linux/net/ethernet/eth.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Ethernet-type device handling.
   8 *
   9 * Version:     @(#)eth.c       1.0.7   05/25/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  14 *              Florian  La Roche, <rzsfl@rz.uni-sb.de>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *
  17 * Fixes:
  18 *              Mr Linux        : Arp problems
  19 *              Alan Cox        : Generic queue tidyup (very tiny here)
  20 *              Alan Cox        : eth_header ntohs should be htons
  21 *              Alan Cox        : eth_rebuild_header missing an htons and
  22 *                                minor other things.
  23 *              Tegge           : Arp bug fixes.
  24 *              Florian         : Removed many unnecessary functions, code cleanup
  25 *                                and changes for new arp and skbuff.
  26 *              Alan Cox        : Redid header building to reflect new format.
  27 *              Alan Cox        : ARP only when compiled with CONFIG_INET
  28 *              Greg Page       : 802.2 and SNAP stuff.
  29 *              Alan Cox        : MAC layer pointers/new format.
  30 *              Paul Gortmaker  : eth_copy_and_sum shouldn't csum padding.
  31 *              Alan Cox        : Protect against forwarding explosions with
  32 *                                older network drivers and IFF_ALLMULTI.
  33 *      Christer Weinigel       : Better rebuild header message.
  34 *             Andrew Morton    : 26Feb01: kill ether_setup() - use netdev_boot_setup().
  35 */
  36#include <linux/module.h>
  37#include <linux/types.h>
  38#include <linux/kernel.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/socket.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/ip.h>
  45#include <linux/netdevice.h>
  46#include <linux/nvmem-consumer.h>
  47#include <linux/etherdevice.h>
  48#include <linux/skbuff.h>
  49#include <linux/errno.h>
  50#include <linux/init.h>
  51#include <linux/if_ether.h>
  52#include <linux/of_net.h>
  53#include <linux/pci.h>
  54#include <linux/property.h>
  55#include <net/dst.h>
  56#include <net/arp.h>
  57#include <net/sock.h>
  58#include <net/ipv6.h>
  59#include <net/ip.h>
  60#include <net/dsa.h>
  61#include <net/flow_dissector.h>
  62#include <net/gro.h>
  63#include <linux/uaccess.h>
  64#include <net/pkt_sched.h>
  65
  66/**
  67 * eth_header - create the Ethernet header
  68 * @skb:        buffer to alter
  69 * @dev:        source device
  70 * @type:       Ethernet type field
  71 * @daddr: destination address (NULL leave destination address)
  72 * @saddr: source address (NULL use device source address)
  73 * @len:   packet length (<= skb->len)
  74 *
  75 *
  76 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
  77 * in here instead.
  78 */
  79int eth_header(struct sk_buff *skb, struct net_device *dev,
  80               unsigned short type,
  81               const void *daddr, const void *saddr, unsigned int len)
  82{
  83        struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  84
  85        if (type != ETH_P_802_3 && type != ETH_P_802_2)
  86                eth->h_proto = htons(type);
  87        else
  88                eth->h_proto = htons(len);
  89
  90        /*
  91         *      Set the source hardware address.
  92         */
  93
  94        if (!saddr)
  95                saddr = dev->dev_addr;
  96        memcpy(eth->h_source, saddr, ETH_ALEN);
  97
  98        if (daddr) {
  99                memcpy(eth->h_dest, daddr, ETH_ALEN);
 100                return ETH_HLEN;
 101        }
 102
 103        /*
 104         *      Anyway, the loopback-device should never use this function...
 105         */
 106
 107        if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
 108                eth_zero_addr(eth->h_dest);
 109                return ETH_HLEN;
 110        }
 111
 112        return -ETH_HLEN;
 113}
 114EXPORT_SYMBOL(eth_header);
 115
 116/**
 117 * eth_get_headlen - determine the length of header for an ethernet frame
 118 * @dev: pointer to network device
 119 * @data: pointer to start of frame
 120 * @len: total length of frame
 121 *
 122 * Make a best effort attempt to pull the length for all of the headers for
 123 * a given frame in a linear buffer.
 124 */
 125u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len)
 126{
 127        const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
 128        const struct ethhdr *eth = (const struct ethhdr *)data;
 129        struct flow_keys_basic keys;
 130
 131        /* this should never happen, but better safe than sorry */
 132        if (unlikely(len < sizeof(*eth)))
 133                return len;
 134
 135        /* parse any remaining L2/L3 headers, check for L4 */
 136        if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
 137                                              eth->h_proto, sizeof(*eth),
 138                                              len, flags))
 139                return max_t(u32, keys.control.thoff, sizeof(*eth));
 140
 141        /* parse for any L4 headers */
 142        return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
 143}
 144EXPORT_SYMBOL(eth_get_headlen);
 145
 146/**
 147 * eth_type_trans - determine the packet's protocol ID.
 148 * @skb: received socket data
 149 * @dev: receiving network device
 150 *
 151 * The rule here is that we
 152 * assume 802.3 if the type field is short enough to be a length.
 153 * This is normal practice and works for any 'now in use' protocol.
 154 */
 155__be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
 156{
 157        unsigned short _service_access_point;
 158        const unsigned short *sap;
 159        const struct ethhdr *eth;
 160
 161        skb->dev = dev;
 162        skb_reset_mac_header(skb);
 163
 164        eth = (struct ethhdr *)skb->data;
 165        skb_pull_inline(skb, ETH_HLEN);
 166
 167        if (unlikely(!ether_addr_equal_64bits(eth->h_dest,
 168                                              dev->dev_addr))) {
 169                if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) {
 170                        if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
 171                                skb->pkt_type = PACKET_BROADCAST;
 172                        else
 173                                skb->pkt_type = PACKET_MULTICAST;
 174                } else {
 175                        skb->pkt_type = PACKET_OTHERHOST;
 176                }
 177        }
 178
 179        /*
 180         * Some variants of DSA tagging don't have an ethertype field
 181         * at all, so we check here whether one of those tagging
 182         * variants has been configured on the receiving interface,
 183         * and if so, set skb->protocol without looking at the packet.
 184         */
 185        if (unlikely(netdev_uses_dsa(dev)))
 186                return htons(ETH_P_XDSA);
 187
 188        if (likely(eth_proto_is_802_3(eth->h_proto)))
 189                return eth->h_proto;
 190
 191        /*
 192         *      This is a magic hack to spot IPX packets. Older Novell breaks
 193         *      the protocol design and runs IPX over 802.3 without an 802.2 LLC
 194         *      layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
 195         *      won't work for fault tolerant netware but does for the rest.
 196         */
 197        sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
 198        if (sap && *sap == 0xFFFF)
 199                return htons(ETH_P_802_3);
 200
 201        /*
 202         *      Real 802.2 LLC
 203         */
 204        return htons(ETH_P_802_2);
 205}
 206EXPORT_SYMBOL(eth_type_trans);
 207
 208/**
 209 * eth_header_parse - extract hardware address from packet
 210 * @skb: packet to extract header from
 211 * @haddr: destination buffer
 212 */
 213int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
 214{
 215        const struct ethhdr *eth = eth_hdr(skb);
 216        memcpy(haddr, eth->h_source, ETH_ALEN);
 217        return ETH_ALEN;
 218}
 219EXPORT_SYMBOL(eth_header_parse);
 220
 221/**
 222 * eth_header_cache - fill cache entry from neighbour
 223 * @neigh: source neighbour
 224 * @hh: destination cache entry
 225 * @type: Ethernet type field
 226 *
 227 * Create an Ethernet header template from the neighbour.
 228 */
 229int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
 230{
 231        struct ethhdr *eth;
 232        const struct net_device *dev = neigh->dev;
 233
 234        eth = (struct ethhdr *)
 235            (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
 236
 237        if (type == htons(ETH_P_802_3))
 238                return -1;
 239
 240        eth->h_proto = type;
 241        memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
 242        memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
 243
 244        /* Pairs with READ_ONCE() in neigh_resolve_output(),
 245         * neigh_hh_output() and neigh_update_hhs().
 246         */
 247        smp_store_release(&hh->hh_len, ETH_HLEN);
 248
 249        return 0;
 250}
 251EXPORT_SYMBOL(eth_header_cache);
 252
 253/**
 254 * eth_header_cache_update - update cache entry
 255 * @hh: destination cache entry
 256 * @dev: network device
 257 * @haddr: new hardware address
 258 *
 259 * Called by Address Resolution module to notify changes in address.
 260 */
 261void eth_header_cache_update(struct hh_cache *hh,
 262                             const struct net_device *dev,
 263                             const unsigned char *haddr)
 264{
 265        memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
 266               haddr, ETH_ALEN);
 267}
 268EXPORT_SYMBOL(eth_header_cache_update);
 269
 270/**
 271 * eth_header_parse_protocol - extract protocol from L2 header
 272 * @skb: packet to extract protocol from
 273 */
 274__be16 eth_header_parse_protocol(const struct sk_buff *skb)
 275{
 276        const struct ethhdr *eth = eth_hdr(skb);
 277
 278        return eth->h_proto;
 279}
 280EXPORT_SYMBOL(eth_header_parse_protocol);
 281
 282/**
 283 * eth_prepare_mac_addr_change - prepare for mac change
 284 * @dev: network device
 285 * @p: socket address
 286 */
 287int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
 288{
 289        struct sockaddr *addr = p;
 290
 291        if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
 292                return -EBUSY;
 293        if (!is_valid_ether_addr(addr->sa_data))
 294                return -EADDRNOTAVAIL;
 295        return 0;
 296}
 297EXPORT_SYMBOL(eth_prepare_mac_addr_change);
 298
 299/**
 300 * eth_commit_mac_addr_change - commit mac change
 301 * @dev: network device
 302 * @p: socket address
 303 */
 304void eth_commit_mac_addr_change(struct net_device *dev, void *p)
 305{
 306        struct sockaddr *addr = p;
 307
 308        eth_hw_addr_set(dev, addr->sa_data);
 309}
 310EXPORT_SYMBOL(eth_commit_mac_addr_change);
 311
 312/**
 313 * eth_mac_addr - set new Ethernet hardware address
 314 * @dev: network device
 315 * @p: socket address
 316 *
 317 * Change hardware address of device.
 318 *
 319 * This doesn't change hardware matching, so needs to be overridden
 320 * for most real devices.
 321 */
 322int eth_mac_addr(struct net_device *dev, void *p)
 323{
 324        int ret;
 325
 326        ret = eth_prepare_mac_addr_change(dev, p);
 327        if (ret < 0)
 328                return ret;
 329        eth_commit_mac_addr_change(dev, p);
 330        return 0;
 331}
 332EXPORT_SYMBOL(eth_mac_addr);
 333
 334int eth_validate_addr(struct net_device *dev)
 335{
 336        if (!is_valid_ether_addr(dev->dev_addr))
 337                return -EADDRNOTAVAIL;
 338
 339        return 0;
 340}
 341EXPORT_SYMBOL(eth_validate_addr);
 342
 343const struct header_ops eth_header_ops ____cacheline_aligned = {
 344        .create         = eth_header,
 345        .parse          = eth_header_parse,
 346        .cache          = eth_header_cache,
 347        .cache_update   = eth_header_cache_update,
 348        .parse_protocol = eth_header_parse_protocol,
 349};
 350
 351/**
 352 * ether_setup - setup Ethernet network device
 353 * @dev: network device
 354 *
 355 * Fill in the fields of the device structure with Ethernet-generic values.
 356 */
 357void ether_setup(struct net_device *dev)
 358{
 359        dev->header_ops         = &eth_header_ops;
 360        dev->type               = ARPHRD_ETHER;
 361        dev->hard_header_len    = ETH_HLEN;
 362        dev->min_header_len     = ETH_HLEN;
 363        dev->mtu                = ETH_DATA_LEN;
 364        dev->min_mtu            = ETH_MIN_MTU;
 365        dev->max_mtu            = ETH_DATA_LEN;
 366        dev->addr_len           = ETH_ALEN;
 367        dev->tx_queue_len       = DEFAULT_TX_QUEUE_LEN;
 368        dev->flags              = IFF_BROADCAST|IFF_MULTICAST;
 369        dev->priv_flags         |= IFF_TX_SKB_SHARING;
 370
 371        eth_broadcast_addr(dev->broadcast);
 372
 373}
 374EXPORT_SYMBOL(ether_setup);
 375
 376/**
 377 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device
 378 * @sizeof_priv: Size of additional driver-private structure to be allocated
 379 *      for this Ethernet device
 380 * @txqs: The number of TX queues this device has.
 381 * @rxqs: The number of RX queues this device has.
 382 *
 383 * Fill in the fields of the device structure with Ethernet-generic
 384 * values. Basically does everything except registering the device.
 385 *
 386 * Constructs a new net device, complete with a private data area of
 387 * size (sizeof_priv).  A 32-byte (not bit) alignment is enforced for
 388 * this private data area.
 389 */
 390
 391struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
 392                                      unsigned int rxqs)
 393{
 394        return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN,
 395                                ether_setup, txqs, rxqs);
 396}
 397EXPORT_SYMBOL(alloc_etherdev_mqs);
 398
 399ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
 400{
 401        return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr);
 402}
 403EXPORT_SYMBOL(sysfs_format_mac);
 404
 405struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
 406{
 407        const struct packet_offload *ptype;
 408        unsigned int hlen, off_eth;
 409        struct sk_buff *pp = NULL;
 410        struct ethhdr *eh, *eh2;
 411        struct sk_buff *p;
 412        __be16 type;
 413        int flush = 1;
 414
 415        off_eth = skb_gro_offset(skb);
 416        hlen = off_eth + sizeof(*eh);
 417        eh = skb_gro_header_fast(skb, off_eth);
 418        if (skb_gro_header_hard(skb, hlen)) {
 419                eh = skb_gro_header_slow(skb, hlen, off_eth);
 420                if (unlikely(!eh))
 421                        goto out;
 422        }
 423
 424        flush = 0;
 425
 426        list_for_each_entry(p, head, list) {
 427                if (!NAPI_GRO_CB(p)->same_flow)
 428                        continue;
 429
 430                eh2 = (struct ethhdr *)(p->data + off_eth);
 431                if (compare_ether_header(eh, eh2)) {
 432                        NAPI_GRO_CB(p)->same_flow = 0;
 433                        continue;
 434                }
 435        }
 436
 437        type = eh->h_proto;
 438
 439        rcu_read_lock();
 440        ptype = gro_find_receive_by_type(type);
 441        if (ptype == NULL) {
 442                flush = 1;
 443                goto out_unlock;
 444        }
 445
 446        skb_gro_pull(skb, sizeof(*eh));
 447        skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
 448
 449        pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive,
 450                                            ipv6_gro_receive, inet_gro_receive,
 451                                            head, skb);
 452
 453out_unlock:
 454        rcu_read_unlock();
 455out:
 456        skb_gro_flush_final(skb, pp, flush);
 457
 458        return pp;
 459}
 460EXPORT_SYMBOL(eth_gro_receive);
 461
 462int eth_gro_complete(struct sk_buff *skb, int nhoff)
 463{
 464        struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
 465        __be16 type = eh->h_proto;
 466        struct packet_offload *ptype;
 467        int err = -ENOSYS;
 468
 469        if (skb->encapsulation)
 470                skb_set_inner_mac_header(skb, nhoff);
 471
 472        rcu_read_lock();
 473        ptype = gro_find_complete_by_type(type);
 474        if (ptype != NULL)
 475                err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
 476                                         ipv6_gro_complete, inet_gro_complete,
 477                                         skb, nhoff + sizeof(*eh));
 478
 479        rcu_read_unlock();
 480        return err;
 481}
 482EXPORT_SYMBOL(eth_gro_complete);
 483
 484static struct packet_offload eth_packet_offload __read_mostly = {
 485        .type = cpu_to_be16(ETH_P_TEB),
 486        .priority = 10,
 487        .callbacks = {
 488                .gro_receive = eth_gro_receive,
 489                .gro_complete = eth_gro_complete,
 490        },
 491};
 492
 493static int __init eth_offload_init(void)
 494{
 495        dev_add_offload(&eth_packet_offload);
 496
 497        return 0;
 498}
 499
 500fs_initcall(eth_offload_init);
 501
 502unsigned char * __weak arch_get_platform_mac_address(void)
 503{
 504        return NULL;
 505}
 506
 507int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
 508{
 509        unsigned char *addr;
 510        int ret;
 511
 512        ret = of_get_mac_address(dev->of_node, mac_addr);
 513        if (!ret)
 514                return 0;
 515
 516        addr = arch_get_platform_mac_address();
 517        if (!addr)
 518                return -ENODEV;
 519
 520        ether_addr_copy(mac_addr, addr);
 521
 522        return 0;
 523}
 524EXPORT_SYMBOL(eth_platform_get_mac_address);
 525
 526/**
 527 * platform_get_ethdev_address - Set netdev's MAC address from a given device
 528 * @dev:        Pointer to the device
 529 * @netdev:     Pointer to netdev to write the address to
 530 *
 531 * Wrapper around eth_platform_get_mac_address() which writes the address
 532 * directly to netdev->dev_addr.
 533 */
 534int platform_get_ethdev_address(struct device *dev, struct net_device *netdev)
 535{
 536        u8 addr[ETH_ALEN] __aligned(2);
 537        int ret;
 538
 539        ret = eth_platform_get_mac_address(dev, addr);
 540        if (!ret)
 541                eth_hw_addr_set(netdev, addr);
 542        return ret;
 543}
 544EXPORT_SYMBOL(platform_get_ethdev_address);
 545
 546/**
 547 * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named
 548 * 'mac-address' associated with given device.
 549 *
 550 * @dev:        Device with which the mac-address cell is associated.
 551 * @addrbuf:    Buffer to which the MAC address will be copied on success.
 552 *
 553 * Returns 0 on success or a negative error number on failure.
 554 */
 555int nvmem_get_mac_address(struct device *dev, void *addrbuf)
 556{
 557        struct nvmem_cell *cell;
 558        const void *mac;
 559        size_t len;
 560
 561        cell = nvmem_cell_get(dev, "mac-address");
 562        if (IS_ERR(cell))
 563                return PTR_ERR(cell);
 564
 565        mac = nvmem_cell_read(cell, &len);
 566        nvmem_cell_put(cell);
 567
 568        if (IS_ERR(mac))
 569                return PTR_ERR(mac);
 570
 571        if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
 572                kfree(mac);
 573                return -EINVAL;
 574        }
 575
 576        ether_addr_copy(addrbuf, mac);
 577        kfree(mac);
 578
 579        return 0;
 580}
 581
 582static int fwnode_get_mac_addr(struct fwnode_handle *fwnode,
 583                               const char *name, char *addr)
 584{
 585        int ret;
 586
 587        ret = fwnode_property_read_u8_array(fwnode, name, addr, ETH_ALEN);
 588        if (ret)
 589                return ret;
 590
 591        if (!is_valid_ether_addr(addr))
 592                return -EINVAL;
 593        return 0;
 594}
 595
 596/**
 597 * fwnode_get_mac_address - Get the MAC from the firmware node
 598 * @fwnode:     Pointer to the firmware node
 599 * @addr:       Address of buffer to store the MAC in
 600 *
 601 * Search the firmware node for the best MAC address to use.  'mac-address' is
 602 * checked first, because that is supposed to contain to "most recent" MAC
 603 * address. If that isn't set, then 'local-mac-address' is checked next,
 604 * because that is the default address.  If that isn't set, then the obsolete
 605 * 'address' is checked, just in case we're using an old device tree.
 606 *
 607 * Note that the 'address' property is supposed to contain a virtual address of
 608 * the register set, but some DTS files have redefined that property to be the
 609 * MAC address.
 610 *
 611 * All-zero MAC addresses are rejected, because those could be properties that
 612 * exist in the firmware tables, but were not updated by the firmware.  For
 613 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 614 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 615 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 616 * exists but is all zeros.
 617 */
 618int fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr)
 619{
 620        if (!fwnode_get_mac_addr(fwnode, "mac-address", addr) ||
 621            !fwnode_get_mac_addr(fwnode, "local-mac-address", addr) ||
 622            !fwnode_get_mac_addr(fwnode, "address", addr))
 623                return 0;
 624
 625        return -ENOENT;
 626}
 627EXPORT_SYMBOL(fwnode_get_mac_address);
 628
 629/**
 630 * device_get_mac_address - Get the MAC for a given device
 631 * @dev:        Pointer to the device
 632 * @addr:       Address of buffer to store the MAC in
 633 */
 634int device_get_mac_address(struct device *dev, char *addr)
 635{
 636        return fwnode_get_mac_address(dev_fwnode(dev), addr);
 637}
 638EXPORT_SYMBOL(device_get_mac_address);
 639
 640/**
 641 * device_get_ethdev_address - Set netdev's MAC address from a given device
 642 * @dev:        Pointer to the device
 643 * @netdev:     Pointer to netdev to write the address to
 644 *
 645 * Wrapper around device_get_mac_address() which writes the address
 646 * directly to netdev->dev_addr.
 647 */
 648int device_get_ethdev_address(struct device *dev, struct net_device *netdev)
 649{
 650        u8 addr[ETH_ALEN];
 651        int ret;
 652
 653        ret = device_get_mac_address(dev, addr);
 654        if (!ret)
 655                eth_hw_addr_set(netdev, addr);
 656        return ret;
 657}
 658EXPORT_SYMBOL(device_get_ethdev_address);
 659