linux/sound/x86/intel_hdmi_audio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   intel_hdmi_audio.c - Intel HDMI audio driver
   4 *
   5 *  Copyright (C) 2016 Intel Corp
   6 *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
   7 *              Ramesh Babu K V <ramesh.babu@intel.com>
   8 *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
   9 *              Jerome Anand <jerome.anand@intel.com>
  10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 * ALSA driver for Intel HDMI audio
  14 */
  15
  16#include <linux/types.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/delay.h>
  25#include <sound/core.h>
  26#include <sound/asoundef.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/initval.h>
  30#include <sound/control.h>
  31#include <sound/jack.h>
  32#include <drm/drm_edid.h>
  33#include <drm/intel_lpe_audio.h>
  34#include "intel_hdmi_audio.h"
  35
  36#define for_each_pipe(card_ctx, pipe) \
  37        for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
  38#define for_each_port(card_ctx, port) \
  39        for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
  40
  41/*standard module options for ALSA. This module supports only one card*/
  42static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
  43static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
  44static bool single_port;
  45
  46module_param_named(index, hdmi_card_index, int, 0444);
  47MODULE_PARM_DESC(index,
  48                "Index value for INTEL Intel HDMI Audio controller.");
  49module_param_named(id, hdmi_card_id, charp, 0444);
  50MODULE_PARM_DESC(id,
  51                "ID string for INTEL Intel HDMI Audio controller.");
  52module_param(single_port, bool, 0444);
  53MODULE_PARM_DESC(single_port,
  54                "Single-port mode (for compatibility)");
  55
  56/*
  57 * ELD SA bits in the CEA Speaker Allocation data block
  58 */
  59static const int eld_speaker_allocation_bits[] = {
  60        [0] = FL | FR,
  61        [1] = LFE,
  62        [2] = FC,
  63        [3] = RL | RR,
  64        [4] = RC,
  65        [5] = FLC | FRC,
  66        [6] = RLC | RRC,
  67        /* the following are not defined in ELD yet */
  68        [7] = 0,
  69};
  70
  71/*
  72 * This is an ordered list!
  73 *
  74 * The preceding ones have better chances to be selected by
  75 * hdmi_channel_allocation().
  76 */
  77static struct cea_channel_speaker_allocation channel_allocations[] = {
  78/*                        channel:   7     6    5    4    3     2    1    0  */
  79{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
  80                                /* 2.1 */
  81{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
  82                                /* Dolby Surround */
  83{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
  84                                /* surround40 */
  85{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
  86                                /* surround41 */
  87{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
  88                                /* surround50 */
  89{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
  90                                /* surround51 */
  91{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
  92                                /* 6.1 */
  93{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  94                                /* surround71 */
  95{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  96
  97{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
  98{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
  99{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
 100{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
 101{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
 102{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
 103{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
 104{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
 105{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
 106{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 107{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
 108{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
 109{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
 110{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
 111{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
 112{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
 113{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
 114{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
 115{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
 116{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
 117{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 118{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
 119{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 120};
 121
 122static const struct channel_map_table map_tables[] = {
 123        { SNDRV_CHMAP_FL,       0x00,   FL },
 124        { SNDRV_CHMAP_FR,       0x01,   FR },
 125        { SNDRV_CHMAP_RL,       0x04,   RL },
 126        { SNDRV_CHMAP_RR,       0x05,   RR },
 127        { SNDRV_CHMAP_LFE,      0x02,   LFE },
 128        { SNDRV_CHMAP_FC,       0x03,   FC },
 129        { SNDRV_CHMAP_RLC,      0x06,   RLC },
 130        { SNDRV_CHMAP_RRC,      0x07,   RRC },
 131        {} /* terminator */
 132};
 133
 134/* hardware capability structure */
 135static const struct snd_pcm_hardware had_pcm_hardware = {
 136        .info = (SNDRV_PCM_INFO_INTERLEAVED |
 137                SNDRV_PCM_INFO_MMAP |
 138                SNDRV_PCM_INFO_MMAP_VALID |
 139                SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
 140        .formats = (SNDRV_PCM_FMTBIT_S16_LE |
 141                    SNDRV_PCM_FMTBIT_S24_LE |
 142                    SNDRV_PCM_FMTBIT_S32_LE),
 143        .rates = SNDRV_PCM_RATE_32000 |
 144                SNDRV_PCM_RATE_44100 |
 145                SNDRV_PCM_RATE_48000 |
 146                SNDRV_PCM_RATE_88200 |
 147                SNDRV_PCM_RATE_96000 |
 148                SNDRV_PCM_RATE_176400 |
 149                SNDRV_PCM_RATE_192000,
 150        .rate_min = HAD_MIN_RATE,
 151        .rate_max = HAD_MAX_RATE,
 152        .channels_min = HAD_MIN_CHANNEL,
 153        .channels_max = HAD_MAX_CHANNEL,
 154        .buffer_bytes_max = HAD_MAX_BUFFER,
 155        .period_bytes_min = HAD_MIN_PERIOD_BYTES,
 156        .period_bytes_max = HAD_MAX_PERIOD_BYTES,
 157        .periods_min = HAD_MIN_PERIODS,
 158        .periods_max = HAD_MAX_PERIODS,
 159        .fifo_size = HAD_FIFO_SIZE,
 160};
 161
 162/* Get the active PCM substream;
 163 * Call had_substream_put() for unreferecing.
 164 * Don't call this inside had_spinlock, as it takes by itself
 165 */
 166static struct snd_pcm_substream *
 167had_substream_get(struct snd_intelhad *intelhaddata)
 168{
 169        struct snd_pcm_substream *substream;
 170        unsigned long flags;
 171
 172        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 173        substream = intelhaddata->stream_info.substream;
 174        if (substream)
 175                intelhaddata->stream_info.substream_refcount++;
 176        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 177        return substream;
 178}
 179
 180/* Unref the active PCM substream;
 181 * Don't call this inside had_spinlock, as it takes by itself
 182 */
 183static void had_substream_put(struct snd_intelhad *intelhaddata)
 184{
 185        unsigned long flags;
 186
 187        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 188        intelhaddata->stream_info.substream_refcount--;
 189        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 190}
 191
 192static u32 had_config_offset(int pipe)
 193{
 194        switch (pipe) {
 195        default:
 196        case 0:
 197                return AUDIO_HDMI_CONFIG_A;
 198        case 1:
 199                return AUDIO_HDMI_CONFIG_B;
 200        case 2:
 201                return AUDIO_HDMI_CONFIG_C;
 202        }
 203}
 204
 205/* Register access functions */
 206static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
 207                                 int pipe, u32 reg)
 208{
 209        return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
 210}
 211
 212static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
 213                                   int pipe, u32 reg, u32 val)
 214{
 215        iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
 216}
 217
 218static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
 219{
 220        if (!ctx->connected)
 221                *val = 0;
 222        else
 223                *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
 224}
 225
 226static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
 227{
 228        if (ctx->connected)
 229                had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
 230}
 231
 232/*
 233 * enable / disable audio configuration
 234 *
 235 * The normal read/modify should not directly be used on VLV2 for
 236 * updating AUD_CONFIG register.
 237 * This is because:
 238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 239 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
 240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 241 * register. This field should be 1xy binary for configuration with 6 or
 242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 243 * causes the "channels" field to be updated as 0xy binary resulting in
 244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 245 * appropriate value when doing read-modify of AUD_CONFIG register.
 246 */
 247static void had_enable_audio(struct snd_intelhad *intelhaddata,
 248                             bool enable)
 249{
 250        /* update the cached value */
 251        intelhaddata->aud_config.regx.aud_en = enable;
 252        had_write_register(intelhaddata, AUD_CONFIG,
 253                           intelhaddata->aud_config.regval);
 254}
 255
 256/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
 257static void had_ack_irqs(struct snd_intelhad *ctx)
 258{
 259        u32 status_reg;
 260
 261        if (!ctx->connected)
 262                return;
 263        had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 264        status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
 265        had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
 266        had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 267}
 268
 269/* Reset buffer pointers */
 270static void had_reset_audio(struct snd_intelhad *intelhaddata)
 271{
 272        had_write_register(intelhaddata, AUD_HDMI_STATUS,
 273                           AUD_HDMI_STATUSG_MASK_FUNCRST);
 274        had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
 275}
 276
 277/*
 278 * initialize audio channel status registers
 279 * This function is called in the prepare callback
 280 */
 281static int had_prog_status_reg(struct snd_pcm_substream *substream,
 282                        struct snd_intelhad *intelhaddata)
 283{
 284        union aud_ch_status_0 ch_stat0 = {.regval = 0};
 285        union aud_ch_status_1 ch_stat1 = {.regval = 0};
 286
 287        ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
 288                                          IEC958_AES0_NONAUDIO) >> 1;
 289        ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
 290                                          IEC958_AES3_CON_CLOCK) >> 4;
 291
 292        switch (substream->runtime->rate) {
 293        case AUD_SAMPLE_RATE_32:
 294                ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
 295                break;
 296
 297        case AUD_SAMPLE_RATE_44_1:
 298                ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
 299                break;
 300        case AUD_SAMPLE_RATE_48:
 301                ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
 302                break;
 303        case AUD_SAMPLE_RATE_88_2:
 304                ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
 305                break;
 306        case AUD_SAMPLE_RATE_96:
 307                ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
 308                break;
 309        case AUD_SAMPLE_RATE_176_4:
 310                ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
 311                break;
 312        case AUD_SAMPLE_RATE_192:
 313                ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
 314                break;
 315
 316        default:
 317                /* control should never come here */
 318                return -EINVAL;
 319        }
 320
 321        had_write_register(intelhaddata,
 322                           AUD_CH_STATUS_0, ch_stat0.regval);
 323
 324        switch (substream->runtime->format) {
 325        case SNDRV_PCM_FORMAT_S16_LE:
 326                ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
 327                ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
 328                break;
 329        case SNDRV_PCM_FORMAT_S24_LE:
 330        case SNDRV_PCM_FORMAT_S32_LE:
 331                ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
 332                ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
 333                break;
 334        default:
 335                return -EINVAL;
 336        }
 337
 338        had_write_register(intelhaddata,
 339                           AUD_CH_STATUS_1, ch_stat1.regval);
 340        return 0;
 341}
 342
 343/*
 344 * function to initialize audio
 345 * registers and buffer configuration registers
 346 * This function is called in the prepare callback
 347 */
 348static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
 349                               struct snd_intelhad *intelhaddata)
 350{
 351        union aud_cfg cfg_val = {.regval = 0};
 352        union aud_buf_config buf_cfg = {.regval = 0};
 353        u8 channels;
 354
 355        had_prog_status_reg(substream, intelhaddata);
 356
 357        buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
 358        buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
 359        buf_cfg.regx.aud_delay = 0;
 360        had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
 361
 362        channels = substream->runtime->channels;
 363        cfg_val.regx.num_ch = channels - 2;
 364        if (channels <= 2)
 365                cfg_val.regx.layout = LAYOUT0;
 366        else
 367                cfg_val.regx.layout = LAYOUT1;
 368
 369        if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
 370                cfg_val.regx.packet_mode = 1;
 371
 372        if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
 373                cfg_val.regx.left_align = 1;
 374
 375        cfg_val.regx.val_bit = 1;
 376
 377        /* fix up the DP bits */
 378        if (intelhaddata->dp_output) {
 379                cfg_val.regx.dp_modei = 1;
 380                cfg_val.regx.set = 1;
 381        }
 382
 383        had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
 384        intelhaddata->aud_config = cfg_val;
 385        return 0;
 386}
 387
 388/*
 389 * Compute derived values in channel_allocations[].
 390 */
 391static void init_channel_allocations(void)
 392{
 393        int i, j;
 394        struct cea_channel_speaker_allocation *p;
 395
 396        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 397                p = channel_allocations + i;
 398                p->channels = 0;
 399                p->spk_mask = 0;
 400                for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
 401                        if (p->speakers[j]) {
 402                                p->channels++;
 403                                p->spk_mask |= p->speakers[j];
 404                        }
 405        }
 406}
 407
 408/*
 409 * The transformation takes two steps:
 410 *
 411 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 412 *            spk_mask => (channel_allocations[])         => ai->CA
 413 *
 414 * TODO: it could select the wrong CA from multiple candidates.
 415 */
 416static int had_channel_allocation(struct snd_intelhad *intelhaddata,
 417                                  int channels)
 418{
 419        int i;
 420        int ca = 0;
 421        int spk_mask = 0;
 422
 423        /*
 424         * CA defaults to 0 for basic stereo audio
 425         */
 426        if (channels <= 2)
 427                return 0;
 428
 429        /*
 430         * expand ELD's speaker allocation mask
 431         *
 432         * ELD tells the speaker mask in a compact(paired) form,
 433         * expand ELD's notions to match the ones used by Audio InfoFrame.
 434         */
 435
 436        for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 437                if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 438                        spk_mask |= eld_speaker_allocation_bits[i];
 439        }
 440
 441        /* search for the first working match in the CA table */
 442        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 443                if (channels == channel_allocations[i].channels &&
 444                (spk_mask & channel_allocations[i].spk_mask) ==
 445                                channel_allocations[i].spk_mask) {
 446                        ca = channel_allocations[i].ca_index;
 447                        break;
 448                }
 449        }
 450
 451        dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
 452
 453        return ca;
 454}
 455
 456/* from speaker bit mask to ALSA API channel position */
 457static int spk_to_chmap(int spk)
 458{
 459        const struct channel_map_table *t = map_tables;
 460
 461        for (; t->map; t++) {
 462                if (t->spk_mask == spk)
 463                        return t->map;
 464        }
 465        return 0;
 466}
 467
 468static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
 469{
 470        int i, c;
 471        int spk_mask = 0;
 472        struct snd_pcm_chmap_elem *chmap;
 473        u8 eld_high, eld_high_mask = 0xF0;
 474        u8 high_msb;
 475
 476        kfree(intelhaddata->chmap->chmap);
 477        intelhaddata->chmap->chmap = NULL;
 478
 479        chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
 480        if (!chmap)
 481                return;
 482
 483        dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
 484                intelhaddata->eld[DRM_ELD_SPEAKER]);
 485
 486        /* WA: Fix the max channel supported to 8 */
 487
 488        /*
 489         * Sink may support more than 8 channels, if eld_high has more than
 490         * one bit set. SOC supports max 8 channels.
 491         * Refer eld_speaker_allocation_bits, for sink speaker allocation
 492         */
 493
 494        /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
 495        eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
 496        if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
 497                /* eld_high & (eld_high-1): if more than 1 bit set */
 498                /* 0x1F: 7 channels */
 499                for (i = 1; i < 4; i++) {
 500                        high_msb = eld_high & (0x80 >> i);
 501                        if (high_msb) {
 502                                intelhaddata->eld[DRM_ELD_SPEAKER] &=
 503                                        high_msb | 0xF;
 504                                break;
 505                        }
 506                }
 507        }
 508
 509        for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 510                if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 511                        spk_mask |= eld_speaker_allocation_bits[i];
 512        }
 513
 514        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 515                if (spk_mask == channel_allocations[i].spk_mask) {
 516                        for (c = 0; c < channel_allocations[i].channels; c++) {
 517                                chmap->map[c] = spk_to_chmap(
 518                                        channel_allocations[i].speakers[
 519                                                (MAX_SPEAKERS - 1) - c]);
 520                        }
 521                        chmap->channels = channel_allocations[i].channels;
 522                        intelhaddata->chmap->chmap = chmap;
 523                        break;
 524                }
 525        }
 526        if (i >= ARRAY_SIZE(channel_allocations))
 527                kfree(chmap);
 528}
 529
 530/*
 531 * ALSA API channel-map control callbacks
 532 */
 533static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
 534                                struct snd_ctl_elem_info *uinfo)
 535{
 536        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 537        uinfo->count = HAD_MAX_CHANNEL;
 538        uinfo->value.integer.min = 0;
 539        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
 540        return 0;
 541}
 542
 543static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
 544                                struct snd_ctl_elem_value *ucontrol)
 545{
 546        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
 547        struct snd_intelhad *intelhaddata = info->private_data;
 548        int i;
 549        const struct snd_pcm_chmap_elem *chmap;
 550
 551        memset(ucontrol->value.integer.value, 0,
 552               sizeof(long) * HAD_MAX_CHANNEL);
 553        mutex_lock(&intelhaddata->mutex);
 554        if (!intelhaddata->chmap->chmap) {
 555                mutex_unlock(&intelhaddata->mutex);
 556                return 0;
 557        }
 558
 559        chmap = intelhaddata->chmap->chmap;
 560        for (i = 0; i < chmap->channels; i++)
 561                ucontrol->value.integer.value[i] = chmap->map[i];
 562        mutex_unlock(&intelhaddata->mutex);
 563
 564        return 0;
 565}
 566
 567static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
 568                                                struct snd_pcm *pcm)
 569{
 570        int err;
 571
 572        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 573                        NULL, 0, (unsigned long)intelhaddata,
 574                        &intelhaddata->chmap);
 575        if (err < 0)
 576                return err;
 577
 578        intelhaddata->chmap->private_data = intelhaddata;
 579        intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
 580        intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
 581        intelhaddata->chmap->chmap = NULL;
 582        return 0;
 583}
 584
 585/*
 586 * Initialize Data Island Packets registers
 587 * This function is called in the prepare callback
 588 */
 589static void had_prog_dip(struct snd_pcm_substream *substream,
 590                         struct snd_intelhad *intelhaddata)
 591{
 592        int i;
 593        union aud_ctrl_st ctrl_state = {.regval = 0};
 594        union aud_info_frame2 frame2 = {.regval = 0};
 595        union aud_info_frame3 frame3 = {.regval = 0};
 596        u8 checksum = 0;
 597        u32 info_frame;
 598        int channels;
 599        int ca;
 600
 601        channels = substream->runtime->channels;
 602
 603        had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 604
 605        ca = had_channel_allocation(intelhaddata, channels);
 606        if (intelhaddata->dp_output) {
 607                info_frame = DP_INFO_FRAME_WORD1;
 608                frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
 609        } else {
 610                info_frame = HDMI_INFO_FRAME_WORD1;
 611                frame2.regx.chnl_cnt = substream->runtime->channels - 1;
 612                frame3.regx.chnl_alloc = ca;
 613
 614                /* Calculte the byte wide checksum for all valid DIP words */
 615                for (i = 0; i < BYTES_PER_WORD; i++)
 616                        checksum += (info_frame >> (i * 8)) & 0xff;
 617                for (i = 0; i < BYTES_PER_WORD; i++)
 618                        checksum += (frame2.regval >> (i * 8)) & 0xff;
 619                for (i = 0; i < BYTES_PER_WORD; i++)
 620                        checksum += (frame3.regval >> (i * 8)) & 0xff;
 621
 622                frame2.regx.chksum = -(checksum);
 623        }
 624
 625        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
 626        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
 627        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
 628
 629        /* program remaining DIP words with zero */
 630        for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
 631                had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
 632
 633        ctrl_state.regx.dip_freq = 1;
 634        ctrl_state.regx.dip_en_sta = 1;
 635        had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 636}
 637
 638static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
 639{
 640        u32 maud_val;
 641
 642        /* Select maud according to DP 1.2 spec */
 643        if (link_rate == DP_2_7_GHZ) {
 644                switch (aud_samp_freq) {
 645                case AUD_SAMPLE_RATE_32:
 646                        maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
 647                        break;
 648
 649                case AUD_SAMPLE_RATE_44_1:
 650                        maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
 651                        break;
 652
 653                case AUD_SAMPLE_RATE_48:
 654                        maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
 655                        break;
 656
 657                case AUD_SAMPLE_RATE_88_2:
 658                        maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
 659                        break;
 660
 661                case AUD_SAMPLE_RATE_96:
 662                        maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
 663                        break;
 664
 665                case AUD_SAMPLE_RATE_176_4:
 666                        maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
 667                        break;
 668
 669                case HAD_MAX_RATE:
 670                        maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
 671                        break;
 672
 673                default:
 674                        maud_val = -EINVAL;
 675                        break;
 676                }
 677        } else if (link_rate == DP_1_62_GHZ) {
 678                switch (aud_samp_freq) {
 679                case AUD_SAMPLE_RATE_32:
 680                        maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
 681                        break;
 682
 683                case AUD_SAMPLE_RATE_44_1:
 684                        maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
 685                        break;
 686
 687                case AUD_SAMPLE_RATE_48:
 688                        maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
 689                        break;
 690
 691                case AUD_SAMPLE_RATE_88_2:
 692                        maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
 693                        break;
 694
 695                case AUD_SAMPLE_RATE_96:
 696                        maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
 697                        break;
 698
 699                case AUD_SAMPLE_RATE_176_4:
 700                        maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
 701                        break;
 702
 703                case HAD_MAX_RATE:
 704                        maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
 705                        break;
 706
 707                default:
 708                        maud_val = -EINVAL;
 709                        break;
 710                }
 711        } else
 712                maud_val = -EINVAL;
 713
 714        return maud_val;
 715}
 716
 717/*
 718 * Program HDMI audio CTS value
 719 *
 720 * @aud_samp_freq: sampling frequency of audio data
 721 * @tmds: sampling frequency of the display data
 722 * @link_rate: DP link rate
 723 * @n_param: N value, depends on aud_samp_freq
 724 * @intelhaddata: substream private data
 725 *
 726 * Program CTS register based on the audio and display sampling frequency
 727 */
 728static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
 729                         u32 n_param, struct snd_intelhad *intelhaddata)
 730{
 731        u32 cts_val;
 732        u64 dividend, divisor;
 733
 734        if (intelhaddata->dp_output) {
 735                /* Substitute cts_val with Maud according to DP 1.2 spec*/
 736                cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
 737        } else {
 738                /* Calculate CTS according to HDMI 1.3a spec*/
 739                dividend = (u64)tmds * n_param*1000;
 740                divisor = 128 * aud_samp_freq;
 741                cts_val = div64_u64(dividend, divisor);
 742        }
 743        dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
 744                 tmds, n_param, cts_val);
 745        had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
 746}
 747
 748static int had_calculate_n_value(u32 aud_samp_freq)
 749{
 750        int n_val;
 751
 752        /* Select N according to HDMI 1.3a spec*/
 753        switch (aud_samp_freq) {
 754        case AUD_SAMPLE_RATE_32:
 755                n_val = 4096;
 756                break;
 757
 758        case AUD_SAMPLE_RATE_44_1:
 759                n_val = 6272;
 760                break;
 761
 762        case AUD_SAMPLE_RATE_48:
 763                n_val = 6144;
 764                break;
 765
 766        case AUD_SAMPLE_RATE_88_2:
 767                n_val = 12544;
 768                break;
 769
 770        case AUD_SAMPLE_RATE_96:
 771                n_val = 12288;
 772                break;
 773
 774        case AUD_SAMPLE_RATE_176_4:
 775                n_val = 25088;
 776                break;
 777
 778        case HAD_MAX_RATE:
 779                n_val = 24576;
 780                break;
 781
 782        default:
 783                n_val = -EINVAL;
 784                break;
 785        }
 786        return n_val;
 787}
 788
 789/*
 790 * Program HDMI audio N value
 791 *
 792 * @aud_samp_freq: sampling frequency of audio data
 793 * @n_param: N value, depends on aud_samp_freq
 794 * @intelhaddata: substream private data
 795 *
 796 * This function is called in the prepare callback.
 797 * It programs based on the audio and display sampling frequency
 798 */
 799static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
 800                      struct snd_intelhad *intelhaddata)
 801{
 802        int n_val;
 803
 804        if (intelhaddata->dp_output) {
 805                /*
 806                 * According to DP specs, Maud and Naud values hold
 807                 * a relationship, which is stated as:
 808                 * Maud/Naud = 512 * fs / f_LS_Clk
 809                 * where, fs is the sampling frequency of the audio stream
 810                 * and Naud is 32768 for Async clock.
 811                 */
 812
 813                n_val = DP_NAUD_VAL;
 814        } else
 815                n_val = had_calculate_n_value(aud_samp_freq);
 816
 817        if (n_val < 0)
 818                return n_val;
 819
 820        had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
 821        *n_param = n_val;
 822        return 0;
 823}
 824
 825/*
 826 * PCM ring buffer handling
 827 *
 828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
 829 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
 830 * moves at each period elapsed.  The below illustrates how it works:
 831 *
 832 * At time=0
 833 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 834 *  BD  | 0 | 1 | 2 | 3 |
 835 *
 836 * At time=1 (period elapsed)
 837 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 838 *  BD      | 1 | 2 | 3 | 0 |
 839 *
 840 * At time=2 (second period elapsed)
 841 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 842 *  BD          | 2 | 3 | 0 | 1 |
 843 *
 844 * The bd_head field points to the index of the BD to be read.  It's also the
 845 * position to be filled at next.  The pcm_head and the pcm_filled fields
 846 * point to the indices of the current position and of the next position to
 847 * be filled, respectively.  For PCM buffer there are both _head and _filled
 848 * because they may be difference when nperiods > 4.  For example, in the
 849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
 850 *
 851 * pcm_head (=1) --v               v-- pcm_filled (=5)
 852 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 853 *       BD      | 1 | 2 | 3 | 0 |
 854 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
 855 *
 856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
 857 * the hardware skips those BDs in the loop.
 858 *
 859 * An exceptional setup is the case with nperiods=1.  Since we have to update
 860 * BDs after finishing one BD processing, we'd need at least two BDs, where
 861 * both BDs point to the same content, the same address, the same size of the
 862 * whole PCM buffer.
 863 */
 864
 865#define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
 866#define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
 867
 868/* Set up a buffer descriptor at the "filled" position */
 869static void had_prog_bd(struct snd_pcm_substream *substream,
 870                        struct snd_intelhad *intelhaddata)
 871{
 872        int idx = intelhaddata->bd_head;
 873        int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
 874        u32 addr = substream->runtime->dma_addr + ofs;
 875
 876        addr |= AUD_BUF_VALID;
 877        if (!substream->runtime->no_period_wakeup)
 878                addr |= AUD_BUF_INTR_EN;
 879        had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
 880        had_write_register(intelhaddata, AUD_BUF_LEN(idx),
 881                           intelhaddata->period_bytes);
 882
 883        /* advance the indices to the next */
 884        intelhaddata->bd_head++;
 885        intelhaddata->bd_head %= intelhaddata->num_bds;
 886        intelhaddata->pcmbuf_filled++;
 887        intelhaddata->pcmbuf_filled %= substream->runtime->periods;
 888}
 889
 890/* invalidate a buffer descriptor with the given index */
 891static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
 892                              int idx)
 893{
 894        had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
 895        had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
 896}
 897
 898/* Initial programming of ring buffer */
 899static void had_init_ringbuf(struct snd_pcm_substream *substream,
 900                             struct snd_intelhad *intelhaddata)
 901{
 902        struct snd_pcm_runtime *runtime = substream->runtime;
 903        int i, num_periods;
 904
 905        num_periods = runtime->periods;
 906        intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
 907        /* set the minimum 2 BDs for num_periods=1 */
 908        intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
 909        intelhaddata->period_bytes =
 910                frames_to_bytes(runtime, runtime->period_size);
 911        WARN_ON(intelhaddata->period_bytes & 0x3f);
 912
 913        intelhaddata->bd_head = 0;
 914        intelhaddata->pcmbuf_head = 0;
 915        intelhaddata->pcmbuf_filled = 0;
 916
 917        for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
 918                if (i < intelhaddata->num_bds)
 919                        had_prog_bd(substream, intelhaddata);
 920                else /* invalidate the rest */
 921                        had_invalidate_bd(intelhaddata, i);
 922        }
 923
 924        intelhaddata->bd_head = 0; /* reset at head again before starting */
 925}
 926
 927/* process a bd, advance to the next */
 928static void had_advance_ringbuf(struct snd_pcm_substream *substream,
 929                                struct snd_intelhad *intelhaddata)
 930{
 931        int num_periods = substream->runtime->periods;
 932
 933        /* reprogram the next buffer */
 934        had_prog_bd(substream, intelhaddata);
 935
 936        /* proceed to next */
 937        intelhaddata->pcmbuf_head++;
 938        intelhaddata->pcmbuf_head %= num_periods;
 939}
 940
 941/* process the current BD(s);
 942 * returns the current PCM buffer byte position, or -EPIPE for underrun.
 943 */
 944static int had_process_ringbuf(struct snd_pcm_substream *substream,
 945                               struct snd_intelhad *intelhaddata)
 946{
 947        int len, processed;
 948        unsigned long flags;
 949
 950        processed = 0;
 951        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 952        for (;;) {
 953                /* get the remaining bytes on the buffer */
 954                had_read_register(intelhaddata,
 955                                  AUD_BUF_LEN(intelhaddata->bd_head),
 956                                  &len);
 957                if (len < 0 || len > intelhaddata->period_bytes) {
 958                        dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
 959                                len);
 960                        len = -EPIPE;
 961                        goto out;
 962                }
 963
 964                if (len > 0) /* OK, this is the current buffer */
 965                        break;
 966
 967                /* len=0 => already empty, check the next buffer */
 968                if (++processed >= intelhaddata->num_bds) {
 969                        len = -EPIPE; /* all empty? - report underrun */
 970                        goto out;
 971                }
 972                had_advance_ringbuf(substream, intelhaddata);
 973        }
 974
 975        len = intelhaddata->period_bytes - len;
 976        len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
 977 out:
 978        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 979        return len;
 980}
 981
 982/* called from irq handler */
 983static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
 984{
 985        struct snd_pcm_substream *substream;
 986
 987        substream = had_substream_get(intelhaddata);
 988        if (!substream)
 989                return; /* no stream? - bail out */
 990
 991        if (!intelhaddata->connected) {
 992                snd_pcm_stop_xrun(substream);
 993                goto out; /* disconnected? - bail out */
 994        }
 995
 996        /* process or stop the stream */
 997        if (had_process_ringbuf(substream, intelhaddata) < 0)
 998                snd_pcm_stop_xrun(substream);
 999        else
1000                snd_pcm_period_elapsed(substream);
1001
1002 out:
1003        had_substream_put(intelhaddata);
1004}
1005
1006/*
1007 * The interrupt status 'sticky' bits might not be cleared by
1008 * setting '1' to that bit once...
1009 */
1010static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1011{
1012        int i;
1013        u32 val;
1014
1015        for (i = 0; i < 100; i++) {
1016                /* clear bit30, 31 AUD_HDMI_STATUS */
1017                had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018                if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019                        return;
1020                udelay(100);
1021                cond_resched();
1022                had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1023        }
1024        dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1025}
1026
1027/* Perform some reset procedure after stopping the stream;
1028 * this is called from prepare or hw_free callbacks once after trigger STOP
1029 * or underrun has been processed in order to settle down the h/w state.
1030 */
1031static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1032{
1033        struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1034
1035        if (!intelhaddata->connected)
1036                return 0;
1037
1038        /* Reset buffer pointers */
1039        had_reset_audio(intelhaddata);
1040        wait_clear_underrun_bit(intelhaddata);
1041        return 0;
1042}
1043
1044/* called from irq handler */
1045static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1046{
1047        struct snd_pcm_substream *substream;
1048
1049        /* Report UNDERRUN error to above layers */
1050        substream = had_substream_get(intelhaddata);
1051        if (substream) {
1052                snd_pcm_stop_xrun(substream);
1053                had_substream_put(intelhaddata);
1054        }
1055}
1056
1057/*
1058 * ALSA PCM open callback
1059 */
1060static int had_pcm_open(struct snd_pcm_substream *substream)
1061{
1062        struct snd_intelhad *intelhaddata;
1063        struct snd_pcm_runtime *runtime;
1064        int retval;
1065
1066        intelhaddata = snd_pcm_substream_chip(substream);
1067        runtime = substream->runtime;
1068
1069        pm_runtime_get_sync(intelhaddata->dev);
1070
1071        /* set the runtime hw parameter with local snd_pcm_hardware struct */
1072        runtime->hw = had_pcm_hardware;
1073
1074        retval = snd_pcm_hw_constraint_integer(runtime,
1075                         SNDRV_PCM_HW_PARAM_PERIODS);
1076        if (retval < 0)
1077                goto error;
1078
1079        /* Make sure, that the period size is always aligned
1080         * 64byte boundary
1081         */
1082        retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1083                        SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1084        if (retval < 0)
1085                goto error;
1086
1087        retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1088        if (retval < 0)
1089                goto error;
1090
1091        /* expose PCM substream */
1092        spin_lock_irq(&intelhaddata->had_spinlock);
1093        intelhaddata->stream_info.substream = substream;
1094        intelhaddata->stream_info.substream_refcount++;
1095        spin_unlock_irq(&intelhaddata->had_spinlock);
1096
1097        return retval;
1098 error:
1099        pm_runtime_mark_last_busy(intelhaddata->dev);
1100        pm_runtime_put_autosuspend(intelhaddata->dev);
1101        return retval;
1102}
1103
1104/*
1105 * ALSA PCM close callback
1106 */
1107static int had_pcm_close(struct snd_pcm_substream *substream)
1108{
1109        struct snd_intelhad *intelhaddata;
1110
1111        intelhaddata = snd_pcm_substream_chip(substream);
1112
1113        /* unreference and sync with the pending PCM accesses */
1114        spin_lock_irq(&intelhaddata->had_spinlock);
1115        intelhaddata->stream_info.substream = NULL;
1116        intelhaddata->stream_info.substream_refcount--;
1117        while (intelhaddata->stream_info.substream_refcount > 0) {
1118                spin_unlock_irq(&intelhaddata->had_spinlock);
1119                cpu_relax();
1120                spin_lock_irq(&intelhaddata->had_spinlock);
1121        }
1122        spin_unlock_irq(&intelhaddata->had_spinlock);
1123
1124        pm_runtime_mark_last_busy(intelhaddata->dev);
1125        pm_runtime_put_autosuspend(intelhaddata->dev);
1126        return 0;
1127}
1128
1129/*
1130 * ALSA PCM hw_params callback
1131 */
1132static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1133                             struct snd_pcm_hw_params *hw_params)
1134{
1135        struct snd_intelhad *intelhaddata;
1136        int buf_size;
1137
1138        intelhaddata = snd_pcm_substream_chip(substream);
1139        buf_size = params_buffer_bytes(hw_params);
1140        dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1141                __func__, buf_size);
1142        return 0;
1143}
1144
1145/*
1146 * ALSA PCM trigger callback
1147 */
1148static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1149{
1150        int retval = 0;
1151        struct snd_intelhad *intelhaddata;
1152
1153        intelhaddata = snd_pcm_substream_chip(substream);
1154
1155        spin_lock(&intelhaddata->had_spinlock);
1156        switch (cmd) {
1157        case SNDRV_PCM_TRIGGER_START:
1158        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1159        case SNDRV_PCM_TRIGGER_RESUME:
1160                /* Enable Audio */
1161                had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1162                had_enable_audio(intelhaddata, true);
1163                break;
1164
1165        case SNDRV_PCM_TRIGGER_STOP:
1166        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1167                /* Disable Audio */
1168                had_enable_audio(intelhaddata, false);
1169                break;
1170
1171        default:
1172                retval = -EINVAL;
1173        }
1174        spin_unlock(&intelhaddata->had_spinlock);
1175        return retval;
1176}
1177
1178/*
1179 * ALSA PCM prepare callback
1180 */
1181static int had_pcm_prepare(struct snd_pcm_substream *substream)
1182{
1183        int retval;
1184        u32 disp_samp_freq, n_param;
1185        u32 link_rate = 0;
1186        struct snd_intelhad *intelhaddata;
1187        struct snd_pcm_runtime *runtime;
1188
1189        intelhaddata = snd_pcm_substream_chip(substream);
1190        runtime = substream->runtime;
1191
1192        dev_dbg(intelhaddata->dev, "period_size=%d\n",
1193                (int)frames_to_bytes(runtime, runtime->period_size));
1194        dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1195        dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1196                (int)snd_pcm_lib_buffer_bytes(substream));
1197        dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1198        dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1199
1200        /* Get N value in KHz */
1201        disp_samp_freq = intelhaddata->tmds_clock_speed;
1202
1203        retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1204        if (retval) {
1205                dev_err(intelhaddata->dev,
1206                        "programming N value failed %#x\n", retval);
1207                goto prep_end;
1208        }
1209
1210        if (intelhaddata->dp_output)
1211                link_rate = intelhaddata->link_rate;
1212
1213        had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1214                     n_param, intelhaddata);
1215
1216        had_prog_dip(substream, intelhaddata);
1217
1218        retval = had_init_audio_ctrl(substream, intelhaddata);
1219
1220        /* Prog buffer address */
1221        had_init_ringbuf(substream, intelhaddata);
1222
1223        /*
1224         * Program channel mapping in following order:
1225         * FL, FR, C, LFE, RL, RR
1226         */
1227
1228        had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1229
1230prep_end:
1231        return retval;
1232}
1233
1234/*
1235 * ALSA PCM pointer callback
1236 */
1237static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1238{
1239        struct snd_intelhad *intelhaddata;
1240        int len;
1241
1242        intelhaddata = snd_pcm_substream_chip(substream);
1243
1244        if (!intelhaddata->connected)
1245                return SNDRV_PCM_POS_XRUN;
1246
1247        len = had_process_ringbuf(substream, intelhaddata);
1248        if (len < 0)
1249                return SNDRV_PCM_POS_XRUN;
1250        len = bytes_to_frames(substream->runtime, len);
1251        /* wrapping may happen when periods=1 */
1252        len %= substream->runtime->buffer_size;
1253        return len;
1254}
1255
1256/*
1257 * ALSA PCM mmap callback
1258 */
1259static int had_pcm_mmap(struct snd_pcm_substream *substream,
1260                        struct vm_area_struct *vma)
1261{
1262        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1263        return remap_pfn_range(vma, vma->vm_start,
1264                        substream->dma_buffer.addr >> PAGE_SHIFT,
1265                        vma->vm_end - vma->vm_start, vma->vm_page_prot);
1266}
1267
1268/*
1269 * ALSA PCM ops
1270 */
1271static const struct snd_pcm_ops had_pcm_ops = {
1272        .open =         had_pcm_open,
1273        .close =        had_pcm_close,
1274        .hw_params =    had_pcm_hw_params,
1275        .prepare =      had_pcm_prepare,
1276        .trigger =      had_pcm_trigger,
1277        .sync_stop =    had_pcm_sync_stop,
1278        .pointer =      had_pcm_pointer,
1279        .mmap =         had_pcm_mmap,
1280};
1281
1282/* process mode change of the running stream; called in mutex */
1283static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1284{
1285        struct snd_pcm_substream *substream;
1286        int retval = 0;
1287        u32 disp_samp_freq, n_param;
1288        u32 link_rate = 0;
1289
1290        substream = had_substream_get(intelhaddata);
1291        if (!substream)
1292                return 0;
1293
1294        /* Disable Audio */
1295        had_enable_audio(intelhaddata, false);
1296
1297        /* Update CTS value */
1298        disp_samp_freq = intelhaddata->tmds_clock_speed;
1299
1300        retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1301        if (retval) {
1302                dev_err(intelhaddata->dev,
1303                        "programming N value failed %#x\n", retval);
1304                goto out;
1305        }
1306
1307        if (intelhaddata->dp_output)
1308                link_rate = intelhaddata->link_rate;
1309
1310        had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1311                     n_param, intelhaddata);
1312
1313        /* Enable Audio */
1314        had_enable_audio(intelhaddata, true);
1315
1316out:
1317        had_substream_put(intelhaddata);
1318        return retval;
1319}
1320
1321/* process hot plug, called from wq with mutex locked */
1322static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1323{
1324        struct snd_pcm_substream *substream;
1325
1326        spin_lock_irq(&intelhaddata->had_spinlock);
1327        if (intelhaddata->connected) {
1328                dev_dbg(intelhaddata->dev, "Device already connected\n");
1329                spin_unlock_irq(&intelhaddata->had_spinlock);
1330                return;
1331        }
1332
1333        /* Disable Audio */
1334        had_enable_audio(intelhaddata, false);
1335
1336        intelhaddata->connected = true;
1337        dev_dbg(intelhaddata->dev,
1338                "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1339                        __func__, __LINE__);
1340        spin_unlock_irq(&intelhaddata->had_spinlock);
1341
1342        had_build_channel_allocation_map(intelhaddata);
1343
1344        /* Report to above ALSA layer */
1345        substream = had_substream_get(intelhaddata);
1346        if (substream) {
1347                snd_pcm_stop_xrun(substream);
1348                had_substream_put(intelhaddata);
1349        }
1350
1351        snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1352}
1353
1354/* process hot unplug, called from wq with mutex locked */
1355static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1356{
1357        struct snd_pcm_substream *substream;
1358
1359        spin_lock_irq(&intelhaddata->had_spinlock);
1360        if (!intelhaddata->connected) {
1361                dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1362                spin_unlock_irq(&intelhaddata->had_spinlock);
1363                return;
1364
1365        }
1366
1367        /* Disable Audio */
1368        had_enable_audio(intelhaddata, false);
1369
1370        intelhaddata->connected = false;
1371        dev_dbg(intelhaddata->dev,
1372                "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1373                        __func__, __LINE__);
1374        spin_unlock_irq(&intelhaddata->had_spinlock);
1375
1376        kfree(intelhaddata->chmap->chmap);
1377        intelhaddata->chmap->chmap = NULL;
1378
1379        /* Report to above ALSA layer */
1380        substream = had_substream_get(intelhaddata);
1381        if (substream) {
1382                snd_pcm_stop_xrun(substream);
1383                had_substream_put(intelhaddata);
1384        }
1385
1386        snd_jack_report(intelhaddata->jack, 0);
1387}
1388
1389/*
1390 * ALSA iec958 and ELD controls
1391 */
1392
1393static int had_iec958_info(struct snd_kcontrol *kcontrol,
1394                                struct snd_ctl_elem_info *uinfo)
1395{
1396        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1397        uinfo->count = 1;
1398        return 0;
1399}
1400
1401static int had_iec958_get(struct snd_kcontrol *kcontrol,
1402                                struct snd_ctl_elem_value *ucontrol)
1403{
1404        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1405
1406        mutex_lock(&intelhaddata->mutex);
1407        ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1408        ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1409        ucontrol->value.iec958.status[2] =
1410                                        (intelhaddata->aes_bits >> 16) & 0xff;
1411        ucontrol->value.iec958.status[3] =
1412                                        (intelhaddata->aes_bits >> 24) & 0xff;
1413        mutex_unlock(&intelhaddata->mutex);
1414        return 0;
1415}
1416
1417static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1418                                struct snd_ctl_elem_value *ucontrol)
1419{
1420        ucontrol->value.iec958.status[0] = 0xff;
1421        ucontrol->value.iec958.status[1] = 0xff;
1422        ucontrol->value.iec958.status[2] = 0xff;
1423        ucontrol->value.iec958.status[3] = 0xff;
1424        return 0;
1425}
1426
1427static int had_iec958_put(struct snd_kcontrol *kcontrol,
1428                                struct snd_ctl_elem_value *ucontrol)
1429{
1430        unsigned int val;
1431        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1432        int changed = 0;
1433
1434        val = (ucontrol->value.iec958.status[0] << 0) |
1435                (ucontrol->value.iec958.status[1] << 8) |
1436                (ucontrol->value.iec958.status[2] << 16) |
1437                (ucontrol->value.iec958.status[3] << 24);
1438        mutex_lock(&intelhaddata->mutex);
1439        if (intelhaddata->aes_bits != val) {
1440                intelhaddata->aes_bits = val;
1441                changed = 1;
1442        }
1443        mutex_unlock(&intelhaddata->mutex);
1444        return changed;
1445}
1446
1447static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1448                            struct snd_ctl_elem_info *uinfo)
1449{
1450        uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1451        uinfo->count = HDMI_MAX_ELD_BYTES;
1452        return 0;
1453}
1454
1455static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1456                           struct snd_ctl_elem_value *ucontrol)
1457{
1458        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1459
1460        mutex_lock(&intelhaddata->mutex);
1461        memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1462               HDMI_MAX_ELD_BYTES);
1463        mutex_unlock(&intelhaddata->mutex);
1464        return 0;
1465}
1466
1467static const struct snd_kcontrol_new had_controls[] = {
1468        {
1469                .access = SNDRV_CTL_ELEM_ACCESS_READ,
1470                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1471                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1472                .info = had_iec958_info, /* shared */
1473                .get = had_iec958_mask_get,
1474        },
1475        {
1476                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1478                .info = had_iec958_info,
1479                .get = had_iec958_get,
1480                .put = had_iec958_put,
1481        },
1482        {
1483                .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1484                           SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1485                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1486                .name = "ELD",
1487                .info = had_ctl_eld_info,
1488                .get = had_ctl_eld_get,
1489        },
1490};
1491
1492/*
1493 * audio interrupt handler
1494 */
1495static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1496{
1497        struct snd_intelhad_card *card_ctx = dev_id;
1498        u32 audio_stat[3] = {};
1499        int pipe, port;
1500
1501        for_each_pipe(card_ctx, pipe) {
1502                /* use raw register access to ack IRQs even while disconnected */
1503                audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1504                                                         AUD_HDMI_STATUS) &
1505                        (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1506
1507                if (audio_stat[pipe])
1508                        had_write_register_raw(card_ctx, pipe,
1509                                               AUD_HDMI_STATUS, audio_stat[pipe]);
1510        }
1511
1512        for_each_port(card_ctx, port) {
1513                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1514                int pipe = ctx->pipe;
1515
1516                if (pipe < 0)
1517                        continue;
1518
1519                if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1520                        had_process_buffer_done(ctx);
1521                if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1522                        had_process_buffer_underrun(ctx);
1523        }
1524
1525        return IRQ_HANDLED;
1526}
1527
1528/*
1529 * monitor plug/unplug notification from i915; just kick off the work
1530 */
1531static void notify_audio_lpe(struct platform_device *pdev, int port)
1532{
1533        struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1534        struct snd_intelhad *ctx;
1535
1536        ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1537        if (single_port)
1538                ctx->port = port;
1539
1540        schedule_work(&ctx->hdmi_audio_wq);
1541}
1542
1543/* the work to handle monitor hot plug/unplug */
1544static void had_audio_wq(struct work_struct *work)
1545{
1546        struct snd_intelhad *ctx =
1547                container_of(work, struct snd_intelhad, hdmi_audio_wq);
1548        struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1549        struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1550
1551        pm_runtime_get_sync(ctx->dev);
1552        mutex_lock(&ctx->mutex);
1553        if (ppdata->pipe < 0) {
1554                dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1555                        __func__, ctx->port);
1556
1557                memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1558
1559                ctx->dp_output = false;
1560                ctx->tmds_clock_speed = 0;
1561                ctx->link_rate = 0;
1562
1563                /* Shut down the stream */
1564                had_process_hot_unplug(ctx);
1565
1566                ctx->pipe = -1;
1567        } else {
1568                dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1569                        __func__, ctx->port, ppdata->ls_clock);
1570
1571                memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1572
1573                ctx->dp_output = ppdata->dp_output;
1574                if (ctx->dp_output) {
1575                        ctx->tmds_clock_speed = 0;
1576                        ctx->link_rate = ppdata->ls_clock;
1577                } else {
1578                        ctx->tmds_clock_speed = ppdata->ls_clock;
1579                        ctx->link_rate = 0;
1580                }
1581
1582                /*
1583                 * Shut down the stream before we change
1584                 * the pipe assignment for this pcm device
1585                 */
1586                had_process_hot_plug(ctx);
1587
1588                ctx->pipe = ppdata->pipe;
1589
1590                /* Restart the stream if necessary */
1591                had_process_mode_change(ctx);
1592        }
1593
1594        mutex_unlock(&ctx->mutex);
1595        pm_runtime_mark_last_busy(ctx->dev);
1596        pm_runtime_put_autosuspend(ctx->dev);
1597}
1598
1599/*
1600 * Jack interface
1601 */
1602static int had_create_jack(struct snd_intelhad *ctx,
1603                           struct snd_pcm *pcm)
1604{
1605        char hdmi_str[32];
1606        int err;
1607
1608        snprintf(hdmi_str, sizeof(hdmi_str),
1609                 "HDMI/DP,pcm=%d", pcm->device);
1610
1611        err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1612                           SND_JACK_AVOUT, &ctx->jack,
1613                           true, false);
1614        if (err < 0)
1615                return err;
1616        ctx->jack->private_data = ctx;
1617        return 0;
1618}
1619
1620/*
1621 * PM callbacks
1622 */
1623
1624static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1625{
1626        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1627
1628        snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1629
1630        return 0;
1631}
1632
1633static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1634{
1635        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1636
1637        pm_runtime_mark_last_busy(dev);
1638
1639        snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1640
1641        return 0;
1642}
1643
1644/* release resources */
1645static void hdmi_lpe_audio_free(struct snd_card *card)
1646{
1647        struct snd_intelhad_card *card_ctx = card->private_data;
1648        struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1649        int port;
1650
1651        spin_lock_irq(&pdata->lpe_audio_slock);
1652        pdata->notify_audio_lpe = NULL;
1653        spin_unlock_irq(&pdata->lpe_audio_slock);
1654
1655        for_each_port(card_ctx, port) {
1656                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1657
1658                cancel_work_sync(&ctx->hdmi_audio_wq);
1659        }
1660}
1661
1662/*
1663 * hdmi_lpe_audio_probe - start bridge with i915
1664 *
1665 * This function is called when the i915 driver creates the
1666 * hdmi-lpe-audio platform device.
1667 */
1668static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1669{
1670        struct snd_card *card;
1671        struct snd_intelhad_card *card_ctx;
1672        struct snd_intelhad *ctx;
1673        struct snd_pcm *pcm;
1674        struct intel_hdmi_lpe_audio_pdata *pdata;
1675        int irq;
1676        struct resource *res_mmio;
1677        int port, ret;
1678
1679        pdata = pdev->dev.platform_data;
1680        if (!pdata) {
1681                dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1682                return -EINVAL;
1683        }
1684
1685        /* get resources */
1686        irq = platform_get_irq(pdev, 0);
1687        if (irq < 0)
1688                return irq;
1689
1690        res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1691        if (!res_mmio) {
1692                dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1693                return -ENXIO;
1694        }
1695
1696        /* create a card instance with ALSA framework */
1697        ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1698                                THIS_MODULE, sizeof(*card_ctx), &card);
1699        if (ret)
1700                return ret;
1701
1702        card_ctx = card->private_data;
1703        card_ctx->dev = &pdev->dev;
1704        card_ctx->card = card;
1705        strcpy(card->driver, INTEL_HAD);
1706        strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1707        strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1708
1709        card_ctx->irq = -1;
1710
1711        card->private_free = hdmi_lpe_audio_free;
1712
1713        platform_set_drvdata(pdev, card_ctx);
1714
1715        card_ctx->num_pipes = pdata->num_pipes;
1716        card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1717
1718        for_each_port(card_ctx, port) {
1719                ctx = &card_ctx->pcm_ctx[port];
1720                ctx->card_ctx = card_ctx;
1721                ctx->dev = card_ctx->dev;
1722                ctx->port = single_port ? -1 : port;
1723                ctx->pipe = -1;
1724
1725                spin_lock_init(&ctx->had_spinlock);
1726                mutex_init(&ctx->mutex);
1727                INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1728        }
1729
1730        dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1731                __func__, (unsigned int)res_mmio->start,
1732                (unsigned int)res_mmio->end);
1733
1734        card_ctx->mmio_start =
1735                devm_ioremap(&pdev->dev, res_mmio->start,
1736                             (size_t)(resource_size(res_mmio)));
1737        if (!card_ctx->mmio_start) {
1738                dev_err(&pdev->dev, "Could not get ioremap\n");
1739                return -EACCES;
1740        }
1741
1742        /* setup interrupt handler */
1743        ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1744                               0, pdev->name, card_ctx);
1745        if (ret < 0) {
1746                dev_err(&pdev->dev, "request_irq failed\n");
1747                return ret;
1748        }
1749
1750        card_ctx->irq = irq;
1751
1752        /* only 32bit addressable */
1753        dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1754
1755        init_channel_allocations();
1756
1757        card_ctx->num_pipes = pdata->num_pipes;
1758        card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1759
1760        for_each_port(card_ctx, port) {
1761                int i;
1762
1763                ctx = &card_ctx->pcm_ctx[port];
1764                ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1765                                  MAX_CAP_STREAMS, &pcm);
1766                if (ret)
1767                        return ret;
1768
1769                /* setup private data which can be retrieved when required */
1770                pcm->private_data = ctx;
1771                pcm->info_flags = 0;
1772                strscpy(pcm->name, card->shortname, strlen(card->shortname));
1773                /* setup the ops for playback */
1774                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1775
1776                /* allocate dma pages;
1777                 * try to allocate 600k buffer as default which is large enough
1778                 */
1779                snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1780                                               card->dev, HAD_DEFAULT_BUFFER,
1781                                               HAD_MAX_BUFFER);
1782
1783                /* create controls */
1784                for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1785                        struct snd_kcontrol *kctl;
1786
1787                        kctl = snd_ctl_new1(&had_controls[i], ctx);
1788                        if (!kctl)
1789                                return -ENOMEM;
1790
1791                        kctl->id.device = pcm->device;
1792
1793                        ret = snd_ctl_add(card, kctl);
1794                        if (ret < 0)
1795                                return ret;
1796                }
1797
1798                /* Register channel map controls */
1799                ret = had_register_chmap_ctls(ctx, pcm);
1800                if (ret < 0)
1801                        return ret;
1802
1803                ret = had_create_jack(ctx, pcm);
1804                if (ret < 0)
1805                        return ret;
1806        }
1807
1808        ret = snd_card_register(card);
1809        if (ret)
1810                return ret;
1811
1812        spin_lock_irq(&pdata->lpe_audio_slock);
1813        pdata->notify_audio_lpe = notify_audio_lpe;
1814        spin_unlock_irq(&pdata->lpe_audio_slock);
1815
1816        pm_runtime_use_autosuspend(&pdev->dev);
1817        pm_runtime_mark_last_busy(&pdev->dev);
1818
1819        dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1820        for_each_port(card_ctx, port) {
1821                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1822
1823                schedule_work(&ctx->hdmi_audio_wq);
1824        }
1825
1826        return 0;
1827}
1828
1829static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1830        SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1831};
1832
1833static struct platform_driver hdmi_lpe_audio_driver = {
1834        .driver         = {
1835                .name  = "hdmi-lpe-audio",
1836                .pm = &hdmi_lpe_audio_pm,
1837        },
1838        .probe          = hdmi_lpe_audio_probe,
1839};
1840
1841module_platform_driver(hdmi_lpe_audio_driver);
1842MODULE_ALIAS("platform:hdmi_lpe_audio");
1843
1844MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1845MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1846MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1847MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1848MODULE_DESCRIPTION("Intel HDMI Audio driver");
1849MODULE_LICENSE("GPL v2");
1850