the caller to read the permissions
4979 * of the PTE.  Do not use it.
4980 *
4981 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4982 */
4983int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4984        unsigned long *pfn)
4985{
4986        int ret = -EINVAL;
4987        spinlock_t *ptl;
4988        pte_t *ptep;
4989
4990        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4991                return ret;
4992
4993        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4994        if (ret)
4995                return ret;
4996        *pfn = pte_pfn(*ptep);
4997        pte_unmap_unlock(ptep, ptl);
4998        return 0;
4999}
5000EXPORT_SYMBOL(follow_pfn);
5001
5002#ifdef CONFIG_HAVE_IOREMAP_PROT
5003int follow_phys(struct vm_area_struct *vma,
5004                unsigned long address, unsigned int flags,
5005                unsigned long *prot, resource_size_t *phys)
5006{
5007        int ret = -EINVAL;
5008        pte_t *ptep, pte;
5009        spinlock_t *ptl;
5010
5011        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5012                goto out;
5013
5014        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5015                goto out;
5016        pte = *ptep;
5017
5018        if ((flags & FOLL_WRITE) && !pte_write(pte))
5019                goto unlock;
5020
5021        *prot = pgprot_val(pte_pgprot(pte));
5022        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5023
5024        ret = 0;
5025unlock:
5026        pte_unmap_unlock(ptep, ptl);
5027out:
5028        return ret;
5029}
5030
5031/**
5032 * generic_access_phys - generic implementation for iomem mmap access
5033 * @vma: the vma to access
5034 * @addr: userspace address, not relative offset within @vma
5035 * @buf: buffer to read/write
5036 * @len: length of transfer
5037 * @write: set to FOLL_WRITE when writing, otherwise reading
5038 *
5039 * This is a generic implementation for &vm_operations_struct.access for an
5040 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5041 * not page based.
5042 */
5043int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5044                        void *buf, int len, int write)
5045{
5046        resource_size_t phys_addr;
5047        unsigned long prot = 0;
5048        void __iomem *maddr;
5049        pte_t *ptep, pte;
5050        spinlock_t *ptl;
5051        int offset = offset_in_page(addr);
5052        int ret = -EINVAL;
5053
5054        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5055                return -EINVAL;
5056
5057retry:
5058        if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5059                return -EINVAL;
5060        pte = *ptep;
5061        pte_unmap_unlock(ptep, ptl);
5062
5063        prot = pgprot_val(pte_pgprot(pte));
5064        phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5065
5066        if ((write & FOLL_WRITE) && !pte_write(pte))
5067                return -EINVAL;
5068
5069        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5070        if (!maddr)
5071                return -ENOMEM;
5072
5073        if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5074                goto out_unmap;
5075
5076        if (!pte_same(pte, *ptep)) {
5077                pte_unmap_unlock(ptep, ptl);
5078                iounmap(maddr);
5079
5080                goto retry;
5081        }
5082
5083        if (write)
5084                memcpy_toio(maddr + offset, buf, len);
5085        else
5086                memcpy_fromio(buf, maddr + offset, len);
5087        ret = len;
5088        pte_unmap_unlock(ptep, ptl);
5089out_unmap:
5090        iounmap(maddr);
5091
5092        return ret;
5093}
5094EXPORT_SYMBOL_GPL(generic_access_phys);
5095#endif
5096
5097/*
5098 * Access another process' address space as given in mm.
5099 */
5100int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5101                       int len, unsigned int gup_flags)
5102{
5103        struct vm_area_struct *vma;
5104        void *old_buf = buf;
5105        int write = gup_flags & FOLL_WRITE;
5106
5107        if (mmap_read_lock_killable(mm))
5108                return 0;
5109
5110        /* ignore errors, just check how much was successfully transferred */
5111        while (len) {
5112                int bytes, ret, offset;
5113                void *maddr;
5114                struct page *page = NULL;
5115
5116                ret = get_user_pages_remote(mm, addr, 1,
5117                                gup_flags, &page, &vma, NULL);
5118                if (ret <= 0) {
5119#ifndef CONFIG_HAVE_IOREMAP_PROT
5120                        break;
5121#else
5122                        /*
5123                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
5124                         * we can access using slightly different code.
5125                         */
5126                        vma = vma_lookup(mm, addr);
5127                        if (!vma)
5128                                break;
5129                        if (vma->vm_ops && vma->vm_ops->access)
5130                                ret = vma->vm_ops->access(vma, addr, buf,
5131                                                          len, write);
5132                        if (ret <= 0)
5133                                break;
5134                        bytes = ret;
5135#endif
5136                } else {
5137                        bytes = len;
5138                        offset = addr & (PAGE_SIZE-1);
5139                        if (bytes > PAGE_SIZE-offset)
5140                                bytes = PAGE_SIZE-offset;
5141
5142                        maddr = kmap(page);
5143                        if (write) {
5144                                copy_to_user_page(vma, page, addr,
5145                                                  maddr + offset, buf, bytes);
5146                                set_page_dirty_lock(page);
5147                        } else {
5148                                copy_from_user_page(vma, page, addr,
5149                                                    buf, maddr + offset, bytes);
5150                        }
5151                        kunmap(page);
5152                        put_page(page);
5153                }
5154                len -= bytes;
5155                buf += bytes;
5156                addr += bytes;
5157        }
5158        mmap_read_unlock(mm);
5159
5160        return buf - old_buf;
5161}
5162
5163/**
5164 * access_remote_vm - access another process' address space
5165 * @mm:         the mm_struct of the target address space
5166 * @addr:       start address to access
5167 * @buf:        source or destination buffer
5168 * @len:        number of bytes to transfer
5169 * @gup_flags:  flags modifying lookup behaviour
5170 *
5171 * The caller must hold a reference on @mm.
5172 *
5173 * Return: number of bytes copied from source to destination.
5174 */
5175int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5176                void *buf, int len, unsigned int gup_flags)
5177{
5178        return __access_remote_vm(mm, addr, buf, len, gup_flags);
5179}
5180
5181/*
5182 * Access another process' address space.
5183 * Source/target buffer must be kernel space,
5184 * Do not walk the page table directly, use get_user_pages
5185 */
5186int access_process_vm(struct task_struct *tsk, unsigned long addr,
5187                void *buf, int len, unsigned int gup_flags)
5188{
5189        struct mm_struct *mm;
5190        int ret;
5191
5192        mm = get_task_mm(tsk);
5193        if (!mm)
5194                return 0;
5195
5196        ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5197
5198        mmput(mm);
5199
5200        return ret;
5201}
5202EXPORT_SYMBOL_GPL(access_process_vm);
5203
5204/*
5205 * Print the name of a VMA.
5206 */
5207void print_vma_addr(char *prefix, unsigned long ip)
5208{
5209        struct mm_struct *mm = current->mm;
5210        struct vm_area_struct *vma;
5211
5212        /*
5213         * we might be running from an atomic context so we cannot sleep
5214         */
5215        if (!mmap_read_trylock(mm))
5216                return;
5217
5218        vma = find_vma(mm, ip);
5219        if (vma && vma->vm_file) {
5220                struct file *f = vma->vm_file;
5221                char *buf = (char *)__get_free_page(GFP_NOWAIT);
5222                if (buf) {
5223                        char *p;
5224
5225                        p = file_path(f, buf, PAGE_SIZE);
5226                        if (IS_ERR(p))
5227                                p = "?";
5228                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5229                                        vma->vm_start,
5230                                        vma->vm_end - vma->vm_start);
5231                        free_page((unsigned long)buf);
5232                }
5233        }
5234        mmap_read_unlock(mm);
5235}
5236
5237#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5238void __might_fault(const char *file, int line)
5239{
5240        /*
5241         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5242         * holding the mmap_lock, this is safe because kernel memory doesn't
5243         * get paged out, therefore we'll never actually fault, and the
5244         * below annotations will generate false positives.
5245         */
5246        if (uaccess_kernel())
5247                return;
5248        if (pagefault_disabled())
5249                return;
5250        __might_sleep(file, line);
5251#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5252        if (current->mm)
5253                might_lock_read(&current->mm->mmap_lock);
5254#endif
5255}
5256EXPORT_SYMBOL(__might_fault);
5257#endif
5258
5259#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5260/*
5261 * Process all subpages of the specified huge page with the specified
5262 * operation.  The target subpage will be processed last to keep its
5263 * cache lines hot.
5264 */
5265static inline void process_huge_page(
5266        unsigned long addr_hint, unsigned int pages_per_huge_page,
5267        void (*process_subpage)(unsigned long addr, int idx, void *arg),
5268        void *arg)
5269{
5270        int i, n, base, l;
5271        unsigned long addr = addr_hint &
5272                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5273
5274        /* Process target subpage last to keep its cache lines hot */
5275        might_sleep();
5276        n = (addr_hint - addr) / PAGE_SIZE;
5277        if (2 * n <= pages_per_huge_page) {
5278                /* If target subpage in first half of huge page */
5279                base = 0;
5280                l = n;
5281                /* Process subpages at the end of huge page */
5282                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5283                        cond_resched();
5284                        process_subpage(addr + i * PAGE_SIZE, i, arg);
5285                }
5286        } else {
5287                /* If target subpage in second half of huge page */
5288                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5289                l = pages_per_huge_page - n;
5290                /* Process subpages at the begin of huge page */
5291                for (i = 0; i < base; i++) {
5292                        cond_resched();
5293                        process_subpage(addr + i * PAGE_SIZE, i, arg);
5294                }
5295        }
5296        /*
5297         * Process remaining subpages in left-right-left-right pattern
5298         * towards the target subpage
5299         */
5300        for (i = 0; i < l; i++) {
5301                int left_idx = base + i;
5302                int right_idx = base + 2 * l - 1 - i;
5303
5304                cond_resched();
5305                process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5306                cond_resched();
5307                process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5308        }
5309}
5310
5311static void clear_gigantic_page(struct page *page,
5312                                unsigned long addr,
5313                                unsigned int pages_per_huge_page)
5314{
5315        int i;
5316        struct page *p = page;
5317
5318        might_sleep();
5319        for (i = 0; i < pages_per_huge_page;
5320             i++, p = mem_map_next(p, page, i)) {
5321                cond_resched();
5322                clear_user_highpage(p, addr + i * PAGE_SIZE);
5323        }
5324}
5325
5326static void clear_subpage(unsigned long addr, int idx, void *arg)
5327{
5328        struct page *page = arg;
5329
5330        clear_user_highpage(page + idx, addr);
5331}
5332
5333void clear_huge_page(struct page *page,
5334                     unsigned long addr_hint, unsigned int pages_per_huge_page)
5335{
5336        unsigned long addr = addr_hint &
5337                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5338
5339        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5340                clear_gigantic_page(page, addr, pages_per_huge_page);
5341                return;
5342        }
5343
5344        process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5345}
5346
5347static void copy_user_gigantic_page(struct page *dst, struct page *src,
5348                                    unsigned long addr,
5349                                    struct vm_area_struct *vma,
5350                                    unsigned int pages_per_huge_page)
5351{
5352        int i;
5353        struct page *dst_base = dst;
5354        struct page *src_base = src;
5355
5356        for (i = 0; i < pages_per_huge_page; ) {
5357                cond_resched();
5358                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5359
5360                i++;
5361                dst = mem_map_next(dst, dst_base, i);
5362                src = mem_map_next(src, src_base, i);
5363        }
5364}
5365
5366struct copy_subpage_arg {
5367        struct page *dst;
5368        struct page *src;
5369        struct vm_area_struct *vma;
5370};
5371
5372static void copy_subpage(unsigned long addr, int idx, void *arg)
5373{
5374        struct copy_subpage_arg *copy_arg = arg;
5375
5376        copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5377                           addr, copy_arg->vma);
5378}
5379
5380void copy_user_huge_page(struct page *dst, struct page *src,
5381                         unsigned long addr_hint, struct vm_area_struct *vma,
5382                         unsigned int pages_per_huge_page)
5383{
5384        unsigned long addr = addr_hint &
5385                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5386        struct copy_subpage_arg arg = {
5387                .dst = dst,
5388                .src = src,
5389                .vma = vma,
5390        };
5391
5392        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5393                copy_user_gigantic_page(dst, src, addr, vma,
5394                                        pages_per_huge_page);
5395                return;
5396        }
5397
5398        process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5399}
5400
5401long copy_huge_page_from_user(struct page *dst_page,
5402                                const void __user *usr_src,
5403                                unsigned int pages_per_huge_page,
5404                                bool allow_pagefault)
5405{
5406        void *page_kaddr;
5407        unsigned long i, rc = 0;
5408        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5409        struct page *subpage = dst_page;
5410
5411        for (i = 0; i < pages_per_huge_page;
5412             i++, subpage = mem_map_next(subpage, dst_page, i)) {
5413                if (allow_pagefault)
5414                        page_kaddr = kmap(subpage);
5415                else
5416                        page_kaddr = kmap_atomic(subpage);
5417                rc = copy_from_user(page_kaddr,
5418                                usr_src + i * PAGE_SIZE, PAGE_SIZE);
5419                if (allow_pagefault)
5420                        kunmap(subpage);
5421                else
5422                        kunmap_atomic(page_kaddr);
5423
5424                ret_val -= (PAGE_SIZE - rc);
5425                if (rc)
5426                        break;
5427
5428                cond_resched();
5429        }
5430        return ret_val;
5431}
5432#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5433
5434#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5435
5436static struct kmem_cache *page_ptl_cachep;
5437
5438void __init ptlock_cache_init(void)
5439{
5440        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5441                        SLAB_PANIC, NULL);
5442}
5443
5444bool ptlock_alloc(struct page *page)
5445{
5446        spinlock_t *ptl;
5447
5448        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5449        if (!ptl)
5450                return false;
5451        page->ptl = ptl;
5452        return true;
5453}
5454
5455void ptlock_free(struct page *page)
5456{
5457        kmem_cache_free(page_ptl_cachep, page->ptl);
5458}
5459#endif
5460