linux/net/sched/sch_taprio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* net/sched/sch_taprio.c        Time Aware Priority Scheduler
   4 *
   5 * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
   6 *
   7 */
   8
   9#include <linux/ethtool.h>
  10#include <linux/types.h>
  11#include <linux/slab.h>
  12#include <linux/kernel.h>
  13#include <linux/string.h>
  14#include <linux/list.h>
  15#include <linux/errno.h>
  16#include <linux/skbuff.h>
  17#include <linux/math64.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/rcupdate.h>
  21#include <net/netlink.h>
  22#include <net/pkt_sched.h>
  23#include <net/pkt_cls.h>
  24#include <net/sch_generic.h>
  25#include <net/sock.h>
  26#include <net/tcp.h>
  27
  28static LIST_HEAD(taprio_list);
  29static DEFINE_SPINLOCK(taprio_list_lock);
  30
  31#define TAPRIO_ALL_GATES_OPEN -1
  32
  33#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
  34#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  35#define TAPRIO_FLAGS_INVALID U32_MAX
  36
  37struct sched_entry {
  38        struct list_head list;
  39
  40        /* The instant that this entry "closes" and the next one
  41         * should open, the qdisc will make some effort so that no
  42         * packet leaves after this time.
  43         */
  44        ktime_t close_time;
  45        ktime_t next_txtime;
  46        atomic_t budget;
  47        int index;
  48        u32 gate_mask;
  49        u32 interval;
  50        u8 command;
  51};
  52
  53struct sched_gate_list {
  54        struct rcu_head rcu;
  55        struct list_head entries;
  56        size_t num_entries;
  57        ktime_t cycle_close_time;
  58        s64 cycle_time;
  59        s64 cycle_time_extension;
  60        s64 base_time;
  61};
  62
  63struct taprio_sched {
  64        struct Qdisc **qdiscs;
  65        struct Qdisc *root;
  66        u32 flags;
  67        enum tk_offsets tk_offset;
  68        int clockid;
  69        atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
  70                                    * speeds it's sub-nanoseconds per byte
  71                                    */
  72
  73        /* Protects the update side of the RCU protected current_entry */
  74        spinlock_t current_entry_lock;
  75        struct sched_entry __rcu *current_entry;
  76        struct sched_gate_list __rcu *oper_sched;
  77        struct sched_gate_list __rcu *admin_sched;
  78        struct hrtimer advance_timer;
  79        struct list_head taprio_list;
  80        struct sk_buff *(*dequeue)(struct Qdisc *sch);
  81        struct sk_buff *(*peek)(struct Qdisc *sch);
  82        u32 txtime_delay;
  83};
  84
  85struct __tc_taprio_qopt_offload {
  86        refcount_t users;
  87        struct tc_taprio_qopt_offload offload;
  88};
  89
  90static ktime_t sched_base_time(const struct sched_gate_list *sched)
  91{
  92        if (!sched)
  93                return KTIME_MAX;
  94
  95        return ns_to_ktime(sched->base_time);
  96}
  97
  98static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
  99{
 100        /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
 101        enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
 102
 103        switch (tk_offset) {
 104        case TK_OFFS_MAX:
 105                return mono;
 106        default:
 107                return ktime_mono_to_any(mono, tk_offset);
 108        }
 109}
 110
 111static ktime_t taprio_get_time(const struct taprio_sched *q)
 112{
 113        return taprio_mono_to_any(q, ktime_get());
 114}
 115
 116static void taprio_free_sched_cb(struct rcu_head *head)
 117{
 118        struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
 119        struct sched_entry *entry, *n;
 120
 121        list_for_each_entry_safe(entry, n, &sched->entries, list) {
 122                list_del(&entry->list);
 123                kfree(entry);
 124        }
 125
 126        kfree(sched);
 127}
 128
 129static void switch_schedules(struct taprio_sched *q,
 130                             struct sched_gate_list **admin,
 131                             struct sched_gate_list **oper)
 132{
 133        rcu_assign_pointer(q->oper_sched, *admin);
 134        rcu_assign_pointer(q->admin_sched, NULL);
 135
 136        if (*oper)
 137                call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
 138
 139        *oper = *admin;
 140        *admin = NULL;
 141}
 142
 143/* Get how much time has been already elapsed in the current cycle. */
 144static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
 145{
 146        ktime_t time_since_sched_start;
 147        s32 time_elapsed;
 148
 149        time_since_sched_start = ktime_sub(time, sched->base_time);
 150        div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
 151
 152        return time_elapsed;
 153}
 154
 155static ktime_t get_interval_end_time(struct sched_gate_list *sched,
 156                                     struct sched_gate_list *admin,
 157                                     struct sched_entry *entry,
 158                                     ktime_t intv_start)
 159{
 160        s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
 161        ktime_t intv_end, cycle_ext_end, cycle_end;
 162
 163        cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
 164        intv_end = ktime_add_ns(intv_start, entry->interval);
 165        cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
 166
 167        if (ktime_before(intv_end, cycle_end))
 168                return intv_end;
 169        else if (admin && admin != sched &&
 170                 ktime_after(admin->base_time, cycle_end) &&
 171                 ktime_before(admin->base_time, cycle_ext_end))
 172                return admin->base_time;
 173        else
 174                return cycle_end;
 175}
 176
 177static int length_to_duration(struct taprio_sched *q, int len)
 178{
 179        return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
 180}
 181
 182/* Returns the entry corresponding to next available interval. If
 183 * validate_interval is set, it only validates whether the timestamp occurs
 184 * when the gate corresponding to the skb's traffic class is open.
 185 */
 186static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
 187                                                  struct Qdisc *sch,
 188                                                  struct sched_gate_list *sched,
 189                                                  struct sched_gate_list *admin,
 190                                                  ktime_t time,
 191                                                  ktime_t *interval_start,
 192                                                  ktime_t *interval_end,
 193                                                  bool validate_interval)
 194{
 195        ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
 196        ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
 197        struct sched_entry *entry = NULL, *entry_found = NULL;
 198        struct taprio_sched *q = qdisc_priv(sch);
 199        struct net_device *dev = qdisc_dev(sch);
 200        bool entry_available = false;
 201        s32 cycle_elapsed;
 202        int tc, n;
 203
 204        tc = netdev_get_prio_tc_map(dev, skb->priority);
 205        packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
 206
 207        *interval_start = 0;
 208        *interval_end = 0;
 209
 210        if (!sched)
 211                return NULL;
 212
 213        cycle = sched->cycle_time;
 214        cycle_elapsed = get_cycle_time_elapsed(sched, time);
 215        curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
 216        cycle_end = ktime_add_ns(curr_intv_end, cycle);
 217
 218        list_for_each_entry(entry, &sched->entries, list) {
 219                curr_intv_start = curr_intv_end;
 220                curr_intv_end = get_interval_end_time(sched, admin, entry,
 221                                                      curr_intv_start);
 222
 223                if (ktime_after(curr_intv_start, cycle_end))
 224                        break;
 225
 226                if (!(entry->gate_mask & BIT(tc)) ||
 227                    packet_transmit_time > entry->interval)
 228                        continue;
 229
 230                txtime = entry->next_txtime;
 231
 232                if (ktime_before(txtime, time) || validate_interval) {
 233                        transmit_end_time = ktime_add_ns(time, packet_transmit_time);
 234                        if ((ktime_before(curr_intv_start, time) &&
 235                             ktime_before(transmit_end_time, curr_intv_end)) ||
 236                            (ktime_after(curr_intv_start, time) && !validate_interval)) {
 237                                entry_found = entry;
 238                                *interval_start = curr_intv_start;
 239                                *interval_end = curr_intv_end;
 240                                break;
 241                        } else if (!entry_available && !validate_interval) {
 242                                /* Here, we are just trying to find out the
 243                                 * first available interval in the next cycle.
 244                                 */
 245                                entry_available = true;
 246                                entry_found = entry;
 247                                *interval_start = ktime_add_ns(curr_intv_start, cycle);
 248                                *interval_end = ktime_add_ns(curr_intv_end, cycle);
 249                        }
 250                } else if (ktime_before(txtime, earliest_txtime) &&
 251                           !entry_available) {
 252                        earliest_txtime = txtime;
 253                        entry_found = entry;
 254                        n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
 255                        *interval_start = ktime_add(curr_intv_start, n * cycle);
 256                        *interval_end = ktime_add(curr_intv_end, n * cycle);
 257                }
 258        }
 259
 260        return entry_found;
 261}
 262
 263static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
 264{
 265        struct taprio_sched *q = qdisc_priv(sch);
 266        struct sched_gate_list *sched, *admin;
 267        ktime_t interval_start, interval_end;
 268        struct sched_entry *entry;
 269
 270        rcu_read_lock();
 271        sched = rcu_dereference(q->oper_sched);
 272        admin = rcu_dereference(q->admin_sched);
 273
 274        entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
 275                                       &interval_start, &interval_end, true);
 276        rcu_read_unlock();
 277
 278        return entry;
 279}
 280
 281static bool taprio_flags_valid(u32 flags)
 282{
 283        /* Make sure no other flag bits are set. */
 284        if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
 285                      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 286                return false;
 287        /* txtime-assist and full offload are mutually exclusive */
 288        if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
 289            (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 290                return false;
 291        return true;
 292}
 293
 294/* This returns the tstamp value set by TCP in terms of the set clock. */
 295static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
 296{
 297        unsigned int offset = skb_network_offset(skb);
 298        const struct ipv6hdr *ipv6h;
 299        const struct iphdr *iph;
 300        struct ipv6hdr _ipv6h;
 301
 302        ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 303        if (!ipv6h)
 304                return 0;
 305
 306        if (ipv6h->version == 4) {
 307                iph = (struct iphdr *)ipv6h;
 308                offset += iph->ihl * 4;
 309
 310                /* special-case 6in4 tunnelling, as that is a common way to get
 311                 * v6 connectivity in the home
 312                 */
 313                if (iph->protocol == IPPROTO_IPV6) {
 314                        ipv6h = skb_header_pointer(skb, offset,
 315                                                   sizeof(_ipv6h), &_ipv6h);
 316
 317                        if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 318                                return 0;
 319                } else if (iph->protocol != IPPROTO_TCP) {
 320                        return 0;
 321                }
 322        } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
 323                return 0;
 324        }
 325
 326        return taprio_mono_to_any(q, skb->skb_mstamp_ns);
 327}
 328
 329/* There are a few scenarios where we will have to modify the txtime from
 330 * what is read from next_txtime in sched_entry. They are:
 331 * 1. If txtime is in the past,
 332 *    a. The gate for the traffic class is currently open and packet can be
 333 *       transmitted before it closes, schedule the packet right away.
 334 *    b. If the gate corresponding to the traffic class is going to open later
 335 *       in the cycle, set the txtime of packet to the interval start.
 336 * 2. If txtime is in the future, there are packets corresponding to the
 337 *    current traffic class waiting to be transmitted. So, the following
 338 *    possibilities exist:
 339 *    a. We can transmit the packet before the window containing the txtime
 340 *       closes.
 341 *    b. The window might close before the transmission can be completed
 342 *       successfully. So, schedule the packet in the next open window.
 343 */
 344static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
 345{
 346        ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
 347        struct taprio_sched *q = qdisc_priv(sch);
 348        struct sched_gate_list *sched, *admin;
 349        ktime_t minimum_time, now, txtime;
 350        int len, packet_transmit_time;
 351        struct sched_entry *entry;
 352        bool sched_changed;
 353
 354        now = taprio_get_time(q);
 355        minimum_time = ktime_add_ns(now, q->txtime_delay);
 356
 357        tcp_tstamp = get_tcp_tstamp(q, skb);
 358        minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
 359
 360        rcu_read_lock();
 361        admin = rcu_dereference(q->admin_sched);
 362        sched = rcu_dereference(q->oper_sched);
 363        if (admin && ktime_after(minimum_time, admin->base_time))
 364                switch_schedules(q, &admin, &sched);
 365
 366        /* Until the schedule starts, all the queues are open */
 367        if (!sched || ktime_before(minimum_time, sched->base_time)) {
 368                txtime = minimum_time;
 369                goto done;
 370        }
 371
 372        len = qdisc_pkt_len(skb);
 373        packet_transmit_time = length_to_duration(q, len);
 374
 375        do {
 376                sched_changed = false;
 377
 378                entry = find_entry_to_transmit(skb, sch, sched, admin,
 379                                               minimum_time,
 380                                               &interval_start, &interval_end,
 381                                               false);
 382                if (!entry) {
 383                        txtime = 0;
 384                        goto done;
 385                }
 386
 387                txtime = entry->next_txtime;
 388                txtime = max_t(ktime_t, txtime, minimum_time);
 389                txtime = max_t(ktime_t, txtime, interval_start);
 390
 391                if (admin && admin != sched &&
 392                    ktime_after(txtime, admin->base_time)) {
 393                        sched = admin;
 394                        sched_changed = true;
 395                        continue;
 396                }
 397
 398                transmit_end_time = ktime_add(txtime, packet_transmit_time);
 399                minimum_time = transmit_end_time;
 400
 401                /* Update the txtime of current entry to the next time it's
 402                 * interval starts.
 403                 */
 404                if (ktime_after(transmit_end_time, interval_end))
 405                        entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
 406        } while (sched_changed || ktime_after(transmit_end_time, interval_end));
 407
 408        entry->next_txtime = transmit_end_time;
 409
 410done:
 411        rcu_read_unlock();
 412        return txtime;
 413}
 414
 415static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
 416                              struct Qdisc *child, struct sk_buff **to_free)
 417{
 418        struct taprio_sched *q = qdisc_priv(sch);
 419
 420        if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
 421                if (!is_valid_interval(skb, sch))
 422                        return qdisc_drop(skb, sch, to_free);
 423        } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 424                skb->tstamp = get_packet_txtime(skb, sch);
 425                if (!skb->tstamp)
 426                        return qdisc_drop(skb, sch, to_free);
 427        }
 428
 429        qdisc_qstats_backlog_inc(sch, skb);
 430        sch->q.qlen++;
 431
 432        return qdisc_enqueue(skb, child, to_free);
 433}
 434
 435static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 436                          struct sk_buff **to_free)
 437{
 438        struct taprio_sched *q = qdisc_priv(sch);
 439        struct Qdisc *child;
 440        int queue;
 441
 442        if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
 443                WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
 444                return qdisc_drop(skb, sch, to_free);
 445        }
 446
 447        queue = skb_get_queue_mapping(skb);
 448
 449        child = q->qdiscs[queue];
 450        if (unlikely(!child))
 451                return qdisc_drop(skb, sch, to_free);
 452
 453        /* Large packets might not be transmitted when the transmission duration
 454         * exceeds any configured interval. Therefore, segment the skb into
 455         * smaller chunks. Skip it for the full offload case, as the driver
 456         * and/or the hardware is expected to handle this.
 457         */
 458        if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
 459                unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
 460                netdev_features_t features = netif_skb_features(skb);
 461                struct sk_buff *segs, *nskb;
 462                int ret;
 463
 464                segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 465                if (IS_ERR_OR_NULL(segs))
 466                        return qdisc_drop(skb, sch, to_free);
 467
 468                skb_list_walk_safe(segs, segs, nskb) {
 469                        skb_mark_not_on_list(segs);
 470                        qdisc_skb_cb(segs)->pkt_len = segs->len;
 471                        slen += segs->len;
 472
 473                        ret = taprio_enqueue_one(segs, sch, child, to_free);
 474                        if (ret != NET_XMIT_SUCCESS) {
 475                                if (net_xmit_drop_count(ret))
 476                                        qdisc_qstats_drop(sch);
 477                        } else {
 478                                numsegs++;
 479                        }
 480                }
 481
 482                if (numsegs > 1)
 483                        qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
 484                consume_skb(skb);
 485
 486                return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 487        }
 488
 489        return taprio_enqueue_one(skb, sch, child, to_free);
 490}
 491
 492static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
 493{
 494        struct taprio_sched *q = qdisc_priv(sch);
 495        struct net_device *dev = qdisc_dev(sch);
 496        struct sched_entry *entry;
 497        struct sk_buff *skb;
 498        u32 gate_mask;
 499        int i;
 500
 501        rcu_read_lock();
 502        entry = rcu_dereference(q->current_entry);
 503        gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 504        rcu_read_unlock();
 505
 506        if (!gate_mask)
 507                return NULL;
 508
 509        for (i = 0; i < dev->num_tx_queues; i++) {
 510                struct Qdisc *child = q->qdiscs[i];
 511                int prio;
 512                u8 tc;
 513
 514                if (unlikely(!child))
 515                        continue;
 516
 517                skb = child->ops->peek(child);
 518                if (!skb)
 519                        continue;
 520
 521                if (TXTIME_ASSIST_IS_ENABLED(q->flags))
 522                        return skb;
 523
 524                prio = skb->priority;
 525                tc = netdev_get_prio_tc_map(dev, prio);
 526
 527                if (!(gate_mask & BIT(tc)))
 528                        continue;
 529
 530                return skb;
 531        }
 532
 533        return NULL;
 534}
 535
 536static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
 537{
 538        WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
 539
 540        return NULL;
 541}
 542
 543static struct sk_buff *taprio_peek(struct Qdisc *sch)
 544{
 545        struct taprio_sched *q = qdisc_priv(sch);
 546
 547        return q->peek(sch);
 548}
 549
 550static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
 551{
 552        atomic_set(&entry->budget,
 553                   div64_u64((u64)entry->interval * 1000,
 554                             atomic64_read(&q->picos_per_byte)));
 555}
 556
 557static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
 558{
 559        struct taprio_sched *q = qdisc_priv(sch);
 560        struct net_device *dev = qdisc_dev(sch);
 561        struct sk_buff *skb = NULL;
 562        struct sched_entry *entry;
 563        u32 gate_mask;
 564        int i;
 565
 566        rcu_read_lock();
 567        entry = rcu_dereference(q->current_entry);
 568        /* if there's no entry, it means that the schedule didn't
 569         * start yet, so force all gates to be open, this is in
 570         * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
 571         * "AdminGateStates"
 572         */
 573        gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 574
 575        if (!gate_mask)
 576                goto done;
 577
 578        for (i = 0; i < dev->num_tx_queues; i++) {
 579                struct Qdisc *child = q->qdiscs[i];
 580                ktime_t guard;
 581                int prio;
 582                int len;
 583                u8 tc;
 584
 585                if (unlikely(!child))
 586                        continue;
 587
 588                if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 589                        skb = child->ops->dequeue(child);
 590                        if (!skb)
 591                                continue;
 592                        goto skb_found;
 593                }
 594
 595                skb = child->ops->peek(child);
 596                if (!skb)
 597                        continue;
 598
 599                prio = skb->priority;
 600                tc = netdev_get_prio_tc_map(dev, prio);
 601
 602                if (!(gate_mask & BIT(tc))) {
 603                        skb = NULL;
 604                        continue;
 605                }
 606
 607                len = qdisc_pkt_len(skb);
 608                guard = ktime_add_ns(taprio_get_time(q),
 609                                     length_to_duration(q, len));
 610
 611                /* In the case that there's no gate entry, there's no
 612                 * guard band ...
 613                 */
 614                if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 615                    ktime_after(guard, entry->close_time)) {
 616                        skb = NULL;
 617                        continue;
 618                }
 619
 620                /* ... and no budget. */
 621                if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 622                    atomic_sub_return(len, &entry->budget) < 0) {
 623                        skb = NULL;
 624                        continue;
 625                }
 626
 627                skb = child->ops->dequeue(child);
 628                if (unlikely(!skb))
 629                        goto done;
 630
 631skb_found:
 632                qdisc_bstats_update(sch, skb);
 633                qdisc_qstats_backlog_dec(sch, skb);
 634                sch->q.qlen--;
 635
 636                goto done;
 637        }
 638
 639done:
 640        rcu_read_unlock();
 641
 642        return skb;
 643}
 644
 645static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
 646{
 647        WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
 648
 649        return NULL;
 650}
 651
 652static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
 653{
 654        struct taprio_sched *q = qdisc_priv(sch);
 655
 656        return q->dequeue(sch);
 657}
 658
 659static bool should_restart_cycle(const struct sched_gate_list *oper,
 660                                 const struct sched_entry *entry)
 661{
 662        if (list_is_last(&entry->list, &oper->entries))
 663                return true;
 664
 665        if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
 666                return true;
 667
 668        return false;
 669}
 670
 671static bool should_change_schedules(const struct sched_gate_list *admin,
 672                                    const struct sched_gate_list *oper,
 673                                    ktime_t close_time)
 674{
 675        ktime_t next_base_time, extension_time;
 676
 677        if (!admin)
 678                return false;
 679
 680        next_base_time = sched_base_time(admin);
 681
 682        /* This is the simple case, the close_time would fall after
 683         * the next schedule base_time.
 684         */
 685        if (ktime_compare(next_base_time, close_time) <= 0)
 686                return true;
 687
 688        /* This is the cycle_time_extension case, if the close_time
 689         * plus the amount that can be extended would fall after the
 690         * next schedule base_time, we can extend the current schedule
 691         * for that amount.
 692         */
 693        extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
 694
 695        /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
 696         * how precisely the extension should be made. So after
 697         * conformance testing, this logic may change.
 698         */
 699        if (ktime_compare(next_base_time, extension_time) <= 0)
 700                return true;
 701
 702        return false;
 703}
 704
 705static enum hrtimer_restart advance_sched(struct hrtimer *timer)
 706{
 707        struct taprio_sched *q = container_of(timer, struct taprio_sched,
 708                                              advance_timer);
 709        struct sched_gate_list *oper, *admin;
 710        struct sched_entry *entry, *next;
 711        struct Qdisc *sch = q->root;
 712        ktime_t close_time;
 713
 714        spin_lock(&q->current_entry_lock);
 715        entry = rcu_dereference_protected(q->current_entry,
 716                                          lockdep_is_held(&q->current_entry_lock));
 717        oper = rcu_dereference_protected(q->oper_sched,
 718                                         lockdep_is_held(&q->current_entry_lock));
 719        admin = rcu_dereference_protected(q->admin_sched,
 720                                          lockdep_is_held(&q->current_entry_lock));
 721
 722        if (!oper)
 723                switch_schedules(q, &admin, &oper);
 724
 725        /* This can happen in two cases: 1. this is the very first run
 726         * of this function (i.e. we weren't running any schedule
 727         * previously); 2. The previous schedule just ended. The first
 728         * entry of all schedules are pre-calculated during the
 729         * schedule initialization.
 730         */
 731        if (unlikely(!entry || entry->close_time == oper->base_time)) {
 732                next = list_first_entry(&oper->entries, struct sched_entry,
 733                                        list);
 734                close_time = next->close_time;
 735                goto first_run;
 736        }
 737
 738        if (should_restart_cycle(oper, entry)) {
 739                next = list_first_entry(&oper->entries, struct sched_entry,
 740                                        list);
 741                oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
 742                                                      oper->cycle_time);
 743        } else {
 744                next = list_next_entry(entry, list);
 745        }
 746
 747        close_time = ktime_add_ns(entry->close_time, next->interval);
 748        close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
 749
 750        if (should_change_schedules(admin, oper, close_time)) {
 751                /* Set things so the next time this runs, the new
 752                 * schedule runs.
 753                 */
 754                close_time = sched_base_time(admin);
 755                switch_schedules(q, &admin, &oper);
 756        }
 757
 758        next->close_time = close_time;
 759        taprio_set_budget(q, next);
 760
 761first_run:
 762        rcu_assign_pointer(q->current_entry, next);
 763        spin_unlock(&q->current_entry_lock);
 764
 765        hrtimer_set_expires(&q->advance_timer, close_time);
 766
 767        rcu_read_lock();
 768        __netif_schedule(sch);
 769        rcu_read_unlock();
 770
 771        return HRTIMER_RESTART;
 772}
 773
 774static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
 775        [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
 776        [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
 777        [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
 778        [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
 779};
 780
 781static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
 782        [TCA_TAPRIO_ATTR_PRIOMAP]              = {
 783                .len = sizeof(struct tc_mqprio_qopt)
 784        },
 785        [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
 786        [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
 787        [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
 788        [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
 789        [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
 790        [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
 791        [TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
 792        [TCA_TAPRIO_ATTR_TXTIME_DELAY]               = { .type = NLA_U32 },
 793};
 794
 795static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
 796                            struct sched_entry *entry,
 797                            struct netlink_ext_ack *extack)
 798{
 799        int min_duration = length_to_duration(q, ETH_ZLEN);
 800        u32 interval = 0;
 801
 802        if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
 803                entry->command = nla_get_u8(
 804                        tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
 805
 806        if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
 807                entry->gate_mask = nla_get_u32(
 808                        tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
 809
 810        if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
 811                interval = nla_get_u32(
 812                        tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
 813
 814        /* The interval should allow at least the minimum ethernet
 815         * frame to go out.
 816         */
 817        if (interval < min_duration) {
 818                NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
 819                return -EINVAL;
 820        }
 821
 822        entry->interval = interval;
 823
 824        return 0;
 825}
 826
 827static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
 828                             struct sched_entry *entry, int index,
 829                             struct netlink_ext_ack *extack)
 830{
 831        struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
 832        int err;
 833
 834        err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
 835                                          entry_policy, NULL);
 836        if (err < 0) {
 837                NL_SET_ERR_MSG(extack, "Could not parse nested entry");
 838                return -EINVAL;
 839        }
 840
 841        entry->index = index;
 842
 843        return fill_sched_entry(q, tb, entry, extack);
 844}
 845
 846static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
 847                            struct sched_gate_list *sched,
 848                            struct netlink_ext_ack *extack)
 849{
 850        struct nlattr *n;
 851        int err, rem;
 852        int i = 0;
 853
 854        if (!list)
 855                return -EINVAL;
 856
 857        nla_for_each_nested(n, list, rem) {
 858                struct sched_entry *entry;
 859
 860                if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
 861                        NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
 862                        continue;
 863                }
 864
 865                entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 866                if (!entry) {
 867                        NL_SET_ERR_MSG(extack, "Not enough memory for entry");
 868                        return -ENOMEM;
 869                }
 870
 871                err = parse_sched_entry(q, n, entry, i, extack);
 872                if (err < 0) {
 873                        kfree(entry);
 874                        return err;
 875                }
 876
 877                list_add_tail(&entry->list, &sched->entries);
 878                i++;
 879        }
 880
 881        sched->num_entries = i;
 882
 883        return i;
 884}
 885
 886static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
 887                                 struct sched_gate_list *new,
 888                                 struct netlink_ext_ack *extack)
 889{
 890        int err = 0;
 891
 892        if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
 893                NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
 894                return -ENOTSUPP;
 895        }
 896
 897        if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
 898                new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
 899
 900        if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
 901                new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
 902
 903        if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
 904                new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
 905
 906        if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
 907                err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
 908                                       new, extack);
 909        if (err < 0)
 910                return err;
 911
 912        if (!new->cycle_time) {
 913                struct sched_entry *entry;
 914                ktime_t cycle = 0;
 915
 916                list_for_each_entry(entry, &new->entries, list)
 917                        cycle = ktime_add_ns(cycle, entry->interval);
 918
 919                if (!cycle) {
 920                        NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
 921                        return -EINVAL;
 922                }
 923
 924                new->cycle_time = cycle;
 925        }
 926
 927        return 0;
 928}
 929
 930static int taprio_parse_mqprio_opt(struct net_device *dev,
 931                                   struct tc_mqprio_qopt *qopt,
 932                                   struct netlink_ext_ack *extack,
 933                                   u32 taprio_flags)
 934{
 935        int i, j;
 936
 937        if (!qopt && !dev->num_tc) {
 938                NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
 939                return -EINVAL;
 940        }
 941
 942        /* If num_tc is already set, it means that the user already
 943         * configured the mqprio part
 944         */
 945        if (dev->num_tc)
 946                return 0;
 947
 948        /* Verify num_tc is not out of max range */
 949        if (qopt->num_tc > TC_MAX_QUEUE) {
 950                NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
 951                return -EINVAL;
 952        }
 953
 954        /* taprio imposes that traffic classes map 1:n to tx queues */
 955        if (qopt->num_tc > dev->num_tx_queues) {
 956                NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
 957                return -EINVAL;
 958        }
 959
 960        /* Verify priority mapping uses valid tcs */
 961        for (i = 0; i <= TC_BITMASK; i++) {
 962                if (qopt->prio_tc_map[i] >= qopt->num_tc) {
 963                        NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
 964                        return -EINVAL;
 965                }
 966        }
 967
 968        for (i = 0; i < qopt->num_tc; i++) {
 969                unsigned int last = qopt->offset[i] + qopt->count[i];
 970
 971                /* Verify the queue count is in tx range being equal to the
 972                 * real_num_tx_queues indicates the last queue is in use.
 973                 */
 974                if (qopt->offset[i] >= dev->num_tx_queues ||
 975                    !qopt->count[i] ||
 976                    last > dev->real_num_tx_queues) {
 977                        NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
 978                        return -EINVAL;
 979                }
 980
 981                if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
 982                        continue;
 983
 984                /* Verify that the offset and counts do not overlap */
 985                for (j = i + 1; j < qopt->num_tc; j++) {
 986                        if (last > qopt->offset[j]) {
 987                                NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
 988                                return -EINVAL;
 989                        }
 990                }
 991        }
 992
 993        return 0;
 994}
 995
 996static int taprio_get_start_time(struct Qdisc *sch,
 997                                 struct sched_gate_list *sched,
 998                                 ktime_t *start)
 999{
1000        struct taprio_sched *q = qdisc_priv(sch);
1001        ktime_t now, base, cycle;
1002        s64 n;
1003
1004        base = sched_base_time(sched);
1005        now = taprio_get_time(q);
1006
1007        if (ktime_after(base, now)) {
1008                *start = base;
1009                return 0;
1010        }
1011
1012        cycle = sched->cycle_time;
1013
1014        /* The qdisc is expected to have at least one sched_entry.  Moreover,
1015         * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1016         * something went really wrong. In that case, we should warn about this
1017         * inconsistent state and return error.
1018         */
1019        if (WARN_ON(!cycle))
1020                return -EFAULT;
1021
1022        /* Schedule the start time for the beginning of the next
1023         * cycle.
1024         */
1025        n = div64_s64(ktime_sub_ns(now, base), cycle);
1026        *start = ktime_add_ns(base, (n + 1) * cycle);
1027        return 0;
1028}
1029
1030static void setup_first_close_time(struct taprio_sched *q,
1031                                   struct sched_gate_list *sched, ktime_t base)
1032{
1033        struct sched_entry *first;
1034        ktime_t cycle;
1035
1036        first = list_first_entry(&sched->entries,
1037                                 struct sched_entry, list);
1038
1039        cycle = sched->cycle_time;
1040
1041        /* FIXME: find a better place to do this */
1042        sched->cycle_close_time = ktime_add_ns(base, cycle);
1043
1044        first->close_time = ktime_add_ns(base, first->interval);
1045        taprio_set_budget(q, first);
1046        rcu_assign_pointer(q->current_entry, NULL);
1047}
1048
1049static void taprio_start_sched(struct Qdisc *sch,
1050                               ktime_t start, struct sched_gate_list *new)
1051{
1052        struct taprio_sched *q = qdisc_priv(sch);
1053        ktime_t expires;
1054
1055        if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1056                return;
1057
1058        expires = hrtimer_get_expires(&q->advance_timer);
1059        if (expires == 0)
1060                expires = KTIME_MAX;
1061
1062        /* If the new schedule starts before the next expiration, we
1063         * reprogram it to the earliest one, so we change the admin
1064         * schedule to the operational one at the right time.
1065         */
1066        start = min_t(ktime_t, start, expires);
1067
1068        hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1069}
1070
1071static void taprio_set_picos_per_byte(struct net_device *dev,
1072                                      struct taprio_sched *q)
1073{
1074        struct ethtool_link_ksettings ecmd;
1075        int speed = SPEED_10;
1076        int picos_per_byte;
1077        int err;
1078
1079        err = __ethtool_get_link_ksettings(dev, &ecmd);
1080        if (err < 0)
1081                goto skip;
1082
1083        if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1084                speed = ecmd.base.speed;
1085
1086skip:
1087        picos_per_byte = (USEC_PER_SEC * 8) / speed;
1088
1089        atomic64_set(&q->picos_per_byte, picos_per_byte);
1090        netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1091                   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1092                   ecmd.base.speed);
1093}
1094
1095static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1096                               void *ptr)
1097{
1098        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1099        struct net_device *qdev;
1100        struct taprio_sched *q;
1101        bool found = false;
1102
1103        ASSERT_RTNL();
1104
1105        if (event != NETDEV_UP && event != NETDEV_CHANGE)
1106                return NOTIFY_DONE;
1107
1108        spin_lock(&taprio_list_lock);
1109        list_for_each_entry(q, &taprio_list, taprio_list) {
1110                qdev = qdisc_dev(q->root);
1111                if (qdev == dev) {
1112                        found = true;
1113                        break;
1114                }
1115        }
1116        spin_unlock(&taprio_list_lock);
1117
1118        if (found)
1119                taprio_set_picos_per_byte(dev, q);
1120
1121        return NOTIFY_DONE;
1122}
1123
1124static void setup_txtime(struct taprio_sched *q,
1125                         struct sched_gate_list *sched, ktime_t base)
1126{
1127        struct sched_entry *entry;
1128        u32 interval = 0;
1129
1130        list_for_each_entry(entry, &sched->entries, list) {
1131                entry->next_txtime = ktime_add_ns(base, interval);
1132                interval += entry->interval;
1133        }
1134}
1135
1136static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1137{
1138        struct __tc_taprio_qopt_offload *__offload;
1139
1140        __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1141                            GFP_KERNEL);
1142        if (!__offload)
1143                return NULL;
1144
1145        refcount_set(&__offload->users, 1);
1146
1147        return &__offload->offload;
1148}
1149
1150struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1151                                                  *offload)
1152{
1153        struct __tc_taprio_qopt_offload *__offload;
1154
1155        __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1156                                 offload);
1157
1158        refcount_inc(&__offload->users);
1159
1160        return offload;
1161}
1162EXPORT_SYMBOL_GPL(taprio_offload_get);
1163
1164void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1165{
1166        struct __tc_taprio_qopt_offload *__offload;
1167
1168        __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1169                                 offload);
1170
1171        if (!refcount_dec_and_test(&__offload->users))
1172                return;
1173
1174        kfree(__offload);
1175}
1176EXPORT_SYMBOL_GPL(taprio_offload_free);
1177
1178/* The function will only serve to keep the pointers to the "oper" and "admin"
1179 * schedules valid in relation to their base times, so when calling dump() the
1180 * users looks at the right schedules.
1181 * When using full offload, the admin configuration is promoted to oper at the
1182 * base_time in the PHC time domain.  But because the system time is not
1183 * necessarily in sync with that, we can't just trigger a hrtimer to call
1184 * switch_schedules at the right hardware time.
1185 * At the moment we call this by hand right away from taprio, but in the future
1186 * it will be useful to create a mechanism for drivers to notify taprio of the
1187 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1188 * This is left as TODO.
1189 */
1190static void taprio_offload_config_changed(struct taprio_sched *q)
1191{
1192        struct sched_gate_list *oper, *admin;
1193
1194        spin_lock(&q->current_entry_lock);
1195
1196        oper = rcu_dereference_protected(q->oper_sched,
1197                                         lockdep_is_held(&q->current_entry_lock));
1198        admin = rcu_dereference_protected(q->admin_sched,
1199                                          lockdep_is_held(&q->current_entry_lock));
1200
1201        switch_schedules(q, &admin, &oper);
1202
1203        spin_unlock(&q->current_entry_lock);
1204}
1205
1206static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1207{
1208        u32 i, queue_mask = 0;
1209
1210        for (i = 0; i < dev->num_tc; i++) {
1211                u32 offset, count;
1212
1213                if (!(tc_mask & BIT(i)))
1214                        continue;
1215
1216                offset = dev->tc_to_txq[i].offset;
1217                count = dev->tc_to_txq[i].count;
1218
1219                queue_mask |= GENMASK(offset + count - 1, offset);
1220        }
1221
1222        return queue_mask;
1223}
1224
1225static void taprio_sched_to_offload(struct net_device *dev,
1226                                    struct sched_gate_list *sched,
1227                                    struct tc_taprio_qopt_offload *offload)
1228{
1229        struct sched_entry *entry;
1230        int i = 0;
1231
1232        offload->base_time = sched->base_time;
1233        offload->cycle_time = sched->cycle_time;
1234        offload->cycle_time_extension = sched->cycle_time_extension;
1235
1236        list_for_each_entry(entry, &sched->entries, list) {
1237                struct tc_taprio_sched_entry *e = &offload->entries[i];
1238
1239                e->command = entry->command;
1240                e->interval = entry->interval;
1241                e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1242
1243                i++;
1244        }
1245
1246        offload->num_entries = i;
1247}
1248
1249static int taprio_enable_offload(struct net_device *dev,
1250                                 struct taprio_sched *q,
1251                                 struct sched_gate_list *sched,
1252                                 struct netlink_ext_ack *extack)
1253{
1254        const struct net_device_ops *ops = dev->netdev_ops;
1255        struct tc_taprio_qopt_offload *offload;
1256        int err = 0;
1257
1258        if (!ops->ndo_setup_tc) {
1259                NL_SET_ERR_MSG(extack,
1260                               "Device does not support taprio offload");
1261                return -EOPNOTSUPP;
1262        }
1263
1264        offload = taprio_offload_alloc(sched->num_entries);
1265        if (!offload) {
1266                NL_SET_ERR_MSG(extack,
1267                               "Not enough memory for enabling offload mode");
1268                return -ENOMEM;
1269        }
1270        offload->enable = 1;
1271        taprio_sched_to_offload(dev, sched, offload);
1272
1273        err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1274        if (err < 0) {
1275                NL_SET_ERR_MSG(extack,
1276                               "Device failed to setup taprio offload");
1277                goto done;
1278        }
1279
1280done:
1281        taprio_offload_free(offload);
1282
1283        return err;
1284}
1285
1286static int taprio_disable_offload(struct net_device *dev,
1287                                  struct taprio_sched *q,
1288                                  struct netlink_ext_ack *extack)
1289{
1290        const struct net_device_ops *ops = dev->netdev_ops;
1291        struct tc_taprio_qopt_offload *offload;
1292        int err;
1293
1294        if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1295                return 0;
1296
1297        if (!ops->ndo_setup_tc)
1298                return -EOPNOTSUPP;
1299
1300        offload = taprio_offload_alloc(0);
1301        if (!offload) {
1302                NL_SET_ERR_MSG(extack,
1303                               "Not enough memory to disable offload mode");
1304                return -ENOMEM;
1305        }
1306        offload->enable = 0;
1307
1308        err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1309        if (err < 0) {
1310                NL_SET_ERR_MSG(extack,
1311                               "Device failed to disable offload");
1312                goto out;
1313        }
1314
1315out:
1316        taprio_offload_free(offload);
1317
1318        return err;
1319}
1320
1321/* If full offload is enabled, the only possible clockid is the net device's
1322 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1323 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1324 * in sync with the specified clockid via a user space daemon such as phc2sys.
1325 * For both software taprio and txtime-assist, the clockid is used for the
1326 * hrtimer that advances the schedule and hence mandatory.
1327 */
1328static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1329                                struct netlink_ext_ack *extack)
1330{
1331        struct taprio_sched *q = qdisc_priv(sch);
1332        struct net_device *dev = qdisc_dev(sch);
1333        int err = -EINVAL;
1334
1335        if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1336                const struct ethtool_ops *ops = dev->ethtool_ops;
1337                struct ethtool_ts_info info = {
1338                        .cmd = ETHTOOL_GET_TS_INFO,
1339                        .phc_index = -1,
1340                };
1341
1342                if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1343                        NL_SET_ERR_MSG(extack,
1344                                       "The 'clockid' cannot be specified for full offload");
1345                        goto out;
1346                }
1347
1348                if (ops && ops->get_ts_info)
1349                        err = ops->get_ts_info(dev, &info);
1350
1351                if (err || info.phc_index < 0) {
1352                        NL_SET_ERR_MSG(extack,
1353                                       "Device does not have a PTP clock");
1354                        err = -ENOTSUPP;
1355                        goto out;
1356                }
1357        } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1358                int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1359                enum tk_offsets tk_offset;
1360
1361                /* We only support static clockids and we don't allow
1362                 * for it to be modified after the first init.
1363                 */
1364                if (clockid < 0 ||
1365                    (q->clockid != -1 && q->clockid != clockid)) {
1366                        NL_SET_ERR_MSG(extack,
1367                                       "Changing the 'clockid' of a running schedule is not supported");
1368                        err = -ENOTSUPP;
1369                        goto out;
1370                }
1371
1372                switch (clockid) {
1373                case CLOCK_REALTIME:
1374                        tk_offset = TK_OFFS_REAL;
1375                        break;
1376                case CLOCK_MONOTONIC:
1377                        tk_offset = TK_OFFS_MAX;
1378                        break;
1379                case CLOCK_BOOTTIME:
1380                        tk_offset = TK_OFFS_BOOT;
1381                        break;
1382                case CLOCK_TAI:
1383                        tk_offset = TK_OFFS_TAI;
1384                        break;
1385                default:
1386                        NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1387                        err = -EINVAL;
1388                        goto out;
1389                }
1390                /* This pairs with READ_ONCE() in taprio_mono_to_any */
1391                WRITE_ONCE(q->tk_offset, tk_offset);
1392
1393                q->clockid = clockid;
1394        } else {
1395                NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1396                goto out;
1397        }
1398
1399        /* Everything went ok, return success. */
1400        err = 0;
1401
1402out:
1403        return err;
1404}
1405
1406static int taprio_mqprio_cmp(const struct net_device *dev,
1407                             const struct tc_mqprio_qopt *mqprio)
1408{
1409        int i;
1410
1411        if (!mqprio || mqprio->num_tc != dev->num_tc)
1412                return -1;
1413
1414        for (i = 0; i < mqprio->num_tc; i++)
1415                if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1416                    dev->tc_to_txq[i].offset != mqprio->offset[i])
1417                        return -1;
1418
1419        for (i = 0; i <= TC_BITMASK; i++)
1420                if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1421                        return -1;
1422
1423        return 0;
1424}
1425
1426/* The semantics of the 'flags' argument in relation to 'change()'
1427 * requests, are interpreted following two rules (which are applied in
1428 * this order): (1) an omitted 'flags' argument is interpreted as
1429 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1430 * changed.
1431 */
1432static int taprio_new_flags(const struct nlattr *attr, u32 old,
1433                            struct netlink_ext_ack *extack)
1434{
1435        u32 new = 0;
1436
1437        if (attr)
1438                new = nla_get_u32(attr);
1439
1440        if (old != TAPRIO_FLAGS_INVALID && old != new) {
1441                NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1442                return -EOPNOTSUPP;
1443        }
1444
1445        if (!taprio_flags_valid(new)) {
1446                NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1447                return -EINVAL;
1448        }
1449
1450        return new;
1451}
1452
1453static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1454                         struct netlink_ext_ack *extack)
1455{
1456        struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1457        struct sched_gate_list *oper, *admin, *new_admin;
1458        struct taprio_sched *q = qdisc_priv(sch);
1459        struct net_device *dev = qdisc_dev(sch);
1460        struct tc_mqprio_qopt *mqprio = NULL;
1461        unsigned long flags;
1462        ktime_t start;
1463        int i, err;
1464
1465        err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1466                                          taprio_policy, extack);
1467        if (err < 0)
1468                return err;
1469
1470        if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1471                mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1472
1473        err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1474                               q->flags, extack);
1475        if (err < 0)
1476                return err;
1477
1478        q->flags = err;
1479
1480        err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1481        if (err < 0)
1482                return err;
1483
1484        new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1485        if (!new_admin) {
1486                NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1487                return -ENOMEM;
1488        }
1489        INIT_LIST_HEAD(&new_admin->entries);
1490
1491        rcu_read_lock();
1492        oper = rcu_dereference(q->oper_sched);
1493        admin = rcu_dereference(q->admin_sched);
1494        rcu_read_unlock();
1495
1496        /* no changes - no new mqprio settings */
1497        if (!taprio_mqprio_cmp(dev, mqprio))
1498                mqprio = NULL;
1499
1500        if (mqprio && (oper || admin)) {
1501                NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1502                err = -ENOTSUPP;
1503                goto free_sched;
1504        }
1505
1506        err = parse_taprio_schedule(q, tb, new_admin, extack);
1507        if (err < 0)
1508                goto free_sched;
1509
1510        if (new_admin->num_entries == 0) {
1511                NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1512                err = -EINVAL;
1513                goto free_sched;
1514        }
1515
1516        err = taprio_parse_clockid(sch, tb, extack);
1517        if (err < 0)
1518                goto free_sched;
1519
1520        taprio_set_picos_per_byte(dev, q);
1521
1522        if (mqprio) {
1523                err = netdev_set_num_tc(dev, mqprio->num_tc);
1524                if (err)
1525                        goto free_sched;
1526                for (i = 0; i < mqprio->num_tc; i++)
1527                        netdev_set_tc_queue(dev, i,
1528                                            mqprio->count[i],
1529                                            mqprio->offset[i]);
1530
1531                /* Always use supplied priority mappings */
1532                for (i = 0; i <= TC_BITMASK; i++)
1533                        netdev_set_prio_tc_map(dev, i,
1534                                               mqprio->prio_tc_map[i]);
1535        }
1536
1537        if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1538                err = taprio_enable_offload(dev, q, new_admin, extack);
1539        else
1540                err = taprio_disable_offload(dev, q, extack);
1541        if (err)
1542                goto free_sched;
1543
1544        /* Protects against enqueue()/dequeue() */
1545        spin_lock_bh(qdisc_lock(sch));
1546
1547        if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1548                if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1549                        NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1550                        err = -EINVAL;
1551                        goto unlock;
1552                }
1553
1554                q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1555        }
1556
1557        if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1558            !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1559            !hrtimer_active(&q->advance_timer)) {
1560                hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1561                q->advance_timer.function = advance_sched;
1562        }
1563
1564        if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1565                q->dequeue = taprio_dequeue_offload;
1566                q->peek = taprio_peek_offload;
1567        } else {
1568                /* Be sure to always keep the function pointers
1569                 * in a consistent state.
1570                 */
1571                q->dequeue = taprio_dequeue_soft;
1572                q->peek = taprio_peek_soft;
1573        }
1574
1575        err = taprio_get_start_time(sch, new_admin, &start);
1576        if (err < 0) {
1577                NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1578                goto unlock;
1579        }
1580
1581        setup_txtime(q, new_admin, start);
1582
1583        if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1584                if (!oper) {
1585                        rcu_assign_pointer(q->oper_sched, new_admin);
1586                        err = 0;
1587                        new_admin = NULL;
1588                        goto unlock;
1589                }
1590
1591                rcu_assign_pointer(q->admin_sched, new_admin);
1592                if (admin)
1593                        call_rcu(&admin->rcu, taprio_free_sched_cb);
1594        } else {
1595                setup_first_close_time(q, new_admin, start);
1596
1597                /* Protects against advance_sched() */
1598                spin_lock_irqsave(&q->current_entry_lock, flags);
1599
1600                taprio_start_sched(sch, start, new_admin);
1601
1602                rcu_assign_pointer(q->admin_sched, new_admin);
1603                if (admin)
1604                        call_rcu(&admin->rcu, taprio_free_sched_cb);
1605
1606                spin_unlock_irqrestore(&q->current_entry_lock, flags);
1607
1608                if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1609                        taprio_offload_config_changed(q);
1610        }
1611
1612        new_admin = NULL;
1613        err = 0;
1614
1615unlock:
1616        spin_unlock_bh(qdisc_lock(sch));
1617
1618free_sched:
1619        if (new_admin)
1620                call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1621
1622        return err;
1623}
1624
1625static void taprio_reset(struct Qdisc *sch)
1626{
1627        struct taprio_sched *q = qdisc_priv(sch);
1628        struct net_device *dev = qdisc_dev(sch);
1629        int i;
1630
1631        hrtimer_cancel(&q->advance_timer);
1632        if (q->qdiscs) {
1633                for (i = 0; i < dev->num_tx_queues; i++)
1634                        if (q->qdiscs[i])
1635                                qdisc_reset(q->qdiscs[i]);
1636        }
1637        sch->qstats.backlog = 0;
1638        sch->q.qlen = 0;
1639}
1640
1641static void taprio_destroy(struct Qdisc *sch)
1642{
1643        struct taprio_sched *q = qdisc_priv(sch);
1644        struct net_device *dev = qdisc_dev(sch);
1645        unsigned int i;
1646
1647        spin_lock(&taprio_list_lock);
1648        list_del(&q->taprio_list);
1649        spin_unlock(&taprio_list_lock);
1650
1651        /* Note that taprio_reset() might not be called if an error
1652         * happens in qdisc_create(), after taprio_init() has been called.
1653         */
1654        hrtimer_cancel(&q->advance_timer);
1655
1656        taprio_disable_offload(dev, q, NULL);
1657
1658        if (q->qdiscs) {
1659                for (i = 0; i < dev->num_tx_queues; i++)
1660                        qdisc_put(q->qdiscs[i]);
1661
1662                kfree(q->qdiscs);
1663        }
1664        q->qdiscs = NULL;
1665
1666        netdev_reset_tc(dev);
1667
1668        if (q->oper_sched)
1669                call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1670
1671        if (q->admin_sched)
1672                call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1673}
1674
1675static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1676                       struct netlink_ext_ack *extack)
1677{
1678        struct taprio_sched *q = qdisc_priv(sch);
1679        struct net_device *dev = qdisc_dev(sch);
1680        int i;
1681
1682        spin_lock_init(&q->current_entry_lock);
1683
1684        hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1685        q->advance_timer.function = advance_sched;
1686
1687        q->dequeue = taprio_dequeue_soft;
1688        q->peek = taprio_peek_soft;
1689
1690        q->root = sch;
1691
1692        /* We only support static clockids. Use an invalid value as default
1693         * and get the valid one on taprio_change().
1694         */
1695        q->clockid = -1;
1696        q->flags = TAPRIO_FLAGS_INVALID;
1697
1698        spin_lock(&taprio_list_lock);
1699        list_add(&q->taprio_list, &taprio_list);
1700        spin_unlock(&taprio_list_lock);
1701
1702        if (sch->parent != TC_H_ROOT)
1703                return -EOPNOTSUPP;
1704
1705        if (!netif_is_multiqueue(dev))
1706                return -EOPNOTSUPP;
1707
1708        /* pre-allocate qdisc, attachment can't fail */
1709        q->qdiscs = kcalloc(dev->num_tx_queues,
1710                            sizeof(q->qdiscs[0]),
1711                            GFP_KERNEL);
1712
1713        if (!q->qdiscs)
1714                return -ENOMEM;
1715
1716        if (!opt)
1717                return -EINVAL;
1718
1719        for (i = 0; i < dev->num_tx_queues; i++) {
1720                struct netdev_queue *dev_queue;
1721                struct Qdisc *qdisc;
1722
1723                dev_queue = netdev_get_tx_queue(dev, i);
1724                qdisc = qdisc_create_dflt(dev_queue,
1725                                          &pfifo_qdisc_ops,
1726                                          TC_H_MAKE(TC_H_MAJ(sch->handle),
1727                                                    TC_H_MIN(i + 1)),
1728                                          extack);
1729                if (!qdisc)
1730                        return -ENOMEM;
1731
1732                if (i < dev->real_num_tx_queues)
1733                        qdisc_hash_add(qdisc, false);
1734
1735                q->qdiscs[i] = qdisc;
1736        }
1737
1738        return taprio_change(sch, opt, extack);
1739}
1740
1741static void taprio_attach(struct Qdisc *sch)
1742{
1743        struct taprio_sched *q = qdisc_priv(sch);
1744        struct net_device *dev = qdisc_dev(sch);
1745        unsigned int ntx;
1746
1747        /* Attach underlying qdisc */
1748        for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1749                struct Qdisc *qdisc = q->qdiscs[ntx];
1750                struct Qdisc *old;
1751
1752                if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1753                        qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1754                        old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1755                } else {
1756                        old = dev_graft_qdisc(qdisc->dev_queue, sch);
1757                        qdisc_refcount_inc(sch);
1758                }
1759                if (old)
1760                        qdisc_put(old);
1761        }
1762
1763        /* access to the child qdiscs is not needed in offload mode */
1764        if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1765                kfree(q->qdiscs);
1766                q->qdiscs = NULL;
1767        }
1768}
1769
1770static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1771                                             unsigned long cl)
1772{
1773        struct net_device *dev = qdisc_dev(sch);
1774        unsigned long ntx = cl - 1;
1775
1776        if (ntx >= dev->num_tx_queues)
1777                return NULL;
1778
1779        return netdev_get_tx_queue(dev, ntx);
1780}
1781
1782static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1783                        struct Qdisc *new, struct Qdisc **old,
1784                        struct netlink_ext_ack *extack)
1785{
1786        struct taprio_sched *q = qdisc_priv(sch);
1787        struct net_device *dev = qdisc_dev(sch);
1788        struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1789
1790        if (!dev_queue)
1791                return -EINVAL;
1792
1793        if (dev->flags & IFF_UP)
1794                dev_deactivate(dev);
1795
1796        if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1797                *old = dev_graft_qdisc(dev_queue, new);
1798        } else {
1799                *old = q->qdiscs[cl - 1];
1800                q->qdiscs[cl - 1] = new;
1801        }
1802
1803        if (new)
1804                new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1805
1806        if (dev->flags & IFF_UP)
1807                dev_activate(dev);
1808
1809        return 0;
1810}
1811
1812static int dump_entry(struct sk_buff *msg,
1813                      const struct sched_entry *entry)
1814{
1815        struct nlattr *item;
1816
1817        item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1818        if (!item)
1819                return -ENOSPC;
1820
1821        if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1822                goto nla_put_failure;
1823
1824        if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1825                goto nla_put_failure;
1826
1827        if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1828                        entry->gate_mask))
1829                goto nla_put_failure;
1830
1831        if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1832                        entry->interval))
1833                goto nla_put_failure;
1834
1835        return nla_nest_end(msg, item);
1836
1837nla_put_failure:
1838        nla_nest_cancel(msg, item);
1839        return -1;
1840}
1841
1842static int dump_schedule(struct sk_buff *msg,
1843                         const struct sched_gate_list *root)
1844{
1845        struct nlattr *entry_list;
1846        struct sched_entry *entry;
1847
1848        if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1849                        root->base_time, TCA_TAPRIO_PAD))
1850                return -1;
1851
1852        if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1853                        root->cycle_time, TCA_TAPRIO_PAD))
1854                return -1;
1855
1856        if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1857                        root->cycle_time_extension, TCA_TAPRIO_PAD))
1858                return -1;
1859
1860        entry_list = nla_nest_start_noflag(msg,
1861                                           TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1862        if (!entry_list)
1863                goto error_nest;
1864
1865        list_for_each_entry(entry, &root->entries, list) {
1866                if (dump_entry(msg, entry) < 0)
1867                        goto error_nest;
1868        }
1869
1870        nla_nest_end(msg, entry_list);
1871        return 0;
1872
1873error_nest:
1874        nla_nest_cancel(msg, entry_list);
1875        return -1;
1876}
1877
1878static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1879{
1880        struct taprio_sched *q = qdisc_priv(sch);
1881        struct net_device *dev = qdisc_dev(sch);
1882        struct sched_gate_list *oper, *admin;
1883        struct tc_mqprio_qopt opt = { 0 };
1884        struct nlattr *nest, *sched_nest;
1885        unsigned int i;
1886
1887        rcu_read_lock();
1888        oper = rcu_dereference(q->oper_sched);
1889        admin = rcu_dereference(q->admin_sched);
1890
1891        opt.num_tc = netdev_get_num_tc(dev);
1892        memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1893
1894        for (i = 0; i < netdev_get_num_tc(dev); i++) {
1895                opt.count[i] = dev->tc_to_txq[i].count;
1896                opt.offset[i] = dev->tc_to_txq[i].offset;
1897        }
1898
1899        nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1900        if (!nest)
1901                goto start_error;
1902
1903        if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1904                goto options_error;
1905
1906        if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1907            nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1908                goto options_error;
1909
1910        if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1911                goto options_error;
1912
1913        if (q->txtime_delay &&
1914            nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1915                goto options_error;
1916
1917        if (oper && dump_schedule(skb, oper))
1918                goto options_error;
1919
1920        if (!admin)
1921                goto done;
1922
1923        sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1924        if (!sched_nest)
1925                goto options_error;
1926
1927        if (dump_schedule(skb, admin))
1928                goto admin_error;
1929
1930        nla_nest_end(skb, sched_nest);
1931
1932done:
1933        rcu_read_unlock();
1934
1935        return nla_nest_end(skb, nest);
1936
1937admin_error:
1938        nla_nest_cancel(skb, sched_nest);
1939
1940options_error:
1941        nla_nest_cancel(skb, nest);
1942
1943start_error:
1944        rcu_read_unlock();
1945        return -ENOSPC;
1946}
1947
1948static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1949{
1950        struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1951
1952        if (!dev_queue)
1953                return NULL;
1954
1955        return dev_queue->qdisc_sleeping;
1956}
1957
1958static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1959{
1960        unsigned int ntx = TC_H_MIN(classid);
1961
1962        if (!taprio_queue_get(sch, ntx))
1963                return 0;
1964        return ntx;
1965}
1966
1967static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1968                             struct sk_buff *skb, struct tcmsg *tcm)
1969{
1970        struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1971
1972        tcm->tcm_parent = TC_H_ROOT;
1973        tcm->tcm_handle |= TC_H_MIN(cl);
1974        tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1975
1976        return 0;
1977}
1978
1979static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1980                                   struct gnet_dump *d)
1981        __releases(d->lock)
1982        __acquires(d->lock)
1983{
1984        struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1985
1986        sch = dev_queue->qdisc_sleeping;
1987        if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
1988            qdisc_qstats_copy(d, sch) < 0)
1989                return -1;
1990        return 0;
1991}
1992
1993static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1994{
1995        struct net_device *dev = qdisc_dev(sch);
1996        unsigned long ntx;
1997
1998        if (arg->stop)
1999                return;
2000
2001        arg->count = arg->skip;
2002        for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2003                if (arg->fn(sch, ntx + 1, arg) < 0) {
2004                        arg->stop = 1;
2005                        break;
2006                }
2007                arg->count++;
2008        }
2009}
2010
2011static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2012                                                struct tcmsg *tcm)
2013{
2014        return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2015}
2016
2017static const struct Qdisc_class_ops taprio_class_ops = {
2018        .graft          = taprio_graft,
2019        .leaf           = taprio_leaf,
2020        .find           = taprio_find,
2021        .walk           = taprio_walk,
2022        .dump           = taprio_dump_class,
2023        .dump_stats     = taprio_dump_class_stats,
2024        .select_queue   = taprio_select_queue,
2025};
2026
2027static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2028        .cl_ops         = &taprio_class_ops,
2029        .id             = "taprio",
2030        .priv_size      = sizeof(struct taprio_sched),
2031        .init           = taprio_init,
2032        .change         = taprio_change,
2033        .destroy        = taprio_destroy,
2034        .reset          = taprio_reset,
2035        .attach         = taprio_attach,
2036        .peek           = taprio_peek,
2037        .dequeue        = taprio_dequeue,
2038        .enqueue        = taprio_enqueue,
2039        .dump           = taprio_dump,
2040        .owner          = THIS_MODULE,
2041};
2042
2043static struct notifier_block taprio_device_notifier = {
2044        .notifier_call = taprio_dev_notifier,
2045};
2046
2047static int __init taprio_module_init(void)
2048{
2049        int err = register_netdevice_notifier(&taprio_device_notifier);
2050
2051        if (err)
2052                return err;
2053
2054        return register_qdisc(&taprio_qdisc_ops);
2055}
2056
2057static void __exit taprio_module_exit(void)
2058{
2059        unregister_qdisc(&taprio_qdisc_ops);
2060        unregister_netdevice_notifier(&taprio_device_notifier);
2061}
2062
2063module_init(taprio_module_init);
2064module_exit(taprio_module_exit);
2065MODULE_LICENSE("GPL");
2066