linux/mm/truncate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/truncate.c - code for taking down pages from address_spaces
   4 *
   5 * Copyright (C) 2002, Linus Torvalds
   6 *
   7 * 10Sep2002    Andrew Morton
   8 *              Initial version.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/backing-dev.h>
  13#include <linux/dax.h>
  14#include <linux/gfp.h>
  15#include <linux/mm.h>
  16#include <linux/swap.h>
  17#include <linux/export.h>
  18#include <linux/pagemap.h>
  19#include <linux/highmem.h>
  20#include <linux/pagevec.h>
  21#include <linux/task_io_accounting_ops.h>
  22#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  23                                   do_invalidatepage */
  24#include <linux/shmem_fs.h>
  25#include <linux/cleancache.h>
  26#include <linux/rmap.h>
  27#include "internal.h"
  28
  29/*
  30 * Regular page slots are stabilized by the page lock even without the tree
  31 * itself locked.  These unlocked entries need verification under the tree
  32 * lock.
  33 */
  34static inline void __clear_shadow_entry(struct address_space *mapping,
  35                                pgoff_t index, void *entry)
  36{
  37        XA_STATE(xas, &mapping->i_pages, index);
  38
  39        xas_set_update(&xas, workingset_update_node);
  40        if (xas_load(&xas) != entry)
  41                return;
  42        xas_store(&xas, NULL);
  43}
  44
  45static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
  46                               void *entry)
  47{
  48        spin_lock(&mapping->host->i_lock);
  49        xa_lock_irq(&mapping->i_pages);
  50        __clear_shadow_entry(mapping, index, entry);
  51        xa_unlock_irq(&mapping->i_pages);
  52        if (mapping_shrinkable(mapping))
  53                inode_add_lru(mapping->host);
  54        spin_unlock(&mapping->host->i_lock);
  55}
  56
  57/*
  58 * Unconditionally remove exceptional entries. Usually called from truncate
  59 * path. Note that the pagevec may be altered by this function by removing
  60 * exceptional entries similar to what pagevec_remove_exceptionals does.
  61 */
  62static void truncate_exceptional_pvec_entries(struct address_space *mapping,
  63                                struct pagevec *pvec, pgoff_t *indices)
  64{
  65        int i, j;
  66        bool dax;
  67
  68        /* Handled by shmem itself */
  69        if (shmem_mapping(mapping))
  70                return;
  71
  72        for (j = 0; j < pagevec_count(pvec); j++)
  73                if (xa_is_value(pvec->pages[j]))
  74                        break;
  75
  76        if (j == pagevec_count(pvec))
  77                return;
  78
  79        dax = dax_mapping(mapping);
  80        if (!dax) {
  81                spin_lock(&mapping->host->i_lock);
  82                xa_lock_irq(&mapping->i_pages);
  83        }
  84
  85        for (i = j; i < pagevec_count(pvec); i++) {
  86                struct page *page = pvec->pages[i];
  87                pgoff_t index = indices[i];
  88
  89                if (!xa_is_value(page)) {
  90                        pvec->pages[j++] = page;
  91                        continue;
  92                }
  93
  94                if (unlikely(dax)) {
  95                        dax_delete_mapping_entry(mapping, index);
  96                        continue;
  97                }
  98
  99                __clear_shadow_entry(mapping, index, page);
 100        }
 101
 102        if (!dax) {
 103                xa_unlock_irq(&mapping->i_pages);
 104                if (mapping_shrinkable(mapping))
 105                        inode_add_lru(mapping->host);
 106                spin_unlock(&mapping->host->i_lock);
 107        }
 108        pvec->nr = j;
 109}
 110
 111/*
 112 * Invalidate exceptional entry if easily possible. This handles exceptional
 113 * entries for invalidate_inode_pages().
 114 */
 115static int invalidate_exceptional_entry(struct address_space *mapping,
 116                                        pgoff_t index, void *entry)
 117{
 118        /* Handled by shmem itself, or for DAX we do nothing. */
 119        if (shmem_mapping(mapping) || dax_mapping(mapping))
 120                return 1;
 121        clear_shadow_entry(mapping, index, entry);
 122        return 1;
 123}
 124
 125/*
 126 * Invalidate exceptional entry if clean. This handles exceptional entries for
 127 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 128 */
 129static int invalidate_exceptional_entry2(struct address_space *mapping,
 130                                         pgoff_t index, void *entry)
 131{
 132        /* Handled by shmem itself */
 133        if (shmem_mapping(mapping))
 134                return 1;
 135        if (dax_mapping(mapping))
 136                return dax_invalidate_mapping_entry_sync(mapping, index);
 137        clear_shadow_entry(mapping, index, entry);
 138        return 1;
 139}
 140
 141/**
 142 * do_invalidatepage - invalidate part or all of a page
 143 * @page: the page which is affected
 144 * @offset: start of the range to invalidate
 145 * @length: length of the range to invalidate
 146 *
 147 * do_invalidatepage() is called when all or part of the page has become
 148 * invalidated by a truncate operation.
 149 *
 150 * do_invalidatepage() does not have to release all buffers, but it must
 151 * ensure that no dirty buffer is left outside @offset and that no I/O
 152 * is underway against any of the blocks which are outside the truncation
 153 * point.  Because the caller is about to free (and possibly reuse) those
 154 * blocks on-disk.
 155 */
 156void do_invalidatepage(struct page *page, unsigned int offset,
 157                       unsigned int length)
 158{
 159        void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 160
 161        invalidatepage = page->mapping->a_ops->invalidatepage;
 162#ifdef CONFIG_BLOCK
 163        if (!invalidatepage)
 164                invalidatepage = block_invalidatepage;
 165#endif
 166        if (invalidatepage)
 167                (*invalidatepage)(page, offset, length);
 168}
 169
 170/*
 171 * If truncate cannot remove the fs-private metadata from the page, the page
 172 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 173 * user pagetables if we're racing with filemap_fault().
 174 *
 175 * We need to bail out if page->mapping is no longer equal to the original
 176 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 177 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 178 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 179 */
 180static void truncate_cleanup_page(struct page *page)
 181{
 182        if (page_mapped(page))
 183                unmap_mapping_page(page);
 184
 185        if (page_has_private(page))
 186                do_invalidatepage(page, 0, thp_size(page));
 187
 188        /*
 189         * Some filesystems seem to re-dirty the page even after
 190         * the VM has canceled the dirty bit (eg ext3 journaling).
 191         * Hence dirty accounting check is placed after invalidation.
 192         */
 193        cancel_dirty_page(page);
 194        ClearPageMappedToDisk(page);
 195}
 196
 197/*
 198 * This is for invalidate_mapping_pages().  That function can be called at
 199 * any time, and is not supposed to throw away dirty pages.  But pages can
 200 * be marked dirty at any time too, so use remove_mapping which safely
 201 * discards clean, unused pages.
 202 *
 203 * Returns non-zero if the page was successfully invalidated.
 204 */
 205static int
 206invalidate_complete_page(struct address_space *mapping, struct page *page)
 207{
 208        int ret;
 209
 210        if (page->mapping != mapping)
 211                return 0;
 212
 213        if (page_has_private(page) && !try_to_release_page(page, 0))
 214                return 0;
 215
 216        ret = remove_mapping(mapping, page);
 217
 218        return ret;
 219}
 220
 221int truncate_inode_page(struct address_space *mapping, struct page *page)
 222{
 223        VM_BUG_ON_PAGE(PageTail(page), page);
 224
 225        if (page->mapping != mapping)
 226                return -EIO;
 227
 228        truncate_cleanup_page(page);
 229        delete_from_page_cache(page);
 230        return 0;
 231}
 232
 233/*
 234 * Used to get rid of pages on hardware memory corruption.
 235 */
 236int generic_error_remove_page(struct address_space *mapping, struct page *page)
 237{
 238        if (!mapping)
 239                return -EINVAL;
 240        /*
 241         * Only punch for normal data pages for now.
 242         * Handling other types like directories would need more auditing.
 243         */
 244        if (!S_ISREG(mapping->host->i_mode))
 245                return -EIO;
 246        return truncate_inode_page(mapping, page);
 247}
 248EXPORT_SYMBOL(generic_error_remove_page);
 249
 250/*
 251 * Safely invalidate one page from its pagecache mapping.
 252 * It only drops clean, unused pages. The page must be locked.
 253 *
 254 * Returns 1 if the page is successfully invalidated, otherwise 0.
 255 */
 256int invalidate_inode_page(struct page *page)
 257{
 258        struct address_space *mapping = page_mapping(page);
 259        if (!mapping)
 260                return 0;
 261        if (PageDirty(page) || PageWriteback(page))
 262                return 0;
 263        if (page_mapped(page))
 264                return 0;
 265        return invalidate_complete_page(mapping, page);
 266}
 267
 268/**
 269 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 270 * @mapping: mapping to truncate
 271 * @lstart: offset from which to truncate
 272 * @lend: offset to which to truncate (inclusive)
 273 *
 274 * Truncate the page cache, removing the pages that are between
 275 * specified offsets (and zeroing out partial pages
 276 * if lstart or lend + 1 is not page aligned).
 277 *
 278 * Truncate takes two passes - the first pass is nonblocking.  It will not
 279 * block on page locks and it will not block on writeback.  The second pass
 280 * will wait.  This is to prevent as much IO as possible in the affected region.
 281 * The first pass will remove most pages, so the search cost of the second pass
 282 * is low.
 283 *
 284 * We pass down the cache-hot hint to the page freeing code.  Even if the
 285 * mapping is large, it is probably the case that the final pages are the most
 286 * recently touched, and freeing happens in ascending file offset order.
 287 *
 288 * Note that since ->invalidatepage() accepts range to invalidate
 289 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 290 * page aligned properly.
 291 */
 292void truncate_inode_pages_range(struct address_space *mapping,
 293                                loff_t lstart, loff_t lend)
 294{
 295        pgoff_t         start;          /* inclusive */
 296        pgoff_t         end;            /* exclusive */
 297        unsigned int    partial_start;  /* inclusive */
 298        unsigned int    partial_end;    /* exclusive */
 299        struct pagevec  pvec;
 300        pgoff_t         indices[PAGEVEC_SIZE];
 301        pgoff_t         index;
 302        int             i;
 303
 304        if (mapping_empty(mapping))
 305                goto out;
 306
 307        /* Offsets within partial pages */
 308        partial_start = lstart & (PAGE_SIZE - 1);
 309        partial_end = (lend + 1) & (PAGE_SIZE - 1);
 310
 311        /*
 312         * 'start' and 'end' always covers the range of pages to be fully
 313         * truncated. Partial pages are covered with 'partial_start' at the
 314         * start of the range and 'partial_end' at the end of the range.
 315         * Note that 'end' is exclusive while 'lend' is inclusive.
 316         */
 317        start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 318        if (lend == -1)
 319                /*
 320                 * lend == -1 indicates end-of-file so we have to set 'end'
 321                 * to the highest possible pgoff_t and since the type is
 322                 * unsigned we're using -1.
 323                 */
 324                end = -1;
 325        else
 326                end = (lend + 1) >> PAGE_SHIFT;
 327
 328        pagevec_init(&pvec);
 329        index = start;
 330        while (index < end && find_lock_entries(mapping, index, end - 1,
 331                        &pvec, indices)) {
 332                index = indices[pagevec_count(&pvec) - 1] + 1;
 333                truncate_exceptional_pvec_entries(mapping, &pvec, indices);
 334                for (i = 0; i < pagevec_count(&pvec); i++)
 335                        truncate_cleanup_page(pvec.pages[i]);
 336                delete_from_page_cache_batch(mapping, &pvec);
 337                for (i = 0; i < pagevec_count(&pvec); i++)
 338                        unlock_page(pvec.pages[i]);
 339                pagevec_release(&pvec);
 340                cond_resched();
 341        }
 342
 343        if (partial_start) {
 344                struct page *page = find_lock_page(mapping, start - 1);
 345                if (page) {
 346                        unsigned int top = PAGE_SIZE;
 347                        if (start > end) {
 348                                /* Truncation within a single page */
 349                                top = partial_end;
 350                                partial_end = 0;
 351                        }
 352                        wait_on_page_writeback(page);
 353                        zero_user_segment(page, partial_start, top);
 354                        cleancache_invalidate_page(mapping, page);
 355                        if (page_has_private(page))
 356                                do_invalidatepage(page, partial_start,
 357                                                  top - partial_start);
 358                        unlock_page(page);
 359                        put_page(page);
 360                }
 361        }
 362        if (partial_end) {
 363                struct page *page = find_lock_page(mapping, end);
 364                if (page) {
 365                        wait_on_page_writeback(page);
 366                        zero_user_segment(page, 0, partial_end);
 367                        cleancache_invalidate_page(mapping, page);
 368                        if (page_has_private(page))
 369                                do_invalidatepage(page, 0,
 370                                                  partial_end);
 371                        unlock_page(page);
 372                        put_page(page);
 373                }
 374        }
 375        /*
 376         * If the truncation happened within a single page no pages
 377         * will be released, just zeroed, so we can bail out now.
 378         */
 379        if (start >= end)
 380                goto out;
 381
 382        index = start;
 383        for ( ; ; ) {
 384                cond_resched();
 385                if (!find_get_entries(mapping, index, end - 1, &pvec,
 386                                indices)) {
 387                        /* If all gone from start onwards, we're done */
 388                        if (index == start)
 389                                break;
 390                        /* Otherwise restart to make sure all gone */
 391                        index = start;
 392                        continue;
 393                }
 394
 395                for (i = 0; i < pagevec_count(&pvec); i++) {
 396                        struct page *page = pvec.pages[i];
 397
 398                        /* We rely upon deletion not changing page->index */
 399                        index = indices[i];
 400
 401                        if (xa_is_value(page))
 402                                continue;
 403
 404                        lock_page(page);
 405                        WARN_ON(page_to_index(page) != index);
 406                        wait_on_page_writeback(page);
 407                        truncate_inode_page(mapping, page);
 408                        unlock_page(page);
 409                }
 410                truncate_exceptional_pvec_entries(mapping, &pvec, indices);
 411                pagevec_release(&pvec);
 412                index++;
 413        }
 414
 415out:
 416        cleancache_invalidate_inode(mapping);
 417}
 418EXPORT_SYMBOL(truncate_inode_pages_range);
 419
 420/**
 421 * truncate_inode_pages - truncate *all* the pages from an offset
 422 * @mapping: mapping to truncate
 423 * @lstart: offset from which to truncate
 424 *
 425 * Called under (and serialised by) inode->i_rwsem and
 426 * mapping->invalidate_lock.
 427 *
 428 * Note: When this function returns, there can be a page in the process of
 429 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 430 * mapping->nrpages can be non-zero when this function returns even after
 431 * truncation of the whole mapping.
 432 */
 433void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 434{
 435        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 436}
 437EXPORT_SYMBOL(truncate_inode_pages);
 438
 439/**
 440 * truncate_inode_pages_final - truncate *all* pages before inode dies
 441 * @mapping: mapping to truncate
 442 *
 443 * Called under (and serialized by) inode->i_rwsem.
 444 *
 445 * Filesystems have to use this in the .evict_inode path to inform the
 446 * VM that this is the final truncate and the inode is going away.
 447 */
 448void truncate_inode_pages_final(struct address_space *mapping)
 449{
 450        /*
 451         * Page reclaim can not participate in regular inode lifetime
 452         * management (can't call iput()) and thus can race with the
 453         * inode teardown.  Tell it when the address space is exiting,
 454         * so that it does not install eviction information after the
 455         * final truncate has begun.
 456         */
 457        mapping_set_exiting(mapping);
 458
 459        if (!mapping_empty(mapping)) {
 460                /*
 461                 * As truncation uses a lockless tree lookup, cycle
 462                 * the tree lock to make sure any ongoing tree
 463                 * modification that does not see AS_EXITING is
 464                 * completed before starting the final truncate.
 465                 */
 466                xa_lock_irq(&mapping->i_pages);
 467                xa_unlock_irq(&mapping->i_pages);
 468        }
 469
 470        /*
 471         * Cleancache needs notification even if there are no pages or shadow
 472         * entries.
 473         */
 474        truncate_inode_pages(mapping, 0);
 475}
 476EXPORT_SYMBOL(truncate_inode_pages_final);
 477
 478static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
 479                pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
 480{
 481        pgoff_t indices[PAGEVEC_SIZE];
 482        struct pagevec pvec;
 483        pgoff_t index = start;
 484        unsigned long ret;
 485        unsigned long count = 0;
 486        int i;
 487
 488        pagevec_init(&pvec);
 489        while (find_lock_entries(mapping, index, end, &pvec, indices)) {
 490                for (i = 0; i < pagevec_count(&pvec); i++) {
 491                        struct page *page = pvec.pages[i];
 492
 493                        /* We rely upon deletion not changing page->index */
 494                        index = indices[i];
 495
 496                        if (xa_is_value(page)) {
 497                                count += invalidate_exceptional_entry(mapping,
 498                                                                      index,
 499                                                                      page);
 500                                continue;
 501                        }
 502                        index += thp_nr_pages(page) - 1;
 503
 504                        ret = invalidate_inode_page(page);
 505                        unlock_page(page);
 506                        /*
 507                         * Invalidation is a hint that the page is no longer
 508                         * of interest and try to speed up its reclaim.
 509                         */
 510                        if (!ret) {
 511                                deactivate_file_page(page);
 512                                /* It is likely on the pagevec of a remote CPU */
 513                                if (nr_pagevec)
 514                                        (*nr_pagevec)++;
 515                        }
 516                        count += ret;
 517                }
 518                pagevec_remove_exceptionals(&pvec);
 519                pagevec_release(&pvec);
 520                cond_resched();
 521                index++;
 522        }
 523        return count;
 524}
 525
 526/**
 527 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
 528 * @mapping: the address_space which holds the cache to invalidate
 529 * @start: the offset 'from' which to invalidate
 530 * @end: the offset 'to' which to invalidate (inclusive)
 531 *
 532 * This function removes pages that are clean, unmapped and unlocked,
 533 * as well as shadow entries. It will not block on IO activity.
 534 *
 535 * If you want to remove all the pages of one inode, regardless of
 536 * their use and writeback state, use truncate_inode_pages().
 537 *
 538 * Return: the number of the cache entries that were invalidated
 539 */
 540unsigned long invalidate_mapping_pages(struct address_space *mapping,
 541                pgoff_t start, pgoff_t end)
 542{
 543        return __invalidate_mapping_pages(mapping, start, end, NULL);
 544}
 545EXPORT_SYMBOL(invalidate_mapping_pages);
 546
 547/**
 548 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
 549 * @mapping: the address_space which holds the pages to invalidate
 550 * @start: the offset 'from' which to invalidate
 551 * @end: the offset 'to' which to invalidate (inclusive)
 552 * @nr_pagevec: invalidate failed page number for caller
 553 *
 554 * This helper is similar to invalidate_mapping_pages(), except that it accounts
 555 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
 556 * will be used by the caller.
 557 */
 558void invalidate_mapping_pagevec(struct address_space *mapping,
 559                pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
 560{
 561        __invalidate_mapping_pages(mapping, start, end, nr_pagevec);
 562}
 563
 564/*
 565 * This is like invalidate_complete_page(), except it ignores the page's
 566 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 567 * invalidation guarantees, and cannot afford to leave pages behind because
 568 * shrink_page_list() has a temp ref on them, or because they're transiently
 569 * sitting in the lru_cache_add() pagevecs.
 570 */
 571static int
 572invalidate_complete_page2(struct address_space *mapping, struct page *page)
 573{
 574        if (page->mapping != mapping)
 575                return 0;
 576
 577        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 578                return 0;
 579
 580        spin_lock(&mapping->host->i_lock);
 581        xa_lock_irq(&mapping->i_pages);
 582        if (PageDirty(page))
 583                goto failed;
 584
 585        BUG_ON(page_has_private(page));
 586        __delete_from_page_cache(page, NULL);
 587        xa_unlock_irq(&mapping->i_pages);
 588        if (mapping_shrinkable(mapping))
 589                inode_add_lru(mapping->host);
 590        spin_unlock(&mapping->host->i_lock);
 591
 592        if (mapping->a_ops->freepage)
 593                mapping->a_ops->freepage(page);
 594
 595        put_page(page); /* pagecache ref */
 596        return 1;
 597failed:
 598        xa_unlock_irq(&mapping->i_pages);
 599        spin_unlock(&mapping->host->i_lock);
 600        return 0;
 601}
 602
 603static int do_launder_page(struct address_space *mapping, struct page *page)
 604{
 605        if (!PageDirty(page))
 606                return 0;
 607        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 608                return 0;
 609        return mapping->a_ops->launder_page(page);
 610}
 611
 612/**
 613 * invalidate_inode_pages2_range - remove range of pages from an address_space
 614 * @mapping: the address_space
 615 * @start: the page offset 'from' which to invalidate
 616 * @end: the page offset 'to' which to invalidate (inclusive)
 617 *
 618 * Any pages which are found to be mapped into pagetables are unmapped prior to
 619 * invalidation.
 620 *
 621 * Return: -EBUSY if any pages could not be invalidated.
 622 */
 623int invalidate_inode_pages2_range(struct address_space *mapping,
 624                                  pgoff_t start, pgoff_t end)
 625{
 626        pgoff_t indices[PAGEVEC_SIZE];
 627        struct pagevec pvec;
 628        pgoff_t index;
 629        int i;
 630        int ret = 0;
 631        int ret2 = 0;
 632        int did_range_unmap = 0;
 633
 634        if (mapping_empty(mapping))
 635                goto out;
 636
 637        pagevec_init(&pvec);
 638        index = start;
 639        while (find_get_entries(mapping, index, end, &pvec, indices)) {
 640                for (i = 0; i < pagevec_count(&pvec); i++) {
 641                        struct page *page = pvec.pages[i];
 642
 643                        /* We rely upon deletion not changing page->index */
 644                        index = indices[i];
 645
 646                        if (xa_is_value(page)) {
 647                                if (!invalidate_exceptional_entry2(mapping,
 648                                                                   index, page))
 649                                        ret = -EBUSY;
 650                                continue;
 651                        }
 652
 653                        if (!did_range_unmap && page_mapped(page)) {
 654                                /*
 655                                 * If page is mapped, before taking its lock,
 656                                 * zap the rest of the file in one hit.
 657                                 */
 658                                unmap_mapping_pages(mapping, index,
 659                                                (1 + end - index), false);
 660                                did_range_unmap = 1;
 661                        }
 662
 663                        lock_page(page);
 664                        WARN_ON(page_to_index(page) != index);
 665                        if (page->mapping != mapping) {
 666                                unlock_page(page);
 667                                continue;
 668                        }
 669                        wait_on_page_writeback(page);
 670
 671                        if (page_mapped(page))
 672                                unmap_mapping_page(page);
 673                        BUG_ON(page_mapped(page));
 674
 675                        ret2 = do_launder_page(mapping, page);
 676                        if (ret2 == 0) {
 677                                if (!invalidate_complete_page2(mapping, page))
 678                                        ret2 = -EBUSY;
 679                        }
 680                        if (ret2 < 0)
 681                                ret = ret2;
 682                        unlock_page(page);
 683                }
 684                pagevec_remove_exceptionals(&pvec);
 685                pagevec_release(&pvec);
 686                cond_resched();
 687                index++;
 688        }
 689        /*
 690         * For DAX we invalidate page tables after invalidating page cache.  We
 691         * could invalidate page tables while invalidating each entry however
 692         * that would be expensive. And doing range unmapping before doesn't
 693         * work as we have no cheap way to find whether page cache entry didn't
 694         * get remapped later.
 695         */
 696        if (dax_mapping(mapping)) {
 697                unmap_mapping_pages(mapping, start, end - start + 1, false);
 698        }
 699out:
 700        cleancache_invalidate_inode(mapping);
 701        return ret;
 702}
 703EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 704
 705/**
 706 * invalidate_inode_pages2 - remove all pages from an address_space
 707 * @mapping: the address_space
 708 *
 709 * Any pages which are found to be mapped into pagetables are unmapped prior to
 710 * invalidation.
 711 *
 712 * Return: -EBUSY if any pages could not be invalidated.
 713 */
 714int invalidate_inode_pages2(struct address_space *mapping)
 715{
 716        return invalidate_inode_pages2_range(mapping, 0, -1);
 717}
 718EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 719
 720/**
 721 * truncate_pagecache - unmap and remove pagecache that has been truncated
 722 * @inode: inode
 723 * @newsize: new file size
 724 *
 725 * inode's new i_size must already be written before truncate_pagecache
 726 * is called.
 727 *
 728 * This function should typically be called before the filesystem
 729 * releases resources associated with the freed range (eg. deallocates
 730 * blocks). This way, pagecache will always stay logically coherent
 731 * with on-disk format, and the filesystem would not have to deal with
 732 * situations such as writepage being called for a page that has already
 733 * had its underlying blocks deallocated.
 734 */
 735void truncate_pagecache(struct inode *inode, loff_t newsize)
 736{
 737        struct address_space *mapping = inode->i_mapping;
 738        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 739
 740        /*
 741         * unmap_mapping_range is called twice, first simply for
 742         * efficiency so that truncate_inode_pages does fewer
 743         * single-page unmaps.  However after this first call, and
 744         * before truncate_inode_pages finishes, it is possible for
 745         * private pages to be COWed, which remain after
 746         * truncate_inode_pages finishes, hence the second
 747         * unmap_mapping_range call must be made for correctness.
 748         */
 749        unmap_mapping_range(mapping, holebegin, 0, 1);
 750        truncate_inode_pages(mapping, newsize);
 751        unmap_mapping_range(mapping, holebegin, 0, 1);
 752}
 753EXPORT_SYMBOL(truncate_pagecache);
 754
 755/**
 756 * truncate_setsize - update inode and pagecache for a new file size
 757 * @inode: inode
 758 * @newsize: new file size
 759 *
 760 * truncate_setsize updates i_size and performs pagecache truncation (if
 761 * necessary) to @newsize. It will be typically be called from the filesystem's
 762 * setattr function when ATTR_SIZE is passed in.
 763 *
 764 * Must be called with a lock serializing truncates and writes (generally
 765 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
 766 * specific block truncation has been performed.
 767 */
 768void truncate_setsize(struct inode *inode, loff_t newsize)
 769{
 770        loff_t oldsize = inode->i_size;
 771
 772        i_size_write(inode, newsize);
 773        if (newsize > oldsize)
 774                pagecache_isize_extended(inode, oldsize, newsize);
 775        truncate_pagecache(inode, newsize);
 776}
 777EXPORT_SYMBOL(truncate_setsize);
 778
 779/**
 780 * pagecache_isize_extended - update pagecache after extension of i_size
 781 * @inode:      inode for which i_size was extended
 782 * @from:       original inode size
 783 * @to:         new inode size
 784 *
 785 * Handle extension of inode size either caused by extending truncate or by
 786 * write starting after current i_size. We mark the page straddling current
 787 * i_size RO so that page_mkwrite() is called on the nearest write access to
 788 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 789 * the page before user writes to the page via mmap after the i_size has been
 790 * changed.
 791 *
 792 * The function must be called after i_size is updated so that page fault
 793 * coming after we unlock the page will already see the new i_size.
 794 * The function must be called while we still hold i_rwsem - this not only
 795 * makes sure i_size is stable but also that userspace cannot observe new
 796 * i_size value before we are prepared to store mmap writes at new inode size.
 797 */
 798void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 799{
 800        int bsize = i_blocksize(inode);
 801        loff_t rounded_from;
 802        struct page *page;
 803        pgoff_t index;
 804
 805        WARN_ON(to > inode->i_size);
 806
 807        if (from >= to || bsize == PAGE_SIZE)
 808                return;
 809        /* Page straddling @from will not have any hole block created? */
 810        rounded_from = round_up(from, bsize);
 811        if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
 812                return;
 813
 814        index = from >> PAGE_SHIFT;
 815        page = find_lock_page(inode->i_mapping, index);
 816        /* Page not cached? Nothing to do */
 817        if (!page)
 818                return;
 819        /*
 820         * See clear_page_dirty_for_io() for details why set_page_dirty()
 821         * is needed.
 822         */
 823        if (page_mkclean(page))
 824                set_page_dirty(page);
 825        unlock_page(page);
 826        put_page(page);
 827}
 828EXPORT_SYMBOL(pagecache_isize_extended);
 829
 830/**
 831 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 832 * @inode: inode
 833 * @lstart: offset of beginning of hole
 834 * @lend: offset of last byte of hole
 835 *
 836 * This function should typically be called before the filesystem
 837 * releases resources associated with the freed range (eg. deallocates
 838 * blocks). This way, pagecache will always stay logically coherent
 839 * with on-disk format, and the filesystem would not have to deal with
 840 * situations such as writepage being called for a page that has already
 841 * had its underlying blocks deallocated.
 842 */
 843void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 844{
 845        struct address_space *mapping = inode->i_mapping;
 846        loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 847        loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 848        /*
 849         * This rounding is currently just for example: unmap_mapping_range
 850         * expands its hole outwards, whereas we want it to contract the hole
 851         * inwards.  However, existing callers of truncate_pagecache_range are
 852         * doing their own page rounding first.  Note that unmap_mapping_range
 853         * allows holelen 0 for all, and we allow lend -1 for end of file.
 854         */
 855
 856        /*
 857         * Unlike in truncate_pagecache, unmap_mapping_range is called only
 858         * once (before truncating pagecache), and without "even_cows" flag:
 859         * hole-punching should not remove private COWed pages from the hole.
 860         */
 861        if ((u64)unmap_end > (u64)unmap_start)
 862                unmap_mapping_range(mapping, unmap_start,
 863                                    1 + unmap_end - unmap_start, 0);
 864        truncate_inode_pages_range(mapping, lstart, lend);
 865}
 866EXPORT_SYMBOL(truncate_pagecache_range);
 867