linux/sound/sparc/dbri.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for DBRI sound chip found on Sparcs.
   4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5 *
   6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7 *
   8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11 *
  12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13 * on Sun SPARCStation 10, 20, LX and Voyager models.
  14 *
  15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16 *   data time multiplexer with ISDN support (aka T7259)
  17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19 *   Documentation:
  20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21 *     Sparc Technology Business (courtesy of Sun Support)
  22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23 *     available from the Lucent (formerly AT&T microelectronics) home
  24 *     page.
  25 *   - https://www.freesoft.org/Linux/DBRI/
  26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28 *   Documentation: from the Crystal Semiconductor home page.
  29 *
  30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31 * memory and a serial device (long pipes, no. 0-15) or between two serial
  32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33 * device (short pipes).
  34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35 * The timeslots are linked to 6 circular lists, one for each direction for
  36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37 * (the second one is a monitor/tee pipe, valid only for serial input).
  38 *
  39 * The mmcodec is connected via the CHI bus and needs the data & some
  40 * parameters (volume, output selection) time multiplexed in 8 byte
  41 * chunks. It also has a control mode, which serves for audio format setting.
  42 *
  43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46 * audio devices. But the SUN HW group decided against it, at least on my
  47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48 * connected.
  49 *
  50 * I've tried to stick to the following function naming conventions:
  51 * snd_*        ALSA stuff
  52 * cs4215_*     CS4215 codec specific stuff
  53 * dbri_*       DBRI high-level stuff
  54 * other        DBRI low-level stuff
  55 */
  56
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/gfp.h>
  63
  64#include <sound/core.h>
  65#include <sound/pcm.h>
  66#include <sound/pcm_params.h>
  67#include <sound/info.h>
  68#include <sound/control.h>
  69#include <sound/initval.h>
  70
  71#include <linux/of.h>
  72#include <linux/of_device.h>
  73#include <linux/atomic.h>
  74#include <linux/module.h>
  75
  76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77MODULE_DESCRIPTION("Sun DBRI");
  78MODULE_LICENSE("GPL");
  79
  80static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  81static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  82/* Enable this card */
  83static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  84
  85module_param_array(index, int, NULL, 0444);
  86MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  87module_param_array(id, charp, NULL, 0444);
  88MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  89module_param_array(enable, bool, NULL, 0444);
  90MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  91
  92#undef DBRI_DEBUG
  93
  94#define D_INT   (1<<0)
  95#define D_GEN   (1<<1)
  96#define D_CMD   (1<<2)
  97#define D_MM    (1<<3)
  98#define D_USR   (1<<4)
  99#define D_DESC  (1<<5)
 100
 101static int dbri_debug;
 102module_param(dbri_debug, int, 0644);
 103MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 104
 105#ifdef DBRI_DEBUG
 106static const char * const cmds[] = {
 107        "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 108        "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 109};
 110
 111#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 112
 113#else
 114#define dprintk(a, x...) do { } while (0)
 115
 116#endif                          /* DBRI_DEBUG */
 117
 118#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
 119                                    (intr << 27) |      \
 120                                    value)
 121
 122/***************************************************************************
 123        CS4215 specific definitions and structures
 124****************************************************************************/
 125
 126struct cs4215 {
 127        __u8 data[4];           /* Data mode: Time slots 5-8 */
 128        __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
 129        __u8 onboard;
 130        __u8 offset;            /* Bit offset from frame sync to time slot 1 */
 131        volatile __u32 status;
 132        volatile __u32 version;
 133        __u8 precision;         /* In bits, either 8 or 16 */
 134        __u8 channels;          /* 1 or 2 */
 135};
 136
 137/*
 138 * Control mode first
 139 */
 140
 141/* Time Slot 1, Status register */
 142#define CS4215_CLB      (1<<2)  /* Control Latch Bit */
 143#define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
 144                                /* 0: line: 2.8V, speaker 8V */
 145#define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
 146#define CS4215_RSRVD_1  (1<<5)
 147
 148/* Time Slot 2, Data Format Register */
 149#define CS4215_DFR_LINEAR16     0
 150#define CS4215_DFR_ULAW         1
 151#define CS4215_DFR_ALAW         2
 152#define CS4215_DFR_LINEAR8      3
 153#define CS4215_DFR_STEREO       (1<<2)
 154static struct {
 155        unsigned short freq;
 156        unsigned char xtal;
 157        unsigned char csval;
 158} CS4215_FREQ[] = {
 159        {  8000, (1 << 4), (0 << 3) },
 160        { 16000, (1 << 4), (1 << 3) },
 161        { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
 162        { 32000, (1 << 4), (3 << 3) },
 163     /* {    NA, (1 << 4), (4 << 3) }, */
 164     /* {    NA, (1 << 4), (5 << 3) }, */
 165        { 48000, (1 << 4), (6 << 3) },
 166        {  9600, (1 << 4), (7 << 3) },
 167        {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
 168        { 11025, (2 << 4), (1 << 3) },
 169        { 18900, (2 << 4), (2 << 3) },
 170        { 22050, (2 << 4), (3 << 3) },
 171        { 37800, (2 << 4), (4 << 3) },
 172        { 44100, (2 << 4), (5 << 3) },
 173        { 33075, (2 << 4), (6 << 3) },
 174        {  6615, (2 << 4), (7 << 3) },
 175        { 0, 0, 0}
 176};
 177
 178#define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
 179
 180#define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
 181
 182/* Time Slot 3, Serial Port Control register */
 183#define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
 184#define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
 185#define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
 186#define CS4215_BSEL_128 (1<<2)
 187#define CS4215_BSEL_256 (2<<2)
 188#define CS4215_MCK_MAST (0<<4)  /* Master clock */
 189#define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
 190#define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
 191#define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
 192#define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
 193
 194/* Time Slot 4, Test Register */
 195#define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 196#define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
 197
 198/* Time Slot 5, Parallel Port Register */
 199/* Read only here and the same as the in data mode */
 200
 201/* Time Slot 6, Reserved  */
 202
 203/* Time Slot 7, Version Register  */
 204#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
 205
 206/* Time Slot 8, Reserved  */
 207
 208/*
 209 * Data mode
 210 */
 211/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 212
 213/* Time Slot 5, Output Setting  */
 214#define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
 215#define CS4215_LE       (1<<6)  /* Line Out Enable */
 216#define CS4215_HE       (1<<7)  /* Headphone Enable */
 217
 218/* Time Slot 6, Output Setting  */
 219#define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
 220#define CS4215_SE       (1<<6)  /* Speaker Enable */
 221#define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
 222
 223/* Time Slot 7, Input Setting */
 224#define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
 225#define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
 226#define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
 227#define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
 228#define CS4215_PIO1     (1<<7)
 229
 230/* Time Slot 8, Input Setting */
 231#define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
 232#define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
 233
 234/***************************************************************************
 235                DBRI specific definitions and structures
 236****************************************************************************/
 237
 238/* DBRI main registers */
 239#define REG0    0x00            /* Status and Control */
 240#define REG1    0x04            /* Mode and Interrupt */
 241#define REG2    0x08            /* Parallel IO */
 242#define REG3    0x0c            /* Test */
 243#define REG8    0x20            /* Command Queue Pointer */
 244#define REG9    0x24            /* Interrupt Queue Pointer */
 245
 246#define DBRI_NO_CMDS    64
 247#define DBRI_INT_BLK    64
 248#define DBRI_NO_DESCS   64
 249#define DBRI_NO_PIPES   32
 250#define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
 251
 252#define DBRI_REC        0
 253#define DBRI_PLAY       1
 254#define DBRI_NO_STREAMS 2
 255
 256/* One transmit/receive descriptor */
 257/* When ba != 0 descriptor is used */
 258struct dbri_mem {
 259        volatile __u32 word1;
 260        __u32 ba;       /* Transmit/Receive Buffer Address */
 261        __u32 nda;      /* Next Descriptor Address */
 262        volatile __u32 word4;
 263};
 264
 265/* This structure is in a DMA region where it can accessed by both
 266 * the CPU and the DBRI
 267 */
 268struct dbri_dma {
 269        s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
 270        volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
 271        struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
 272};
 273
 274#define dbri_dma_off(member, elem)      \
 275        ((u32)(unsigned long)           \
 276         (&(((struct dbri_dma *)0)->member[elem])))
 277
 278enum in_or_out { PIPEinput, PIPEoutput };
 279
 280struct dbri_pipe {
 281        u32 sdp;                /* SDP command word */
 282        int nextpipe;           /* Next pipe in linked list */
 283        int length;             /* Length of timeslot (bits) */
 284        int first_desc;         /* Index of first descriptor */
 285        int desc;               /* Index of active descriptor */
 286        volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
 287};
 288
 289/* Per stream (playback or record) information */
 290struct dbri_streaminfo {
 291        struct snd_pcm_substream *substream;
 292        u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
 293        int size;               /* Size of DMA buffer             */
 294        size_t offset;          /* offset in user buffer          */
 295        int pipe;               /* Data pipe used                 */
 296        int left_gain;          /* mixer elements                 */
 297        int right_gain;
 298};
 299
 300/* This structure holds the information for both chips (DBRI & CS4215) */
 301struct snd_dbri {
 302        int regs_size, irq;     /* Needed for unload */
 303        struct platform_device *op;     /* OF device info */
 304        spinlock_t lock;
 305
 306        struct dbri_dma *dma;   /* Pointer to our DMA block */
 307        dma_addr_t dma_dvma;    /* DBRI visible DMA address */
 308
 309        void __iomem *regs;     /* dbri HW regs */
 310        int dbri_irqp;          /* intr queue pointer */
 311
 312        struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
 313        int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
 314        spinlock_t cmdlock;     /* Protects cmd queue accesses */
 315        s32 *cmdptr;            /* Pointer to the last queued cmd */
 316
 317        int chi_bpf;
 318
 319        struct cs4215 mm;       /* mmcodec special info */
 320                                /* per stream (playback/record) info */
 321        struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 322};
 323
 324#define DBRI_MAX_VOLUME         63      /* Output volume */
 325#define DBRI_MAX_GAIN           15      /* Input gain */
 326
 327/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 328#define D_P             (1<<15) /* Program command & queue pointer valid */
 329#define D_G             (1<<14) /* Allow 4-Word SBus Burst */
 330#define D_S             (1<<13) /* Allow 16-Word SBus Burst */
 331#define D_E             (1<<12) /* Allow 8-Word SBus Burst */
 332#define D_X             (1<<7)  /* Sanity Timer Disable */
 333#define D_T             (1<<6)  /* Permit activation of the TE interface */
 334#define D_N             (1<<5)  /* Permit activation of the NT interface */
 335#define D_C             (1<<4)  /* Permit activation of the CHI interface */
 336#define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
 337#define D_D             (1<<2)  /* Disable Master Mode */
 338#define D_H             (1<<1)  /* Halt for Analysis */
 339#define D_R             (1<<0)  /* Soft Reset */
 340
 341/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 342#define D_LITTLE_END    (1<<8)  /* Byte Order */
 343#define D_BIG_END       (0<<8)  /* Byte Order */
 344#define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
 345#define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
 346#define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
 347#define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
 348#define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
 349
 350/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 351#define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
 352#define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
 353#define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
 354#define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
 355#define D_ENPIO         (0xf0)  /* Enable all the pins */
 356#define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
 357#define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
 358#define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
 359#define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
 360
 361/* DBRI Commands (Page 20) */
 362#define D_WAIT          0x0     /* Stop execution */
 363#define D_PAUSE         0x1     /* Flush long pipes */
 364#define D_JUMP          0x2     /* New command queue */
 365#define D_IIQ           0x3     /* Initialize Interrupt Queue */
 366#define D_REX           0x4     /* Report command execution via interrupt */
 367#define D_SDP           0x5     /* Setup Data Pipe */
 368#define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
 369#define D_DTS           0x7     /* Define Time Slot */
 370#define D_SSP           0x8     /* Set short Data Pipe */
 371#define D_CHI           0x9     /* Set CHI Global Mode */
 372#define D_NT            0xa     /* NT Command */
 373#define D_TE            0xb     /* TE Command */
 374#define D_CDEC          0xc     /* Codec setup */
 375#define D_TEST          0xd     /* No comment */
 376#define D_CDM           0xe     /* CHI Data mode command */
 377
 378/* Special bits for some commands */
 379#define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
 380
 381/* Setup Data Pipe */
 382/* IRM */
 383#define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
 384#define D_SDP_CHANGE    (2<<18) /* Report any changes */
 385#define D_SDP_EVERY     (3<<18) /* Report any changes */
 386#define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
 387#define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
 388
 389/* Pipe data MODE */
 390#define D_SDP_MEM       (0<<13) /* To/from memory */
 391#define D_SDP_HDLC      (2<<13)
 392#define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
 393#define D_SDP_SER       (4<<13) /* Serial to serial */
 394#define D_SDP_FIXED     (6<<13) /* Short only */
 395#define D_SDP_MODE(v)   ((v)&(7<<13))
 396
 397#define D_SDP_TO_SER    (1<<12) /* Direction */
 398#define D_SDP_FROM_SER  (0<<12) /* Direction */
 399#define D_SDP_MSB       (1<<11) /* Bit order within Byte */
 400#define D_SDP_LSB       (0<<11) /* Bit order within Byte */
 401#define D_SDP_P         (1<<10) /* Pointer Valid */
 402#define D_SDP_A         (1<<8)  /* Abort */
 403#define D_SDP_C         (1<<7)  /* Clear */
 404
 405/* Define Time Slot */
 406#define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
 407#define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
 408#define D_DTS_INS       (1<<15) /* Insert Time Slot */
 409#define D_DTS_DEL       (0<<15) /* Delete Time Slot */
 410#define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
 411#define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
 412
 413/* Time Slot defines */
 414#define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
 415#define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
 416#define D_TS_DI         (1<<13) /* Data Invert */
 417#define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
 418#define D_TS_MONITOR    (2<<10) /* Monitor pipe */
 419#define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
 420#define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
 421#define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
 422#define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
 423
 424/* Concentration Highway Interface Modes */
 425#define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
 426#define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
 427#define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
 428#define D_CHI_OD        (1<<13) /* Open Drain Enable */
 429#define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
 430#define D_CHI_FD        (1<<11) /* Frame Drive */
 431#define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
 432
 433/* NT: These are here for completeness */
 434#define D_NT_FBIT       (1<<17) /* Frame Bit */
 435#define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
 436#define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
 437#define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
 438#define D_NT_ISNT       (1<<13) /* Configure interface as NT */
 439#define D_NT_FT         (1<<12) /* Fixed Timing */
 440#define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
 441#define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
 442#define D_NT_ACT        (1<<9)  /* Activate Interface */
 443#define D_NT_MFE        (1<<8)  /* Multiframe Enable */
 444#define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
 445#define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
 446#define D_NT_FACT       (1<<1)  /* Force Activation */
 447#define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
 448
 449/* Codec Setup */
 450#define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
 451#define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
 452#define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
 453
 454/* Test */
 455#define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
 456#define D_TEST_SIZE(v)  ((v)<<11)       /* */
 457#define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
 458#define D_TEST_PROC     0x6     /* Microprocessor test */
 459#define D_TEST_SER      0x7     /* Serial-Controller test */
 460#define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
 461#define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
 462#define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
 463#define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
 464#define D_TEST_DUMP     0xe     /* ROM Dump */
 465
 466/* CHI Data Mode */
 467#define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
 468#define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
 469#define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
 470#define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
 471#define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
 472#define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
 473
 474/* The Interrupts */
 475#define D_INTR_BRDY     1       /* Buffer Ready for processing */
 476#define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
 477#define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
 478#define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
 479#define D_INTR_EOL      5       /* End of List */
 480#define D_INTR_CMDI     6       /* Command has bean read */
 481#define D_INTR_XCMP     8       /* Transmission of frame complete */
 482#define D_INTR_SBRI     9       /* BRI status change info */
 483#define D_INTR_FXDT     10      /* Fixed data change */
 484#define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
 485#define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
 486#define D_INTR_DBYT     12      /* Dropped by frame slip */
 487#define D_INTR_RBYT     13      /* Repeated by frame slip */
 488#define D_INTR_LINT     14      /* Lost Interrupt */
 489#define D_INTR_UNDR     15      /* DMA underrun */
 490
 491#define D_INTR_TE       32
 492#define D_INTR_NT       34
 493#define D_INTR_CHI      36
 494#define D_INTR_CMD      38
 495
 496#define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
 497#define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
 498#define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
 499#define D_INTR_GETVAL(v)        ((v) & 0xffff)
 500#define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
 501
 502#define D_P_0           0       /* TE receive anchor */
 503#define D_P_1           1       /* TE transmit anchor */
 504#define D_P_2           2       /* NT transmit anchor */
 505#define D_P_3           3       /* NT receive anchor */
 506#define D_P_4           4       /* CHI send data */
 507#define D_P_5           5       /* CHI receive data */
 508#define D_P_6           6       /* */
 509#define D_P_7           7       /* */
 510#define D_P_8           8       /* */
 511#define D_P_9           9       /* */
 512#define D_P_10          10      /* */
 513#define D_P_11          11      /* */
 514#define D_P_12          12      /* */
 515#define D_P_13          13      /* */
 516#define D_P_14          14      /* */
 517#define D_P_15          15      /* */
 518#define D_P_16          16      /* CHI anchor pipe */
 519#define D_P_17          17      /* CHI send */
 520#define D_P_18          18      /* CHI receive */
 521#define D_P_19          19      /* CHI receive */
 522#define D_P_20          20      /* CHI receive */
 523#define D_P_21          21      /* */
 524#define D_P_22          22      /* */
 525#define D_P_23          23      /* */
 526#define D_P_24          24      /* */
 527#define D_P_25          25      /* */
 528#define D_P_26          26      /* */
 529#define D_P_27          27      /* */
 530#define D_P_28          28      /* */
 531#define D_P_29          29      /* */
 532#define D_P_30          30      /* */
 533#define D_P_31          31      /* */
 534
 535/* Transmit descriptor defines */
 536#define DBRI_TD_F       (1 << 31)       /* End of Frame */
 537#define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
 538#define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
 539#define DBRI_TD_B       (1 << 15)       /* Final interrupt */
 540#define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
 541#define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
 542#define DBRI_TD_FCNT(v) (v)             /* Flag Count */
 543#define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
 544#define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
 545#define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
 546#define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
 547                        /* Maximum buffer size per TD: almost 8KB */
 548#define DBRI_TD_MAXCNT  ((1 << 13) - 4)
 549
 550/* Receive descriptor defines */
 551#define DBRI_RD_F       (1 << 31)       /* End of Frame */
 552#define DBRI_RD_C       (1 << 30)       /* Completed buffer */
 553#define DBRI_RD_B       (1 << 15)       /* Final interrupt */
 554#define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
 555#define DBRI_RD_BCNT(v) (v)             /* Buffer size */
 556#define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
 557#define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
 558#define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
 559#define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
 560#define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
 561#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
 562
 563/* stream_info[] access */
 564/* Translate the ALSA direction into the array index */
 565#define DBRI_STREAMNO(substream)                                \
 566                (substream->stream ==                           \
 567                 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 568
 569/* Return a pointer to dbri_streaminfo */
 570#define DBRI_STREAM(dbri, substream)    \
 571                &dbri->stream_info[DBRI_STREAMNO(substream)]
 572
 573/*
 574 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 575 * So we have to reverse the bits. Note: not all bit lengths are supported
 576 */
 577static __u32 reverse_bytes(__u32 b, int len)
 578{
 579        switch (len) {
 580        case 32:
 581                b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 582                fallthrough;
 583        case 16:
 584                b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 585                fallthrough;
 586        case 8:
 587                b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 588                fallthrough;
 589        case 4:
 590                b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 591                fallthrough;
 592        case 2:
 593                b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 594        case 1:
 595        case 0:
 596                break;
 597        default:
 598                printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 599        }
 600
 601        return b;
 602}
 603
 604/*
 605****************************************************************************
 606************** DBRI initialization and command synchronization *************
 607****************************************************************************
 608
 609Commands are sent to the DBRI by building a list of them in memory,
 610then writing the address of the first list item to DBRI register 8.
 611The list is terminated with a WAIT command, which generates a
 612CPU interrupt to signal completion.
 613
 614Since the DBRI can run in parallel with the CPU, several means of
 615synchronization present themselves. The method implemented here uses
 616the dbri_cmdwait() to wait for execution of batch of sent commands.
 617
 618A circular command buffer is used here. A new command is being added
 619while another can be executed. The scheme works by adding two WAIT commands
 620after each sent batch of commands. When the next batch is prepared it is
 621added after the WAIT commands then the WAITs are replaced with single JUMP
 622command to the new batch. Then the DBRI is forced to reread the last WAIT
 623command (replaced by the JUMP by then). If the DBRI is still executing
 624previous commands the request to reread the WAIT command is ignored.
 625
 626Every time a routine wants to write commands to the DBRI, it must
 627first call dbri_cmdlock() and get pointer to a free space in
 628dbri->dma->cmd buffer. After this, the commands can be written to
 629the buffer, and dbri_cmdsend() is called with the final pointer value
 630to send them to the DBRI.
 631
 632*/
 633
 634#define MAXLOOPS 20
 635/*
 636 * Wait for the current command string to execute
 637 */
 638static void dbri_cmdwait(struct snd_dbri *dbri)
 639{
 640        int maxloops = MAXLOOPS;
 641        unsigned long flags;
 642
 643        /* Delay if previous commands are still being processed */
 644        spin_lock_irqsave(&dbri->lock, flags);
 645        while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 646                spin_unlock_irqrestore(&dbri->lock, flags);
 647                msleep_interruptible(1);
 648                spin_lock_irqsave(&dbri->lock, flags);
 649        }
 650        spin_unlock_irqrestore(&dbri->lock, flags);
 651
 652        if (maxloops == 0)
 653                printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 654        else
 655                dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 656                        MAXLOOPS - maxloops - 1);
 657}
 658/*
 659 * Lock the command queue and return pointer to space for len cmd words
 660 * It locks the cmdlock spinlock.
 661 */
 662static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 663{
 664        u32 dvma_addr = (u32)dbri->dma_dvma;
 665
 666        /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 667        len += 2;
 668        spin_lock(&dbri->cmdlock);
 669        if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 670                return dbri->cmdptr + 2;
 671        else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 672                return dbri->dma->cmd;
 673        else
 674                printk(KERN_ERR "DBRI: no space for commands.");
 675
 676        return NULL;
 677}
 678
 679/*
 680 * Send prepared cmd string. It works by writing a JUMP cmd into
 681 * the last WAIT cmd and force DBRI to reread the cmd.
 682 * The JUMP cmd points to the new cmd string.
 683 * It also releases the cmdlock spinlock.
 684 *
 685 * Lock must be held before calling this.
 686 */
 687static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 688{
 689        u32 dvma_addr = (u32)dbri->dma_dvma;
 690        s32 tmp, addr;
 691        static int wait_id = 0;
 692
 693        wait_id++;
 694        wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
 695        *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 696        *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 697
 698        /* Replace the last command with JUMP */
 699        addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 700        *(dbri->cmdptr+1) = addr;
 701        *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 702
 703#ifdef DBRI_DEBUG
 704        if (cmd > dbri->cmdptr) {
 705                s32 *ptr;
 706
 707                for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 708                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 709                                (unsigned long)ptr, *ptr);
 710        } else {
 711                s32 *ptr = dbri->cmdptr;
 712
 713                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 714                ptr++;
 715                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 716                for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 717                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 718                                (unsigned long)ptr, *ptr);
 719        }
 720#endif
 721
 722        /* Reread the last command */
 723        tmp = sbus_readl(dbri->regs + REG0);
 724        tmp |= D_P;
 725        sbus_writel(tmp, dbri->regs + REG0);
 726
 727        dbri->cmdptr = cmd;
 728        spin_unlock(&dbri->cmdlock);
 729}
 730
 731/* Lock must be held when calling this */
 732static void dbri_reset(struct snd_dbri *dbri)
 733{
 734        int i;
 735        u32 tmp;
 736
 737        dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 738                sbus_readl(dbri->regs + REG0),
 739                sbus_readl(dbri->regs + REG2),
 740                sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 741
 742        sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
 743        for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 744                udelay(10);
 745
 746        /* A brute approach - DBRI falls back to working burst size by itself
 747         * On SS20 D_S does not work, so do not try so high. */
 748        tmp = sbus_readl(dbri->regs + REG0);
 749        tmp |= D_G | D_E;
 750        tmp &= ~D_S;
 751        sbus_writel(tmp, dbri->regs + REG0);
 752}
 753
 754/* Lock must not be held before calling this */
 755static void dbri_initialize(struct snd_dbri *dbri)
 756{
 757        u32 dvma_addr = (u32)dbri->dma_dvma;
 758        s32 *cmd;
 759        u32 dma_addr;
 760        unsigned long flags;
 761        int n;
 762
 763        spin_lock_irqsave(&dbri->lock, flags);
 764
 765        dbri_reset(dbri);
 766
 767        /* Initialize pipes */
 768        for (n = 0; n < DBRI_NO_PIPES; n++)
 769                dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 770
 771        spin_lock_init(&dbri->cmdlock);
 772        /*
 773         * Initialize the interrupt ring buffer.
 774         */
 775        dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 776        dbri->dma->intr[0] = dma_addr;
 777        dbri->dbri_irqp = 1;
 778        /*
 779         * Set up the interrupt queue
 780         */
 781        spin_lock(&dbri->cmdlock);
 782        cmd = dbri->cmdptr = dbri->dma->cmd;
 783        *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 784        *(cmd++) = dma_addr;
 785        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 786        dbri->cmdptr = cmd;
 787        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 788        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 789        dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 790        sbus_writel(dma_addr, dbri->regs + REG8);
 791        spin_unlock(&dbri->cmdlock);
 792
 793        spin_unlock_irqrestore(&dbri->lock, flags);
 794        dbri_cmdwait(dbri);
 795}
 796
 797/*
 798****************************************************************************
 799************************** DBRI data pipe management ***********************
 800****************************************************************************
 801
 802While DBRI control functions use the command and interrupt buffers, the
 803main data path takes the form of data pipes, which can be short (command
 804and interrupt driven), or long (attached to DMA buffers).  These functions
 805provide a rudimentary means of setting up and managing the DBRI's pipes,
 806but the calling functions have to make sure they respect the pipes' linked
 807list ordering, among other things.  The transmit and receive functions
 808here interface closely with the transmit and receive interrupt code.
 809
 810*/
 811static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 812{
 813        return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 814}
 815
 816/* reset_pipe(dbri, pipe)
 817 *
 818 * Called on an in-use pipe to clear anything being transmitted or received
 819 * Lock must be held before calling this.
 820 */
 821static void reset_pipe(struct snd_dbri *dbri, int pipe)
 822{
 823        int sdp;
 824        int desc;
 825        s32 *cmd;
 826
 827        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 828                printk(KERN_ERR "DBRI: reset_pipe called with "
 829                        "illegal pipe number\n");
 830                return;
 831        }
 832
 833        sdp = dbri->pipes[pipe].sdp;
 834        if (sdp == 0) {
 835                printk(KERN_ERR "DBRI: reset_pipe called "
 836                        "on uninitialized pipe\n");
 837                return;
 838        }
 839
 840        cmd = dbri_cmdlock(dbri, 3);
 841        *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 842        *(cmd++) = 0;
 843        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 844        dbri_cmdsend(dbri, cmd, 3);
 845
 846        desc = dbri->pipes[pipe].first_desc;
 847        if (desc >= 0)
 848                do {
 849                        dbri->dma->desc[desc].ba = 0;
 850                        dbri->dma->desc[desc].nda = 0;
 851                        desc = dbri->next_desc[desc];
 852                } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 853
 854        dbri->pipes[pipe].desc = -1;
 855        dbri->pipes[pipe].first_desc = -1;
 856}
 857
 858/*
 859 * Lock must be held before calling this.
 860 */
 861static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 862{
 863        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 864                printk(KERN_ERR "DBRI: setup_pipe called "
 865                        "with illegal pipe number\n");
 866                return;
 867        }
 868
 869        if ((sdp & 0xf800) != sdp) {
 870                printk(KERN_ERR "DBRI: setup_pipe called "
 871                        "with strange SDP value\n");
 872                /* sdp &= 0xf800; */
 873        }
 874
 875        /* If this is a fixed receive pipe, arrange for an interrupt
 876         * every time its data changes
 877         */
 878        if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 879                sdp |= D_SDP_CHANGE;
 880
 881        sdp |= D_PIPE(pipe);
 882        dbri->pipes[pipe].sdp = sdp;
 883        dbri->pipes[pipe].desc = -1;
 884        dbri->pipes[pipe].first_desc = -1;
 885
 886        reset_pipe(dbri, pipe);
 887}
 888
 889/*
 890 * Lock must be held before calling this.
 891 */
 892static void link_time_slot(struct snd_dbri *dbri, int pipe,
 893                           int prevpipe, int nextpipe,
 894                           int length, int cycle)
 895{
 896        s32 *cmd;
 897        int val;
 898
 899        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 900                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 901                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 902                printk(KERN_ERR
 903                    "DBRI: link_time_slot called with illegal pipe number\n");
 904                return;
 905        }
 906
 907        if (dbri->pipes[pipe].sdp == 0
 908                        || dbri->pipes[prevpipe].sdp == 0
 909                        || dbri->pipes[nextpipe].sdp == 0) {
 910                printk(KERN_ERR "DBRI: link_time_slot called "
 911                        "on uninitialized pipe\n");
 912                return;
 913        }
 914
 915        dbri->pipes[prevpipe].nextpipe = pipe;
 916        dbri->pipes[pipe].nextpipe = nextpipe;
 917        dbri->pipes[pipe].length = length;
 918
 919        cmd = dbri_cmdlock(dbri, 4);
 920
 921        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 922                /* Deal with CHI special case:
 923                 * "If transmission on edges 0 or 1 is desired, then cycle n
 924                 *  (where n = # of bit times per frame...) must be used."
 925                 *                  - DBRI data sheet, page 11
 926                 */
 927                if (prevpipe == 16 && cycle == 0)
 928                        cycle = dbri->chi_bpf;
 929
 930                val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 931                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 932                *(cmd++) = 0;
 933                *(cmd++) =
 934                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 935        } else {
 936                val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 937                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 938                *(cmd++) =
 939                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 940                *(cmd++) = 0;
 941        }
 942        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 943
 944        dbri_cmdsend(dbri, cmd, 4);
 945}
 946
 947#if 0
 948/*
 949 * Lock must be held before calling this.
 950 */
 951static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 952                             enum in_or_out direction, int prevpipe,
 953                             int nextpipe)
 954{
 955        s32 *cmd;
 956        int val;
 957
 958        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 959                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 960                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 961                printk(KERN_ERR
 962                    "DBRI: unlink_time_slot called with illegal pipe number\n");
 963                return;
 964        }
 965
 966        cmd = dbri_cmdlock(dbri, 4);
 967
 968        if (direction == PIPEinput) {
 969                val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 970                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 971                *(cmd++) = D_TS_NEXT(nextpipe);
 972                *(cmd++) = 0;
 973        } else {
 974                val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 975                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 976                *(cmd++) = 0;
 977                *(cmd++) = D_TS_NEXT(nextpipe);
 978        }
 979        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 980
 981        dbri_cmdsend(dbri, cmd, 4);
 982}
 983#endif
 984
 985/* xmit_fixed() / recv_fixed()
 986 *
 987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 988 * expected to change much, and which we don't need to buffer.
 989 * The DBRI only interrupts us when the data changes (receive pipes),
 990 * or only changes the data when this function is called (transmit pipes).
 991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 992 *
 993 * These function operate on a 32-bit field, no matter how large
 994 * the actual time slot is.  The interrupt handler takes care of bit
 995 * ordering and alignment.  An 8-bit time slot will always end up
 996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 997 * depending on the settings passed to setup_pipe().
 998 *
 999 * Lock must not be held before calling it.
1000 */
1001static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002{
1003        s32 *cmd;
1004        unsigned long flags;
1005
1006        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007                printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008                return;
1009        }
1010
1011        if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012                printk(KERN_ERR "DBRI: xmit_fixed: "
1013                        "Uninitialized pipe %d\n", pipe);
1014                return;
1015        }
1016
1017        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018                printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019                return;
1020        }
1021
1022        if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023                printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024                        pipe);
1025                return;
1026        }
1027
1028        /* DBRI short pipes always transmit LSB first */
1029
1030        if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031                data = reverse_bytes(data, dbri->pipes[pipe].length);
1032
1033        cmd = dbri_cmdlock(dbri, 3);
1034
1035        *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036        *(cmd++) = data;
1037        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038
1039        spin_lock_irqsave(&dbri->lock, flags);
1040        dbri_cmdsend(dbri, cmd, 3);
1041        spin_unlock_irqrestore(&dbri->lock, flags);
1042        dbri_cmdwait(dbri);
1043
1044}
1045
1046static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047{
1048        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049                printk(KERN_ERR "DBRI: recv_fixed called with "
1050                        "illegal pipe number\n");
1051                return;
1052        }
1053
1054        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055                printk(KERN_ERR "DBRI: recv_fixed called on "
1056                        "non-fixed pipe %d\n", pipe);
1057                return;
1058        }
1059
1060        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061                printk(KERN_ERR "DBRI: recv_fixed called on "
1062                        "transmit pipe %d\n", pipe);
1063                return;
1064        }
1065
1066        dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067}
1068
1069/* setup_descs()
1070 *
1071 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072 * with a DMA buffer.
1073 *
1074 * Only pipe numbers 0-15 can be used in this mode.
1075 *
1076 * This function takes a stream number pointing to a data buffer,
1077 * and work by building chains of descriptors which identify the
1078 * data buffers.  Buffers too large for a single descriptor will
1079 * be spread across multiple descriptors.
1080 *
1081 * All descriptors create a ring buffer.
1082 *
1083 * Lock must be held before calling this.
1084 */
1085static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086{
1087        struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088        u32 dvma_addr = (u32)dbri->dma_dvma;
1089        __u32 dvma_buffer;
1090        int desc;
1091        int len;
1092        int first_desc = -1;
1093        int last_desc = -1;
1094
1095        if (info->pipe < 0 || info->pipe > 15) {
1096                printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097                return -2;
1098        }
1099
1100        if (dbri->pipes[info->pipe].sdp == 0) {
1101                printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102                       info->pipe);
1103                return -2;
1104        }
1105
1106        dvma_buffer = info->dvma_buffer;
1107        len = info->size;
1108
1109        if (streamno == DBRI_PLAY) {
1110                if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111                        printk(KERN_ERR "DBRI: setup_descs: "
1112                                "Called on receive pipe %d\n", info->pipe);
1113                        return -2;
1114                }
1115        } else {
1116                if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117                        printk(KERN_ERR
1118                            "DBRI: setup_descs: Called on transmit pipe %d\n",
1119                             info->pipe);
1120                        return -2;
1121                }
1122                /* Should be able to queue multiple buffers
1123                 * to receive on a pipe
1124                 */
1125                if (pipe_active(dbri, info->pipe)) {
1126                        printk(KERN_ERR "DBRI: recv_on_pipe: "
1127                                "Called on active pipe %d\n", info->pipe);
1128                        return -2;
1129                }
1130
1131                /* Make sure buffer size is multiple of four */
1132                len &= ~3;
1133        }
1134
1135        /* Free descriptors if pipe has any */
1136        desc = dbri->pipes[info->pipe].first_desc;
1137        if (desc >= 0)
1138                do {
1139                        dbri->dma->desc[desc].ba = 0;
1140                        dbri->dma->desc[desc].nda = 0;
1141                        desc = dbri->next_desc[desc];
1142                } while (desc != -1 &&
1143                         desc != dbri->pipes[info->pipe].first_desc);
1144
1145        dbri->pipes[info->pipe].desc = -1;
1146        dbri->pipes[info->pipe].first_desc = -1;
1147
1148        desc = 0;
1149        while (len > 0) {
1150                int mylen;
1151
1152                for (; desc < DBRI_NO_DESCS; desc++) {
1153                        if (!dbri->dma->desc[desc].ba)
1154                                break;
1155                }
1156
1157                if (desc == DBRI_NO_DESCS) {
1158                        printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159                        return -1;
1160                }
1161
1162                if (len > DBRI_TD_MAXCNT)
1163                        mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1164                else
1165                        mylen = len;
1166
1167                if (mylen > period)
1168                        mylen = period;
1169
1170                dbri->next_desc[desc] = -1;
1171                dbri->dma->desc[desc].ba = dvma_buffer;
1172                dbri->dma->desc[desc].nda = 0;
1173
1174                if (streamno == DBRI_PLAY) {
1175                        dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176                        dbri->dma->desc[desc].word4 = 0;
1177                        dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178                } else {
1179                        dbri->dma->desc[desc].word1 = 0;
1180                        dbri->dma->desc[desc].word4 =
1181                            DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182                }
1183
1184                if (first_desc == -1)
1185                        first_desc = desc;
1186                else {
1187                        dbri->next_desc[last_desc] = desc;
1188                        dbri->dma->desc[last_desc].nda =
1189                            dvma_addr + dbri_dma_off(desc, desc);
1190                }
1191
1192                last_desc = desc;
1193                dvma_buffer += mylen;
1194                len -= mylen;
1195        }
1196
1197        if (first_desc == -1 || last_desc == -1) {
1198                printk(KERN_ERR "DBRI: setup_descs: "
1199                        " Not enough descriptors available\n");
1200                return -1;
1201        }
1202
1203        dbri->dma->desc[last_desc].nda =
1204            dvma_addr + dbri_dma_off(desc, first_desc);
1205        dbri->next_desc[last_desc] = first_desc;
1206        dbri->pipes[info->pipe].first_desc = first_desc;
1207        dbri->pipes[info->pipe].desc = first_desc;
1208
1209#ifdef DBRI_DEBUG
1210        for (desc = first_desc; desc != -1;) {
1211                dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212                        desc,
1213                        dbri->dma->desc[desc].word1,
1214                        dbri->dma->desc[desc].ba,
1215                        dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216                        desc = dbri->next_desc[desc];
1217                        if (desc == first_desc)
1218                                break;
1219        }
1220#endif
1221        return 0;
1222}
1223
1224/*
1225****************************************************************************
1226************************** DBRI - CHI interface ****************************
1227****************************************************************************
1228
1229The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230multiplexed serial interface which the DBRI can operate in either master
1231(give clock/frame sync) or slave (take clock/frame sync) mode.
1232
1233*/
1234
1235enum master_or_slave { CHImaster, CHIslave };
1236
1237/*
1238 * Lock must not be held before calling it.
1239 */
1240static void reset_chi(struct snd_dbri *dbri,
1241                      enum master_or_slave master_or_slave,
1242                      int bits_per_frame)
1243{
1244        s32 *cmd;
1245        int val;
1246
1247        /* Set CHI Anchor: Pipe 16 */
1248
1249        cmd = dbri_cmdlock(dbri, 4);
1250        val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251                | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252        *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256        dbri_cmdsend(dbri, cmd, 4);
1257
1258        dbri->pipes[16].sdp = 1;
1259        dbri->pipes[16].nextpipe = 16;
1260
1261        cmd = dbri_cmdlock(dbri, 4);
1262
1263        if (master_or_slave == CHIslave) {
1264                /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265                 *
1266                 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267                 * IR     = give immediate CHI status interrupt
1268                 * EN     = give CHI status interrupt upon change
1269                 */
1270                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271        } else {
1272                /* Setup DBRI for CHI Master - generate clock, FS
1273                 *
1274                 * BPF                          =  bits per 8 kHz frame
1275                 * 12.288 MHz / CHICM_divisor   = clock rate
1276                 * FD = 1 - drive CHIFS on rising edge of CHICK
1277                 */
1278                int clockrate = bits_per_frame * 8;
1279                int divisor = 12288 / clockrate;
1280
1281                if (divisor > 255 || divisor * clockrate != 12288)
1282                        printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283                                "in setup_chi\n");
1284
1285                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286                                    | D_CHI_BPF(bits_per_frame));
1287        }
1288
1289        dbri->chi_bpf = bits_per_frame;
1290
1291        /* CHI Data Mode
1292         *
1293         * RCE   =  0 - receive on falling edge of CHICK
1294         * XCE   =  1 - transmit on rising edge of CHICK
1295         * XEN   =  1 - enable transmitter
1296         * REN   =  1 - enable receiver
1297         */
1298
1299        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300        *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302
1303        dbri_cmdsend(dbri, cmd, 4);
1304}
1305
1306/*
1307****************************************************************************
1308*********************** CS4215 audio codec management **********************
1309****************************************************************************
1310
1311In the standard SPARC audio configuration, the CS4215 codec is attached
1312to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313
1314 * Lock must not be held before calling it.
1315
1316*/
1317static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318{
1319        unsigned long flags;
1320
1321        spin_lock_irqsave(&dbri->lock, flags);
1322        /*
1323         * Data mode:
1324         * Pipe  4: Send timeslots 1-4 (audio data)
1325         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326         * Pipe  6: Receive timeslots 1-4 (audio data)
1327         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328         *          interrupt, and the rest of the data (slot 5 and 8) is
1329         *          not relevant for us (only for doublechecking).
1330         *
1331         * Control mode:
1332         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333         * Pipe 18: Receive timeslot 1 (clb).
1334         * Pipe 19: Receive timeslot 7 (version).
1335         */
1336
1337        setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338        setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339        setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340        setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341
1342        setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343        setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344        setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345        spin_unlock_irqrestore(&dbri->lock, flags);
1346
1347        dbri_cmdwait(dbri);
1348}
1349
1350static int cs4215_init_data(struct cs4215 *mm)
1351{
1352        /*
1353         * No action, memory resetting only.
1354         *
1355         * Data Time Slot 5-8
1356         * Speaker,Line and Headphone enable. Gain set to the half.
1357         * Input is mike.
1358         */
1359        mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360        mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361        mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362        mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363
1364        /*
1365         * Control Time Slot 1-4
1366         * 0: Default I/O voltage scale
1367         * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368         * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369         * 3: Tests disabled
1370         */
1371        mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372        mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373        mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374        mm->ctrl[3] = 0;
1375
1376        mm->status = 0;
1377        mm->version = 0xff;
1378        mm->precision = 8;      /* For ULAW */
1379        mm->channels = 1;
1380
1381        return 0;
1382}
1383
1384static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385{
1386        if (muted) {
1387                dbri->mm.data[0] |= 63;
1388                dbri->mm.data[1] |= 63;
1389                dbri->mm.data[2] &= ~15;
1390                dbri->mm.data[3] &= ~15;
1391        } else {
1392                /* Start by setting the playback attenuation. */
1393                struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394                int left_gain = info->left_gain & 0x3f;
1395                int right_gain = info->right_gain & 0x3f;
1396
1397                dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1398                dbri->mm.data[1] &= ~0x3f;
1399                dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400                dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401
1402                /* Now set the recording gain. */
1403                info = &dbri->stream_info[DBRI_REC];
1404                left_gain = info->left_gain & 0xf;
1405                right_gain = info->right_gain & 0xf;
1406                dbri->mm.data[2] |= CS4215_LG(left_gain);
1407                dbri->mm.data[3] |= CS4215_RG(right_gain);
1408        }
1409
1410        xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411}
1412
1413/*
1414 * Set the CS4215 to data mode.
1415 */
1416static void cs4215_open(struct snd_dbri *dbri)
1417{
1418        int data_width;
1419        u32 tmp;
1420        unsigned long flags;
1421
1422        dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423                dbri->mm.channels, dbri->mm.precision);
1424
1425        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426         * to make sure this takes.  This avoids clicking noises.
1427         */
1428
1429        cs4215_setdata(dbri, 1);
1430        udelay(125);
1431
1432        /*
1433         * Data mode:
1434         * Pipe  4: Send timeslots 1-4 (audio data)
1435         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436         * Pipe  6: Receive timeslots 1-4 (audio data)
1437         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438         *          interrupt, and the rest of the data (slot 5 and 8) is
1439         *          not relevant for us (only for doublechecking).
1440         *
1441         * Just like in control mode, the time slots are all offset by eight
1442         * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443         * even if it's the CHI master.  Don't ask me...
1444         */
1445        spin_lock_irqsave(&dbri->lock, flags);
1446        tmp = sbus_readl(dbri->regs + REG0);
1447        tmp &= ~(D_C);          /* Disable CHI */
1448        sbus_writel(tmp, dbri->regs + REG0);
1449
1450        /* Switch CS4215 to data mode - set PIO3 to 1 */
1451        sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452                    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453
1454        reset_chi(dbri, CHIslave, 128);
1455
1456        /* Note: this next doesn't work for 8-bit stereo, because the two
1457         * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458         * (See CS4215 datasheet Fig 15)
1459         *
1460         * DBRI non-contiguous mode would be required to make this work.
1461         */
1462        data_width = dbri->mm.channels * dbri->mm.precision;
1463
1464        link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465        link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466        link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467        link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468
1469        /* FIXME: enable CHI after _setdata? */
1470        tmp = sbus_readl(dbri->regs + REG0);
1471        tmp |= D_C;             /* Enable CHI */
1472        sbus_writel(tmp, dbri->regs + REG0);
1473        spin_unlock_irqrestore(&dbri->lock, flags);
1474
1475        cs4215_setdata(dbri, 0);
1476}
1477
1478/*
1479 * Send the control information (i.e. audio format)
1480 */
1481static int cs4215_setctrl(struct snd_dbri *dbri)
1482{
1483        int i, val;
1484        u32 tmp;
1485        unsigned long flags;
1486
1487        /* FIXME - let the CPU do something useful during these delays */
1488
1489        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490         * to make sure this takes.  This avoids clicking noises.
1491         */
1492        cs4215_setdata(dbri, 1);
1493        udelay(125);
1494
1495        /*
1496         * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497         * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498         */
1499        val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500        sbus_writel(val, dbri->regs + REG2);
1501        dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502        udelay(34);
1503
1504        /* In Control mode, the CS4215 is a slave device, so the DBRI must
1505         * operate as CHI master, supplying clocking and frame synchronization.
1506         *
1507         * In Data mode, however, the CS4215 must be CHI master to insure
1508         * that its data stream is synchronous with its codec.
1509         *
1510         * The upshot of all this?  We start by putting the DBRI into master
1511         * mode, program the CS4215 in Control mode, then switch the CS4215
1512         * into Data mode and put the DBRI into slave mode.  Various timing
1513         * requirements must be observed along the way.
1514         *
1515         * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516         * others?), the addressing of the CS4215's time slots is
1517         * offset by eight bits, so we add eight to all the "cycle"
1518         * values in the Define Time Slot (DTS) commands.  This is
1519         * done in hardware by a TI 248 that delays the DBRI->4215
1520         * frame sync signal by eight clock cycles.  Anybody know why?
1521         */
1522        spin_lock_irqsave(&dbri->lock, flags);
1523        tmp = sbus_readl(dbri->regs + REG0);
1524        tmp &= ~D_C;            /* Disable CHI */
1525        sbus_writel(tmp, dbri->regs + REG0);
1526
1527        reset_chi(dbri, CHImaster, 128);
1528
1529        /*
1530         * Control mode:
1531         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532         * Pipe 18: Receive timeslot 1 (clb).
1533         * Pipe 19: Receive timeslot 7 (version).
1534         */
1535
1536        link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537        link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538        link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539        spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541        /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542        dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544
1545        spin_lock_irqsave(&dbri->lock, flags);
1546        tmp = sbus_readl(dbri->regs + REG0);
1547        tmp |= D_C;             /* Enable CHI */
1548        sbus_writel(tmp, dbri->regs + REG0);
1549        spin_unlock_irqrestore(&dbri->lock, flags);
1550
1551        for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552                msleep_interruptible(1);
1553
1554        if (i == 0) {
1555                dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556                        dbri->mm.status);
1557                return -1;
1558        }
1559
1560        /* Disable changes to our copy of the version number, as we are about
1561         * to leave control mode.
1562         */
1563        recv_fixed(dbri, 19, NULL);
1564
1565        /* Terminate CS4215 control mode - data sheet says
1566         * "Set CLB=1 and send two more frames of valid control info"
1567         */
1568        dbri->mm.ctrl[0] |= CS4215_CLB;
1569        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570
1571        /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572        udelay(250);
1573
1574        cs4215_setdata(dbri, 0);
1575
1576        return 0;
1577}
1578
1579/*
1580 * Setup the codec with the sampling rate, audio format and number of
1581 * channels.
1582 * As part of the process we resend the settings for the data
1583 * timeslots as well.
1584 */
1585static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586                          snd_pcm_format_t format, unsigned int channels)
1587{
1588        int freq_idx;
1589        int ret = 0;
1590
1591        /* Lookup index for this rate */
1592        for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593                if (CS4215_FREQ[freq_idx].freq == rate)
1594                        break;
1595        }
1596        if (CS4215_FREQ[freq_idx].freq != rate) {
1597                printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598                return -1;
1599        }
1600
1601        switch (format) {
1602        case SNDRV_PCM_FORMAT_MU_LAW:
1603                dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604                dbri->mm.precision = 8;
1605                break;
1606        case SNDRV_PCM_FORMAT_A_LAW:
1607                dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608                dbri->mm.precision = 8;
1609                break;
1610        case SNDRV_PCM_FORMAT_U8:
1611                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612                dbri->mm.precision = 8;
1613                break;
1614        case SNDRV_PCM_FORMAT_S16_BE:
1615                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616                dbri->mm.precision = 16;
1617                break;
1618        default:
1619                printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620                return -1;
1621        }
1622
1623        /* Add rate parameters */
1624        dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625        dbri->mm.ctrl[2] = CS4215_XCLK |
1626            CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627
1628        dbri->mm.channels = channels;
1629        if (channels == 2)
1630                dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631
1632        ret = cs4215_setctrl(dbri);
1633        if (ret == 0)
1634                cs4215_open(dbri);      /* set codec to data mode */
1635
1636        return ret;
1637}
1638
1639/*
1640 *
1641 */
1642static int cs4215_init(struct snd_dbri *dbri)
1643{
1644        u32 reg2 = sbus_readl(dbri->regs + REG2);
1645        dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646
1647        /* Look for the cs4215 chips */
1648        if (reg2 & D_PIO2) {
1649                dprintk(D_MM, "Onboard CS4215 detected\n");
1650                dbri->mm.onboard = 1;
1651        }
1652        if (reg2 & D_PIO0) {
1653                dprintk(D_MM, "Speakerbox detected\n");
1654                dbri->mm.onboard = 0;
1655
1656                if (reg2 & D_PIO2) {
1657                        printk(KERN_INFO "DBRI: Using speakerbox / "
1658                               "ignoring onboard mmcodec.\n");
1659                        sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660                }
1661        }
1662
1663        if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664                printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665                return -EIO;
1666        }
1667
1668        cs4215_setup_pipes(dbri);
1669        cs4215_init_data(&dbri->mm);
1670
1671        /* Enable capture of the status & version timeslots. */
1672        recv_fixed(dbri, 18, &dbri->mm.status);
1673        recv_fixed(dbri, 19, &dbri->mm.version);
1674
1675        dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676        if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677                dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678                        dbri->mm.offset);
1679                return -EIO;
1680        }
1681        dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682
1683        return 0;
1684}
1685
1686/*
1687****************************************************************************
1688*************************** DBRI interrupt handler *************************
1689****************************************************************************
1690
1691The DBRI communicates with the CPU mainly via a circular interrupt
1692buffer.  When an interrupt is signaled, the CPU walks through the
1693buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694Complicated interrupts are handled by dedicated functions (which
1695appear first in this file).  Any pending interrupts can be serviced by
1696calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697interrupts are disabled.
1698
1699*/
1700
1701/* xmit_descs()
1702 *
1703 * Starts transmitting the current TD's for recording/playing.
1704 * For playback, ALSA has filled the DMA memory with new data (we hope).
1705 */
1706static void xmit_descs(struct snd_dbri *dbri)
1707{
1708        struct dbri_streaminfo *info;
1709        u32 dvma_addr;
1710        s32 *cmd;
1711        unsigned long flags;
1712        int first_td;
1713
1714        if (dbri == NULL)
1715                return;         /* Disabled */
1716
1717        dvma_addr = (u32)dbri->dma_dvma;
1718        info = &dbri->stream_info[DBRI_REC];
1719        spin_lock_irqsave(&dbri->lock, flags);
1720
1721        if (info->pipe >= 0) {
1722                first_td = dbri->pipes[info->pipe].first_desc;
1723
1724                dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725
1726                /* Stream could be closed by the time we run. */
1727                if (first_td >= 0) {
1728                        cmd = dbri_cmdlock(dbri, 2);
1729                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1730                                            dbri->pipes[info->pipe].sdp
1731                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732                        *(cmd++) = dvma_addr +
1733                                   dbri_dma_off(desc, first_td);
1734                        dbri_cmdsend(dbri, cmd, 2);
1735
1736                        /* Reset our admin of the pipe. */
1737                        dbri->pipes[info->pipe].desc = first_td;
1738                }
1739        }
1740
1741        info = &dbri->stream_info[DBRI_PLAY];
1742
1743        if (info->pipe >= 0) {
1744                first_td = dbri->pipes[info->pipe].first_desc;
1745
1746                dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747
1748                /* Stream could be closed by the time we run. */
1749                if (first_td >= 0) {
1750                        cmd = dbri_cmdlock(dbri, 2);
1751                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1752                                            dbri->pipes[info->pipe].sdp
1753                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754                        *(cmd++) = dvma_addr +
1755                                   dbri_dma_off(desc, first_td);
1756                        dbri_cmdsend(dbri, cmd, 2);
1757
1758                        /* Reset our admin of the pipe. */
1759                        dbri->pipes[info->pipe].desc = first_td;
1760                }
1761        }
1762
1763        spin_unlock_irqrestore(&dbri->lock, flags);
1764}
1765
1766/* transmission_complete_intr()
1767 *
1768 * Called by main interrupt handler when DBRI signals transmission complete
1769 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770 *
1771 * Walks through the pipe's list of transmit buffer descriptors and marks
1772 * them as available. Stops when the first descriptor is found without
1773 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774 *
1775 * The DMA buffers are not released. They form a ring buffer and
1776 * they are filled by ALSA while others are transmitted by DMA.
1777 *
1778 */
1779
1780static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781{
1782        struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783        int td = dbri->pipes[pipe].desc;
1784        int status;
1785
1786        while (td >= 0) {
1787                if (td >= DBRI_NO_DESCS) {
1788                        printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789                        return;
1790                }
1791
1792                status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793                if (!(status & DBRI_TD_TBC))
1794                        break;
1795
1796                dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797
1798                dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1799                info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800
1801                td = dbri->next_desc[td];
1802                dbri->pipes[pipe].desc = td;
1803        }
1804
1805        /* Notify ALSA */
1806        spin_unlock(&dbri->lock);
1807        snd_pcm_period_elapsed(info->substream);
1808        spin_lock(&dbri->lock);
1809}
1810
1811static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812{
1813        struct dbri_streaminfo *info;
1814        int rd = dbri->pipes[pipe].desc;
1815        s32 status;
1816
1817        if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818                printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819                return;
1820        }
1821
1822        dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823        status = dbri->dma->desc[rd].word1;
1824        dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1825
1826        info = &dbri->stream_info[DBRI_REC];
1827        info->offset += DBRI_RD_CNT(status);
1828
1829        /* FIXME: Check status */
1830
1831        dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832                rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833
1834        /* Notify ALSA */
1835        spin_unlock(&dbri->lock);
1836        snd_pcm_period_elapsed(info->substream);
1837        spin_lock(&dbri->lock);
1838}
1839
1840static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841{
1842        int val = D_INTR_GETVAL(x);
1843        int channel = D_INTR_GETCHAN(x);
1844        int command = D_INTR_GETCMD(x);
1845        int code = D_INTR_GETCODE(x);
1846#ifdef DBRI_DEBUG
1847        int rval = D_INTR_GETRVAL(x);
1848#endif
1849
1850        if (channel == D_INTR_CMD) {
1851                dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852                        cmds[command], val);
1853        } else {
1854                dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855                        channel, code, rval);
1856        }
1857
1858        switch (code) {
1859        case D_INTR_CMDI:
1860                if (command != D_WAIT)
1861                        printk(KERN_ERR "DBRI: Command read interrupt\n");
1862                break;
1863        case D_INTR_BRDY:
1864                reception_complete_intr(dbri, channel);
1865                break;
1866        case D_INTR_XCMP:
1867        case D_INTR_MINT:
1868                transmission_complete_intr(dbri, channel);
1869                break;
1870        case D_INTR_UNDR:
1871                /* UNDR - Transmission underrun
1872                 * resend SDP command with clear pipe bit (C) set
1873                 */
1874                {
1875        /* FIXME: do something useful in case of underrun */
1876                        printk(KERN_ERR "DBRI: Underrun error\n");
1877#if 0
1878                        s32 *cmd;
1879                        int pipe = channel;
1880                        int td = dbri->pipes[pipe].desc;
1881
1882                        dbri->dma->desc[td].word4 = 0;
1883                        cmd = dbri_cmdlock(dbri, NoGetLock);
1884                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1885                                            dbri->pipes[pipe].sdp
1886                                            | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887                        *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888                        dbri_cmdsend(dbri, cmd);
1889#endif
1890                }
1891                break;
1892        case D_INTR_FXDT:
1893                /* FXDT - Fixed data change */
1894                if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895                        val = reverse_bytes(val, dbri->pipes[channel].length);
1896
1897                if (dbri->pipes[channel].recv_fixed_ptr)
1898                        *(dbri->pipes[channel].recv_fixed_ptr) = val;
1899                break;
1900        default:
1901                if (channel != D_INTR_CMD)
1902                        printk(KERN_WARNING
1903                               "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904        }
1905}
1906
1907/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908 * buffer until it finds a zero word (indicating nothing more to do
1909 * right now).  Non-zero words require processing and are handed off
1910 * to dbri_process_one_interrupt AFTER advancing the pointer.
1911 */
1912static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913{
1914        s32 x;
1915
1916        while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917                dbri->dma->intr[dbri->dbri_irqp] = 0;
1918                dbri->dbri_irqp++;
1919                if (dbri->dbri_irqp == DBRI_INT_BLK)
1920                        dbri->dbri_irqp = 1;
1921
1922                dbri_process_one_interrupt(dbri, x);
1923        }
1924}
1925
1926static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927{
1928        struct snd_dbri *dbri = dev_id;
1929        static int errcnt = 0;
1930        int x;
1931
1932        if (dbri == NULL)
1933                return IRQ_NONE;
1934        spin_lock(&dbri->lock);
1935
1936        /*
1937         * Read it, so the interrupt goes away.
1938         */
1939        x = sbus_readl(dbri->regs + REG1);
1940
1941        if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942                u32 tmp;
1943
1944                if (x & D_MRR)
1945                        printk(KERN_ERR
1946                               "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947                               x);
1948                if (x & D_MLE)
1949                        printk(KERN_ERR
1950                               "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951                               x);
1952                if (x & D_LBG)
1953                        printk(KERN_ERR
1954                               "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955                if (x & D_MBE)
1956                        printk(KERN_ERR
1957                               "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958
1959                /* Some of these SBus errors cause the chip's SBus circuitry
1960                 * to be disabled, so just re-enable and try to keep going.
1961                 *
1962                 * The only one I've seen is MRR, which will be triggered
1963                 * if you let a transmit pipe underrun, then try to CDP it.
1964                 *
1965                 * If these things persist, we reset the chip.
1966                 */
1967                if ((++errcnt) % 10 == 0) {
1968                        dprintk(D_INT, "Interrupt errors exceeded.\n");
1969                        dbri_reset(dbri);
1970                } else {
1971                        tmp = sbus_readl(dbri->regs + REG0);
1972                        tmp &= ~(D_D);
1973                        sbus_writel(tmp, dbri->regs + REG0);
1974                }
1975        }
1976
1977        dbri_process_interrupt_buffer(dbri);
1978
1979        spin_unlock(&dbri->lock);
1980
1981        return IRQ_HANDLED;
1982}
1983
1984/****************************************************************************
1985                PCM Interface
1986****************************************************************************/
1987static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988        .info           = SNDRV_PCM_INFO_MMAP |
1989                          SNDRV_PCM_INFO_INTERLEAVED |
1990                          SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991                          SNDRV_PCM_INFO_MMAP_VALID |
1992                          SNDRV_PCM_INFO_BATCH,
1993        .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1994                          SNDRV_PCM_FMTBIT_A_LAW |
1995                          SNDRV_PCM_FMTBIT_U8 |
1996                          SNDRV_PCM_FMTBIT_S16_BE,
1997        .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998        .rate_min               = 5512,
1999        .rate_max               = 48000,
2000        .channels_min           = 1,
2001        .channels_max           = 2,
2002        .buffer_bytes_max       = 64 * 1024,
2003        .period_bytes_min       = 1,
2004        .period_bytes_max       = DBRI_TD_MAXCNT,
2005        .periods_min            = 1,
2006        .periods_max            = 1024,
2007};
2008
2009static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010                              struct snd_pcm_hw_rule *rule)
2011{
2012        struct snd_interval *c = hw_param_interval(params,
2013                                SNDRV_PCM_HW_PARAM_CHANNELS);
2014        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015        struct snd_mask fmt;
2016
2017        snd_mask_any(&fmt);
2018        if (c->min > 1) {
2019                fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020                return snd_mask_refine(f, &fmt);
2021        }
2022        return 0;
2023}
2024
2025static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026                                struct snd_pcm_hw_rule *rule)
2027{
2028        struct snd_interval *c = hw_param_interval(params,
2029                                SNDRV_PCM_HW_PARAM_CHANNELS);
2030        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031        struct snd_interval ch;
2032
2033        snd_interval_any(&ch);
2034        if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035                ch.min = 1;
2036                ch.max = 1;
2037                ch.integer = 1;
2038                return snd_interval_refine(c, &ch);
2039        }
2040        return 0;
2041}
2042
2043static int snd_dbri_open(struct snd_pcm_substream *substream)
2044{
2045        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046        struct snd_pcm_runtime *runtime = substream->runtime;
2047        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048        unsigned long flags;
2049
2050        dprintk(D_USR, "open audio output.\n");
2051        runtime->hw = snd_dbri_pcm_hw;
2052
2053        spin_lock_irqsave(&dbri->lock, flags);
2054        info->substream = substream;
2055        info->offset = 0;
2056        info->dvma_buffer = 0;
2057        info->pipe = -1;
2058        spin_unlock_irqrestore(&dbri->lock, flags);
2059
2060        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061                            snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062                            -1);
2063        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064                            snd_hw_rule_channels, NULL,
2065                            SNDRV_PCM_HW_PARAM_CHANNELS,
2066                            -1);
2067
2068        cs4215_open(dbri);
2069
2070        return 0;
2071}
2072
2073static int snd_dbri_close(struct snd_pcm_substream *substream)
2074{
2075        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
2078        dprintk(D_USR, "close audio output.\n");
2079        info->substream = NULL;
2080        info->offset = 0;
2081
2082        return 0;
2083}
2084
2085static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086                              struct snd_pcm_hw_params *hw_params)
2087{
2088        struct snd_pcm_runtime *runtime = substream->runtime;
2089        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091        int direction;
2092        int ret;
2093
2094        /* set sampling rate, audio format and number of channels */
2095        ret = cs4215_prepare(dbri, params_rate(hw_params),
2096                             params_format(hw_params),
2097                             params_channels(hw_params));
2098        if (ret != 0)
2099                return ret;
2100
2101        /* hw_params can get called multiple times. Only map the DMA once.
2102         */
2103        if (info->dvma_buffer == 0) {
2104                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105                        direction = DMA_TO_DEVICE;
2106                else
2107                        direction = DMA_FROM_DEVICE;
2108
2109                info->dvma_buffer =
2110                        dma_map_single(&dbri->op->dev,
2111                                       runtime->dma_area,
2112                                       params_buffer_bytes(hw_params),
2113                                       direction);
2114        }
2115
2116        direction = params_buffer_bytes(hw_params);
2117        dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118                direction, info->dvma_buffer);
2119        return 0;
2120}
2121
2122static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123{
2124        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126        int direction;
2127
2128        dprintk(D_USR, "hw_free.\n");
2129
2130        /* hw_free can get called multiple times. Only unmap the DMA once.
2131         */
2132        if (info->dvma_buffer) {
2133                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134                        direction = DMA_TO_DEVICE;
2135                else
2136                        direction = DMA_FROM_DEVICE;
2137
2138                dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139                                 substream->runtime->buffer_size, direction);
2140                info->dvma_buffer = 0;
2141        }
2142        if (info->pipe != -1) {
2143                reset_pipe(dbri, info->pipe);
2144                info->pipe = -1;
2145        }
2146
2147        return 0;
2148}
2149
2150static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151{
2152        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154        int ret;
2155
2156        info->size = snd_pcm_lib_buffer_bytes(substream);
2157        if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158                info->pipe = 4; /* Send pipe */
2159        else
2160                info->pipe = 6; /* Receive pipe */
2161
2162        spin_lock_irq(&dbri->lock);
2163        info->offset = 0;
2164
2165        /* Setup the all the transmit/receive descriptors to cover the
2166         * whole DMA buffer.
2167         */
2168        ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169                          snd_pcm_lib_period_bytes(substream));
2170
2171        spin_unlock_irq(&dbri->lock);
2172
2173        dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174        return ret;
2175}
2176
2177static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178{
2179        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181        int ret = 0;
2182
2183        switch (cmd) {
2184        case SNDRV_PCM_TRIGGER_START:
2185                dprintk(D_USR, "start audio, period is %d bytes\n",
2186                        (int)snd_pcm_lib_period_bytes(substream));
2187                /* Re-submit the TDs. */
2188                xmit_descs(dbri);
2189                break;
2190        case SNDRV_PCM_TRIGGER_STOP:
2191                dprintk(D_USR, "stop audio.\n");
2192                reset_pipe(dbri, info->pipe);
2193                break;
2194        default:
2195                ret = -EINVAL;
2196        }
2197
2198        return ret;
2199}
2200
2201static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202{
2203        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205        snd_pcm_uframes_t ret;
2206
2207        ret = bytes_to_frames(substream->runtime, info->offset)
2208                % substream->runtime->buffer_size;
2209        dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210                ret, substream->runtime->buffer_size);
2211        return ret;
2212}
2213
2214static const struct snd_pcm_ops snd_dbri_ops = {
2215        .open = snd_dbri_open,
2216        .close = snd_dbri_close,
2217        .hw_params = snd_dbri_hw_params,
2218        .hw_free = snd_dbri_hw_free,
2219        .prepare = snd_dbri_prepare,
2220        .trigger = snd_dbri_trigger,
2221        .pointer = snd_dbri_pointer,
2222};
2223
2224static int snd_dbri_pcm(struct snd_card *card)
2225{
2226        struct snd_pcm *pcm;
2227        int err;
2228
2229        err = snd_pcm_new(card,
2230                          /* ID */          "sun_dbri",
2231                          /* device */      0,
2232                          /* playback count */ 1,
2233                          /* capture count */  1, &pcm);
2234        if (err < 0)
2235                return err;
2236
2237        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240        pcm->private_data = card->private_data;
2241        pcm->info_flags = 0;
2242        strcpy(pcm->name, card->shortname);
2243
2244        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245                                       NULL, 64 * 1024, 64 * 1024);
2246        return 0;
2247}
2248
2249/*****************************************************************************
2250                        Mixer interface
2251*****************************************************************************/
2252
2253static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254                                  struct snd_ctl_elem_info *uinfo)
2255{
2256        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257        uinfo->count = 2;
2258        uinfo->value.integer.min = 0;
2259        if (kcontrol->private_value == DBRI_PLAY)
2260                uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261        else
2262                uinfo->value.integer.max = DBRI_MAX_GAIN;
2263        return 0;
2264}
2265
2266static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267                                 struct snd_ctl_elem_value *ucontrol)
2268{
2269        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270        struct dbri_streaminfo *info;
2271
2272        if (snd_BUG_ON(!dbri))
2273                return -EINVAL;
2274        info = &dbri->stream_info[kcontrol->private_value];
2275
2276        ucontrol->value.integer.value[0] = info->left_gain;
2277        ucontrol->value.integer.value[1] = info->right_gain;
2278        return 0;
2279}
2280
2281static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282                                 struct snd_ctl_elem_value *ucontrol)
2283{
2284        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285        struct dbri_streaminfo *info =
2286                                &dbri->stream_info[kcontrol->private_value];
2287        unsigned int vol[2];
2288        int changed = 0;
2289
2290        vol[0] = ucontrol->value.integer.value[0];
2291        vol[1] = ucontrol->value.integer.value[1];
2292        if (kcontrol->private_value == DBRI_PLAY) {
2293                if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294                        return -EINVAL;
2295        } else {
2296                if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297                        return -EINVAL;
2298        }
2299
2300        if (info->left_gain != vol[0]) {
2301                info->left_gain = vol[0];
2302                changed = 1;
2303        }
2304        if (info->right_gain != vol[1]) {
2305                info->right_gain = vol[1];
2306                changed = 1;
2307        }
2308        if (changed) {
2309                /* First mute outputs, and wait 1/8000 sec (125 us)
2310                 * to make sure this takes.  This avoids clicking noises.
2311                 */
2312                cs4215_setdata(dbri, 1);
2313                udelay(125);
2314                cs4215_setdata(dbri, 0);
2315        }
2316        return changed;
2317}
2318
2319static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320                                  struct snd_ctl_elem_info *uinfo)
2321{
2322        int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324        uinfo->type = (mask == 1) ?
2325            SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326        uinfo->count = 1;
2327        uinfo->value.integer.min = 0;
2328        uinfo->value.integer.max = mask;
2329        return 0;
2330}
2331
2332static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333                                 struct snd_ctl_elem_value *ucontrol)
2334{
2335        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336        int elem = kcontrol->private_value & 0xff;
2337        int shift = (kcontrol->private_value >> 8) & 0xff;
2338        int mask = (kcontrol->private_value >> 16) & 0xff;
2339        int invert = (kcontrol->private_value >> 24) & 1;
2340
2341        if (snd_BUG_ON(!dbri))
2342                return -EINVAL;
2343
2344        if (elem < 4)
2345                ucontrol->value.integer.value[0] =
2346                    (dbri->mm.data[elem] >> shift) & mask;
2347        else
2348                ucontrol->value.integer.value[0] =
2349                    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351        if (invert == 1)
2352                ucontrol->value.integer.value[0] =
2353                    mask - ucontrol->value.integer.value[0];
2354        return 0;
2355}
2356
2357static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358                                 struct snd_ctl_elem_value *ucontrol)
2359{
2360        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361        int elem = kcontrol->private_value & 0xff;
2362        int shift = (kcontrol->private_value >> 8) & 0xff;
2363        int mask = (kcontrol->private_value >> 16) & 0xff;
2364        int invert = (kcontrol->private_value >> 24) & 1;
2365        int changed = 0;
2366        unsigned short val;
2367
2368        if (snd_BUG_ON(!dbri))
2369                return -EINVAL;
2370
2371        val = (ucontrol->value.integer.value[0] & mask);
2372        if (invert == 1)
2373                val = mask - val;
2374        val <<= shift;
2375
2376        if (elem < 4) {
2377                dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378                                       ~(mask << shift)) | val;
2379                changed = (val != dbri->mm.data[elem]);
2380        } else {
2381                dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382                                           ~(mask << shift)) | val;
2383                changed = (val != dbri->mm.ctrl[elem - 4]);
2384        }
2385
2386        dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387                "mixer-value=%ld, mm-value=0x%x\n",
2388                mask, changed, ucontrol->value.integer.value[0],
2389                dbri->mm.data[elem & 3]);
2390
2391        if (changed) {
2392                /* First mute outputs, and wait 1/8000 sec (125 us)
2393                 * to make sure this takes.  This avoids clicking noises.
2394                 */
2395                cs4215_setdata(dbri, 1);
2396                udelay(125);
2397                cs4215_setdata(dbri, 0);
2398        }
2399        return changed;
2400}
2401
2402/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403   timeslots. Shift is the bit offset in the timeslot, mask defines the
2404   number of bits. invert is a boolean for use with attenuation.
2405 */
2406#define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2407{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2408  .info = snd_cs4215_info_single,                               \
2409  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2410  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2411                        ((invert) << 24) },
2412
2413static const struct snd_kcontrol_new dbri_controls[] = {
2414        {
2415         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416         .name  = "Playback Volume",
2417         .info  = snd_cs4215_info_volume,
2418         .get   = snd_cs4215_get_volume,
2419         .put   = snd_cs4215_put_volume,
2420         .private_value = DBRI_PLAY,
2421         },
2422        CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423        CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424        CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425        {
2426         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427         .name  = "Capture Volume",
2428         .info  = snd_cs4215_info_volume,
2429         .get   = snd_cs4215_get_volume,
2430         .put   = snd_cs4215_put_volume,
2431         .private_value = DBRI_REC,
2432         },
2433        /* FIXME: mic/line switch */
2434        CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435        CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436        CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437        CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438};
2439
2440static int snd_dbri_mixer(struct snd_card *card)
2441{
2442        int idx, err;
2443        struct snd_dbri *dbri;
2444
2445        if (snd_BUG_ON(!card || !card->private_data))
2446                return -EINVAL;
2447        dbri = card->private_data;
2448
2449        strcpy(card->mixername, card->shortname);
2450
2451        for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452                err = snd_ctl_add(card,
2453                                snd_ctl_new1(&dbri_controls[idx], dbri));
2454                if (err < 0)
2455                        return err;
2456        }
2457
2458        for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459                dbri->stream_info[idx].left_gain = 0;
2460                dbri->stream_info[idx].right_gain = 0;
2461        }
2462
2463        return 0;
2464}
2465
2466/****************************************************************************
2467                        /proc interface
2468****************************************************************************/
2469static void dbri_regs_read(struct snd_info_entry *entry,
2470                           struct snd_info_buffer *buffer)
2471{
2472        struct snd_dbri *dbri = entry->private_data;
2473
2474        snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475        snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476        snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477        snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478}
2479
2480#ifdef DBRI_DEBUG
2481static void dbri_debug_read(struct snd_info_entry *entry,
2482                            struct snd_info_buffer *buffer)
2483{
2484        struct snd_dbri *dbri = entry->private_data;
2485        int pipe;
2486        snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488        for (pipe = 0; pipe < 32; pipe++) {
2489                if (pipe_active(dbri, pipe)) {
2490                        struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491                        snd_iprintf(buffer,
2492                                    "Pipe %d: %s SDP=0x%x desc=%d, "
2493                                    "len=%d next %d\n",
2494                                    pipe,
2495                                   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496                                                                 "input",
2497                                    pptr->sdp, pptr->desc,
2498                                    pptr->length, pptr->nextpipe);
2499                }
2500        }
2501}
2502#endif
2503
2504static void snd_dbri_proc(struct snd_card *card)
2505{
2506        struct snd_dbri *dbri = card->private_data;
2507
2508        snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509#ifdef DBRI_DEBUG
2510        snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2511#endif
2512}
2513
2514/*
2515****************************************************************************
2516**************************** Initialization ********************************
2517****************************************************************************
2518*/
2519static void snd_dbri_free(struct snd_dbri *dbri);
2520
2521static int snd_dbri_create(struct snd_card *card,
2522                           struct platform_device *op,
2523                           int irq, int dev)
2524{
2525        struct snd_dbri *dbri = card->private_data;
2526        int err;
2527
2528        spin_lock_init(&dbri->lock);
2529        dbri->op = op;
2530        dbri->irq = irq;
2531
2532        dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533                                       &dbri->dma_dvma, GFP_KERNEL);
2534        if (!dbri->dma)
2535                return -ENOMEM;
2536
2537        dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538                dbri->dma, dbri->dma_dvma);
2539
2540        /* Map the registers into memory. */
2541        dbri->regs_size = resource_size(&op->resource[0]);
2542        dbri->regs = of_ioremap(&op->resource[0], 0,
2543                                dbri->regs_size, "DBRI Registers");
2544        if (!dbri->regs) {
2545                printk(KERN_ERR "DBRI: could not allocate registers\n");
2546                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547                                  (void *)dbri->dma, dbri->dma_dvma);
2548                return -EIO;
2549        }
2550
2551        err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552                          "DBRI audio", dbri);
2553        if (err) {
2554                printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555                of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557                                  (void *)dbri->dma, dbri->dma_dvma);
2558                return err;
2559        }
2560
2561        /* Do low level initialization of the DBRI and CS4215 chips */
2562        dbri_initialize(dbri);
2563        err = cs4215_init(dbri);
2564        if (err) {
2565                snd_dbri_free(dbri);
2566                return err;
2567        }
2568
2569        return 0;
2570}
2571
2572static void snd_dbri_free(struct snd_dbri *dbri)
2573{
2574        dprintk(D_GEN, "snd_dbri_free\n");
2575        dbri_reset(dbri);
2576
2577        if (dbri->irq)
2578                free_irq(dbri->irq, dbri);
2579
2580        if (dbri->regs)
2581                of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583        if (dbri->dma)
2584                dma_free_coherent(&dbri->op->dev,
2585                                  sizeof(struct dbri_dma),
2586                                  (void *)dbri->dma, dbri->dma_dvma);
2587}
2588
2589static int dbri_probe(struct platform_device *op)
2590{
2591        struct snd_dbri *dbri;
2592        struct resource *rp;
2593        struct snd_card *card;
2594        static int dev = 0;
2595        int irq;
2596        int err;
2597
2598        if (dev >= SNDRV_CARDS)
2599                return -ENODEV;
2600        if (!enable[dev]) {
2601                dev++;
2602                return -ENOENT;
2603        }
2604
2605        irq = op->archdata.irqs[0];
2606        if (irq <= 0) {
2607                printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608                return -ENODEV;
2609        }
2610
2611        err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612                           sizeof(struct snd_dbri), &card);
2613        if (err < 0)
2614                return err;
2615
2616        strcpy(card->driver, "DBRI");
2617        strcpy(card->shortname, "Sun DBRI");
2618        rp = &op->resource[0];
2619        sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620                card->shortname,
2621                rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623        err = snd_dbri_create(card, op, irq, dev);
2624        if (err < 0) {
2625                snd_card_free(card);
2626                return err;
2627        }
2628
2629        dbri = card->private_data;
2630        err = snd_dbri_pcm(card);
2631        if (err < 0)
2632                goto _err;
2633
2634        err = snd_dbri_mixer(card);
2635        if (err < 0)
2636                goto _err;
2637
2638        /* /proc file handling */
2639        snd_dbri_proc(card);
2640        dev_set_drvdata(&op->dev, card);
2641
2642        err = snd_card_register(card);
2643        if (err < 0)
2644                goto _err;
2645
2646        printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647               dev, dbri->regs,
2648               dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649        dev++;
2650
2651        return 0;
2652
2653_err:
2654        snd_dbri_free(dbri);
2655        snd_card_free(card);
2656        return err;
2657}
2658
2659static int dbri_remove(struct platform_device *op)
2660{
2661        struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663        snd_dbri_free(card->private_data);
2664        snd_card_free(card);
2665
2666        return 0;
2667}
2668
2669static const struct of_device_id dbri_match[] = {
2670        {
2671                .name = "SUNW,DBRIe",
2672        },
2673        {
2674                .name = "SUNW,DBRIf",
2675        },
2676        {},
2677};
2678
2679MODULE_DEVICE_TABLE(of, dbri_match);
2680
2681static struct platform_driver dbri_sbus_driver = {
2682        .driver = {
2683                .name = "dbri",
2684                .of_match_table = dbri_match,
2685        },
2686        .probe          = dbri_probe,
2687        .remove         = dbri_remove,
2688};
2689
2690module_platform_driver(dbri_sbus_driver);
2691