linux/net/tipc/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
  39#include <crypto/rng.h>
  40#include "crypto.h"
  41#include "msg.h"
  42#include "bcast.h"
  43
  44#define TIPC_TX_GRACE_PERIOD    msecs_to_jiffies(5000) /* 5s */
  45#define TIPC_TX_LASTING_TIME    msecs_to_jiffies(10000) /* 10s */
  46#define TIPC_RX_ACTIVE_LIM      msecs_to_jiffies(3000) /* 3s */
  47#define TIPC_RX_PASSIVE_LIM     msecs_to_jiffies(15000) /* 15s */
  48
  49#define TIPC_MAX_TFMS_DEF       10
  50#define TIPC_MAX_TFMS_LIM       1000
  51
  52#define TIPC_REKEYING_INTV_DEF  (60 * 24) /* default: 1 day */
  53
  54/*
  55 * TIPC Key ids
  56 */
  57enum {
  58        KEY_MASTER = 0,
  59        KEY_MIN = KEY_MASTER,
  60        KEY_1 = 1,
  61        KEY_2,
  62        KEY_3,
  63        KEY_MAX = KEY_3,
  64};
  65
  66/*
  67 * TIPC Crypto statistics
  68 */
  69enum {
  70        STAT_OK,
  71        STAT_NOK,
  72        STAT_ASYNC,
  73        STAT_ASYNC_OK,
  74        STAT_ASYNC_NOK,
  75        STAT_BADKEYS, /* tx only */
  76        STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  77        STAT_NOKEYS,
  78        STAT_SWITCHES,
  79
  80        MAX_STATS,
  81};
  82
  83/* TIPC crypto statistics' header */
  84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  85                                        "async_nok", "badmsgs", "nokeys",
  86                                        "switches"};
  87
  88/* Max TFMs number per key */
  89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
  90/* Key exchange switch, default: on */
  91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
  92
  93/*
  94 * struct tipc_key - TIPC keys' status indicator
  95 *
  96 *         7     6     5     4     3     2     1     0
  97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  98 * key: | (reserved)|passive idx| active idx|pending idx|
  99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 100 */
 101struct tipc_key {
 102#define KEY_BITS (2)
 103#define KEY_MASK ((1 << KEY_BITS) - 1)
 104        union {
 105                struct {
 106#if defined(__LITTLE_ENDIAN_BITFIELD)
 107                        u8 pending:2,
 108                           active:2,
 109                           passive:2, /* rx only */
 110                           reserved:2;
 111#elif defined(__BIG_ENDIAN_BITFIELD)
 112                        u8 reserved:2,
 113                           passive:2, /* rx only */
 114                           active:2,
 115                           pending:2;
 116#else
 117#error  "Please fix <asm/byteorder.h>"
 118#endif
 119                } __packed;
 120                u8 keys;
 121        };
 122};
 123
 124/**
 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 126 * @tfm: cipher handle/key
 127 * @list: linked list of TFMs
 128 */
 129struct tipc_tfm {
 130        struct crypto_aead *tfm;
 131        struct list_head list;
 132};
 133
 134/**
 135 * struct tipc_aead - TIPC AEAD key structure
 136 * @tfm_entry: per-cpu pointer to one entry in TFM list
 137 * @crypto: TIPC crypto owns this key
 138 * @cloned: reference to the source key in case cloning
 139 * @users: the number of the key users (TX/RX)
 140 * @salt: the key's SALT value
 141 * @authsize: authentication tag size (max = 16)
 142 * @mode: crypto mode is applied to the key
 143 * @hint: a hint for user key
 144 * @rcu: struct rcu_head
 145 * @key: the aead key
 146 * @gen: the key's generation
 147 * @seqno: the key seqno (cluster scope)
 148 * @refcnt: the key reference counter
 149 */
 150struct tipc_aead {
 151#define TIPC_AEAD_HINT_LEN (5)
 152        struct tipc_tfm * __percpu *tfm_entry;
 153        struct tipc_crypto *crypto;
 154        struct tipc_aead *cloned;
 155        atomic_t users;
 156        u32 salt;
 157        u8 authsize;
 158        u8 mode;
 159        char hint[2 * TIPC_AEAD_HINT_LEN + 1];
 160        struct rcu_head rcu;
 161        struct tipc_aead_key *key;
 162        u16 gen;
 163
 164        atomic64_t seqno ____cacheline_aligned;
 165        refcount_t refcnt ____cacheline_aligned;
 166
 167} ____cacheline_aligned;
 168
 169/**
 170 * struct tipc_crypto_stats - TIPC Crypto statistics
 171 * @stat: array of crypto statistics
 172 */
 173struct tipc_crypto_stats {
 174        unsigned int stat[MAX_STATS];
 175};
 176
 177/**
 178 * struct tipc_crypto - TIPC TX/RX crypto structure
 179 * @net: struct net
 180 * @node: TIPC node (RX)
 181 * @aead: array of pointers to AEAD keys for encryption/decryption
 182 * @peer_rx_active: replicated peer RX active key index
 183 * @key_gen: TX/RX key generation
 184 * @key: the key states
 185 * @skey_mode: session key's mode
 186 * @skey: received session key
 187 * @wq: common workqueue on TX crypto
 188 * @work: delayed work sched for TX/RX
 189 * @key_distr: key distributing state
 190 * @rekeying_intv: rekeying interval (in minutes)
 191 * @stats: the crypto statistics
 192 * @name: the crypto name
 193 * @sndnxt: the per-peer sndnxt (TX)
 194 * @timer1: general timer 1 (jiffies)
 195 * @timer2: general timer 2 (jiffies)
 196 * @working: the crypto is working or not
 197 * @key_master: flag indicates if master key exists
 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
 199 * @nokey: no key indication
 200 * @flags: combined flags field
 201 * @lock: tipc_key lock
 202 */
 203struct tipc_crypto {
 204        struct net *net;
 205        struct tipc_node *node;
 206        struct tipc_aead __rcu *aead[KEY_MAX + 1];
 207        atomic_t peer_rx_active;
 208        u16 key_gen;
 209        struct tipc_key key;
 210        u8 skey_mode;
 211        struct tipc_aead_key *skey;
 212        struct workqueue_struct *wq;
 213        struct delayed_work work;
 214#define KEY_DISTR_SCHED         1
 215#define KEY_DISTR_COMPL         2
 216        atomic_t key_distr;
 217        u32 rekeying_intv;
 218
 219        struct tipc_crypto_stats __percpu *stats;
 220        char name[48];
 221
 222        atomic64_t sndnxt ____cacheline_aligned;
 223        unsigned long timer1;
 224        unsigned long timer2;
 225        union {
 226                struct {
 227                        u8 working:1;
 228                        u8 key_master:1;
 229                        u8 legacy_user:1;
 230                        u8 nokey: 1;
 231                };
 232                u8 flags;
 233        };
 234        spinlock_t lock; /* crypto lock */
 235
 236} ____cacheline_aligned;
 237
 238/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 239struct tipc_crypto_tx_ctx {
 240        struct tipc_aead *aead;
 241        struct tipc_bearer *bearer;
 242        struct tipc_media_addr dst;
 243};
 244
 245/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 246struct tipc_crypto_rx_ctx {
 247        struct tipc_aead *aead;
 248        struct tipc_bearer *bearer;
 249};
 250
 251static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 252static inline void tipc_aead_put(struct tipc_aead *aead);
 253static void tipc_aead_free(struct rcu_head *rp);
 254static int tipc_aead_users(struct tipc_aead __rcu *aead);
 255static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 256static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 257static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 258static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 259static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 260                          u8 mode);
 261static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 262static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 263                                 unsigned int crypto_ctx_size,
 264                                 u8 **iv, struct aead_request **req,
 265                                 struct scatterlist **sg, int nsg);
 266static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 267                             struct tipc_bearer *b,
 268                             struct tipc_media_addr *dst,
 269                             struct tipc_node *__dnode);
 270static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
 271static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 272                             struct sk_buff *skb, struct tipc_bearer *b);
 273static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
 274static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 275static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 276                           u8 tx_key, struct sk_buff *skb,
 277                           struct tipc_crypto *__rx);
 278static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 279                                             u8 new_passive,
 280                                             u8 new_active,
 281                                             u8 new_pending);
 282static int tipc_crypto_key_attach(struct tipc_crypto *c,
 283                                  struct tipc_aead *aead, u8 pos,
 284                                  bool master_key);
 285static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 286static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 287                                                 struct tipc_crypto *rx,
 288                                                 struct sk_buff *skb,
 289                                                 u8 tx_key);
 290static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
 291static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 292static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
 293                                         struct tipc_bearer *b,
 294                                         struct tipc_media_addr *dst,
 295                                         struct tipc_node *__dnode, u8 type);
 296static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 297                                     struct tipc_bearer *b,
 298                                     struct sk_buff **skb, int err);
 299static void tipc_crypto_do_cmd(struct net *net, int cmd);
 300static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 301static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 302                                  char *buf);
 303static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
 304                                u16 gen, u8 mode, u32 dnode);
 305static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
 306static void tipc_crypto_work_tx(struct work_struct *work);
 307static void tipc_crypto_work_rx(struct work_struct *work);
 308static int tipc_aead_key_generate(struct tipc_aead_key *skey);
 309
 310#define is_tx(crypto) (!(crypto)->node)
 311#define is_rx(crypto) (!is_tx(crypto))
 312
 313#define key_next(cur) ((cur) % KEY_MAX + 1)
 314
 315#define tipc_aead_rcu_ptr(rcu_ptr, lock)                                \
 316        rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 317
 318#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)                       \
 319do {                                                                    \
 320        struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),  \
 321                                                lockdep_is_held(lock)); \
 322        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 323        tipc_aead_put(__tmp);                                           \
 324} while (0)
 325
 326#define tipc_crypto_key_detach(rcu_ptr, lock)                           \
 327        tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 328
 329/**
 330 * tipc_aead_key_validate - Validate a AEAD user key
 331 * @ukey: pointer to user key data
 332 * @info: netlink info pointer
 333 */
 334int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
 335{
 336        int keylen;
 337
 338        /* Check if algorithm exists */
 339        if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 340                GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
 341                return -ENODEV;
 342        }
 343
 344        /* Currently, we only support the "gcm(aes)" cipher algorithm */
 345        if (strcmp(ukey->alg_name, "gcm(aes)")) {
 346                GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
 347                return -ENOTSUPP;
 348        }
 349
 350        /* Check if key size is correct */
 351        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 352        if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 353                     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 354                     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
 355                GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
 356                return -EKEYREJECTED;
 357        }
 358
 359        return 0;
 360}
 361
 362/**
 363 * tipc_aead_key_generate - Generate new session key
 364 * @skey: input/output key with new content
 365 *
 366 * Return: 0 in case of success, otherwise < 0
 367 */
 368static int tipc_aead_key_generate(struct tipc_aead_key *skey)
 369{
 370        int rc = 0;
 371
 372        /* Fill the key's content with a random value via RNG cipher */
 373        rc = crypto_get_default_rng();
 374        if (likely(!rc)) {
 375                rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
 376                                          skey->keylen);
 377                crypto_put_default_rng();
 378        }
 379
 380        return rc;
 381}
 382
 383static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 384{
 385        struct tipc_aead *tmp;
 386
 387        rcu_read_lock();
 388        tmp = rcu_dereference(aead);
 389        if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 390                tmp = NULL;
 391        rcu_read_unlock();
 392
 393        return tmp;
 394}
 395
 396static inline void tipc_aead_put(struct tipc_aead *aead)
 397{
 398        if (aead && refcount_dec_and_test(&aead->refcnt))
 399                call_rcu(&aead->rcu, tipc_aead_free);
 400}
 401
 402/**
 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 404 * @rp: rcu head pointer
 405 */
 406static void tipc_aead_free(struct rcu_head *rp)
 407{
 408        struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 409        struct tipc_tfm *tfm_entry, *head, *tmp;
 410
 411        if (aead->cloned) {
 412                tipc_aead_put(aead->cloned);
 413        } else {
 414                head = *get_cpu_ptr(aead->tfm_entry);
 415                put_cpu_ptr(aead->tfm_entry);
 416                list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 417                        crypto_free_aead(tfm_entry->tfm);
 418                        list_del(&tfm_entry->list);
 419                        kfree(tfm_entry);
 420                }
 421                /* Free the head */
 422                crypto_free_aead(head->tfm);
 423                list_del(&head->list);
 424                kfree(head);
 425        }
 426        free_percpu(aead->tfm_entry);
 427        kfree_sensitive(aead->key);
 428        kfree(aead);
 429}
 430
 431static int tipc_aead_users(struct tipc_aead __rcu *aead)
 432{
 433        struct tipc_aead *tmp;
 434        int users = 0;
 435
 436        rcu_read_lock();
 437        tmp = rcu_dereference(aead);
 438        if (tmp)
 439                users = atomic_read(&tmp->users);
 440        rcu_read_unlock();
 441
 442        return users;
 443}
 444
 445static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 446{
 447        struct tipc_aead *tmp;
 448
 449        rcu_read_lock();
 450        tmp = rcu_dereference(aead);
 451        if (tmp)
 452                atomic_add_unless(&tmp->users, 1, lim);
 453        rcu_read_unlock();
 454}
 455
 456static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 457{
 458        struct tipc_aead *tmp;
 459
 460        rcu_read_lock();
 461        tmp = rcu_dereference(aead);
 462        if (tmp)
 463                atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 464        rcu_read_unlock();
 465}
 466
 467static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 468{
 469        struct tipc_aead *tmp;
 470        int cur;
 471
 472        rcu_read_lock();
 473        tmp = rcu_dereference(aead);
 474        if (tmp) {
 475                do {
 476                        cur = atomic_read(&tmp->users);
 477                        if (cur == val)
 478                                break;
 479                } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 480        }
 481        rcu_read_unlock();
 482}
 483
 484/**
 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 486 * @aead: the AEAD key pointer
 487 */
 488static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 489{
 490        struct tipc_tfm **tfm_entry;
 491        struct crypto_aead *tfm;
 492
 493        tfm_entry = get_cpu_ptr(aead->tfm_entry);
 494        *tfm_entry = list_next_entry(*tfm_entry, list);
 495        tfm = (*tfm_entry)->tfm;
 496        put_cpu_ptr(tfm_entry);
 497
 498        return tfm;
 499}
 500
 501/**
 502 * tipc_aead_init - Initiate TIPC AEAD
 503 * @aead: returned new TIPC AEAD key handle pointer
 504 * @ukey: pointer to user key data
 505 * @mode: the key mode
 506 *
 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 509 * "net/tipc/max_tfms" first.
 510 * Also, all the other AEAD data are also initialized.
 511 *
 512 * Return: 0 if the initiation is successful, otherwise: < 0
 513 */
 514static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 515                          u8 mode)
 516{
 517        struct tipc_tfm *tfm_entry, *head;
 518        struct crypto_aead *tfm;
 519        struct tipc_aead *tmp;
 520        int keylen, err, cpu;
 521        int tfm_cnt = 0;
 522
 523        if (unlikely(*aead))
 524                return -EEXIST;
 525
 526        /* Allocate a new AEAD */
 527        tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 528        if (unlikely(!tmp))
 529                return -ENOMEM;
 530
 531        /* The key consists of two parts: [AES-KEY][SALT] */
 532        keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 533
 534        /* Allocate per-cpu TFM entry pointer */
 535        tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 536        if (!tmp->tfm_entry) {
 537                kfree_sensitive(tmp);
 538                return -ENOMEM;
 539        }
 540
 541        /* Make a list of TFMs with the user key data */
 542        do {
 543                tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 544                if (IS_ERR(tfm)) {
 545                        err = PTR_ERR(tfm);
 546                        break;
 547                }
 548
 549                if (unlikely(!tfm_cnt &&
 550                             crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 551                        crypto_free_aead(tfm);
 552                        err = -ENOTSUPP;
 553                        break;
 554                }
 555
 556                err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 557                err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 558                if (unlikely(err)) {
 559                        crypto_free_aead(tfm);
 560                        break;
 561                }
 562
 563                tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 564                if (unlikely(!tfm_entry)) {
 565                        crypto_free_aead(tfm);
 566                        err = -ENOMEM;
 567                        break;
 568                }
 569                INIT_LIST_HEAD(&tfm_entry->list);
 570                tfm_entry->tfm = tfm;
 571
 572                /* First entry? */
 573                if (!tfm_cnt) {
 574                        head = tfm_entry;
 575                        for_each_possible_cpu(cpu) {
 576                                *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 577                        }
 578                } else {
 579                        list_add_tail(&tfm_entry->list, &head->list);
 580                }
 581
 582        } while (++tfm_cnt < sysctl_tipc_max_tfms);
 583
 584        /* Not any TFM is allocated? */
 585        if (!tfm_cnt) {
 586                free_percpu(tmp->tfm_entry);
 587                kfree_sensitive(tmp);
 588                return err;
 589        }
 590
 591        /* Form a hex string of some last bytes as the key's hint */
 592        bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
 593                TIPC_AEAD_HINT_LEN);
 594
 595        /* Initialize the other data */
 596        tmp->mode = mode;
 597        tmp->cloned = NULL;
 598        tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 599        tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
 600        if (!tmp->key) {
 601                tipc_aead_free(&tmp->rcu);
 602                return -ENOMEM;
 603        }
 604        memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 605        atomic_set(&tmp->users, 0);
 606        atomic64_set(&tmp->seqno, 0);
 607        refcount_set(&tmp->refcnt, 1);
 608
 609        *aead = tmp;
 610        return 0;
 611}
 612
 613/**
 614 * tipc_aead_clone - Clone a TIPC AEAD key
 615 * @dst: dest key for the cloning
 616 * @src: source key to clone from
 617 *
 618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 619 * common for the keys.
 620 * A reference to the source is hold in the "cloned" pointer for the later
 621 * freeing purposes.
 622 *
 623 * Note: this must be done in cluster-key mode only!
 624 * Return: 0 in case of success, otherwise < 0
 625 */
 626static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 627{
 628        struct tipc_aead *aead;
 629        int cpu;
 630
 631        if (!src)
 632                return -ENOKEY;
 633
 634        if (src->mode != CLUSTER_KEY)
 635                return -EINVAL;
 636
 637        if (unlikely(*dst))
 638                return -EEXIST;
 639
 640        aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 641        if (unlikely(!aead))
 642                return -ENOMEM;
 643
 644        aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 645        if (unlikely(!aead->tfm_entry)) {
 646                kfree_sensitive(aead);
 647                return -ENOMEM;
 648        }
 649
 650        for_each_possible_cpu(cpu) {
 651                *per_cpu_ptr(aead->tfm_entry, cpu) =
 652                                *per_cpu_ptr(src->tfm_entry, cpu);
 653        }
 654
 655        memcpy(aead->hint, src->hint, sizeof(src->hint));
 656        aead->mode = src->mode;
 657        aead->salt = src->salt;
 658        aead->authsize = src->authsize;
 659        atomic_set(&aead->users, 0);
 660        atomic64_set(&aead->seqno, 0);
 661        refcount_set(&aead->refcnt, 1);
 662
 663        WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 664        aead->cloned = src;
 665
 666        *dst = aead;
 667        return 0;
 668}
 669
 670/**
 671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 672 * @tfm: cipher handle to be registered with the request
 673 * @crypto_ctx_size: size of crypto context for callback
 674 * @iv: returned pointer to IV data
 675 * @req: returned pointer to AEAD request data
 676 * @sg: returned pointer to SG lists
 677 * @nsg: number of SG lists to be allocated
 678 *
 679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 680 * lists, the memory layout is as follows:
 681 * crypto_ctx || iv || aead_req || sg[]
 682 *
 683 * Return: the pointer to the memory areas in case of success, otherwise NULL
 684 */
 685static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 686                                 unsigned int crypto_ctx_size,
 687                                 u8 **iv, struct aead_request **req,
 688                                 struct scatterlist **sg, int nsg)
 689{
 690        unsigned int iv_size, req_size;
 691        unsigned int len;
 692        u8 *mem;
 693
 694        iv_size = crypto_aead_ivsize(tfm);
 695        req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 696
 697        len = crypto_ctx_size;
 698        len += iv_size;
 699        len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 700        len = ALIGN(len, crypto_tfm_ctx_alignment());
 701        len += req_size;
 702        len = ALIGN(len, __alignof__(struct scatterlist));
 703        len += nsg * sizeof(**sg);
 704
 705        mem = kmalloc(len, GFP_ATOMIC);
 706        if (!mem)
 707                return NULL;
 708
 709        *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 710                              crypto_aead_alignmask(tfm) + 1);
 711        *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 712                                                crypto_tfm_ctx_alignment());
 713        *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 714                                              __alignof__(struct scatterlist));
 715
 716        return (void *)mem;
 717}
 718
 719/**
 720 * tipc_aead_encrypt - Encrypt a message
 721 * @aead: TIPC AEAD key for the message encryption
 722 * @skb: the input/output skb
 723 * @b: TIPC bearer where the message will be delivered after the encryption
 724 * @dst: the destination media address
 725 * @__dnode: TIPC dest node if "known"
 726 *
 727 * Return:
 728 * * 0                   : if the encryption has completed
 729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 730 * * < 0                 : the encryption has failed
 731 */
 732static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 733                             struct tipc_bearer *b,
 734                             struct tipc_media_addr *dst,
 735                             struct tipc_node *__dnode)
 736{
 737        struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 738        struct tipc_crypto_tx_ctx *tx_ctx;
 739        struct aead_request *req;
 740        struct sk_buff *trailer;
 741        struct scatterlist *sg;
 742        struct tipc_ehdr *ehdr;
 743        int ehsz, len, tailen, nsg, rc;
 744        void *ctx;
 745        u32 salt;
 746        u8 *iv;
 747
 748        /* Make sure message len at least 4-byte aligned */
 749        len = ALIGN(skb->len, 4);
 750        tailen = len - skb->len + aead->authsize;
 751
 752        /* Expand skb tail for authentication tag:
 753         * As for simplicity, we'd have made sure skb having enough tailroom
 754         * for authentication tag @skb allocation. Even when skb is nonlinear
 755         * but there is no frag_list, it should be still fine!
 756         * Otherwise, we must cow it to be a writable buffer with the tailroom.
 757         */
 758        SKB_LINEAR_ASSERT(skb);
 759        if (tailen > skb_tailroom(skb)) {
 760                pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
 761                         skb_tailroom(skb), tailen);
 762        }
 763
 764        if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
 765                nsg = 1;
 766                trailer = skb;
 767        } else {
 768                /* TODO: We could avoid skb_cow_data() if skb has no frag_list
 769                 * e.g. by skb_fill_page_desc() to add another page to the skb
 770                 * with the wanted tailen... However, page skbs look not often,
 771                 * so take it easy now!
 772                 * Cloned skbs e.g. from link_xmit() seems no choice though :(
 773                 */
 774                nsg = skb_cow_data(skb, tailen, &trailer);
 775                if (unlikely(nsg < 0)) {
 776                        pr_err("TX: skb_cow_data() returned %d\n", nsg);
 777                        return nsg;
 778                }
 779        }
 780
 781        pskb_put(skb, trailer, tailen);
 782
 783        /* Allocate memory for the AEAD operation */
 784        ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 785        if (unlikely(!ctx))
 786                return -ENOMEM;
 787        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 788
 789        /* Map skb to the sg lists */
 790        sg_init_table(sg, nsg);
 791        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 792        if (unlikely(rc < 0)) {
 793                pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 794                goto exit;
 795        }
 796
 797        /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 798         * In case we're in cluster-key mode, SALT is varied by xor-ing with
 799         * the source address (or w0 of id), otherwise with the dest address
 800         * if dest is known.
 801         */
 802        ehdr = (struct tipc_ehdr *)skb->data;
 803        salt = aead->salt;
 804        if (aead->mode == CLUSTER_KEY)
 805                salt ^= __be32_to_cpu(ehdr->addr);
 806        else if (__dnode)
 807                salt ^= tipc_node_get_addr(__dnode);
 808        memcpy(iv, &salt, 4);
 809        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 810
 811        /* Prepare request */
 812        ehsz = tipc_ehdr_size(ehdr);
 813        aead_request_set_tfm(req, tfm);
 814        aead_request_set_ad(req, ehsz);
 815        aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 816
 817        /* Set callback function & data */
 818        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 819                                  tipc_aead_encrypt_done, skb);
 820        tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 821        tx_ctx->aead = aead;
 822        tx_ctx->bearer = b;
 823        memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 824
 825        /* Hold bearer */
 826        if (unlikely(!tipc_bearer_hold(b))) {
 827                rc = -ENODEV;
 828                goto exit;
 829        }
 830
 831        /* Now, do encrypt */
 832        rc = crypto_aead_encrypt(req);
 833        if (rc == -EINPROGRESS || rc == -EBUSY)
 834                return rc;
 835
 836        tipc_bearer_put(b);
 837
 838exit:
 839        kfree(ctx);
 840        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 841        return rc;
 842}
 843
 844static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
 845{
 846        struct sk_buff *skb = base->data;
 847        struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 848        struct tipc_bearer *b = tx_ctx->bearer;
 849        struct tipc_aead *aead = tx_ctx->aead;
 850        struct tipc_crypto *tx = aead->crypto;
 851        struct net *net = tx->net;
 852
 853        switch (err) {
 854        case 0:
 855                this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 856                rcu_read_lock();
 857                if (likely(test_bit(0, &b->up)))
 858                        b->media->send_msg(net, skb, b, &tx_ctx->dst);
 859                else
 860                        kfree_skb(skb);
 861                rcu_read_unlock();
 862                break;
 863        case -EINPROGRESS:
 864                return;
 865        default:
 866                this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 867                kfree_skb(skb);
 868                break;
 869        }
 870
 871        kfree(tx_ctx);
 872        tipc_bearer_put(b);
 873        tipc_aead_put(aead);
 874}
 875
 876/**
 877 * tipc_aead_decrypt - Decrypt an encrypted message
 878 * @net: struct net
 879 * @aead: TIPC AEAD for the message decryption
 880 * @skb: the input/output skb
 881 * @b: TIPC bearer where the message has been received
 882 *
 883 * Return:
 884 * * 0                   : if the decryption has completed
 885 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 886 * * < 0                 : the decryption has failed
 887 */
 888static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 889                             struct sk_buff *skb, struct tipc_bearer *b)
 890{
 891        struct tipc_crypto_rx_ctx *rx_ctx;
 892        struct aead_request *req;
 893        struct crypto_aead *tfm;
 894        struct sk_buff *unused;
 895        struct scatterlist *sg;
 896        struct tipc_ehdr *ehdr;
 897        int ehsz, nsg, rc;
 898        void *ctx;
 899        u32 salt;
 900        u8 *iv;
 901
 902        if (unlikely(!aead))
 903                return -ENOKEY;
 904
 905        nsg = skb_cow_data(skb, 0, &unused);
 906        if (unlikely(nsg < 0)) {
 907                pr_err("RX: skb_cow_data() returned %d\n", nsg);
 908                return nsg;
 909        }
 910
 911        /* Allocate memory for the AEAD operation */
 912        tfm = tipc_aead_tfm_next(aead);
 913        ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 914        if (unlikely(!ctx))
 915                return -ENOMEM;
 916        TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 917
 918        /* Map skb to the sg lists */
 919        sg_init_table(sg, nsg);
 920        rc = skb_to_sgvec(skb, sg, 0, skb->len);
 921        if (unlikely(rc < 0)) {
 922                pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 923                goto exit;
 924        }
 925
 926        /* Reconstruct IV: */
 927        ehdr = (struct tipc_ehdr *)skb->data;
 928        salt = aead->salt;
 929        if (aead->mode == CLUSTER_KEY)
 930                salt ^= __be32_to_cpu(ehdr->addr);
 931        else if (ehdr->destined)
 932                salt ^= tipc_own_addr(net);
 933        memcpy(iv, &salt, 4);
 934        memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 935
 936        /* Prepare request */
 937        ehsz = tipc_ehdr_size(ehdr);
 938        aead_request_set_tfm(req, tfm);
 939        aead_request_set_ad(req, ehsz);
 940        aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 941
 942        /* Set callback function & data */
 943        aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 944                                  tipc_aead_decrypt_done, skb);
 945        rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 946        rx_ctx->aead = aead;
 947        rx_ctx->bearer = b;
 948
 949        /* Hold bearer */
 950        if (unlikely(!tipc_bearer_hold(b))) {
 951                rc = -ENODEV;
 952                goto exit;
 953        }
 954
 955        /* Now, do decrypt */
 956        rc = crypto_aead_decrypt(req);
 957        if (rc == -EINPROGRESS || rc == -EBUSY)
 958                return rc;
 959
 960        tipc_bearer_put(b);
 961
 962exit:
 963        kfree(ctx);
 964        TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 965        return rc;
 966}
 967
 968static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
 969{
 970        struct sk_buff *skb = base->data;
 971        struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 972        struct tipc_bearer *b = rx_ctx->bearer;
 973        struct tipc_aead *aead = rx_ctx->aead;
 974        struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 975        struct net *net = aead->crypto->net;
 976
 977        switch (err) {
 978        case 0:
 979                this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 980                break;
 981        case -EINPROGRESS:
 982                return;
 983        default:
 984                this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 985                break;
 986        }
 987
 988        kfree(rx_ctx);
 989        tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 990        if (likely(skb)) {
 991                if (likely(test_bit(0, &b->up)))
 992                        tipc_rcv(net, skb, b);
 993                else
 994                        kfree_skb(skb);
 995        }
 996
 997        tipc_bearer_put(b);
 998}
 999
1000static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
1001{
1002        return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1003}
1004
1005/**
1006 * tipc_ehdr_validate - Validate an encryption message
1007 * @skb: the message buffer
1008 *
1009 * Return: "true" if this is a valid encryption message, otherwise "false"
1010 */
1011bool tipc_ehdr_validate(struct sk_buff *skb)
1012{
1013        struct tipc_ehdr *ehdr;
1014        int ehsz;
1015
1016        if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1017                return false;
1018
1019        ehdr = (struct tipc_ehdr *)skb->data;
1020        if (unlikely(ehdr->version != TIPC_EVERSION))
1021                return false;
1022        ehsz = tipc_ehdr_size(ehdr);
1023        if (unlikely(!pskb_may_pull(skb, ehsz)))
1024                return false;
1025        if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1026                return false;
1027
1028        return true;
1029}
1030
1031/**
1032 * tipc_ehdr_build - Build TIPC encryption message header
1033 * @net: struct net
1034 * @aead: TX AEAD key to be used for the message encryption
1035 * @tx_key: key id used for the message encryption
1036 * @skb: input/output message skb
1037 * @__rx: RX crypto handle if dest is "known"
1038 *
1039 * Return: the header size if the building is successful, otherwise < 0
1040 */
1041static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1042                           u8 tx_key, struct sk_buff *skb,
1043                           struct tipc_crypto *__rx)
1044{
1045        struct tipc_msg *hdr = buf_msg(skb);
1046        struct tipc_ehdr *ehdr;
1047        u32 user = msg_user(hdr);
1048        u64 seqno;
1049        int ehsz;
1050
1051        /* Make room for encryption header */
1052        ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1053        WARN_ON(skb_headroom(skb) < ehsz);
1054        ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1055
1056        /* Obtain a seqno first:
1057         * Use the key seqno (= cluster wise) if dest is unknown or we're in
1058         * cluster key mode, otherwise it's better for a per-peer seqno!
1059         */
1060        if (!__rx || aead->mode == CLUSTER_KEY)
1061                seqno = atomic64_inc_return(&aead->seqno);
1062        else
1063                seqno = atomic64_inc_return(&__rx->sndnxt);
1064
1065        /* Revoke the key if seqno is wrapped around */
1066        if (unlikely(!seqno))
1067                return tipc_crypto_key_revoke(net, tx_key);
1068
1069        /* Word 1-2 */
1070        ehdr->seqno = cpu_to_be64(seqno);
1071
1072        /* Words 0, 3- */
1073        ehdr->version = TIPC_EVERSION;
1074        ehdr->user = 0;
1075        ehdr->keepalive = 0;
1076        ehdr->tx_key = tx_key;
1077        ehdr->destined = (__rx) ? 1 : 0;
1078        ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1079        ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1080        ehdr->master_key = aead->crypto->key_master;
1081        ehdr->reserved_1 = 0;
1082        ehdr->reserved_2 = 0;
1083
1084        switch (user) {
1085        case LINK_CONFIG:
1086                ehdr->user = LINK_CONFIG;
1087                memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1088                break;
1089        default:
1090                if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1091                        ehdr->user = LINK_PROTOCOL;
1092                        ehdr->keepalive = msg_is_keepalive(hdr);
1093                }
1094                ehdr->addr = hdr->hdr[3];
1095                break;
1096        }
1097
1098        return ehsz;
1099}
1100
1101static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1102                                             u8 new_passive,
1103                                             u8 new_active,
1104                                             u8 new_pending)
1105{
1106        struct tipc_key old = c->key;
1107        char buf[32];
1108
1109        c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1110                      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1111                      ((new_pending & KEY_MASK));
1112
1113        pr_debug("%s: key changing %s ::%pS\n", c->name,
1114                 tipc_key_change_dump(old, c->key, buf),
1115                 __builtin_return_address(0));
1116}
1117
1118/**
1119 * tipc_crypto_key_init - Initiate a new user / AEAD key
1120 * @c: TIPC crypto to which new key is attached
1121 * @ukey: the user key
1122 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1123 * @master_key: specify this is a cluster master key
1124 *
1125 * A new TIPC AEAD key will be allocated and initiated with the specified user
1126 * key, then attached to the TIPC crypto.
1127 *
1128 * Return: new key id in case of success, otherwise: < 0
1129 */
1130int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1131                         u8 mode, bool master_key)
1132{
1133        struct tipc_aead *aead = NULL;
1134        int rc = 0;
1135
1136        /* Initiate with the new user key */
1137        rc = tipc_aead_init(&aead, ukey, mode);
1138
1139        /* Attach it to the crypto */
1140        if (likely(!rc)) {
1141                rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1142                if (rc < 0)
1143                        tipc_aead_free(&aead->rcu);
1144        }
1145
1146        return rc;
1147}
1148
1149/**
1150 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1151 * @c: TIPC crypto to which the new AEAD key is attached
1152 * @aead: the new AEAD key pointer
1153 * @pos: desired slot in the crypto key array, = 0 if any!
1154 * @master_key: specify this is a cluster master key
1155 *
1156 * Return: new key id in case of success, otherwise: -EBUSY
1157 */
1158static int tipc_crypto_key_attach(struct tipc_crypto *c,
1159                                  struct tipc_aead *aead, u8 pos,
1160                                  bool master_key)
1161{
1162        struct tipc_key key;
1163        int rc = -EBUSY;
1164        u8 new_key;
1165
1166        spin_lock_bh(&c->lock);
1167        key = c->key;
1168        if (master_key) {
1169                new_key = KEY_MASTER;
1170                goto attach;
1171        }
1172        if (key.active && key.passive)
1173                goto exit;
1174        if (key.pending) {
1175                if (tipc_aead_users(c->aead[key.pending]) > 0)
1176                        goto exit;
1177                /* if (pos): ok with replacing, will be aligned when needed */
1178                /* Replace it */
1179                new_key = key.pending;
1180        } else {
1181                if (pos) {
1182                        if (key.active && pos != key_next(key.active)) {
1183                                key.passive = pos;
1184                                new_key = pos;
1185                                goto attach;
1186                        } else if (!key.active && !key.passive) {
1187                                key.pending = pos;
1188                                new_key = pos;
1189                                goto attach;
1190                        }
1191                }
1192                key.pending = key_next(key.active ?: key.passive);
1193                new_key = key.pending;
1194        }
1195
1196attach:
1197        aead->crypto = c;
1198        aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1199        tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1200        if (likely(c->key.keys != key.keys))
1201                tipc_crypto_key_set_state(c, key.passive, key.active,
1202                                          key.pending);
1203        c->working = 1;
1204        c->nokey = 0;
1205        c->key_master |= master_key;
1206        rc = new_key;
1207
1208exit:
1209        spin_unlock_bh(&c->lock);
1210        return rc;
1211}
1212
1213void tipc_crypto_key_flush(struct tipc_crypto *c)
1214{
1215        struct tipc_crypto *tx, *rx;
1216        int k;
1217
1218        spin_lock_bh(&c->lock);
1219        if (is_rx(c)) {
1220                /* Try to cancel pending work */
1221                rx = c;
1222                tx = tipc_net(rx->net)->crypto_tx;
1223                if (cancel_delayed_work(&rx->work)) {
1224                        kfree(rx->skey);
1225                        rx->skey = NULL;
1226                        atomic_xchg(&rx->key_distr, 0);
1227                        tipc_node_put(rx->node);
1228                }
1229                /* RX stopping => decrease TX key users if any */
1230                k = atomic_xchg(&rx->peer_rx_active, 0);
1231                if (k) {
1232                        tipc_aead_users_dec(tx->aead[k], 0);
1233                        /* Mark the point TX key users changed */
1234                        tx->timer1 = jiffies;
1235                }
1236        }
1237
1238        c->flags = 0;
1239        tipc_crypto_key_set_state(c, 0, 0, 0);
1240        for (k = KEY_MIN; k <= KEY_MAX; k++)
1241                tipc_crypto_key_detach(c->aead[k], &c->lock);
1242        atomic64_set(&c->sndnxt, 0);
1243        spin_unlock_bh(&c->lock);
1244}
1245
1246/**
1247 * tipc_crypto_key_try_align - Align RX keys if possible
1248 * @rx: RX crypto handle
1249 * @new_pending: new pending slot if aligned (= TX key from peer)
1250 *
1251 * Peer has used an unknown key slot, this only happens when peer has left and
1252 * rejoned, or we are newcomer.
1253 * That means, there must be no active key but a pending key at unaligned slot.
1254 * If so, we try to move the pending key to the new slot.
1255 * Note: A potential passive key can exist, it will be shifted correspondingly!
1256 *
1257 * Return: "true" if key is successfully aligned, otherwise "false"
1258 */
1259static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1260{
1261        struct tipc_aead *tmp1, *tmp2 = NULL;
1262        struct tipc_key key;
1263        bool aligned = false;
1264        u8 new_passive = 0;
1265        int x;
1266
1267        spin_lock(&rx->lock);
1268        key = rx->key;
1269        if (key.pending == new_pending) {
1270                aligned = true;
1271                goto exit;
1272        }
1273        if (key.active)
1274                goto exit;
1275        if (!key.pending)
1276                goto exit;
1277        if (tipc_aead_users(rx->aead[key.pending]) > 0)
1278                goto exit;
1279
1280        /* Try to "isolate" this pending key first */
1281        tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1282        if (!refcount_dec_if_one(&tmp1->refcnt))
1283                goto exit;
1284        rcu_assign_pointer(rx->aead[key.pending], NULL);
1285
1286        /* Move passive key if any */
1287        if (key.passive) {
1288                tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1289                x = (key.passive - key.pending + new_pending) % KEY_MAX;
1290                new_passive = (x <= 0) ? x + KEY_MAX : x;
1291        }
1292
1293        /* Re-allocate the key(s) */
1294        tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1295        rcu_assign_pointer(rx->aead[new_pending], tmp1);
1296        if (new_passive)
1297                rcu_assign_pointer(rx->aead[new_passive], tmp2);
1298        refcount_set(&tmp1->refcnt, 1);
1299        aligned = true;
1300        pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1301                            new_pending);
1302
1303exit:
1304        spin_unlock(&rx->lock);
1305        return aligned;
1306}
1307
1308/**
1309 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1310 * @tx: TX crypto handle
1311 * @rx: RX crypto handle (can be NULL)
1312 * @skb: the message skb which will be decrypted later
1313 * @tx_key: peer TX key id
1314 *
1315 * This function looks up the existing TX keys and pick one which is suitable
1316 * for the message decryption, that must be a cluster key and not used before
1317 * on the same message (i.e. recursive).
1318 *
1319 * Return: the TX AEAD key handle in case of success, otherwise NULL
1320 */
1321static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1322                                                 struct tipc_crypto *rx,
1323                                                 struct sk_buff *skb,
1324                                                 u8 tx_key)
1325{
1326        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1327        struct tipc_aead *aead = NULL;
1328        struct tipc_key key = tx->key;
1329        u8 k, i = 0;
1330
1331        /* Initialize data if not yet */
1332        if (!skb_cb->tx_clone_deferred) {
1333                skb_cb->tx_clone_deferred = 1;
1334                memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1335        }
1336
1337        skb_cb->tx_clone_ctx.rx = rx;
1338        if (++skb_cb->tx_clone_ctx.recurs > 2)
1339                return NULL;
1340
1341        /* Pick one TX key */
1342        spin_lock(&tx->lock);
1343        if (tx_key == KEY_MASTER) {
1344                aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1345                goto done;
1346        }
1347        do {
1348                k = (i == 0) ? key.pending :
1349                        ((i == 1) ? key.active : key.passive);
1350                if (!k)
1351                        continue;
1352                aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1353                if (!aead)
1354                        continue;
1355                if (aead->mode != CLUSTER_KEY ||
1356                    aead == skb_cb->tx_clone_ctx.last) {
1357                        aead = NULL;
1358                        continue;
1359                }
1360                /* Ok, found one cluster key */
1361                skb_cb->tx_clone_ctx.last = aead;
1362                WARN_ON(skb->next);
1363                skb->next = skb_clone(skb, GFP_ATOMIC);
1364                if (unlikely(!skb->next))
1365                        pr_warn("Failed to clone skb for next round if any\n");
1366                break;
1367        } while (++i < 3);
1368
1369done:
1370        if (likely(aead))
1371                WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1372        spin_unlock(&tx->lock);
1373
1374        return aead;
1375}
1376
1377/**
1378 * tipc_crypto_key_synch: Synch own key data according to peer key status
1379 * @rx: RX crypto handle
1380 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1381 *
1382 * This function updates the peer node related data as the peer RX active key
1383 * has changed, so the number of TX keys' users on this node are increased and
1384 * decreased correspondingly.
1385 *
1386 * It also considers if peer has no key, then we need to make own master key
1387 * (if any) taking over i.e. starting grace period and also trigger key
1388 * distributing process.
1389 *
1390 * The "per-peer" sndnxt is also reset when the peer key has switched.
1391 */
1392static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1393{
1394        struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1395        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1396        struct tipc_msg *hdr = buf_msg(skb);
1397        u32 self = tipc_own_addr(rx->net);
1398        u8 cur, new;
1399        unsigned long delay;
1400
1401        /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1402         * a peer has no master key.
1403         */
1404        rx->key_master = ehdr->master_key;
1405        if (!rx->key_master)
1406                tx->legacy_user = 1;
1407
1408        /* For later cases, apply only if message is destined to this node */
1409        if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1410                return;
1411
1412        /* Case 1: Peer has no keys, let's make master key take over */
1413        if (ehdr->rx_nokey) {
1414                /* Set or extend grace period */
1415                tx->timer2 = jiffies;
1416                /* Schedule key distributing for the peer if not yet */
1417                if (tx->key.keys &&
1418                    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1419                        get_random_bytes(&delay, 2);
1420                        delay %= 5;
1421                        delay = msecs_to_jiffies(500 * ++delay);
1422                        if (queue_delayed_work(tx->wq, &rx->work, delay))
1423                                tipc_node_get(rx->node);
1424                }
1425        } else {
1426                /* Cancel a pending key distributing if any */
1427                atomic_xchg(&rx->key_distr, 0);
1428        }
1429
1430        /* Case 2: Peer RX active key has changed, let's update own TX users */
1431        cur = atomic_read(&rx->peer_rx_active);
1432        new = ehdr->rx_key_active;
1433        if (tx->key.keys &&
1434            cur != new &&
1435            atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1436                if (new)
1437                        tipc_aead_users_inc(tx->aead[new], INT_MAX);
1438                if (cur)
1439                        tipc_aead_users_dec(tx->aead[cur], 0);
1440
1441                atomic64_set(&rx->sndnxt, 0);
1442                /* Mark the point TX key users changed */
1443                tx->timer1 = jiffies;
1444
1445                pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1446                         tx->name, cur, new, rx->name);
1447        }
1448}
1449
1450static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1451{
1452        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1453        struct tipc_key key;
1454
1455        spin_lock(&tx->lock);
1456        key = tx->key;
1457        WARN_ON(!key.active || tx_key != key.active);
1458
1459        /* Free the active key */
1460        tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1461        tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1462        spin_unlock(&tx->lock);
1463
1464        pr_warn("%s: key is revoked\n", tx->name);
1465        return -EKEYREVOKED;
1466}
1467
1468int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1469                      struct tipc_node *node)
1470{
1471        struct tipc_crypto *c;
1472
1473        if (*crypto)
1474                return -EEXIST;
1475
1476        /* Allocate crypto */
1477        c = kzalloc(sizeof(*c), GFP_ATOMIC);
1478        if (!c)
1479                return -ENOMEM;
1480
1481        /* Allocate workqueue on TX */
1482        if (!node) {
1483                c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1484                if (!c->wq) {
1485                        kfree(c);
1486                        return -ENOMEM;
1487                }
1488        }
1489
1490        /* Allocate statistic structure */
1491        c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1492        if (!c->stats) {
1493                if (c->wq)
1494                        destroy_workqueue(c->wq);
1495                kfree_sensitive(c);
1496                return -ENOMEM;
1497        }
1498
1499        c->flags = 0;
1500        c->net = net;
1501        c->node = node;
1502        get_random_bytes(&c->key_gen, 2);
1503        tipc_crypto_key_set_state(c, 0, 0, 0);
1504        atomic_set(&c->key_distr, 0);
1505        atomic_set(&c->peer_rx_active, 0);
1506        atomic64_set(&c->sndnxt, 0);
1507        c->timer1 = jiffies;
1508        c->timer2 = jiffies;
1509        c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1510        spin_lock_init(&c->lock);
1511        scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1512                  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1513                               tipc_own_id_string(c->net));
1514
1515        if (is_rx(c))
1516                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1517        else
1518                INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1519
1520        *crypto = c;
1521        return 0;
1522}
1523
1524void tipc_crypto_stop(struct tipc_crypto **crypto)
1525{
1526        struct tipc_crypto *c = *crypto;
1527        u8 k;
1528
1529        if (!c)
1530                return;
1531
1532        /* Flush any queued works & destroy wq */
1533        if (is_tx(c)) {
1534                c->rekeying_intv = 0;
1535                cancel_delayed_work_sync(&c->work);
1536                destroy_workqueue(c->wq);
1537        }
1538
1539        /* Release AEAD keys */
1540        rcu_read_lock();
1541        for (k = KEY_MIN; k <= KEY_MAX; k++)
1542                tipc_aead_put(rcu_dereference(c->aead[k]));
1543        rcu_read_unlock();
1544        pr_debug("%s: has been stopped\n", c->name);
1545
1546        /* Free this crypto statistics */
1547        free_percpu(c->stats);
1548
1549        *crypto = NULL;
1550        kfree_sensitive(c);
1551}
1552
1553void tipc_crypto_timeout(struct tipc_crypto *rx)
1554{
1555        struct tipc_net *tn = tipc_net(rx->net);
1556        struct tipc_crypto *tx = tn->crypto_tx;
1557        struct tipc_key key;
1558        int cmd;
1559
1560        /* TX pending: taking all users & stable -> active */
1561        spin_lock(&tx->lock);
1562        key = tx->key;
1563        if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1564                goto s1;
1565        if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1566                goto s1;
1567        if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1568                goto s1;
1569
1570        tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1571        if (key.active)
1572                tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1573        this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1574        pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1575
1576s1:
1577        spin_unlock(&tx->lock);
1578
1579        /* RX pending: having user -> active */
1580        spin_lock(&rx->lock);
1581        key = rx->key;
1582        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1583                goto s2;
1584
1585        if (key.active)
1586                key.passive = key.active;
1587        key.active = key.pending;
1588        rx->timer2 = jiffies;
1589        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1590        this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1591        pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1592        goto s5;
1593
1594s2:
1595        /* RX pending: not working -> remove */
1596        if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1597                goto s3;
1598
1599        tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1600        tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1601        pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1602        goto s5;
1603
1604s3:
1605        /* RX active: timed out or no user -> pending */
1606        if (!key.active)
1607                goto s4;
1608        if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1609            tipc_aead_users(rx->aead[key.active]) > 0)
1610                goto s4;
1611
1612        if (key.pending)
1613                key.passive = key.active;
1614        else
1615                key.pending = key.active;
1616        rx->timer2 = jiffies;
1617        tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1618        tipc_aead_users_set(rx->aead[key.pending], 0);
1619        pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1620        goto s5;
1621
1622s4:
1623        /* RX passive: outdated or not working -> free */
1624        if (!key.passive)
1625                goto s5;
1626        if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1627            tipc_aead_users(rx->aead[key.passive]) > -10)
1628                goto s5;
1629
1630        tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1631        tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1632        pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1633
1634s5:
1635        spin_unlock(&rx->lock);
1636
1637        /* Relax it here, the flag will be set again if it really is, but only
1638         * when we are not in grace period for safety!
1639         */
1640        if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1641                tx->legacy_user = 0;
1642
1643        /* Limit max_tfms & do debug commands if needed */
1644        if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1645                return;
1646
1647        cmd = sysctl_tipc_max_tfms;
1648        sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1649        tipc_crypto_do_cmd(rx->net, cmd);
1650}
1651
1652static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1653                                         struct tipc_bearer *b,
1654                                         struct tipc_media_addr *dst,
1655                                         struct tipc_node *__dnode, u8 type)
1656{
1657        struct sk_buff *skb;
1658
1659        skb = skb_clone(_skb, GFP_ATOMIC);
1660        if (skb) {
1661                TIPC_SKB_CB(skb)->xmit_type = type;
1662                tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1663                if (skb)
1664                        b->media->send_msg(net, skb, b, dst);
1665        }
1666}
1667
1668/**
1669 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1670 * @net: struct net
1671 * @skb: input/output message skb pointer
1672 * @b: bearer used for xmit later
1673 * @dst: destination media address
1674 * @__dnode: destination node for reference if any
1675 *
1676 * First, build an encryption message header on the top of the message, then
1677 * encrypt the original TIPC message by using the pending, master or active
1678 * key with this preference order.
1679 * If the encryption is successful, the encrypted skb is returned directly or
1680 * via the callback.
1681 * Otherwise, the skb is freed!
1682 *
1683 * Return:
1684 * * 0                   : the encryption has succeeded (or no encryption)
1685 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1686 * * -ENOKEK             : the encryption has failed due to no key
1687 * * -EKEYREVOKED        : the encryption has failed due to key revoked
1688 * * -ENOMEM             : the encryption has failed due to no memory
1689 * * < 0                 : the encryption has failed due to other reasons
1690 */
1691int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1692                     struct tipc_bearer *b, struct tipc_media_addr *dst,
1693                     struct tipc_node *__dnode)
1694{
1695        struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1696        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1697        struct tipc_crypto_stats __percpu *stats = tx->stats;
1698        struct tipc_msg *hdr = buf_msg(*skb);
1699        struct tipc_key key = tx->key;
1700        struct tipc_aead *aead = NULL;
1701        u32 user = msg_user(hdr);
1702        u32 type = msg_type(hdr);
1703        int rc = -ENOKEY;
1704        u8 tx_key = 0;
1705
1706        /* No encryption? */
1707        if (!tx->working)
1708                return 0;
1709
1710        /* Pending key if peer has active on it or probing time */
1711        if (unlikely(key.pending)) {
1712                tx_key = key.pending;
1713                if (!tx->key_master && !key.active)
1714                        goto encrypt;
1715                if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1716                        goto encrypt;
1717                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1718                        pr_debug("%s: probing for key[%d]\n", tx->name,
1719                                 key.pending);
1720                        goto encrypt;
1721                }
1722                if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1723                        tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1724                                              SKB_PROBING);
1725        }
1726
1727        /* Master key if this is a *vital* message or in grace period */
1728        if (tx->key_master) {
1729                tx_key = KEY_MASTER;
1730                if (!key.active)
1731                        goto encrypt;
1732                if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1733                        pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1734                                 user, type);
1735                        goto encrypt;
1736                }
1737                if (user == LINK_CONFIG ||
1738                    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1739                    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1740                    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1741                        if (__rx && __rx->key_master &&
1742                            !atomic_read(&__rx->peer_rx_active))
1743                                goto encrypt;
1744                        if (!__rx) {
1745                                if (likely(!tx->legacy_user))
1746                                        goto encrypt;
1747                                tipc_crypto_clone_msg(net, *skb, b, dst,
1748                                                      __dnode, SKB_GRACING);
1749                        }
1750                }
1751        }
1752
1753        /* Else, use the active key if any */
1754        if (likely(key.active)) {
1755                tx_key = key.active;
1756                goto encrypt;
1757        }
1758
1759        goto exit;
1760
1761encrypt:
1762        aead = tipc_aead_get(tx->aead[tx_key]);
1763        if (unlikely(!aead))
1764                goto exit;
1765        rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1766        if (likely(rc > 0))
1767                rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1768
1769exit:
1770        switch (rc) {
1771        case 0:
1772                this_cpu_inc(stats->stat[STAT_OK]);
1773                break;
1774        case -EINPROGRESS:
1775        case -EBUSY:
1776                this_cpu_inc(stats->stat[STAT_ASYNC]);
1777                *skb = NULL;
1778                return rc;
1779        default:
1780                this_cpu_inc(stats->stat[STAT_NOK]);
1781                if (rc == -ENOKEY)
1782                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1783                else if (rc == -EKEYREVOKED)
1784                        this_cpu_inc(stats->stat[STAT_BADKEYS]);
1785                kfree_skb(*skb);
1786                *skb = NULL;
1787                break;
1788        }
1789
1790        tipc_aead_put(aead);
1791        return rc;
1792}
1793
1794/**
1795 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1796 * @net: struct net
1797 * @rx: RX crypto handle
1798 * @skb: input/output message skb pointer
1799 * @b: bearer where the message has been received
1800 *
1801 * If the decryption is successful, the decrypted skb is returned directly or
1802 * as the callback, the encryption header and auth tag will be trimed out
1803 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1804 * Otherwise, the skb will be freed!
1805 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1806 * cluster key(s) can be taken for decryption (- recursive).
1807 *
1808 * Return:
1809 * * 0                   : the decryption has successfully completed
1810 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1811 * * -ENOKEY             : the decryption has failed due to no key
1812 * * -EBADMSG            : the decryption has failed due to bad message
1813 * * -ENOMEM             : the decryption has failed due to no memory
1814 * * < 0                 : the decryption has failed due to other reasons
1815 */
1816int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1817                    struct sk_buff **skb, struct tipc_bearer *b)
1818{
1819        struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1820        struct tipc_crypto_stats __percpu *stats;
1821        struct tipc_aead *aead = NULL;
1822        struct tipc_key key;
1823        int rc = -ENOKEY;
1824        u8 tx_key, n;
1825
1826        tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1827
1828        /* New peer?
1829         * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1830         */
1831        if (unlikely(!rx || tx_key == KEY_MASTER))
1832                goto pick_tx;
1833
1834        /* Pick RX key according to TX key if any */
1835        key = rx->key;
1836        if (tx_key == key.active || tx_key == key.pending ||
1837            tx_key == key.passive)
1838                goto decrypt;
1839
1840        /* Unknown key, let's try to align RX key(s) */
1841        if (tipc_crypto_key_try_align(rx, tx_key))
1842                goto decrypt;
1843
1844pick_tx:
1845        /* No key suitable? Try to pick one from TX... */
1846        aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1847        if (aead)
1848                goto decrypt;
1849        goto exit;
1850
1851decrypt:
1852        rcu_read_lock();
1853        if (!aead)
1854                aead = tipc_aead_get(rx->aead[tx_key]);
1855        rc = tipc_aead_decrypt(net, aead, *skb, b);
1856        rcu_read_unlock();
1857
1858exit:
1859        stats = ((rx) ?: tx)->stats;
1860        switch (rc) {
1861        case 0:
1862                this_cpu_inc(stats->stat[STAT_OK]);
1863                break;
1864        case -EINPROGRESS:
1865        case -EBUSY:
1866                this_cpu_inc(stats->stat[STAT_ASYNC]);
1867                *skb = NULL;
1868                return rc;
1869        default:
1870                this_cpu_inc(stats->stat[STAT_NOK]);
1871                if (rc == -ENOKEY) {
1872                        kfree_skb(*skb);
1873                        *skb = NULL;
1874                        if (rx) {
1875                                /* Mark rx->nokey only if we dont have a
1876                                 * pending received session key, nor a newer
1877                                 * one i.e. in the next slot.
1878                                 */
1879                                n = key_next(tx_key);
1880                                rx->nokey = !(rx->skey ||
1881                                              rcu_access_pointer(rx->aead[n]));
1882                                pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1883                                                     rx->name, rx->nokey,
1884                                                     tx_key, rx->key.keys);
1885                                tipc_node_put(rx->node);
1886                        }
1887                        this_cpu_inc(stats->stat[STAT_NOKEYS]);
1888                        return rc;
1889                } else if (rc == -EBADMSG) {
1890                        this_cpu_inc(stats->stat[STAT_BADMSGS]);
1891                }
1892                break;
1893        }
1894
1895        tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1896        return rc;
1897}
1898
1899static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1900                                     struct tipc_bearer *b,
1901                                     struct sk_buff **skb, int err)
1902{
1903        struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1904        struct tipc_crypto *rx = aead->crypto;
1905        struct tipc_aead *tmp = NULL;
1906        struct tipc_ehdr *ehdr;
1907        struct tipc_node *n;
1908
1909        /* Is this completed by TX? */
1910        if (unlikely(is_tx(aead->crypto))) {
1911                rx = skb_cb->tx_clone_ctx.rx;
1912                pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1913                         (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1914                         (*skb)->next, skb_cb->flags);
1915                pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1916                         skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1917                         aead->crypto->aead[1], aead->crypto->aead[2],
1918                         aead->crypto->aead[3]);
1919                if (unlikely(err)) {
1920                        if (err == -EBADMSG && (*skb)->next)
1921                                tipc_rcv(net, (*skb)->next, b);
1922                        goto free_skb;
1923                }
1924
1925                if (likely((*skb)->next)) {
1926                        kfree_skb((*skb)->next);
1927                        (*skb)->next = NULL;
1928                }
1929                ehdr = (struct tipc_ehdr *)(*skb)->data;
1930                if (!rx) {
1931                        WARN_ON(ehdr->user != LINK_CONFIG);
1932                        n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1933                                             true);
1934                        rx = tipc_node_crypto_rx(n);
1935                        if (unlikely(!rx))
1936                                goto free_skb;
1937                }
1938
1939                /* Ignore cloning if it was TX master key */
1940                if (ehdr->tx_key == KEY_MASTER)
1941                        goto rcv;
1942                if (tipc_aead_clone(&tmp, aead) < 0)
1943                        goto rcv;
1944                WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1945                if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1946                        tipc_aead_free(&tmp->rcu);
1947                        goto rcv;
1948                }
1949                tipc_aead_put(aead);
1950                aead = tmp;
1951        }
1952
1953        if (unlikely(err)) {
1954                tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1955                goto free_skb;
1956        }
1957
1958        /* Set the RX key's user */
1959        tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1960
1961        /* Mark this point, RX works */
1962        rx->timer1 = jiffies;
1963
1964rcv:
1965        /* Remove ehdr & auth. tag prior to tipc_rcv() */
1966        ehdr = (struct tipc_ehdr *)(*skb)->data;
1967
1968        /* Mark this point, RX passive still works */
1969        if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1970                rx->timer2 = jiffies;
1971
1972        skb_reset_network_header(*skb);
1973        skb_pull(*skb, tipc_ehdr_size(ehdr));
1974        pskb_trim(*skb, (*skb)->len - aead->authsize);
1975
1976        /* Validate TIPCv2 message */
1977        if (unlikely(!tipc_msg_validate(skb))) {
1978                pr_err_ratelimited("Packet dropped after decryption!\n");
1979                goto free_skb;
1980        }
1981
1982        /* Ok, everything's fine, try to synch own keys according to peers' */
1983        tipc_crypto_key_synch(rx, *skb);
1984
1985        /* Mark skb decrypted */
1986        skb_cb->decrypted = 1;
1987
1988        /* Clear clone cxt if any */
1989        if (likely(!skb_cb->tx_clone_deferred))
1990                goto exit;
1991        skb_cb->tx_clone_deferred = 0;
1992        memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1993        goto exit;
1994
1995free_skb:
1996        kfree_skb(*skb);
1997        *skb = NULL;
1998
1999exit:
2000        tipc_aead_put(aead);
2001        if (rx)
2002                tipc_node_put(rx->node);
2003}
2004
2005static void tipc_crypto_do_cmd(struct net *net, int cmd)
2006{
2007        struct tipc_net *tn = tipc_net(net);
2008        struct tipc_crypto *tx = tn->crypto_tx, *rx;
2009        struct list_head *p;
2010        unsigned int stat;
2011        int i, j, cpu;
2012        char buf[200];
2013
2014        /* Currently only one command is supported */
2015        switch (cmd) {
2016        case 0xfff1:
2017                goto print_stats;
2018        default:
2019                return;
2020        }
2021
2022print_stats:
2023        /* Print a header */
2024        pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2025
2026        /* Print key status */
2027        pr_info("Key status:\n");
2028        pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2029                tipc_crypto_key_dump(tx, buf));
2030
2031        rcu_read_lock();
2032        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2033                rx = tipc_node_crypto_rx_by_list(p);
2034                pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2035                        tipc_crypto_key_dump(rx, buf));
2036        }
2037        rcu_read_unlock();
2038
2039        /* Print crypto statistics */
2040        for (i = 0, j = 0; i < MAX_STATS; i++)
2041                j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2042        pr_info("Counter     %s", buf);
2043
2044        memset(buf, '-', 115);
2045        buf[115] = '\0';
2046        pr_info("%s\n", buf);
2047
2048        j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2049        for_each_possible_cpu(cpu) {
2050                for (i = 0; i < MAX_STATS; i++) {
2051                        stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2052                        j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2053                }
2054                pr_info("%s", buf);
2055                j = scnprintf(buf, 200, "%12s", " ");
2056        }
2057
2058        rcu_read_lock();
2059        for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2060                rx = tipc_node_crypto_rx_by_list(p);
2061                j = scnprintf(buf, 200, "RX(%7.7s) ",
2062                              tipc_node_get_id_str(rx->node));
2063                for_each_possible_cpu(cpu) {
2064                        for (i = 0; i < MAX_STATS; i++) {
2065                                stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2066                                j += scnprintf(buf + j, 200 - j, "|%11d ",
2067                                               stat);
2068                        }
2069                        pr_info("%s", buf);
2070                        j = scnprintf(buf, 200, "%12s", " ");
2071                }
2072        }
2073        rcu_read_unlock();
2074
2075        pr_info("\n======================== Done ========================\n");
2076}
2077
2078static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2079{
2080        struct tipc_key key = c->key;
2081        struct tipc_aead *aead;
2082        int k, i = 0;
2083        char *s;
2084
2085        for (k = KEY_MIN; k <= KEY_MAX; k++) {
2086                if (k == KEY_MASTER) {
2087                        if (is_rx(c))
2088                                continue;
2089                        if (time_before(jiffies,
2090                                        c->timer2 + TIPC_TX_GRACE_PERIOD))
2091                                s = "ACT";
2092                        else
2093                                s = "PAS";
2094                } else {
2095                        if (k == key.passive)
2096                                s = "PAS";
2097                        else if (k == key.active)
2098                                s = "ACT";
2099                        else if (k == key.pending)
2100                                s = "PEN";
2101                        else
2102                                s = "-";
2103                }
2104                i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2105
2106                rcu_read_lock();
2107                aead = rcu_dereference(c->aead[k]);
2108                if (aead)
2109                        i += scnprintf(buf + i, 200 - i,
2110                                       "{\"0x...%s\", \"%s\"}/%d:%d",
2111                                       aead->hint,
2112                                       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2113                                       atomic_read(&aead->users),
2114                                       refcount_read(&aead->refcnt));
2115                rcu_read_unlock();
2116                i += scnprintf(buf + i, 200 - i, "\n");
2117        }
2118
2119        if (is_rx(c))
2120                i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2121                               atomic_read(&c->peer_rx_active));
2122
2123        return buf;
2124}
2125
2126static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2127                                  char *buf)
2128{
2129        struct tipc_key *key = &old;
2130        int k, i = 0;
2131        char *s;
2132
2133        /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2134again:
2135        i += scnprintf(buf + i, 32 - i, "[");
2136        for (k = KEY_1; k <= KEY_3; k++) {
2137                if (k == key->passive)
2138                        s = "pas";
2139                else if (k == key->active)
2140                        s = "act";
2141                else if (k == key->pending)
2142                        s = "pen";
2143                else
2144                        s = "-";
2145                i += scnprintf(buf + i, 32 - i,
2146                               (k != KEY_3) ? "%s " : "%s", s);
2147        }
2148        if (key != &new) {
2149                i += scnprintf(buf + i, 32 - i, "] -> ");
2150                key = &new;
2151                goto again;
2152        }
2153        i += scnprintf(buf + i, 32 - i, "]");
2154        return buf;
2155}
2156
2157/**
2158 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2159 * @net: the struct net
2160 * @skb: the receiving message buffer
2161 */
2162void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2163{
2164        struct tipc_crypto *rx;
2165        struct tipc_msg *hdr;
2166
2167        if (unlikely(skb_linearize(skb)))
2168                goto exit;
2169
2170        hdr = buf_msg(skb);
2171        rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2172        if (unlikely(!rx))
2173                goto exit;
2174
2175        switch (msg_type(hdr)) {
2176        case KEY_DISTR_MSG:
2177                if (tipc_crypto_key_rcv(rx, hdr))
2178                        goto exit;
2179                break;
2180        default:
2181                break;
2182        }
2183
2184        tipc_node_put(rx->node);
2185
2186exit:
2187        kfree_skb(skb);
2188}
2189
2190/**
2191 * tipc_crypto_key_distr - Distribute a TX key
2192 * @tx: the TX crypto
2193 * @key: the key's index
2194 * @dest: the destination tipc node, = NULL if distributing to all nodes
2195 *
2196 * Return: 0 in case of success, otherwise < 0
2197 */
2198int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2199                          struct tipc_node *dest)
2200{
2201        struct tipc_aead *aead;
2202        u32 dnode = tipc_node_get_addr(dest);
2203        int rc = -ENOKEY;
2204
2205        if (!sysctl_tipc_key_exchange_enabled)
2206                return 0;
2207
2208        if (key) {
2209                rcu_read_lock();
2210                aead = tipc_aead_get(tx->aead[key]);
2211                if (likely(aead)) {
2212                        rc = tipc_crypto_key_xmit(tx->net, aead->key,
2213                                                  aead->gen, aead->mode,
2214                                                  dnode);
2215                        tipc_aead_put(aead);
2216                }
2217                rcu_read_unlock();
2218        }
2219
2220        return rc;
2221}
2222
2223/**
2224 * tipc_crypto_key_xmit - Send a session key
2225 * @net: the struct net
2226 * @skey: the session key to be sent
2227 * @gen: the key's generation
2228 * @mode: the key's mode
2229 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2230 *
2231 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2232 * as its data section, then xmit-ed through the uc/bc link.
2233 *
2234 * Return: 0 in case of success, otherwise < 0
2235 */
2236static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2237                                u16 gen, u8 mode, u32 dnode)
2238{
2239        struct sk_buff_head pkts;
2240        struct tipc_msg *hdr;
2241        struct sk_buff *skb;
2242        u16 size, cong_link_cnt;
2243        u8 *data;
2244        int rc;
2245
2246        size = tipc_aead_key_size(skey);
2247        skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2248        if (!skb)
2249                return -ENOMEM;
2250
2251        hdr = buf_msg(skb);
2252        tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2253                      INT_H_SIZE, dnode);
2254        msg_set_size(hdr, INT_H_SIZE + size);
2255        msg_set_key_gen(hdr, gen);
2256        msg_set_key_mode(hdr, mode);
2257
2258        data = msg_data(hdr);
2259        *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2260        memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2261        memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2262               skey->keylen);
2263
2264        __skb_queue_head_init(&pkts);
2265        __skb_queue_tail(&pkts, skb);
2266        if (dnode)
2267                rc = tipc_node_xmit(net, &pkts, dnode, 0);
2268        else
2269                rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2270
2271        return rc;
2272}
2273
2274/**
2275 * tipc_crypto_key_rcv - Receive a session key
2276 * @rx: the RX crypto
2277 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2278 *
2279 * This function retrieves the session key in the message from peer, then
2280 * schedules a RX work to attach the key to the corresponding RX crypto.
2281 *
2282 * Return: "true" if the key has been scheduled for attaching, otherwise
2283 * "false".
2284 */
2285static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2286{
2287        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2288        struct tipc_aead_key *skey = NULL;
2289        u16 key_gen = msg_key_gen(hdr);
2290        u16 size = msg_data_sz(hdr);
2291        u8 *data = msg_data(hdr);
2292        unsigned int keylen;
2293
2294        /* Verify whether the size can exist in the packet */
2295        if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2296                pr_debug("%s: message data size is too small\n", rx->name);
2297                goto exit;
2298        }
2299
2300        keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2301
2302        /* Verify the supplied size values */
2303        if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2304                     keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2305                pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2306                goto exit;
2307        }
2308
2309        spin_lock(&rx->lock);
2310        if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2311                pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2312                       rx->skey, key_gen, rx->key_gen);
2313                goto exit_unlock;
2314        }
2315
2316        /* Allocate memory for the key */
2317        skey = kmalloc(size, GFP_ATOMIC);
2318        if (unlikely(!skey)) {
2319                pr_err("%s: unable to allocate memory for skey\n", rx->name);
2320                goto exit_unlock;
2321        }
2322
2323        /* Copy key from msg data */
2324        skey->keylen = keylen;
2325        memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2326        memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2327               skey->keylen);
2328
2329        rx->key_gen = key_gen;
2330        rx->skey_mode = msg_key_mode(hdr);
2331        rx->skey = skey;
2332        rx->nokey = 0;
2333        mb(); /* for nokey flag */
2334
2335exit_unlock:
2336        spin_unlock(&rx->lock);
2337
2338exit:
2339        /* Schedule the key attaching on this crypto */
2340        if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2341                return true;
2342
2343        return false;
2344}
2345
2346/**
2347 * tipc_crypto_work_rx - Scheduled RX works handler
2348 * @work: the struct RX work
2349 *
2350 * The function processes the previous scheduled works i.e. distributing TX key
2351 * or attaching a received session key on RX crypto.
2352 */
2353static void tipc_crypto_work_rx(struct work_struct *work)
2354{
2355        struct delayed_work *dwork = to_delayed_work(work);
2356        struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2357        struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2358        unsigned long delay = msecs_to_jiffies(5000);
2359        bool resched = false;
2360        u8 key;
2361        int rc;
2362
2363        /* Case 1: Distribute TX key to peer if scheduled */
2364        if (atomic_cmpxchg(&rx->key_distr,
2365                           KEY_DISTR_SCHED,
2366                           KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2367                /* Always pick the newest one for distributing */
2368                key = tx->key.pending ?: tx->key.active;
2369                rc = tipc_crypto_key_distr(tx, key, rx->node);
2370                if (unlikely(rc))
2371                        pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2372                                tx->name, key, tipc_node_get_id_str(rx->node),
2373                                rc);
2374
2375                /* Sched for key_distr releasing */
2376                resched = true;
2377        } else {
2378                atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2379        }
2380
2381        /* Case 2: Attach a pending received session key from peer if any */
2382        if (rx->skey) {
2383                rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2384                if (unlikely(rc < 0))
2385                        pr_warn("%s: unable to attach received skey, err %d\n",
2386                                rx->name, rc);
2387                switch (rc) {
2388                case -EBUSY:
2389                case -ENOMEM:
2390                        /* Resched the key attaching */
2391                        resched = true;
2392                        break;
2393                default:
2394                        synchronize_rcu();
2395                        kfree(rx->skey);
2396                        rx->skey = NULL;
2397                        break;
2398                }
2399        }
2400
2401        if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2402                return;
2403
2404        tipc_node_put(rx->node);
2405}
2406
2407/**
2408 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2409 * @tx: TX crypto
2410 * @changed: if the rekeying needs to be rescheduled with new interval
2411 * @new_intv: new rekeying interval (when "changed" = true)
2412 */
2413void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2414                                u32 new_intv)
2415{
2416        unsigned long delay;
2417        bool now = false;
2418
2419        if (changed) {
2420                if (new_intv == TIPC_REKEYING_NOW)
2421                        now = true;
2422                else
2423                        tx->rekeying_intv = new_intv;
2424                cancel_delayed_work_sync(&tx->work);
2425        }
2426
2427        if (tx->rekeying_intv || now) {
2428                delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2429                queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2430        }
2431}
2432
2433/**
2434 * tipc_crypto_work_tx - Scheduled TX works handler
2435 * @work: the struct TX work
2436 *
2437 * The function processes the previous scheduled work, i.e. key rekeying, by
2438 * generating a new session key based on current one, then attaching it to the
2439 * TX crypto and finally distributing it to peers. It also re-schedules the
2440 * rekeying if needed.
2441 */
2442static void tipc_crypto_work_tx(struct work_struct *work)
2443{
2444        struct delayed_work *dwork = to_delayed_work(work);
2445        struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2446        struct tipc_aead_key *skey = NULL;
2447        struct tipc_key key = tx->key;
2448        struct tipc_aead *aead;
2449        int rc = -ENOMEM;
2450
2451        if (unlikely(key.pending))
2452                goto resched;
2453
2454        /* Take current key as a template */
2455        rcu_read_lock();
2456        aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2457        if (unlikely(!aead)) {
2458                rcu_read_unlock();
2459                /* At least one key should exist for securing */
2460                return;
2461        }
2462
2463        /* Lets duplicate it first */
2464        skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2465        rcu_read_unlock();
2466
2467        /* Now, generate new key, initiate & distribute it */
2468        if (likely(skey)) {
2469                rc = tipc_aead_key_generate(skey) ?:
2470                     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2471                if (likely(rc > 0))
2472                        rc = tipc_crypto_key_distr(tx, rc, NULL);
2473                kfree_sensitive(skey);
2474        }
2475
2476        if (unlikely(rc))
2477                pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2478
2479resched:
2480        /* Re-schedule rekeying if any */
2481        tipc_crypto_rekeying_sched(tx, false, 0);
2482}
2483