linux/net/sunrpc/cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sunrpc/cache.c
   4 *
   5 * Generic code for various authentication-related caches
   6 * used by sunrpc clients and servers.
   7 *
   8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   9 */
  10
  11#include <linux/types.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/slab.h>
  15#include <linux/signal.h>
  16#include <linux/sched.h>
  17#include <linux/kmod.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/ctype.h>
  21#include <linux/string_helpers.h>
  22#include <linux/uaccess.h>
  23#include <linux/poll.h>
  24#include <linux/seq_file.h>
  25#include <linux/proc_fs.h>
  26#include <linux/net.h>
  27#include <linux/workqueue.h>
  28#include <linux/mutex.h>
  29#include <linux/pagemap.h>
  30#include <asm/ioctls.h>
  31#include <linux/sunrpc/types.h>
  32#include <linux/sunrpc/cache.h>
  33#include <linux/sunrpc/stats.h>
  34#include <linux/sunrpc/rpc_pipe_fs.h>
  35#include <trace/events/sunrpc.h>
  36#include "netns.h"
  37
  38#define  RPCDBG_FACILITY RPCDBG_CACHE
  39
  40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  41static void cache_revisit_request(struct cache_head *item);
  42
  43static void cache_init(struct cache_head *h, struct cache_detail *detail)
  44{
  45        time64_t now = seconds_since_boot();
  46        INIT_HLIST_NODE(&h->cache_list);
  47        h->flags = 0;
  48        kref_init(&h->ref);
  49        h->expiry_time = now + CACHE_NEW_EXPIRY;
  50        if (now <= detail->flush_time)
  51                /* ensure it isn't already expired */
  52                now = detail->flush_time + 1;
  53        h->last_refresh = now;
  54}
  55
  56static void cache_fresh_unlocked(struct cache_head *head,
  57                                struct cache_detail *detail);
  58
  59static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
  60                                                struct cache_head *key,
  61                                                int hash)
  62{
  63        struct hlist_head *head = &detail->hash_table[hash];
  64        struct cache_head *tmp;
  65
  66        rcu_read_lock();
  67        hlist_for_each_entry_rcu(tmp, head, cache_list) {
  68                if (!detail->match(tmp, key))
  69                        continue;
  70                if (test_bit(CACHE_VALID, &tmp->flags) &&
  71                    cache_is_expired(detail, tmp))
  72                        continue;
  73                tmp = cache_get_rcu(tmp);
  74                rcu_read_unlock();
  75                return tmp;
  76        }
  77        rcu_read_unlock();
  78        return NULL;
  79}
  80
  81static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
  82                                            struct cache_detail *cd)
  83{
  84        /* Must be called under cd->hash_lock */
  85        hlist_del_init_rcu(&ch->cache_list);
  86        set_bit(CACHE_CLEANED, &ch->flags);
  87        cd->entries --;
  88}
  89
  90static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
  91                                          struct cache_detail *cd)
  92{
  93        cache_fresh_unlocked(ch, cd);
  94        cache_put(ch, cd);
  95}
  96
  97static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
  98                                                 struct cache_head *key,
  99                                                 int hash)
 100{
 101        struct cache_head *new, *tmp, *freeme = NULL;
 102        struct hlist_head *head = &detail->hash_table[hash];
 103
 104        new = detail->alloc();
 105        if (!new)
 106                return NULL;
 107        /* must fully initialise 'new', else
 108         * we might get lose if we need to
 109         * cache_put it soon.
 110         */
 111        cache_init(new, detail);
 112        detail->init(new, key);
 113
 114        spin_lock(&detail->hash_lock);
 115
 116        /* check if entry appeared while we slept */
 117        hlist_for_each_entry_rcu(tmp, head, cache_list,
 118                                 lockdep_is_held(&detail->hash_lock)) {
 119                if (!detail->match(tmp, key))
 120                        continue;
 121                if (test_bit(CACHE_VALID, &tmp->flags) &&
 122                    cache_is_expired(detail, tmp)) {
 123                        sunrpc_begin_cache_remove_entry(tmp, detail);
 124                        trace_cache_entry_expired(detail, tmp);
 125                        freeme = tmp;
 126                        break;
 127                }
 128                cache_get(tmp);
 129                spin_unlock(&detail->hash_lock);
 130                cache_put(new, detail);
 131                return tmp;
 132        }
 133
 134        hlist_add_head_rcu(&new->cache_list, head);
 135        detail->entries++;
 136        cache_get(new);
 137        spin_unlock(&detail->hash_lock);
 138
 139        if (freeme)
 140                sunrpc_end_cache_remove_entry(freeme, detail);
 141        return new;
 142}
 143
 144struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
 145                                           struct cache_head *key, int hash)
 146{
 147        struct cache_head *ret;
 148
 149        ret = sunrpc_cache_find_rcu(detail, key, hash);
 150        if (ret)
 151                return ret;
 152        /* Didn't find anything, insert an empty entry */
 153        return sunrpc_cache_add_entry(detail, key, hash);
 154}
 155EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
 156
 157static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 158
 159static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
 160                               struct cache_detail *detail)
 161{
 162        time64_t now = seconds_since_boot();
 163        if (now <= detail->flush_time)
 164                /* ensure it isn't immediately treated as expired */
 165                now = detail->flush_time + 1;
 166        head->expiry_time = expiry;
 167        head->last_refresh = now;
 168        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 169        set_bit(CACHE_VALID, &head->flags);
 170}
 171
 172static void cache_fresh_unlocked(struct cache_head *head,
 173                                 struct cache_detail *detail)
 174{
 175        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 176                cache_revisit_request(head);
 177                cache_dequeue(detail, head);
 178        }
 179}
 180
 181static void cache_make_negative(struct cache_detail *detail,
 182                                struct cache_head *h)
 183{
 184        set_bit(CACHE_NEGATIVE, &h->flags);
 185        trace_cache_entry_make_negative(detail, h);
 186}
 187
 188static void cache_entry_update(struct cache_detail *detail,
 189                               struct cache_head *h,
 190                               struct cache_head *new)
 191{
 192        if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
 193                detail->update(h, new);
 194                trace_cache_entry_update(detail, h);
 195        } else {
 196                cache_make_negative(detail, h);
 197        }
 198}
 199
 200struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 201                                       struct cache_head *new, struct cache_head *old, int hash)
 202{
 203        /* The 'old' entry is to be replaced by 'new'.
 204         * If 'old' is not VALID, we update it directly,
 205         * otherwise we need to replace it
 206         */
 207        struct cache_head *tmp;
 208
 209        if (!test_bit(CACHE_VALID, &old->flags)) {
 210                spin_lock(&detail->hash_lock);
 211                if (!test_bit(CACHE_VALID, &old->flags)) {
 212                        cache_entry_update(detail, old, new);
 213                        cache_fresh_locked(old, new->expiry_time, detail);
 214                        spin_unlock(&detail->hash_lock);
 215                        cache_fresh_unlocked(old, detail);
 216                        return old;
 217                }
 218                spin_unlock(&detail->hash_lock);
 219        }
 220        /* We need to insert a new entry */
 221        tmp = detail->alloc();
 222        if (!tmp) {
 223                cache_put(old, detail);
 224                return NULL;
 225        }
 226        cache_init(tmp, detail);
 227        detail->init(tmp, old);
 228
 229        spin_lock(&detail->hash_lock);
 230        cache_entry_update(detail, tmp, new);
 231        hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
 232        detail->entries++;
 233        cache_get(tmp);
 234        cache_fresh_locked(tmp, new->expiry_time, detail);
 235        cache_fresh_locked(old, 0, detail);
 236        spin_unlock(&detail->hash_lock);
 237        cache_fresh_unlocked(tmp, detail);
 238        cache_fresh_unlocked(old, detail);
 239        cache_put(old, detail);
 240        return tmp;
 241}
 242EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 243
 244static inline int cache_is_valid(struct cache_head *h)
 245{
 246        if (!test_bit(CACHE_VALID, &h->flags))
 247                return -EAGAIN;
 248        else {
 249                /* entry is valid */
 250                if (test_bit(CACHE_NEGATIVE, &h->flags))
 251                        return -ENOENT;
 252                else {
 253                        /*
 254                         * In combination with write barrier in
 255                         * sunrpc_cache_update, ensures that anyone
 256                         * using the cache entry after this sees the
 257                         * updated contents:
 258                         */
 259                        smp_rmb();
 260                        return 0;
 261                }
 262        }
 263}
 264
 265static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 266{
 267        int rv;
 268
 269        spin_lock(&detail->hash_lock);
 270        rv = cache_is_valid(h);
 271        if (rv == -EAGAIN) {
 272                cache_make_negative(detail, h);
 273                cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
 274                                   detail);
 275                rv = -ENOENT;
 276        }
 277        spin_unlock(&detail->hash_lock);
 278        cache_fresh_unlocked(h, detail);
 279        return rv;
 280}
 281
 282/*
 283 * This is the generic cache management routine for all
 284 * the authentication caches.
 285 * It checks the currency of a cache item and will (later)
 286 * initiate an upcall to fill it if needed.
 287 *
 288 *
 289 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 290 * -EAGAIN if upcall is pending and request has been queued
 291 * -ETIMEDOUT if upcall failed or request could not be queue or
 292 *           upcall completed but item is still invalid (implying that
 293 *           the cache item has been replaced with a newer one).
 294 * -ENOENT if cache entry was negative
 295 */
 296int cache_check(struct cache_detail *detail,
 297                    struct cache_head *h, struct cache_req *rqstp)
 298{
 299        int rv;
 300        time64_t refresh_age, age;
 301
 302        /* First decide return status as best we can */
 303        rv = cache_is_valid(h);
 304
 305        /* now see if we want to start an upcall */
 306        refresh_age = (h->expiry_time - h->last_refresh);
 307        age = seconds_since_boot() - h->last_refresh;
 308
 309        if (rqstp == NULL) {
 310                if (rv == -EAGAIN)
 311                        rv = -ENOENT;
 312        } else if (rv == -EAGAIN ||
 313                   (h->expiry_time != 0 && age > refresh_age/2)) {
 314                dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
 315                                refresh_age, age);
 316                switch (detail->cache_upcall(detail, h)) {
 317                case -EINVAL:
 318                        rv = try_to_negate_entry(detail, h);
 319                        break;
 320                case -EAGAIN:
 321                        cache_fresh_unlocked(h, detail);
 322                        break;
 323                }
 324        }
 325
 326        if (rv == -EAGAIN) {
 327                if (!cache_defer_req(rqstp, h)) {
 328                        /*
 329                         * Request was not deferred; handle it as best
 330                         * we can ourselves:
 331                         */
 332                        rv = cache_is_valid(h);
 333                        if (rv == -EAGAIN)
 334                                rv = -ETIMEDOUT;
 335                }
 336        }
 337        if (rv)
 338                cache_put(h, detail);
 339        return rv;
 340}
 341EXPORT_SYMBOL_GPL(cache_check);
 342
 343/*
 344 * caches need to be periodically cleaned.
 345 * For this we maintain a list of cache_detail and
 346 * a current pointer into that list and into the table
 347 * for that entry.
 348 *
 349 * Each time cache_clean is called it finds the next non-empty entry
 350 * in the current table and walks the list in that entry
 351 * looking for entries that can be removed.
 352 *
 353 * An entry gets removed if:
 354 * - The expiry is before current time
 355 * - The last_refresh time is before the flush_time for that cache
 356 *
 357 * later we might drop old entries with non-NEVER expiry if that table
 358 * is getting 'full' for some definition of 'full'
 359 *
 360 * The question of "how often to scan a table" is an interesting one
 361 * and is answered in part by the use of the "nextcheck" field in the
 362 * cache_detail.
 363 * When a scan of a table begins, the nextcheck field is set to a time
 364 * that is well into the future.
 365 * While scanning, if an expiry time is found that is earlier than the
 366 * current nextcheck time, nextcheck is set to that expiry time.
 367 * If the flush_time is ever set to a time earlier than the nextcheck
 368 * time, the nextcheck time is then set to that flush_time.
 369 *
 370 * A table is then only scanned if the current time is at least
 371 * the nextcheck time.
 372 *
 373 */
 374
 375static LIST_HEAD(cache_list);
 376static DEFINE_SPINLOCK(cache_list_lock);
 377static struct cache_detail *current_detail;
 378static int current_index;
 379
 380static void do_cache_clean(struct work_struct *work);
 381static struct delayed_work cache_cleaner;
 382
 383void sunrpc_init_cache_detail(struct cache_detail *cd)
 384{
 385        spin_lock_init(&cd->hash_lock);
 386        INIT_LIST_HEAD(&cd->queue);
 387        spin_lock(&cache_list_lock);
 388        cd->nextcheck = 0;
 389        cd->entries = 0;
 390        atomic_set(&cd->writers, 0);
 391        cd->last_close = 0;
 392        cd->last_warn = -1;
 393        list_add(&cd->others, &cache_list);
 394        spin_unlock(&cache_list_lock);
 395
 396        /* start the cleaning process */
 397        queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
 398}
 399EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 400
 401void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 402{
 403        cache_purge(cd);
 404        spin_lock(&cache_list_lock);
 405        spin_lock(&cd->hash_lock);
 406        if (current_detail == cd)
 407                current_detail = NULL;
 408        list_del_init(&cd->others);
 409        spin_unlock(&cd->hash_lock);
 410        spin_unlock(&cache_list_lock);
 411        if (list_empty(&cache_list)) {
 412                /* module must be being unloaded so its safe to kill the worker */
 413                cancel_delayed_work_sync(&cache_cleaner);
 414        }
 415}
 416EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 417
 418/* clean cache tries to find something to clean
 419 * and cleans it.
 420 * It returns 1 if it cleaned something,
 421 *            0 if it didn't find anything this time
 422 *           -1 if it fell off the end of the list.
 423 */
 424static int cache_clean(void)
 425{
 426        int rv = 0;
 427        struct list_head *next;
 428
 429        spin_lock(&cache_list_lock);
 430
 431        /* find a suitable table if we don't already have one */
 432        while (current_detail == NULL ||
 433            current_index >= current_detail->hash_size) {
 434                if (current_detail)
 435                        next = current_detail->others.next;
 436                else
 437                        next = cache_list.next;
 438                if (next == &cache_list) {
 439                        current_detail = NULL;
 440                        spin_unlock(&cache_list_lock);
 441                        return -1;
 442                }
 443                current_detail = list_entry(next, struct cache_detail, others);
 444                if (current_detail->nextcheck > seconds_since_boot())
 445                        current_index = current_detail->hash_size;
 446                else {
 447                        current_index = 0;
 448                        current_detail->nextcheck = seconds_since_boot()+30*60;
 449                }
 450        }
 451
 452        /* find a non-empty bucket in the table */
 453        while (current_detail &&
 454               current_index < current_detail->hash_size &&
 455               hlist_empty(&current_detail->hash_table[current_index]))
 456                current_index++;
 457
 458        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 459
 460        if (current_detail && current_index < current_detail->hash_size) {
 461                struct cache_head *ch = NULL;
 462                struct cache_detail *d;
 463                struct hlist_head *head;
 464                struct hlist_node *tmp;
 465
 466                spin_lock(&current_detail->hash_lock);
 467
 468                /* Ok, now to clean this strand */
 469
 470                head = &current_detail->hash_table[current_index];
 471                hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
 472                        if (current_detail->nextcheck > ch->expiry_time)
 473                                current_detail->nextcheck = ch->expiry_time+1;
 474                        if (!cache_is_expired(current_detail, ch))
 475                                continue;
 476
 477                        sunrpc_begin_cache_remove_entry(ch, current_detail);
 478                        trace_cache_entry_expired(current_detail, ch);
 479                        rv = 1;
 480                        break;
 481                }
 482
 483                spin_unlock(&current_detail->hash_lock);
 484                d = current_detail;
 485                if (!ch)
 486                        current_index ++;
 487                spin_unlock(&cache_list_lock);
 488                if (ch)
 489                        sunrpc_end_cache_remove_entry(ch, d);
 490        } else
 491                spin_unlock(&cache_list_lock);
 492
 493        return rv;
 494}
 495
 496/*
 497 * We want to regularly clean the cache, so we need to schedule some work ...
 498 */
 499static void do_cache_clean(struct work_struct *work)
 500{
 501        int delay;
 502
 503        if (list_empty(&cache_list))
 504                return;
 505
 506        if (cache_clean() == -1)
 507                delay = round_jiffies_relative(30*HZ);
 508        else
 509                delay = 5;
 510
 511        queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
 512}
 513
 514
 515/*
 516 * Clean all caches promptly.  This just calls cache_clean
 517 * repeatedly until we are sure that every cache has had a chance to
 518 * be fully cleaned
 519 */
 520void cache_flush(void)
 521{
 522        while (cache_clean() != -1)
 523                cond_resched();
 524        while (cache_clean() != -1)
 525                cond_resched();
 526}
 527EXPORT_SYMBOL_GPL(cache_flush);
 528
 529void cache_purge(struct cache_detail *detail)
 530{
 531        struct cache_head *ch = NULL;
 532        struct hlist_head *head = NULL;
 533        int i = 0;
 534
 535        spin_lock(&detail->hash_lock);
 536        if (!detail->entries) {
 537                spin_unlock(&detail->hash_lock);
 538                return;
 539        }
 540
 541        dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
 542        for (i = 0; i < detail->hash_size; i++) {
 543                head = &detail->hash_table[i];
 544                while (!hlist_empty(head)) {
 545                        ch = hlist_entry(head->first, struct cache_head,
 546                                         cache_list);
 547                        sunrpc_begin_cache_remove_entry(ch, detail);
 548                        spin_unlock(&detail->hash_lock);
 549                        sunrpc_end_cache_remove_entry(ch, detail);
 550                        spin_lock(&detail->hash_lock);
 551                }
 552        }
 553        spin_unlock(&detail->hash_lock);
 554}
 555EXPORT_SYMBOL_GPL(cache_purge);
 556
 557
 558/*
 559 * Deferral and Revisiting of Requests.
 560 *
 561 * If a cache lookup finds a pending entry, we
 562 * need to defer the request and revisit it later.
 563 * All deferred requests are stored in a hash table,
 564 * indexed by "struct cache_head *".
 565 * As it may be wasteful to store a whole request
 566 * structure, we allow the request to provide a
 567 * deferred form, which must contain a
 568 * 'struct cache_deferred_req'
 569 * This cache_deferred_req contains a method to allow
 570 * it to be revisited when cache info is available
 571 */
 572
 573#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 574#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 575
 576#define DFR_MAX 300     /* ??? */
 577
 578static DEFINE_SPINLOCK(cache_defer_lock);
 579static LIST_HEAD(cache_defer_list);
 580static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 581static int cache_defer_cnt;
 582
 583static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 584{
 585        hlist_del_init(&dreq->hash);
 586        if (!list_empty(&dreq->recent)) {
 587                list_del_init(&dreq->recent);
 588                cache_defer_cnt--;
 589        }
 590}
 591
 592static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 593{
 594        int hash = DFR_HASH(item);
 595
 596        INIT_LIST_HEAD(&dreq->recent);
 597        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 598}
 599
 600static void setup_deferral(struct cache_deferred_req *dreq,
 601                           struct cache_head *item,
 602                           int count_me)
 603{
 604
 605        dreq->item = item;
 606
 607        spin_lock(&cache_defer_lock);
 608
 609        __hash_deferred_req(dreq, item);
 610
 611        if (count_me) {
 612                cache_defer_cnt++;
 613                list_add(&dreq->recent, &cache_defer_list);
 614        }
 615
 616        spin_unlock(&cache_defer_lock);
 617
 618}
 619
 620struct thread_deferred_req {
 621        struct cache_deferred_req handle;
 622        struct completion completion;
 623};
 624
 625static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 626{
 627        struct thread_deferred_req *dr =
 628                container_of(dreq, struct thread_deferred_req, handle);
 629        complete(&dr->completion);
 630}
 631
 632static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 633{
 634        struct thread_deferred_req sleeper;
 635        struct cache_deferred_req *dreq = &sleeper.handle;
 636
 637        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 638        dreq->revisit = cache_restart_thread;
 639
 640        setup_deferral(dreq, item, 0);
 641
 642        if (!test_bit(CACHE_PENDING, &item->flags) ||
 643            wait_for_completion_interruptible_timeout(
 644                    &sleeper.completion, req->thread_wait) <= 0) {
 645                /* The completion wasn't completed, so we need
 646                 * to clean up
 647                 */
 648                spin_lock(&cache_defer_lock);
 649                if (!hlist_unhashed(&sleeper.handle.hash)) {
 650                        __unhash_deferred_req(&sleeper.handle);
 651                        spin_unlock(&cache_defer_lock);
 652                } else {
 653                        /* cache_revisit_request already removed
 654                         * this from the hash table, but hasn't
 655                         * called ->revisit yet.  It will very soon
 656                         * and we need to wait for it.
 657                         */
 658                        spin_unlock(&cache_defer_lock);
 659                        wait_for_completion(&sleeper.completion);
 660                }
 661        }
 662}
 663
 664static void cache_limit_defers(void)
 665{
 666        /* Make sure we haven't exceed the limit of allowed deferred
 667         * requests.
 668         */
 669        struct cache_deferred_req *discard = NULL;
 670
 671        if (cache_defer_cnt <= DFR_MAX)
 672                return;
 673
 674        spin_lock(&cache_defer_lock);
 675
 676        /* Consider removing either the first or the last */
 677        if (cache_defer_cnt > DFR_MAX) {
 678                if (prandom_u32() & 1)
 679                        discard = list_entry(cache_defer_list.next,
 680                                             struct cache_deferred_req, recent);
 681                else
 682                        discard = list_entry(cache_defer_list.prev,
 683                                             struct cache_deferred_req, recent);
 684                __unhash_deferred_req(discard);
 685        }
 686        spin_unlock(&cache_defer_lock);
 687        if (discard)
 688                discard->revisit(discard, 1);
 689}
 690
 691/* Return true if and only if a deferred request is queued. */
 692static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 693{
 694        struct cache_deferred_req *dreq;
 695
 696        if (req->thread_wait) {
 697                cache_wait_req(req, item);
 698                if (!test_bit(CACHE_PENDING, &item->flags))
 699                        return false;
 700        }
 701        dreq = req->defer(req);
 702        if (dreq == NULL)
 703                return false;
 704        setup_deferral(dreq, item, 1);
 705        if (!test_bit(CACHE_PENDING, &item->flags))
 706                /* Bit could have been cleared before we managed to
 707                 * set up the deferral, so need to revisit just in case
 708                 */
 709                cache_revisit_request(item);
 710
 711        cache_limit_defers();
 712        return true;
 713}
 714
 715static void cache_revisit_request(struct cache_head *item)
 716{
 717        struct cache_deferred_req *dreq;
 718        struct list_head pending;
 719        struct hlist_node *tmp;
 720        int hash = DFR_HASH(item);
 721
 722        INIT_LIST_HEAD(&pending);
 723        spin_lock(&cache_defer_lock);
 724
 725        hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 726                if (dreq->item == item) {
 727                        __unhash_deferred_req(dreq);
 728                        list_add(&dreq->recent, &pending);
 729                }
 730
 731        spin_unlock(&cache_defer_lock);
 732
 733        while (!list_empty(&pending)) {
 734                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 735                list_del_init(&dreq->recent);
 736                dreq->revisit(dreq, 0);
 737        }
 738}
 739
 740void cache_clean_deferred(void *owner)
 741{
 742        struct cache_deferred_req *dreq, *tmp;
 743        struct list_head pending;
 744
 745
 746        INIT_LIST_HEAD(&pending);
 747        spin_lock(&cache_defer_lock);
 748
 749        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 750                if (dreq->owner == owner) {
 751                        __unhash_deferred_req(dreq);
 752                        list_add(&dreq->recent, &pending);
 753                }
 754        }
 755        spin_unlock(&cache_defer_lock);
 756
 757        while (!list_empty(&pending)) {
 758                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 759                list_del_init(&dreq->recent);
 760                dreq->revisit(dreq, 1);
 761        }
 762}
 763
 764/*
 765 * communicate with user-space
 766 *
 767 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
 768 * On read, you get a full request, or block.
 769 * On write, an update request is processed.
 770 * Poll works if anything to read, and always allows write.
 771 *
 772 * Implemented by linked list of requests.  Each open file has
 773 * a ->private that also exists in this list.  New requests are added
 774 * to the end and may wakeup and preceding readers.
 775 * New readers are added to the head.  If, on read, an item is found with
 776 * CACHE_UPCALLING clear, we free it from the list.
 777 *
 778 */
 779
 780static DEFINE_SPINLOCK(queue_lock);
 781
 782struct cache_queue {
 783        struct list_head        list;
 784        int                     reader; /* if 0, then request */
 785};
 786struct cache_request {
 787        struct cache_queue      q;
 788        struct cache_head       *item;
 789        char                    * buf;
 790        int                     len;
 791        int                     readers;
 792};
 793struct cache_reader {
 794        struct cache_queue      q;
 795        int                     offset; /* if non-0, we have a refcnt on next request */
 796};
 797
 798static int cache_request(struct cache_detail *detail,
 799                               struct cache_request *crq)
 800{
 801        char *bp = crq->buf;
 802        int len = PAGE_SIZE;
 803
 804        detail->cache_request(detail, crq->item, &bp, &len);
 805        if (len < 0)
 806                return -E2BIG;
 807        return PAGE_SIZE - len;
 808}
 809
 810static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 811                          loff_t *ppos, struct cache_detail *cd)
 812{
 813        struct cache_reader *rp = filp->private_data;
 814        struct cache_request *rq;
 815        struct inode *inode = file_inode(filp);
 816        int err;
 817
 818        if (count == 0)
 819                return 0;
 820
 821        inode_lock(inode); /* protect against multiple concurrent
 822                              * readers on this file */
 823 again:
 824        spin_lock(&queue_lock);
 825        /* need to find next request */
 826        while (rp->q.list.next != &cd->queue &&
 827               list_entry(rp->q.list.next, struct cache_queue, list)
 828               ->reader) {
 829                struct list_head *next = rp->q.list.next;
 830                list_move(&rp->q.list, next);
 831        }
 832        if (rp->q.list.next == &cd->queue) {
 833                spin_unlock(&queue_lock);
 834                inode_unlock(inode);
 835                WARN_ON_ONCE(rp->offset);
 836                return 0;
 837        }
 838        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 839        WARN_ON_ONCE(rq->q.reader);
 840        if (rp->offset == 0)
 841                rq->readers++;
 842        spin_unlock(&queue_lock);
 843
 844        if (rq->len == 0) {
 845                err = cache_request(cd, rq);
 846                if (err < 0)
 847                        goto out;
 848                rq->len = err;
 849        }
 850
 851        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 852                err = -EAGAIN;
 853                spin_lock(&queue_lock);
 854                list_move(&rp->q.list, &rq->q.list);
 855                spin_unlock(&queue_lock);
 856        } else {
 857                if (rp->offset + count > rq->len)
 858                        count = rq->len - rp->offset;
 859                err = -EFAULT;
 860                if (copy_to_user(buf, rq->buf + rp->offset, count))
 861                        goto out;
 862                rp->offset += count;
 863                if (rp->offset >= rq->len) {
 864                        rp->offset = 0;
 865                        spin_lock(&queue_lock);
 866                        list_move(&rp->q.list, &rq->q.list);
 867                        spin_unlock(&queue_lock);
 868                }
 869                err = 0;
 870        }
 871 out:
 872        if (rp->offset == 0) {
 873                /* need to release rq */
 874                spin_lock(&queue_lock);
 875                rq->readers--;
 876                if (rq->readers == 0 &&
 877                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 878                        list_del(&rq->q.list);
 879                        spin_unlock(&queue_lock);
 880                        cache_put(rq->item, cd);
 881                        kfree(rq->buf);
 882                        kfree(rq);
 883                } else
 884                        spin_unlock(&queue_lock);
 885        }
 886        if (err == -EAGAIN)
 887                goto again;
 888        inode_unlock(inode);
 889        return err ? err :  count;
 890}
 891
 892static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 893                                 size_t count, struct cache_detail *cd)
 894{
 895        ssize_t ret;
 896
 897        if (count == 0)
 898                return -EINVAL;
 899        if (copy_from_user(kaddr, buf, count))
 900                return -EFAULT;
 901        kaddr[count] = '\0';
 902        ret = cd->cache_parse(cd, kaddr, count);
 903        if (!ret)
 904                ret = count;
 905        return ret;
 906}
 907
 908static ssize_t cache_downcall(struct address_space *mapping,
 909                              const char __user *buf,
 910                              size_t count, struct cache_detail *cd)
 911{
 912        char *write_buf;
 913        ssize_t ret = -ENOMEM;
 914
 915        if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */
 916                ret = -EINVAL;
 917                goto out;
 918        }
 919
 920        write_buf = kvmalloc(count + 1, GFP_KERNEL);
 921        if (!write_buf)
 922                goto out;
 923
 924        ret = cache_do_downcall(write_buf, buf, count, cd);
 925        kvfree(write_buf);
 926out:
 927        return ret;
 928}
 929
 930static ssize_t cache_write(struct file *filp, const char __user *buf,
 931                           size_t count, loff_t *ppos,
 932                           struct cache_detail *cd)
 933{
 934        struct address_space *mapping = filp->f_mapping;
 935        struct inode *inode = file_inode(filp);
 936        ssize_t ret = -EINVAL;
 937
 938        if (!cd->cache_parse)
 939                goto out;
 940
 941        inode_lock(inode);
 942        ret = cache_downcall(mapping, buf, count, cd);
 943        inode_unlock(inode);
 944out:
 945        return ret;
 946}
 947
 948static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 949
 950static __poll_t cache_poll(struct file *filp, poll_table *wait,
 951                               struct cache_detail *cd)
 952{
 953        __poll_t mask;
 954        struct cache_reader *rp = filp->private_data;
 955        struct cache_queue *cq;
 956
 957        poll_wait(filp, &queue_wait, wait);
 958
 959        /* alway allow write */
 960        mask = EPOLLOUT | EPOLLWRNORM;
 961
 962        if (!rp)
 963                return mask;
 964
 965        spin_lock(&queue_lock);
 966
 967        for (cq= &rp->q; &cq->list != &cd->queue;
 968             cq = list_entry(cq->list.next, struct cache_queue, list))
 969                if (!cq->reader) {
 970                        mask |= EPOLLIN | EPOLLRDNORM;
 971                        break;
 972                }
 973        spin_unlock(&queue_lock);
 974        return mask;
 975}
 976
 977static int cache_ioctl(struct inode *ino, struct file *filp,
 978                       unsigned int cmd, unsigned long arg,
 979                       struct cache_detail *cd)
 980{
 981        int len = 0;
 982        struct cache_reader *rp = filp->private_data;
 983        struct cache_queue *cq;
 984
 985        if (cmd != FIONREAD || !rp)
 986                return -EINVAL;
 987
 988        spin_lock(&queue_lock);
 989
 990        /* only find the length remaining in current request,
 991         * or the length of the next request
 992         */
 993        for (cq= &rp->q; &cq->list != &cd->queue;
 994             cq = list_entry(cq->list.next, struct cache_queue, list))
 995                if (!cq->reader) {
 996                        struct cache_request *cr =
 997                                container_of(cq, struct cache_request, q);
 998                        len = cr->len - rp->offset;
 999                        break;
1000                }
1001        spin_unlock(&queue_lock);
1002
1003        return put_user(len, (int __user *)arg);
1004}
1005
1006static int cache_open(struct inode *inode, struct file *filp,
1007                      struct cache_detail *cd)
1008{
1009        struct cache_reader *rp = NULL;
1010
1011        if (!cd || !try_module_get(cd->owner))
1012                return -EACCES;
1013        nonseekable_open(inode, filp);
1014        if (filp->f_mode & FMODE_READ) {
1015                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1016                if (!rp) {
1017                        module_put(cd->owner);
1018                        return -ENOMEM;
1019                }
1020                rp->offset = 0;
1021                rp->q.reader = 1;
1022
1023                spin_lock(&queue_lock);
1024                list_add(&rp->q.list, &cd->queue);
1025                spin_unlock(&queue_lock);
1026        }
1027        if (filp->f_mode & FMODE_WRITE)
1028                atomic_inc(&cd->writers);
1029        filp->private_data = rp;
1030        return 0;
1031}
1032
1033static int cache_release(struct inode *inode, struct file *filp,
1034                         struct cache_detail *cd)
1035{
1036        struct cache_reader *rp = filp->private_data;
1037
1038        if (rp) {
1039                spin_lock(&queue_lock);
1040                if (rp->offset) {
1041                        struct cache_queue *cq;
1042                        for (cq= &rp->q; &cq->list != &cd->queue;
1043                             cq = list_entry(cq->list.next, struct cache_queue, list))
1044                                if (!cq->reader) {
1045                                        container_of(cq, struct cache_request, q)
1046                                                ->readers--;
1047                                        break;
1048                                }
1049                        rp->offset = 0;
1050                }
1051                list_del(&rp->q.list);
1052                spin_unlock(&queue_lock);
1053
1054                filp->private_data = NULL;
1055                kfree(rp);
1056
1057        }
1058        if (filp->f_mode & FMODE_WRITE) {
1059                atomic_dec(&cd->writers);
1060                cd->last_close = seconds_since_boot();
1061        }
1062        module_put(cd->owner);
1063        return 0;
1064}
1065
1066
1067
1068static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1069{
1070        struct cache_queue *cq, *tmp;
1071        struct cache_request *cr;
1072        struct list_head dequeued;
1073
1074        INIT_LIST_HEAD(&dequeued);
1075        spin_lock(&queue_lock);
1076        list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1077                if (!cq->reader) {
1078                        cr = container_of(cq, struct cache_request, q);
1079                        if (cr->item != ch)
1080                                continue;
1081                        if (test_bit(CACHE_PENDING, &ch->flags))
1082                                /* Lost a race and it is pending again */
1083                                break;
1084                        if (cr->readers != 0)
1085                                continue;
1086                        list_move(&cr->q.list, &dequeued);
1087                }
1088        spin_unlock(&queue_lock);
1089        while (!list_empty(&dequeued)) {
1090                cr = list_entry(dequeued.next, struct cache_request, q.list);
1091                list_del(&cr->q.list);
1092                cache_put(cr->item, detail);
1093                kfree(cr->buf);
1094                kfree(cr);
1095        }
1096}
1097
1098/*
1099 * Support routines for text-based upcalls.
1100 * Fields are separated by spaces.
1101 * Fields are either mangled to quote space tab newline slosh with slosh
1102 * or a hexified with a leading \x
1103 * Record is terminated with newline.
1104 *
1105 */
1106
1107void qword_add(char **bpp, int *lp, char *str)
1108{
1109        char *bp = *bpp;
1110        int len = *lp;
1111        int ret;
1112
1113        if (len < 0) return;
1114
1115        ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1116        if (ret >= len) {
1117                bp += len;
1118                len = -1;
1119        } else {
1120                bp += ret;
1121                len -= ret;
1122                *bp++ = ' ';
1123                len--;
1124        }
1125        *bpp = bp;
1126        *lp = len;
1127}
1128EXPORT_SYMBOL_GPL(qword_add);
1129
1130void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1131{
1132        char *bp = *bpp;
1133        int len = *lp;
1134
1135        if (len < 0) return;
1136
1137        if (len > 2) {
1138                *bp++ = '\\';
1139                *bp++ = 'x';
1140                len -= 2;
1141                while (blen && len >= 2) {
1142                        bp = hex_byte_pack(bp, *buf++);
1143                        len -= 2;
1144                        blen--;
1145                }
1146        }
1147        if (blen || len<1) len = -1;
1148        else {
1149                *bp++ = ' ';
1150                len--;
1151        }
1152        *bpp = bp;
1153        *lp = len;
1154}
1155EXPORT_SYMBOL_GPL(qword_addhex);
1156
1157static void warn_no_listener(struct cache_detail *detail)
1158{
1159        if (detail->last_warn != detail->last_close) {
1160                detail->last_warn = detail->last_close;
1161                if (detail->warn_no_listener)
1162                        detail->warn_no_listener(detail, detail->last_close != 0);
1163        }
1164}
1165
1166static bool cache_listeners_exist(struct cache_detail *detail)
1167{
1168        if (atomic_read(&detail->writers))
1169                return true;
1170        if (detail->last_close == 0)
1171                /* This cache was never opened */
1172                return false;
1173        if (detail->last_close < seconds_since_boot() - 30)
1174                /*
1175                 * We allow for the possibility that someone might
1176                 * restart a userspace daemon without restarting the
1177                 * server; but after 30 seconds, we give up.
1178                 */
1179                 return false;
1180        return true;
1181}
1182
1183/*
1184 * register an upcall request to user-space and queue it up for read() by the
1185 * upcall daemon.
1186 *
1187 * Each request is at most one page long.
1188 */
1189static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1190{
1191        char *buf;
1192        struct cache_request *crq;
1193        int ret = 0;
1194
1195        if (test_bit(CACHE_CLEANED, &h->flags))
1196                /* Too late to make an upcall */
1197                return -EAGAIN;
1198
1199        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1200        if (!buf)
1201                return -EAGAIN;
1202
1203        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1204        if (!crq) {
1205                kfree(buf);
1206                return -EAGAIN;
1207        }
1208
1209        crq->q.reader = 0;
1210        crq->buf = buf;
1211        crq->len = 0;
1212        crq->readers = 0;
1213        spin_lock(&queue_lock);
1214        if (test_bit(CACHE_PENDING, &h->flags)) {
1215                crq->item = cache_get(h);
1216                list_add_tail(&crq->q.list, &detail->queue);
1217                trace_cache_entry_upcall(detail, h);
1218        } else
1219                /* Lost a race, no longer PENDING, so don't enqueue */
1220                ret = -EAGAIN;
1221        spin_unlock(&queue_lock);
1222        wake_up(&queue_wait);
1223        if (ret == -EAGAIN) {
1224                kfree(buf);
1225                kfree(crq);
1226        }
1227        return ret;
1228}
1229
1230int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1231{
1232        if (test_and_set_bit(CACHE_PENDING, &h->flags))
1233                return 0;
1234        return cache_pipe_upcall(detail, h);
1235}
1236EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1237
1238int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1239                                     struct cache_head *h)
1240{
1241        if (!cache_listeners_exist(detail)) {
1242                warn_no_listener(detail);
1243                trace_cache_entry_no_listener(detail, h);
1244                return -EINVAL;
1245        }
1246        return sunrpc_cache_pipe_upcall(detail, h);
1247}
1248EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1249
1250/*
1251 * parse a message from user-space and pass it
1252 * to an appropriate cache
1253 * Messages are, like requests, separated into fields by
1254 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1255 *
1256 * Message is
1257 *   reply cachename expiry key ... content....
1258 *
1259 * key and content are both parsed by cache
1260 */
1261
1262int qword_get(char **bpp, char *dest, int bufsize)
1263{
1264        /* return bytes copied, or -1 on error */
1265        char *bp = *bpp;
1266        int len = 0;
1267
1268        while (*bp == ' ') bp++;
1269
1270        if (bp[0] == '\\' && bp[1] == 'x') {
1271                /* HEX STRING */
1272                bp += 2;
1273                while (len < bufsize - 1) {
1274                        int h, l;
1275
1276                        h = hex_to_bin(bp[0]);
1277                        if (h < 0)
1278                                break;
1279
1280                        l = hex_to_bin(bp[1]);
1281                        if (l < 0)
1282                                break;
1283
1284                        *dest++ = (h << 4) | l;
1285                        bp += 2;
1286                        len++;
1287                }
1288        } else {
1289                /* text with \nnn octal quoting */
1290                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1291                        if (*bp == '\\' &&
1292                            isodigit(bp[1]) && (bp[1] <= '3') &&
1293                            isodigit(bp[2]) &&
1294                            isodigit(bp[3])) {
1295                                int byte = (*++bp -'0');
1296                                bp++;
1297                                byte = (byte << 3) | (*bp++ - '0');
1298                                byte = (byte << 3) | (*bp++ - '0');
1299                                *dest++ = byte;
1300                                len++;
1301                        } else {
1302                                *dest++ = *bp++;
1303                                len++;
1304                        }
1305                }
1306        }
1307
1308        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1309                return -1;
1310        while (*bp == ' ') bp++;
1311        *bpp = bp;
1312        *dest = '\0';
1313        return len;
1314}
1315EXPORT_SYMBOL_GPL(qword_get);
1316
1317
1318/*
1319 * support /proc/net/rpc/$CACHENAME/content
1320 * as a seqfile.
1321 * We call ->cache_show passing NULL for the item to
1322 * get a header, then pass each real item in the cache
1323 */
1324
1325static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1326{
1327        loff_t n = *pos;
1328        unsigned int hash, entry;
1329        struct cache_head *ch;
1330        struct cache_detail *cd = m->private;
1331
1332        if (!n--)
1333                return SEQ_START_TOKEN;
1334        hash = n >> 32;
1335        entry = n & ((1LL<<32) - 1);
1336
1337        hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1338                if (!entry--)
1339                        return ch;
1340        n &= ~((1LL<<32) - 1);
1341        do {
1342                hash++;
1343                n += 1LL<<32;
1344        } while(hash < cd->hash_size &&
1345                hlist_empty(&cd->hash_table[hash]));
1346        if (hash >= cd->hash_size)
1347                return NULL;
1348        *pos = n+1;
1349        return hlist_entry_safe(rcu_dereference_raw(
1350                                hlist_first_rcu(&cd->hash_table[hash])),
1351                                struct cache_head, cache_list);
1352}
1353
1354static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1355{
1356        struct cache_head *ch = p;
1357        int hash = (*pos >> 32);
1358        struct cache_detail *cd = m->private;
1359
1360        if (p == SEQ_START_TOKEN)
1361                hash = 0;
1362        else if (ch->cache_list.next == NULL) {
1363                hash++;
1364                *pos += 1LL<<32;
1365        } else {
1366                ++*pos;
1367                return hlist_entry_safe(rcu_dereference_raw(
1368                                        hlist_next_rcu(&ch->cache_list)),
1369                                        struct cache_head, cache_list);
1370        }
1371        *pos &= ~((1LL<<32) - 1);
1372        while (hash < cd->hash_size &&
1373               hlist_empty(&cd->hash_table[hash])) {
1374                hash++;
1375                *pos += 1LL<<32;
1376        }
1377        if (hash >= cd->hash_size)
1378                return NULL;
1379        ++*pos;
1380        return hlist_entry_safe(rcu_dereference_raw(
1381                                hlist_first_rcu(&cd->hash_table[hash])),
1382                                struct cache_head, cache_list);
1383}
1384
1385void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1386        __acquires(RCU)
1387{
1388        rcu_read_lock();
1389        return __cache_seq_start(m, pos);
1390}
1391EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1392
1393void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1394{
1395        return cache_seq_next(file, p, pos);
1396}
1397EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1398
1399void cache_seq_stop_rcu(struct seq_file *m, void *p)
1400        __releases(RCU)
1401{
1402        rcu_read_unlock();
1403}
1404EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1405
1406static int c_show(struct seq_file *m, void *p)
1407{
1408        struct cache_head *cp = p;
1409        struct cache_detail *cd = m->private;
1410
1411        if (p == SEQ_START_TOKEN)
1412                return cd->cache_show(m, cd, NULL);
1413
1414        ifdebug(CACHE)
1415                seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1416                           convert_to_wallclock(cp->expiry_time),
1417                           kref_read(&cp->ref), cp->flags);
1418        cache_get(cp);
1419        if (cache_check(cd, cp, NULL))
1420                /* cache_check does a cache_put on failure */
1421                seq_puts(m, "# ");
1422        else {
1423                if (cache_is_expired(cd, cp))
1424                        seq_puts(m, "# ");
1425                cache_put(cp, cd);
1426        }
1427
1428        return cd->cache_show(m, cd, cp);
1429}
1430
1431static const struct seq_operations cache_content_op = {
1432        .start  = cache_seq_start_rcu,
1433        .next   = cache_seq_next_rcu,
1434        .stop   = cache_seq_stop_rcu,
1435        .show   = c_show,
1436};
1437
1438static int content_open(struct inode *inode, struct file *file,
1439                        struct cache_detail *cd)
1440{
1441        struct seq_file *seq;
1442        int err;
1443
1444        if (!cd || !try_module_get(cd->owner))
1445                return -EACCES;
1446
1447        err = seq_open(file, &cache_content_op);
1448        if (err) {
1449                module_put(cd->owner);
1450                return err;
1451        }
1452
1453        seq = file->private_data;
1454        seq->private = cd;
1455        return 0;
1456}
1457
1458static int content_release(struct inode *inode, struct file *file,
1459                struct cache_detail *cd)
1460{
1461        int ret = seq_release(inode, file);
1462        module_put(cd->owner);
1463        return ret;
1464}
1465
1466static int open_flush(struct inode *inode, struct file *file,
1467                        struct cache_detail *cd)
1468{
1469        if (!cd || !try_module_get(cd->owner))
1470                return -EACCES;
1471        return nonseekable_open(inode, file);
1472}
1473
1474static int release_flush(struct inode *inode, struct file *file,
1475                        struct cache_detail *cd)
1476{
1477        module_put(cd->owner);
1478        return 0;
1479}
1480
1481static ssize_t read_flush(struct file *file, char __user *buf,
1482                          size_t count, loff_t *ppos,
1483                          struct cache_detail *cd)
1484{
1485        char tbuf[22];
1486        size_t len;
1487
1488        len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1489                        convert_to_wallclock(cd->flush_time));
1490        return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1491}
1492
1493static ssize_t write_flush(struct file *file, const char __user *buf,
1494                           size_t count, loff_t *ppos,
1495                           struct cache_detail *cd)
1496{
1497        char tbuf[20];
1498        char *ep;
1499        time64_t now;
1500
1501        if (*ppos || count > sizeof(tbuf)-1)
1502                return -EINVAL;
1503        if (copy_from_user(tbuf, buf, count))
1504                return -EFAULT;
1505        tbuf[count] = 0;
1506        simple_strtoul(tbuf, &ep, 0);
1507        if (*ep && *ep != '\n')
1508                return -EINVAL;
1509        /* Note that while we check that 'buf' holds a valid number,
1510         * we always ignore the value and just flush everything.
1511         * Making use of the number leads to races.
1512         */
1513
1514        now = seconds_since_boot();
1515        /* Always flush everything, so behave like cache_purge()
1516         * Do this by advancing flush_time to the current time,
1517         * or by one second if it has already reached the current time.
1518         * Newly added cache entries will always have ->last_refresh greater
1519         * that ->flush_time, so they don't get flushed prematurely.
1520         */
1521
1522        if (cd->flush_time >= now)
1523                now = cd->flush_time + 1;
1524
1525        cd->flush_time = now;
1526        cd->nextcheck = now;
1527        cache_flush();
1528
1529        if (cd->flush)
1530                cd->flush();
1531
1532        *ppos += count;
1533        return count;
1534}
1535
1536static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1537                                 size_t count, loff_t *ppos)
1538{
1539        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1540
1541        return cache_read(filp, buf, count, ppos, cd);
1542}
1543
1544static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1545                                  size_t count, loff_t *ppos)
1546{
1547        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1548
1549        return cache_write(filp, buf, count, ppos, cd);
1550}
1551
1552static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1553{
1554        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1555
1556        return cache_poll(filp, wait, cd);
1557}
1558
1559static long cache_ioctl_procfs(struct file *filp,
1560                               unsigned int cmd, unsigned long arg)
1561{
1562        struct inode *inode = file_inode(filp);
1563        struct cache_detail *cd = PDE_DATA(inode);
1564
1565        return cache_ioctl(inode, filp, cmd, arg, cd);
1566}
1567
1568static int cache_open_procfs(struct inode *inode, struct file *filp)
1569{
1570        struct cache_detail *cd = PDE_DATA(inode);
1571
1572        return cache_open(inode, filp, cd);
1573}
1574
1575static int cache_release_procfs(struct inode *inode, struct file *filp)
1576{
1577        struct cache_detail *cd = PDE_DATA(inode);
1578
1579        return cache_release(inode, filp, cd);
1580}
1581
1582static const struct proc_ops cache_channel_proc_ops = {
1583        .proc_lseek     = no_llseek,
1584        .proc_read      = cache_read_procfs,
1585        .proc_write     = cache_write_procfs,
1586        .proc_poll      = cache_poll_procfs,
1587        .proc_ioctl     = cache_ioctl_procfs, /* for FIONREAD */
1588        .proc_open      = cache_open_procfs,
1589        .proc_release   = cache_release_procfs,
1590};
1591
1592static int content_open_procfs(struct inode *inode, struct file *filp)
1593{
1594        struct cache_detail *cd = PDE_DATA(inode);
1595
1596        return content_open(inode, filp, cd);
1597}
1598
1599static int content_release_procfs(struct inode *inode, struct file *filp)
1600{
1601        struct cache_detail *cd = PDE_DATA(inode);
1602
1603        return content_release(inode, filp, cd);
1604}
1605
1606static const struct proc_ops content_proc_ops = {
1607        .proc_open      = content_open_procfs,
1608        .proc_read      = seq_read,
1609        .proc_lseek     = seq_lseek,
1610        .proc_release   = content_release_procfs,
1611};
1612
1613static int open_flush_procfs(struct inode *inode, struct file *filp)
1614{
1615        struct cache_detail *cd = PDE_DATA(inode);
1616
1617        return open_flush(inode, filp, cd);
1618}
1619
1620static int release_flush_procfs(struct inode *inode, struct file *filp)
1621{
1622        struct cache_detail *cd = PDE_DATA(inode);
1623
1624        return release_flush(inode, filp, cd);
1625}
1626
1627static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1628                            size_t count, loff_t *ppos)
1629{
1630        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1631
1632        return read_flush(filp, buf, count, ppos, cd);
1633}
1634
1635static ssize_t write_flush_procfs(struct file *filp,
1636                                  const char __user *buf,
1637                                  size_t count, loff_t *ppos)
1638{
1639        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1640
1641        return write_flush(filp, buf, count, ppos, cd);
1642}
1643
1644static const struct proc_ops cache_flush_proc_ops = {
1645        .proc_open      = open_flush_procfs,
1646        .proc_read      = read_flush_procfs,
1647        .proc_write     = write_flush_procfs,
1648        .proc_release   = release_flush_procfs,
1649        .proc_lseek     = no_llseek,
1650};
1651
1652static void remove_cache_proc_entries(struct cache_detail *cd)
1653{
1654        if (cd->procfs) {
1655                proc_remove(cd->procfs);
1656                cd->procfs = NULL;
1657        }
1658}
1659
1660#ifdef CONFIG_PROC_FS
1661static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662{
1663        struct proc_dir_entry *p;
1664        struct sunrpc_net *sn;
1665
1666        sn = net_generic(net, sunrpc_net_id);
1667        cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1668        if (cd->procfs == NULL)
1669                goto out_nomem;
1670
1671        p = proc_create_data("flush", S_IFREG | 0600,
1672                             cd->procfs, &cache_flush_proc_ops, cd);
1673        if (p == NULL)
1674                goto out_nomem;
1675
1676        if (cd->cache_request || cd->cache_parse) {
1677                p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1678                                     &cache_channel_proc_ops, cd);
1679                if (p == NULL)
1680                        goto out_nomem;
1681        }
1682        if (cd->cache_show) {
1683                p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1684                                     &content_proc_ops, cd);
1685                if (p == NULL)
1686                        goto out_nomem;
1687        }
1688        return 0;
1689out_nomem:
1690        remove_cache_proc_entries(cd);
1691        return -ENOMEM;
1692}
1693#else /* CONFIG_PROC_FS */
1694static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1695{
1696        return 0;
1697}
1698#endif
1699
1700void __init cache_initialize(void)
1701{
1702        INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1703}
1704
1705int cache_register_net(struct cache_detail *cd, struct net *net)
1706{
1707        int ret;
1708
1709        sunrpc_init_cache_detail(cd);
1710        ret = create_cache_proc_entries(cd, net);
1711        if (ret)
1712                sunrpc_destroy_cache_detail(cd);
1713        return ret;
1714}
1715EXPORT_SYMBOL_GPL(cache_register_net);
1716
1717void cache_unregister_net(struct cache_detail *cd, struct net *net)
1718{
1719        remove_cache_proc_entries(cd);
1720        sunrpc_destroy_cache_detail(cd);
1721}
1722EXPORT_SYMBOL_GPL(cache_unregister_net);
1723
1724struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1725{
1726        struct cache_detail *cd;
1727        int i;
1728
1729        cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1730        if (cd == NULL)
1731                return ERR_PTR(-ENOMEM);
1732
1733        cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1734                                 GFP_KERNEL);
1735        if (cd->hash_table == NULL) {
1736                kfree(cd);
1737                return ERR_PTR(-ENOMEM);
1738        }
1739
1740        for (i = 0; i < cd->hash_size; i++)
1741                INIT_HLIST_HEAD(&cd->hash_table[i]);
1742        cd->net = net;
1743        return cd;
1744}
1745EXPORT_SYMBOL_GPL(cache_create_net);
1746
1747void cache_destroy_net(struct cache_detail *cd, struct net *net)
1748{
1749        kfree(cd->hash_table);
1750        kfree(cd);
1751}
1752EXPORT_SYMBOL_GPL(cache_destroy_net);
1753
1754static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1755                                 size_t count, loff_t *ppos)
1756{
1757        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1758
1759        return cache_read(filp, buf, count, ppos, cd);
1760}
1761
1762static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1763                                  size_t count, loff_t *ppos)
1764{
1765        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1766
1767        return cache_write(filp, buf, count, ppos, cd);
1768}
1769
1770static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1771{
1772        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1773
1774        return cache_poll(filp, wait, cd);
1775}
1776
1777static long cache_ioctl_pipefs(struct file *filp,
1778                              unsigned int cmd, unsigned long arg)
1779{
1780        struct inode *inode = file_inode(filp);
1781        struct cache_detail *cd = RPC_I(inode)->private;
1782
1783        return cache_ioctl(inode, filp, cmd, arg, cd);
1784}
1785
1786static int cache_open_pipefs(struct inode *inode, struct file *filp)
1787{
1788        struct cache_detail *cd = RPC_I(inode)->private;
1789
1790        return cache_open(inode, filp, cd);
1791}
1792
1793static int cache_release_pipefs(struct inode *inode, struct file *filp)
1794{
1795        struct cache_detail *cd = RPC_I(inode)->private;
1796
1797        return cache_release(inode, filp, cd);
1798}
1799
1800const struct file_operations cache_file_operations_pipefs = {
1801        .owner          = THIS_MODULE,
1802        .llseek         = no_llseek,
1803        .read           = cache_read_pipefs,
1804        .write          = cache_write_pipefs,
1805        .poll           = cache_poll_pipefs,
1806        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1807        .open           = cache_open_pipefs,
1808        .release        = cache_release_pipefs,
1809};
1810
1811static int content_open_pipefs(struct inode *inode, struct file *filp)
1812{
1813        struct cache_detail *cd = RPC_I(inode)->private;
1814
1815        return content_open(inode, filp, cd);
1816}
1817
1818static int content_release_pipefs(struct inode *inode, struct file *filp)
1819{
1820        struct cache_detail *cd = RPC_I(inode)->private;
1821
1822        return content_release(inode, filp, cd);
1823}
1824
1825const struct file_operations content_file_operations_pipefs = {
1826        .open           = content_open_pipefs,
1827        .read           = seq_read,
1828        .llseek         = seq_lseek,
1829        .release        = content_release_pipefs,
1830};
1831
1832static int open_flush_pipefs(struct inode *inode, struct file *filp)
1833{
1834        struct cache_detail *cd = RPC_I(inode)->private;
1835
1836        return open_flush(inode, filp, cd);
1837}
1838
1839static int release_flush_pipefs(struct inode *inode, struct file *filp)
1840{
1841        struct cache_detail *cd = RPC_I(inode)->private;
1842
1843        return release_flush(inode, filp, cd);
1844}
1845
1846static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1847                            size_t count, loff_t *ppos)
1848{
1849        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1850
1851        return read_flush(filp, buf, count, ppos, cd);
1852}
1853
1854static ssize_t write_flush_pipefs(struct file *filp,
1855                                  const char __user *buf,
1856                                  size_t count, loff_t *ppos)
1857{
1858        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1859
1860        return write_flush(filp, buf, count, ppos, cd);
1861}
1862
1863const struct file_operations cache_flush_operations_pipefs = {
1864        .open           = open_flush_pipefs,
1865        .read           = read_flush_pipefs,
1866        .write          = write_flush_pipefs,
1867        .release        = release_flush_pipefs,
1868        .llseek         = no_llseek,
1869};
1870
1871int sunrpc_cache_register_pipefs(struct dentry *parent,
1872                                 const char *name, umode_t umode,
1873                                 struct cache_detail *cd)
1874{
1875        struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1876        if (IS_ERR(dir))
1877                return PTR_ERR(dir);
1878        cd->pipefs = dir;
1879        return 0;
1880}
1881EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1882
1883void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1884{
1885        if (cd->pipefs) {
1886                rpc_remove_cache_dir(cd->pipefs);
1887                cd->pipefs = NULL;
1888        }
1889}
1890EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1891
1892void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1893{
1894        spin_lock(&cd->hash_lock);
1895        if (!hlist_unhashed(&h->cache_list)){
1896                sunrpc_begin_cache_remove_entry(h, cd);
1897                spin_unlock(&cd->hash_lock);
1898                sunrpc_end_cache_remove_entry(h, cd);
1899        } else
1900                spin_unlock(&cd->hash_lock);
1901}
1902EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1903