linux/sound/pci/sis7019.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Driver for SiS7019 Audio Accelerator
   4 *
   5 *  Copyright (C) 2004-2007, David Dillow
   6 *  Written by David Dillow <dave@thedillows.org>
   7 *  Inspired by the Trident 4D-WaveDX/NX driver.
   8 *
   9 *  All rights reserved.
  10 */
  11
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/time.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/interrupt.h>
  18#include <linux/delay.h>
  19#include <sound/core.h>
  20#include <sound/ac97_codec.h>
  21#include <sound/initval.h>
  22#include "sis7019.h"
  23
  24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
  25MODULE_DESCRIPTION("SiS7019");
  26MODULE_LICENSE("GPL");
  27
  28static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
  29static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
  30static bool enable = 1;
  31static int codecs = 1;
  32
  33module_param(index, int, 0444);
  34MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
  35module_param(id, charp, 0444);
  36MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
  37module_param(enable, bool, 0444);
  38MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
  39module_param(codecs, int, 0444);
  40MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
  41
  42static const struct pci_device_id snd_sis7019_ids[] = {
  43        { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
  44        { 0, }
  45};
  46
  47MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
  48
  49/* There are three timing modes for the voices.
  50 *
  51 * For both playback and capture, when the buffer is one or two periods long,
  52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
  53 * to let us know when the periods have ended.
  54 *
  55 * When performing playback with more than two periods per buffer, we set
  56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
  57 * reach it. We then update the offset and continue on until we are
  58 * interrupted for the next period.
  59 *
  60 * Capture channels do not have a SSO, so we allocate a playback channel to
  61 * use as a timer for the capture periods. We use the SSO on the playback
  62 * channel to clock out virtual periods, and adjust the virtual period length
  63 * to maintain synchronization. This algorithm came from the Trident driver.
  64 *
  65 * FIXME: It'd be nice to make use of some of the synth features in the
  66 * hardware, but a woeful lack of documentation is a significant roadblock.
  67 */
  68struct voice {
  69        u16 flags;
  70#define         VOICE_IN_USE            1
  71#define         VOICE_CAPTURE           2
  72#define         VOICE_SSO_TIMING        4
  73#define         VOICE_SYNC_TIMING       8
  74        u16 sync_cso;
  75        u16 period_size;
  76        u16 buffer_size;
  77        u16 sync_period_size;
  78        u16 sync_buffer_size;
  79        u32 sso;
  80        u32 vperiod;
  81        struct snd_pcm_substream *substream;
  82        struct voice *timing;
  83        void __iomem *ctrl_base;
  84        void __iomem *wave_base;
  85        void __iomem *sync_base;
  86        int num;
  87};
  88
  89/* We need four pages to store our wave parameters during a suspend. If
  90 * we're not doing power management, we still need to allocate a page
  91 * for the silence buffer.
  92 */
  93#ifdef CONFIG_PM_SLEEP
  94#define SIS_SUSPEND_PAGES       4
  95#else
  96#define SIS_SUSPEND_PAGES       1
  97#endif
  98
  99struct sis7019 {
 100        unsigned long ioport;
 101        void __iomem *ioaddr;
 102        int irq;
 103        int codecs_present;
 104
 105        struct pci_dev *pci;
 106        struct snd_pcm *pcm;
 107        struct snd_card *card;
 108        struct snd_ac97 *ac97[3];
 109
 110        /* Protect against more than one thread hitting the AC97
 111         * registers (in a more polite manner than pounding the hardware
 112         * semaphore)
 113         */
 114        struct mutex ac97_mutex;
 115
 116        /* voice_lock protects allocation/freeing of the voice descriptions
 117         */
 118        spinlock_t voice_lock;
 119
 120        struct voice voices[64];
 121        struct voice capture_voice;
 122
 123        /* Allocate pages to store the internal wave state during
 124         * suspends. When we're operating, this can be used as a silence
 125         * buffer for a timing channel.
 126         */
 127        void *suspend_state[SIS_SUSPEND_PAGES];
 128
 129        int silence_users;
 130        dma_addr_t silence_dma_addr;
 131};
 132
 133/* These values are also used by the module param 'codecs' to indicate
 134 * which codecs should be present.
 135 */
 136#define SIS_PRIMARY_CODEC_PRESENT       0x0001
 137#define SIS_SECONDARY_CODEC_PRESENT     0x0002
 138#define SIS_TERTIARY_CODEC_PRESENT      0x0004
 139
 140/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 141 * documented range of 8-0xfff8 samples. Given that they are 0-based,
 142 * that places our period/buffer range at 9-0xfff9 samples. That makes the
 143 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 144 * max samples / min samples gives us the max periods in a buffer.
 145 *
 146 * We'll add a constraint upon open that limits the period and buffer sample
 147 * size to values that are legal for the hardware.
 148 */
 149static const struct snd_pcm_hardware sis_playback_hw_info = {
 150        .info = (SNDRV_PCM_INFO_MMAP |
 151                 SNDRV_PCM_INFO_MMAP_VALID |
 152                 SNDRV_PCM_INFO_INTERLEAVED |
 153                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 154                 SNDRV_PCM_INFO_SYNC_START |
 155                 SNDRV_PCM_INFO_RESUME),
 156        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 157                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 158        .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 159        .rate_min = 4000,
 160        .rate_max = 48000,
 161        .channels_min = 1,
 162        .channels_max = 2,
 163        .buffer_bytes_max = (0xfff9 * 4),
 164        .period_bytes_min = 9,
 165        .period_bytes_max = (0xfff9 * 4),
 166        .periods_min = 1,
 167        .periods_max = (0xfff9 / 9),
 168};
 169
 170static const struct snd_pcm_hardware sis_capture_hw_info = {
 171        .info = (SNDRV_PCM_INFO_MMAP |
 172                 SNDRV_PCM_INFO_MMAP_VALID |
 173                 SNDRV_PCM_INFO_INTERLEAVED |
 174                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 175                 SNDRV_PCM_INFO_SYNC_START |
 176                 SNDRV_PCM_INFO_RESUME),
 177        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 178                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 179        .rates = SNDRV_PCM_RATE_48000,
 180        .rate_min = 4000,
 181        .rate_max = 48000,
 182        .channels_min = 1,
 183        .channels_max = 2,
 184        .buffer_bytes_max = (0xfff9 * 4),
 185        .period_bytes_min = 9,
 186        .period_bytes_max = (0xfff9 * 4),
 187        .periods_min = 1,
 188        .periods_max = (0xfff9 / 9),
 189};
 190
 191static void sis_update_sso(struct voice *voice, u16 period)
 192{
 193        void __iomem *base = voice->ctrl_base;
 194
 195        voice->sso += period;
 196        if (voice->sso >= voice->buffer_size)
 197                voice->sso -= voice->buffer_size;
 198
 199        /* Enforce the documented hardware minimum offset */
 200        if (voice->sso < 8)
 201                voice->sso = 8;
 202
 203        /* The SSO is in the upper 16 bits of the register. */
 204        writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 205}
 206
 207static void sis_update_voice(struct voice *voice)
 208{
 209        if (voice->flags & VOICE_SSO_TIMING) {
 210                sis_update_sso(voice, voice->period_size);
 211        } else if (voice->flags & VOICE_SYNC_TIMING) {
 212                int sync;
 213
 214                /* If we've not hit the end of the virtual period, update
 215                 * our records and keep going.
 216                 */
 217                if (voice->vperiod > voice->period_size) {
 218                        voice->vperiod -= voice->period_size;
 219                        if (voice->vperiod < voice->period_size)
 220                                sis_update_sso(voice, voice->vperiod);
 221                        else
 222                                sis_update_sso(voice, voice->period_size);
 223                        return;
 224                }
 225
 226                /* Calculate our relative offset between the target and
 227                 * the actual CSO value. Since we're operating in a loop,
 228                 * if the value is more than half way around, we can
 229                 * consider ourselves wrapped.
 230                 */
 231                sync = voice->sync_cso;
 232                sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 233                if (sync > (voice->sync_buffer_size / 2))
 234                        sync -= voice->sync_buffer_size;
 235
 236                /* If sync is positive, then we interrupted too early, and
 237                 * we'll need to come back in a few samples and try again.
 238                 * There's a minimum wait, as it takes some time for the DMA
 239                 * engine to startup, etc...
 240                 */
 241                if (sync > 0) {
 242                        if (sync < 16)
 243                                sync = 16;
 244                        sis_update_sso(voice, sync);
 245                        return;
 246                }
 247
 248                /* Ok, we interrupted right on time, or (hopefully) just
 249                 * a bit late. We'll adjst our next waiting period based
 250                 * on how close we got.
 251                 *
 252                 * We need to stay just behind the actual channel to ensure
 253                 * it really is past a period when we get our interrupt --
 254                 * otherwise we'll fall into the early code above and have
 255                 * a minimum wait time, which makes us quite late here,
 256                 * eating into the user's time to refresh the buffer, esp.
 257                 * if using small periods.
 258                 *
 259                 * If we're less than 9 samples behind, we're on target.
 260                 * Otherwise, shorten the next vperiod by the amount we've
 261                 * been delayed.
 262                 */
 263                if (sync > -9)
 264                        voice->vperiod = voice->sync_period_size + 1;
 265                else
 266                        voice->vperiod = voice->sync_period_size + sync + 10;
 267
 268                if (voice->vperiod < voice->buffer_size) {
 269                        sis_update_sso(voice, voice->vperiod);
 270                        voice->vperiod = 0;
 271                } else
 272                        sis_update_sso(voice, voice->period_size);
 273
 274                sync = voice->sync_cso + voice->sync_period_size;
 275                if (sync >= voice->sync_buffer_size)
 276                        sync -= voice->sync_buffer_size;
 277                voice->sync_cso = sync;
 278        }
 279
 280        snd_pcm_period_elapsed(voice->substream);
 281}
 282
 283static void sis_voice_irq(u32 status, struct voice *voice)
 284{
 285        int bit;
 286
 287        while (status) {
 288                bit = __ffs(status);
 289                status >>= bit + 1;
 290                voice += bit;
 291                sis_update_voice(voice);
 292                voice++;
 293        }
 294}
 295
 296static irqreturn_t sis_interrupt(int irq, void *dev)
 297{
 298        struct sis7019 *sis = dev;
 299        unsigned long io = sis->ioport;
 300        struct voice *voice;
 301        u32 intr, status;
 302
 303        /* We only use the DMA interrupts, and we don't enable any other
 304         * source of interrupts. But, it is possible to see an interrupt
 305         * status that didn't actually interrupt us, so eliminate anything
 306         * we're not expecting to avoid falsely claiming an IRQ, and an
 307         * ensuing endless loop.
 308         */
 309        intr = inl(io + SIS_GISR);
 310        intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 311                SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 312        if (!intr)
 313                return IRQ_NONE;
 314
 315        do {
 316                status = inl(io + SIS_PISR_A);
 317                if (status) {
 318                        sis_voice_irq(status, sis->voices);
 319                        outl(status, io + SIS_PISR_A);
 320                }
 321
 322                status = inl(io + SIS_PISR_B);
 323                if (status) {
 324                        sis_voice_irq(status, &sis->voices[32]);
 325                        outl(status, io + SIS_PISR_B);
 326                }
 327
 328                status = inl(io + SIS_RISR);
 329                if (status) {
 330                        voice = &sis->capture_voice;
 331                        if (!voice->timing)
 332                                snd_pcm_period_elapsed(voice->substream);
 333
 334                        outl(status, io + SIS_RISR);
 335                }
 336
 337                outl(intr, io + SIS_GISR);
 338                intr = inl(io + SIS_GISR);
 339                intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 340                        SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 341        } while (intr);
 342
 343        return IRQ_HANDLED;
 344}
 345
 346static u32 sis_rate_to_delta(unsigned int rate)
 347{
 348        u32 delta;
 349
 350        /* This was copied from the trident driver, but it seems its gotten
 351         * around a bit... nevertheless, it works well.
 352         *
 353         * We special case 44100 and 8000 since rounding with the equation
 354         * does not give us an accurate enough value. For 11025 and 22050
 355         * the equation gives us the best answer. All other frequencies will
 356         * also use the equation. JDW
 357         */
 358        if (rate == 44100)
 359                delta = 0xeb3;
 360        else if (rate == 8000)
 361                delta = 0x2ab;
 362        else if (rate == 48000)
 363                delta = 0x1000;
 364        else
 365                delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
 366        return delta;
 367}
 368
 369static void __sis_map_silence(struct sis7019 *sis)
 370{
 371        /* Helper function: must hold sis->voice_lock on entry */
 372        if (!sis->silence_users)
 373                sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
 374                                                sis->suspend_state[0],
 375                                                4096, DMA_TO_DEVICE);
 376        sis->silence_users++;
 377}
 378
 379static void __sis_unmap_silence(struct sis7019 *sis)
 380{
 381        /* Helper function: must hold sis->voice_lock on entry */
 382        sis->silence_users--;
 383        if (!sis->silence_users)
 384                dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
 385                                        DMA_TO_DEVICE);
 386}
 387
 388static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 389{
 390        unsigned long flags;
 391
 392        spin_lock_irqsave(&sis->voice_lock, flags);
 393        if (voice->timing) {
 394                __sis_unmap_silence(sis);
 395                voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 396                                                VOICE_SYNC_TIMING);
 397                voice->timing = NULL;
 398        }
 399        voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 400        spin_unlock_irqrestore(&sis->voice_lock, flags);
 401}
 402
 403static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 404{
 405        /* Must hold the voice_lock on entry */
 406        struct voice *voice;
 407        int i;
 408
 409        for (i = 0; i < 64; i++) {
 410                voice = &sis->voices[i];
 411                if (voice->flags & VOICE_IN_USE)
 412                        continue;
 413                voice->flags |= VOICE_IN_USE;
 414                goto found_one;
 415        }
 416        voice = NULL;
 417
 418found_one:
 419        return voice;
 420}
 421
 422static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 423{
 424        struct voice *voice;
 425        unsigned long flags;
 426
 427        spin_lock_irqsave(&sis->voice_lock, flags);
 428        voice = __sis_alloc_playback_voice(sis);
 429        spin_unlock_irqrestore(&sis->voice_lock, flags);
 430
 431        return voice;
 432}
 433
 434static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 435                                        struct snd_pcm_hw_params *hw_params)
 436{
 437        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 438        struct snd_pcm_runtime *runtime = substream->runtime;
 439        struct voice *voice = runtime->private_data;
 440        unsigned int period_size, buffer_size;
 441        unsigned long flags;
 442        int needed;
 443
 444        /* If there are one or two periods per buffer, we don't need a
 445         * timing voice, as we can use the capture channel's interrupts
 446         * to clock out the periods.
 447         */
 448        period_size = params_period_size(hw_params);
 449        buffer_size = params_buffer_size(hw_params);
 450        needed = (period_size != buffer_size &&
 451                        period_size != (buffer_size / 2));
 452
 453        if (needed && !voice->timing) {
 454                spin_lock_irqsave(&sis->voice_lock, flags);
 455                voice->timing = __sis_alloc_playback_voice(sis);
 456                if (voice->timing)
 457                        __sis_map_silence(sis);
 458                spin_unlock_irqrestore(&sis->voice_lock, flags);
 459                if (!voice->timing)
 460                        return -ENOMEM;
 461                voice->timing->substream = substream;
 462        } else if (!needed && voice->timing) {
 463                sis_free_voice(sis, voice);
 464                voice->timing = NULL;
 465        }
 466
 467        return 0;
 468}
 469
 470static int sis_playback_open(struct snd_pcm_substream *substream)
 471{
 472        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 473        struct snd_pcm_runtime *runtime = substream->runtime;
 474        struct voice *voice;
 475
 476        voice = sis_alloc_playback_voice(sis);
 477        if (!voice)
 478                return -EAGAIN;
 479
 480        voice->substream = substream;
 481        runtime->private_data = voice;
 482        runtime->hw = sis_playback_hw_info;
 483        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 484                                                9, 0xfff9);
 485        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 486                                                9, 0xfff9);
 487        snd_pcm_set_sync(substream);
 488        return 0;
 489}
 490
 491static int sis_substream_close(struct snd_pcm_substream *substream)
 492{
 493        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 494        struct snd_pcm_runtime *runtime = substream->runtime;
 495        struct voice *voice = runtime->private_data;
 496
 497        sis_free_voice(sis, voice);
 498        return 0;
 499}
 500
 501static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 502{
 503        struct snd_pcm_runtime *runtime = substream->runtime;
 504        struct voice *voice = runtime->private_data;
 505        void __iomem *ctrl_base = voice->ctrl_base;
 506        void __iomem *wave_base = voice->wave_base;
 507        u32 format, dma_addr, control, sso_eso, delta, reg;
 508        u16 leo;
 509
 510        /* We rely on the PCM core to ensure that the parameters for this
 511         * substream do not change on us while we're programming the HW.
 512         */
 513        format = 0;
 514        if (snd_pcm_format_width(runtime->format) == 8)
 515                format |= SIS_PLAY_DMA_FORMAT_8BIT;
 516        if (!snd_pcm_format_signed(runtime->format))
 517                format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 518        if (runtime->channels == 1)
 519                format |= SIS_PLAY_DMA_FORMAT_MONO;
 520
 521        /* The baseline setup is for a single period per buffer, and
 522         * we add bells and whistles as needed from there.
 523         */
 524        dma_addr = runtime->dma_addr;
 525        leo = runtime->buffer_size - 1;
 526        control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 527        sso_eso = leo;
 528
 529        if (runtime->period_size == (runtime->buffer_size / 2)) {
 530                control |= SIS_PLAY_DMA_INTR_AT_MLP;
 531        } else if (runtime->period_size != runtime->buffer_size) {
 532                voice->flags |= VOICE_SSO_TIMING;
 533                voice->sso = runtime->period_size - 1;
 534                voice->period_size = runtime->period_size;
 535                voice->buffer_size = runtime->buffer_size;
 536
 537                control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 538                control |= SIS_PLAY_DMA_INTR_AT_SSO;
 539                sso_eso |= (runtime->period_size - 1) << 16;
 540        }
 541
 542        delta = sis_rate_to_delta(runtime->rate);
 543
 544        /* Ok, we're ready to go, set up the channel.
 545         */
 546        writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 547        writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 548        writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 549        writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 550
 551        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 552                writel(0, wave_base + reg);
 553
 554        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 555        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 556        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 557                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 558                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 559                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 560
 561        /* Force PCI writes to post. */
 562        readl(ctrl_base);
 563
 564        return 0;
 565}
 566
 567static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 568{
 569        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 570        unsigned long io = sis->ioport;
 571        struct snd_pcm_substream *s;
 572        struct voice *voice;
 573        void *chip;
 574        int starting;
 575        u32 record = 0;
 576        u32 play[2] = { 0, 0 };
 577
 578        /* No locks needed, as the PCM core will hold the locks on the
 579         * substreams, and the HW will only start/stop the indicated voices
 580         * without changing the state of the others.
 581         */
 582        switch (cmd) {
 583        case SNDRV_PCM_TRIGGER_START:
 584        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 585        case SNDRV_PCM_TRIGGER_RESUME:
 586                starting = 1;
 587                break;
 588        case SNDRV_PCM_TRIGGER_STOP:
 589        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 590        case SNDRV_PCM_TRIGGER_SUSPEND:
 591                starting = 0;
 592                break;
 593        default:
 594                return -EINVAL;
 595        }
 596
 597        snd_pcm_group_for_each_entry(s, substream) {
 598                /* Make sure it is for us... */
 599                chip = snd_pcm_substream_chip(s);
 600                if (chip != sis)
 601                        continue;
 602
 603                voice = s->runtime->private_data;
 604                if (voice->flags & VOICE_CAPTURE) {
 605                        record |= 1 << voice->num;
 606                        voice = voice->timing;
 607                }
 608
 609                /* voice could be NULL if this a recording stream, and it
 610                 * doesn't have an external timing channel.
 611                 */
 612                if (voice)
 613                        play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 614
 615                snd_pcm_trigger_done(s, substream);
 616        }
 617
 618        if (starting) {
 619                if (record)
 620                        outl(record, io + SIS_RECORD_START_REG);
 621                if (play[0])
 622                        outl(play[0], io + SIS_PLAY_START_A_REG);
 623                if (play[1])
 624                        outl(play[1], io + SIS_PLAY_START_B_REG);
 625        } else {
 626                if (record)
 627                        outl(record, io + SIS_RECORD_STOP_REG);
 628                if (play[0])
 629                        outl(play[0], io + SIS_PLAY_STOP_A_REG);
 630                if (play[1])
 631                        outl(play[1], io + SIS_PLAY_STOP_B_REG);
 632        }
 633        return 0;
 634}
 635
 636static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 637{
 638        struct snd_pcm_runtime *runtime = substream->runtime;
 639        struct voice *voice = runtime->private_data;
 640        u32 cso;
 641
 642        cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 643        cso &= 0xffff;
 644        return cso;
 645}
 646
 647static int sis_capture_open(struct snd_pcm_substream *substream)
 648{
 649        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 650        struct snd_pcm_runtime *runtime = substream->runtime;
 651        struct voice *voice = &sis->capture_voice;
 652        unsigned long flags;
 653
 654        /* FIXME: The driver only supports recording from one channel
 655         * at the moment, but it could support more.
 656         */
 657        spin_lock_irqsave(&sis->voice_lock, flags);
 658        if (voice->flags & VOICE_IN_USE)
 659                voice = NULL;
 660        else
 661                voice->flags |= VOICE_IN_USE;
 662        spin_unlock_irqrestore(&sis->voice_lock, flags);
 663
 664        if (!voice)
 665                return -EAGAIN;
 666
 667        voice->substream = substream;
 668        runtime->private_data = voice;
 669        runtime->hw = sis_capture_hw_info;
 670        runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 671        snd_pcm_limit_hw_rates(runtime);
 672        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 673                                                9, 0xfff9);
 674        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 675                                                9, 0xfff9);
 676        snd_pcm_set_sync(substream);
 677        return 0;
 678}
 679
 680static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 681                                        struct snd_pcm_hw_params *hw_params)
 682{
 683        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 684        int rc;
 685
 686        rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 687                                                params_rate(hw_params));
 688        if (rc)
 689                goto out;
 690
 691        rc = sis_alloc_timing_voice(substream, hw_params);
 692
 693out:
 694        return rc;
 695}
 696
 697static void sis_prepare_timing_voice(struct voice *voice,
 698                                        struct snd_pcm_substream *substream)
 699{
 700        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 701        struct snd_pcm_runtime *runtime = substream->runtime;
 702        struct voice *timing = voice->timing;
 703        void __iomem *play_base = timing->ctrl_base;
 704        void __iomem *wave_base = timing->wave_base;
 705        u16 buffer_size, period_size;
 706        u32 format, control, sso_eso, delta;
 707        u32 vperiod, sso, reg;
 708
 709        /* Set our initial buffer and period as large as we can given a
 710         * single page of silence.
 711         */
 712        buffer_size = 4096 / runtime->channels;
 713        buffer_size /= snd_pcm_format_size(runtime->format, 1);
 714        period_size = buffer_size;
 715
 716        /* Initially, we want to interrupt just a bit behind the end of
 717         * the period we're clocking out. 12 samples seems to give a good
 718         * delay.
 719         *
 720         * We want to spread our interrupts throughout the virtual period,
 721         * so that we don't end up with two interrupts back to back at the
 722         * end -- this helps minimize the effects of any jitter. Adjust our
 723         * clocking period size so that the last period is at least a fourth
 724         * of a full period.
 725         *
 726         * This is all moot if we don't need to use virtual periods.
 727         */
 728        vperiod = runtime->period_size + 12;
 729        if (vperiod > period_size) {
 730                u16 tail = vperiod % period_size;
 731                u16 quarter_period = period_size / 4;
 732
 733                if (tail && tail < quarter_period) {
 734                        u16 loops = vperiod / period_size;
 735
 736                        tail = quarter_period - tail;
 737                        tail += loops - 1;
 738                        tail /= loops;
 739                        period_size -= tail;
 740                }
 741
 742                sso = period_size - 1;
 743        } else {
 744                /* The initial period will fit inside the buffer, so we
 745                 * don't need to use virtual periods -- disable them.
 746                 */
 747                period_size = runtime->period_size;
 748                sso = vperiod - 1;
 749                vperiod = 0;
 750        }
 751
 752        /* The interrupt handler implements the timing synchronization, so
 753         * setup its state.
 754         */
 755        timing->flags |= VOICE_SYNC_TIMING;
 756        timing->sync_base = voice->ctrl_base;
 757        timing->sync_cso = runtime->period_size;
 758        timing->sync_period_size = runtime->period_size;
 759        timing->sync_buffer_size = runtime->buffer_size;
 760        timing->period_size = period_size;
 761        timing->buffer_size = buffer_size;
 762        timing->sso = sso;
 763        timing->vperiod = vperiod;
 764
 765        /* Using unsigned samples with the all-zero silence buffer
 766         * forces the output to the lower rail, killing playback.
 767         * So ignore unsigned vs signed -- it doesn't change the timing.
 768         */
 769        format = 0;
 770        if (snd_pcm_format_width(runtime->format) == 8)
 771                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 772        if (runtime->channels == 1)
 773                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 774
 775        control = timing->buffer_size - 1;
 776        control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 777        sso_eso = timing->buffer_size - 1;
 778        sso_eso |= timing->sso << 16;
 779
 780        delta = sis_rate_to_delta(runtime->rate);
 781
 782        /* We've done the math, now configure the channel.
 783         */
 784        writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 785        writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 786        writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 787        writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 788
 789        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 790                writel(0, wave_base + reg);
 791
 792        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 793        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 794        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 795                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 796                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 797                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 798}
 799
 800static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 801{
 802        struct snd_pcm_runtime *runtime = substream->runtime;
 803        struct voice *voice = runtime->private_data;
 804        void __iomem *rec_base = voice->ctrl_base;
 805        u32 format, dma_addr, control;
 806        u16 leo;
 807
 808        /* We rely on the PCM core to ensure that the parameters for this
 809         * substream do not change on us while we're programming the HW.
 810         */
 811        format = 0;
 812        if (snd_pcm_format_width(runtime->format) == 8)
 813                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 814        if (!snd_pcm_format_signed(runtime->format))
 815                format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 816        if (runtime->channels == 1)
 817                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 818
 819        dma_addr = runtime->dma_addr;
 820        leo = runtime->buffer_size - 1;
 821        control = leo | SIS_CAPTURE_DMA_LOOP;
 822
 823        /* If we've got more than two periods per buffer, then we have
 824         * use a timing voice to clock out the periods. Otherwise, we can
 825         * use the capture channel's interrupts.
 826         */
 827        if (voice->timing) {
 828                sis_prepare_timing_voice(voice, substream);
 829        } else {
 830                control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 831                if (runtime->period_size != runtime->buffer_size)
 832                        control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 833        }
 834
 835        writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 836        writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 837        writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 838
 839        /* Force the writes to post. */
 840        readl(rec_base);
 841
 842        return 0;
 843}
 844
 845static const struct snd_pcm_ops sis_playback_ops = {
 846        .open = sis_playback_open,
 847        .close = sis_substream_close,
 848        .prepare = sis_pcm_playback_prepare,
 849        .trigger = sis_pcm_trigger,
 850        .pointer = sis_pcm_pointer,
 851};
 852
 853static const struct snd_pcm_ops sis_capture_ops = {
 854        .open = sis_capture_open,
 855        .close = sis_substream_close,
 856        .hw_params = sis_capture_hw_params,
 857        .prepare = sis_pcm_capture_prepare,
 858        .trigger = sis_pcm_trigger,
 859        .pointer = sis_pcm_pointer,
 860};
 861
 862static int sis_pcm_create(struct sis7019 *sis)
 863{
 864        struct snd_pcm *pcm;
 865        int rc;
 866
 867        /* We have 64 voices, and the driver currently records from
 868         * only one channel, though that could change in the future.
 869         */
 870        rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 871        if (rc)
 872                return rc;
 873
 874        pcm->private_data = sis;
 875        strcpy(pcm->name, "SiS7019");
 876        sis->pcm = pcm;
 877
 878        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 879        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 880
 881        /* Try to preallocate some memory, but it's not the end of the
 882         * world if this fails.
 883         */
 884        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
 885                                       &sis->pci->dev, 64*1024, 128*1024);
 886
 887        return 0;
 888}
 889
 890static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 891{
 892        unsigned long io = sis->ioport;
 893        unsigned short val = 0xffff;
 894        u16 status;
 895        u16 rdy;
 896        int count;
 897        static const u16 codec_ready[3] = {
 898                SIS_AC97_STATUS_CODEC_READY,
 899                SIS_AC97_STATUS_CODEC2_READY,
 900                SIS_AC97_STATUS_CODEC3_READY,
 901        };
 902
 903        rdy = codec_ready[codec];
 904
 905
 906        /* Get the AC97 semaphore -- software first, so we don't spin
 907         * pounding out IO reads on the hardware semaphore...
 908         */
 909        mutex_lock(&sis->ac97_mutex);
 910
 911        count = 0xffff;
 912        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 913                udelay(1);
 914
 915        if (!count)
 916                goto timeout;
 917
 918        /* ... and wait for any outstanding commands to complete ...
 919         */
 920        count = 0xffff;
 921        do {
 922                status = inw(io + SIS_AC97_STATUS);
 923                if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 924                        break;
 925
 926                udelay(1);
 927        } while (--count);
 928
 929        if (!count)
 930                goto timeout_sema;
 931
 932        /* ... before sending our command and waiting for it to finish ...
 933         */
 934        outl(cmd, io + SIS_AC97_CMD);
 935        udelay(10);
 936
 937        count = 0xffff;
 938        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 939                udelay(1);
 940
 941        /* ... and reading the results (if any).
 942         */
 943        val = inl(io + SIS_AC97_CMD) >> 16;
 944
 945timeout_sema:
 946        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 947timeout:
 948        mutex_unlock(&sis->ac97_mutex);
 949
 950        if (!count) {
 951                dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
 952                                        codec, cmd);
 953        }
 954
 955        return val;
 956}
 957
 958static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 959                                unsigned short val)
 960{
 961        static const u32 cmd[3] = {
 962                SIS_AC97_CMD_CODEC_WRITE,
 963                SIS_AC97_CMD_CODEC2_WRITE,
 964                SIS_AC97_CMD_CODEC3_WRITE,
 965        };
 966        sis_ac97_rw(ac97->private_data, ac97->num,
 967                        (val << 16) | (reg << 8) | cmd[ac97->num]);
 968}
 969
 970static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
 971{
 972        static const u32 cmd[3] = {
 973                SIS_AC97_CMD_CODEC_READ,
 974                SIS_AC97_CMD_CODEC2_READ,
 975                SIS_AC97_CMD_CODEC3_READ,
 976        };
 977        return sis_ac97_rw(ac97->private_data, ac97->num,
 978                                        (reg << 8) | cmd[ac97->num]);
 979}
 980
 981static int sis_mixer_create(struct sis7019 *sis)
 982{
 983        struct snd_ac97_bus *bus;
 984        struct snd_ac97_template ac97;
 985        static const struct snd_ac97_bus_ops ops = {
 986                .write = sis_ac97_write,
 987                .read = sis_ac97_read,
 988        };
 989        int rc;
 990
 991        memset(&ac97, 0, sizeof(ac97));
 992        ac97.private_data = sis;
 993
 994        rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
 995        if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
 996                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
 997        ac97.num = 1;
 998        if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
 999                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1000        ac97.num = 2;
1001        if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1002                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1003
1004        /* If we return an error here, then snd_card_free() should
1005         * free up any ac97 codecs that got created, as well as the bus.
1006         */
1007        return rc;
1008}
1009
1010static void sis_chip_free(struct snd_card *card)
1011{
1012        struct sis7019 *sis = card->private_data;
1013
1014        /* Reset the chip, and disable all interrputs.
1015         */
1016        outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1017        udelay(25);
1018        outl(0, sis->ioport + SIS_GCR);
1019        outl(0, sis->ioport + SIS_GIER);
1020
1021        /* Now, free everything we allocated.
1022         */
1023        if (sis->irq >= 0)
1024                free_irq(sis->irq, sis);
1025}
1026
1027static int sis_chip_init(struct sis7019 *sis)
1028{
1029        unsigned long io = sis->ioport;
1030        void __iomem *ioaddr = sis->ioaddr;
1031        unsigned long timeout;
1032        u16 status;
1033        int count;
1034        int i;
1035
1036        /* Reset the audio controller
1037         */
1038        outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1039        udelay(25);
1040        outl(0, io + SIS_GCR);
1041
1042        /* Get the AC-link semaphore, and reset the codecs
1043         */
1044        count = 0xffff;
1045        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1046                udelay(1);
1047
1048        if (!count)
1049                return -EIO;
1050
1051        outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1052        udelay(250);
1053
1054        count = 0xffff;
1055        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1056                udelay(1);
1057
1058        /* Command complete, we can let go of the semaphore now.
1059         */
1060        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1061        if (!count)
1062                return -EIO;
1063
1064        /* Now that we've finished the reset, find out what's attached.
1065         * There are some codec/board combinations that take an extremely
1066         * long time to come up. 350+ ms has been observed in the field,
1067         * so we'll give them up to 500ms.
1068         */
1069        sis->codecs_present = 0;
1070        timeout = msecs_to_jiffies(500) + jiffies;
1071        while (time_before_eq(jiffies, timeout)) {
1072                status = inl(io + SIS_AC97_STATUS);
1073                if (status & SIS_AC97_STATUS_CODEC_READY)
1074                        sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1075                if (status & SIS_AC97_STATUS_CODEC2_READY)
1076                        sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1077                if (status & SIS_AC97_STATUS_CODEC3_READY)
1078                        sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1079
1080                if (sis->codecs_present == codecs)
1081                        break;
1082
1083                msleep(1);
1084        }
1085
1086        /* All done, check for errors.
1087         */
1088        if (!sis->codecs_present) {
1089                dev_err(&sis->pci->dev, "could not find any codecs\n");
1090                return -EIO;
1091        }
1092
1093        if (sis->codecs_present != codecs) {
1094                dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1095                                         sis->codecs_present, codecs);
1096        }
1097
1098        /* Let the hardware know that the audio driver is alive,
1099         * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1100         * record channels. We're going to want to use Variable Rate Audio
1101         * for recording, to avoid needlessly resampling from 48kHZ.
1102         */
1103        outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1104        outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1105                SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1106                SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1107                SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1108
1109        /* All AC97 PCM slots should be sourced from sub-mixer 0.
1110         */
1111        outl(0, io + SIS_AC97_PSR);
1112
1113        /* There is only one valid DMA setup for a PCI environment.
1114         */
1115        outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1116
1117        /* Reset the synchronization groups for all of the channels
1118         * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1119         * we'll need to change how we handle these. Until then, we just
1120         * assign sub-mixer 0 to all playback channels, and avoid any
1121         * attenuation on the audio.
1122         */
1123        outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1124        outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1125        outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1126        outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1127        outl(0, io + SIS_MIXER_SYNC_GROUP);
1128
1129        for (i = 0; i < 64; i++) {
1130                writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1131                writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1132                                SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1133        }
1134
1135        /* Don't attenuate any audio set for the wave amplifier.
1136         *
1137         * FIXME: Maximum attenuation is set for the music amp, which will
1138         * need to change if we start using the synth engine.
1139         */
1140        outl(0xffff0000, io + SIS_WEVCR);
1141
1142        /* Ensure that the wave engine is in normal operating mode.
1143         */
1144        outl(0, io + SIS_WECCR);
1145
1146        /* Go ahead and enable the DMA interrupts. They won't go live
1147         * until we start a channel.
1148         */
1149        outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1150                SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1151
1152        return 0;
1153}
1154
1155#ifdef CONFIG_PM_SLEEP
1156static int sis_suspend(struct device *dev)
1157{
1158        struct snd_card *card = dev_get_drvdata(dev);
1159        struct sis7019 *sis = card->private_data;
1160        void __iomem *ioaddr = sis->ioaddr;
1161        int i;
1162
1163        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1164        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1165                snd_ac97_suspend(sis->ac97[0]);
1166        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1167                snd_ac97_suspend(sis->ac97[1]);
1168        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1169                snd_ac97_suspend(sis->ac97[2]);
1170
1171        /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1172         */
1173        if (sis->irq >= 0) {
1174                free_irq(sis->irq, sis);
1175                sis->irq = -1;
1176        }
1177
1178        /* Save the internal state away
1179         */
1180        for (i = 0; i < 4; i++) {
1181                memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1182                ioaddr += 4096;
1183        }
1184
1185        return 0;
1186}
1187
1188static int sis_resume(struct device *dev)
1189{
1190        struct pci_dev *pci = to_pci_dev(dev);
1191        struct snd_card *card = dev_get_drvdata(dev);
1192        struct sis7019 *sis = card->private_data;
1193        void __iomem *ioaddr = sis->ioaddr;
1194        int i;
1195
1196        if (sis_chip_init(sis)) {
1197                dev_err(&pci->dev, "unable to re-init controller\n");
1198                goto error;
1199        }
1200
1201        if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1202                        KBUILD_MODNAME, sis)) {
1203                dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1204                goto error;
1205        }
1206
1207        /* Restore saved state, then clear out the page we use for the
1208         * silence buffer.
1209         */
1210        for (i = 0; i < 4; i++) {
1211                memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1212                ioaddr += 4096;
1213        }
1214
1215        memset(sis->suspend_state[0], 0, 4096);
1216
1217        sis->irq = pci->irq;
1218
1219        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1220                snd_ac97_resume(sis->ac97[0]);
1221        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1222                snd_ac97_resume(sis->ac97[1]);
1223        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1224                snd_ac97_resume(sis->ac97[2]);
1225
1226        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1227        return 0;
1228
1229error:
1230        snd_card_disconnect(card);
1231        return -EIO;
1232}
1233
1234static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1235#define SIS_PM_OPS      &sis_pm
1236#else
1237#define SIS_PM_OPS      NULL
1238#endif /* CONFIG_PM_SLEEP */
1239
1240static int sis_alloc_suspend(struct sis7019 *sis)
1241{
1242        int i;
1243
1244        /* We need 16K to store the internal wave engine state during a
1245         * suspend, but we don't need it to be contiguous, so play nice
1246         * with the memory system. We'll also use this area for a silence
1247         * buffer.
1248         */
1249        for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1250                sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1251                                                     GFP_KERNEL);
1252                if (!sis->suspend_state[i])
1253                        return -ENOMEM;
1254        }
1255        memset(sis->suspend_state[0], 0, 4096);
1256
1257        return 0;
1258}
1259
1260static int sis_chip_create(struct snd_card *card,
1261                           struct pci_dev *pci)
1262{
1263        struct sis7019 *sis = card->private_data;
1264        struct voice *voice;
1265        int rc;
1266        int i;
1267
1268        rc = pcim_enable_device(pci);
1269        if (rc)
1270                return rc;
1271
1272        rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1273        if (rc < 0) {
1274                dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1275                return -ENXIO;
1276        }
1277
1278        mutex_init(&sis->ac97_mutex);
1279        spin_lock_init(&sis->voice_lock);
1280        sis->card = card;
1281        sis->pci = pci;
1282        sis->irq = -1;
1283        sis->ioport = pci_resource_start(pci, 0);
1284
1285        rc = pci_request_regions(pci, "SiS7019");
1286        if (rc) {
1287                dev_err(&pci->dev, "unable request regions\n");
1288                return rc;
1289        }
1290
1291        sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1292        if (!sis->ioaddr) {
1293                dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1294                return -EIO;
1295        }
1296
1297        rc = sis_alloc_suspend(sis);
1298        if (rc < 0) {
1299                dev_err(&pci->dev, "unable to allocate state storage\n");
1300                return rc;
1301        }
1302
1303        rc = sis_chip_init(sis);
1304        if (rc)
1305                return rc;
1306        card->private_free = sis_chip_free;
1307
1308        rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1309                         sis);
1310        if (rc) {
1311                dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1312                return rc;
1313        }
1314
1315        sis->irq = pci->irq;
1316        card->sync_irq = sis->irq;
1317        pci_set_master(pci);
1318
1319        for (i = 0; i < 64; i++) {
1320                voice = &sis->voices[i];
1321                voice->num = i;
1322                voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1323                voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1324        }
1325
1326        voice = &sis->capture_voice;
1327        voice->flags = VOICE_CAPTURE;
1328        voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1329        voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1330
1331        return 0;
1332}
1333
1334static int snd_sis7019_probe(struct pci_dev *pci,
1335                             const struct pci_device_id *pci_id)
1336{
1337        struct snd_card *card;
1338        struct sis7019 *sis;
1339        int rc;
1340
1341        if (!enable)
1342                return -ENOENT;
1343
1344        /* The user can specify which codecs should be present so that we
1345         * can wait for them to show up if they are slow to recover from
1346         * the AC97 cold reset. We default to a single codec, the primary.
1347         *
1348         * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1349         */
1350        codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1351                  SIS_TERTIARY_CODEC_PRESENT;
1352        if (!codecs)
1353                codecs = SIS_PRIMARY_CODEC_PRESENT;
1354
1355        rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1356                          sizeof(*sis), &card);
1357        if (rc < 0)
1358                return rc;
1359
1360        strcpy(card->driver, "SiS7019");
1361        strcpy(card->shortname, "SiS7019");
1362        rc = sis_chip_create(card, pci);
1363        if (rc)
1364                return rc;
1365
1366        sis = card->private_data;
1367
1368        rc = sis_mixer_create(sis);
1369        if (rc)
1370                return rc;
1371
1372        rc = sis_pcm_create(sis);
1373        if (rc)
1374                return rc;
1375
1376        snprintf(card->longname, sizeof(card->longname),
1377                        "%s Audio Accelerator with %s at 0x%lx, irq %d",
1378                        card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1379                        sis->ioport, sis->irq);
1380
1381        rc = snd_card_register(card);
1382        if (rc)
1383                return rc;
1384
1385        pci_set_drvdata(pci, card);
1386        return 0;
1387}
1388
1389static struct pci_driver sis7019_driver = {
1390        .name = KBUILD_MODNAME,
1391        .id_table = snd_sis7019_ids,
1392        .probe = snd_sis7019_probe,
1393        .driver = {
1394                .pm = SIS_PM_OPS,
1395        },
1396};
1397
1398module_pci_driver(sis7019_driver);
1399