linux/tools/testing/selftests/kvm/lib/x86_64/processor.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#include "test_util.h"
   9#include "kvm_util.h"
  10#include "../kvm_util_internal.h"
  11#include "processor.h"
  12
  13#ifndef NUM_INTERRUPTS
  14#define NUM_INTERRUPTS 256
  15#endif
  16
  17#define DEFAULT_CODE_SELECTOR 0x8
  18#define DEFAULT_DATA_SELECTOR 0x10
  19
  20vm_vaddr_t exception_handlers;
  21
  22/* Virtual translation table structure declarations */
  23struct pageUpperEntry {
  24        uint64_t present:1;
  25        uint64_t writable:1;
  26        uint64_t user:1;
  27        uint64_t write_through:1;
  28        uint64_t cache_disable:1;
  29        uint64_t accessed:1;
  30        uint64_t ignored_06:1;
  31        uint64_t page_size:1;
  32        uint64_t ignored_11_08:4;
  33        uint64_t pfn:40;
  34        uint64_t ignored_62_52:11;
  35        uint64_t execute_disable:1;
  36};
  37
  38struct pageTableEntry {
  39        uint64_t present:1;
  40        uint64_t writable:1;
  41        uint64_t user:1;
  42        uint64_t write_through:1;
  43        uint64_t cache_disable:1;
  44        uint64_t accessed:1;
  45        uint64_t dirty:1;
  46        uint64_t reserved_07:1;
  47        uint64_t global:1;
  48        uint64_t ignored_11_09:3;
  49        uint64_t pfn:40;
  50        uint64_t ignored_62_52:11;
  51        uint64_t execute_disable:1;
  52};
  53
  54void regs_dump(FILE *stream, struct kvm_regs *regs,
  55               uint8_t indent)
  56{
  57        fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
  58                "rcx: 0x%.16llx rdx: 0x%.16llx\n",
  59                indent, "",
  60                regs->rax, regs->rbx, regs->rcx, regs->rdx);
  61        fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
  62                "rsp: 0x%.16llx rbp: 0x%.16llx\n",
  63                indent, "",
  64                regs->rsi, regs->rdi, regs->rsp, regs->rbp);
  65        fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
  66                "r10: 0x%.16llx r11: 0x%.16llx\n",
  67                indent, "",
  68                regs->r8, regs->r9, regs->r10, regs->r11);
  69        fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
  70                "r14: 0x%.16llx r15: 0x%.16llx\n",
  71                indent, "",
  72                regs->r12, regs->r13, regs->r14, regs->r15);
  73        fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
  74                indent, "",
  75                regs->rip, regs->rflags);
  76}
  77
  78/*
  79 * Segment Dump
  80 *
  81 * Input Args:
  82 *   stream  - Output FILE stream
  83 *   segment - KVM segment
  84 *   indent  - Left margin indent amount
  85 *
  86 * Output Args: None
  87 *
  88 * Return: None
  89 *
  90 * Dumps the state of the KVM segment given by @segment, to the FILE stream
  91 * given by @stream.
  92 */
  93static void segment_dump(FILE *stream, struct kvm_segment *segment,
  94                         uint8_t indent)
  95{
  96        fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
  97                "selector: 0x%.4x type: 0x%.2x\n",
  98                indent, "", segment->base, segment->limit,
  99                segment->selector, segment->type);
 100        fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
 101                "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
 102                indent, "", segment->present, segment->dpl,
 103                segment->db, segment->s, segment->l);
 104        fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
 105                "unusable: 0x%.2x padding: 0x%.2x\n",
 106                indent, "", segment->g, segment->avl,
 107                segment->unusable, segment->padding);
 108}
 109
 110/*
 111 * dtable Dump
 112 *
 113 * Input Args:
 114 *   stream - Output FILE stream
 115 *   dtable - KVM dtable
 116 *   indent - Left margin indent amount
 117 *
 118 * Output Args: None
 119 *
 120 * Return: None
 121 *
 122 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
 123 * given by @stream.
 124 */
 125static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
 126                        uint8_t indent)
 127{
 128        fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
 129                "padding: 0x%.4x 0x%.4x 0x%.4x\n",
 130                indent, "", dtable->base, dtable->limit,
 131                dtable->padding[0], dtable->padding[1], dtable->padding[2]);
 132}
 133
 134void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
 135                uint8_t indent)
 136{
 137        unsigned int i;
 138
 139        fprintf(stream, "%*scs:\n", indent, "");
 140        segment_dump(stream, &sregs->cs, indent + 2);
 141        fprintf(stream, "%*sds:\n", indent, "");
 142        segment_dump(stream, &sregs->ds, indent + 2);
 143        fprintf(stream, "%*ses:\n", indent, "");
 144        segment_dump(stream, &sregs->es, indent + 2);
 145        fprintf(stream, "%*sfs:\n", indent, "");
 146        segment_dump(stream, &sregs->fs, indent + 2);
 147        fprintf(stream, "%*sgs:\n", indent, "");
 148        segment_dump(stream, &sregs->gs, indent + 2);
 149        fprintf(stream, "%*sss:\n", indent, "");
 150        segment_dump(stream, &sregs->ss, indent + 2);
 151        fprintf(stream, "%*str:\n", indent, "");
 152        segment_dump(stream, &sregs->tr, indent + 2);
 153        fprintf(stream, "%*sldt:\n", indent, "");
 154        segment_dump(stream, &sregs->ldt, indent + 2);
 155
 156        fprintf(stream, "%*sgdt:\n", indent, "");
 157        dtable_dump(stream, &sregs->gdt, indent + 2);
 158        fprintf(stream, "%*sidt:\n", indent, "");
 159        dtable_dump(stream, &sregs->idt, indent + 2);
 160
 161        fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
 162                "cr3: 0x%.16llx cr4: 0x%.16llx\n",
 163                indent, "",
 164                sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
 165        fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
 166                "apic_base: 0x%.16llx\n",
 167                indent, "",
 168                sregs->cr8, sregs->efer, sregs->apic_base);
 169
 170        fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
 171        for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
 172                fprintf(stream, "%*s%.16llx\n", indent + 2, "",
 173                        sregs->interrupt_bitmap[i]);
 174        }
 175}
 176
 177void virt_pgd_alloc(struct kvm_vm *vm)
 178{
 179        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 180                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 181
 182        /* If needed, create page map l4 table. */
 183        if (!vm->pgd_created) {
 184                vm->pgd = vm_alloc_page_table(vm);
 185                vm->pgd_created = true;
 186        }
 187}
 188
 189static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
 190                          int level)
 191{
 192        uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
 193        int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
 194
 195        return &page_table[index];
 196}
 197
 198static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm,
 199                                                    uint64_t pt_pfn,
 200                                                    uint64_t vaddr,
 201                                                    uint64_t paddr,
 202                                                    int level,
 203                                                    enum x86_page_size page_size)
 204{
 205        struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
 206
 207        if (!pte->present) {
 208                pte->writable = true;
 209                pte->present = true;
 210                pte->page_size = (level == page_size);
 211                if (pte->page_size)
 212                        pte->pfn = paddr >> vm->page_shift;
 213                else
 214                        pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
 215        } else {
 216                /*
 217                 * Entry already present.  Assert that the caller doesn't want
 218                 * a hugepage at this level, and that there isn't a hugepage at
 219                 * this level.
 220                 */
 221                TEST_ASSERT(level != page_size,
 222                            "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
 223                            page_size, vaddr);
 224                TEST_ASSERT(!pte->page_size,
 225                            "Cannot create page table at level: %u, vaddr: 0x%lx\n",
 226                            level, vaddr);
 227        }
 228        return pte;
 229}
 230
 231void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
 232                   enum x86_page_size page_size)
 233{
 234        const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
 235        struct pageUpperEntry *pml4e, *pdpe, *pde;
 236        struct pageTableEntry *pte;
 237
 238        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
 239                    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 240
 241        TEST_ASSERT((vaddr % pg_size) == 0,
 242                    "Virtual address not aligned,\n"
 243                    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
 244        TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
 245                    "Invalid virtual address, vaddr: 0x%lx", vaddr);
 246        TEST_ASSERT((paddr % pg_size) == 0,
 247                    "Physical address not aligned,\n"
 248                    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
 249        TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
 250                    "Physical address beyond maximum supported,\n"
 251                    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 252                    paddr, vm->max_gfn, vm->page_size);
 253
 254        /*
 255         * Allocate upper level page tables, if not already present.  Return
 256         * early if a hugepage was created.
 257         */
 258        pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
 259                                      vaddr, paddr, 3, page_size);
 260        if (pml4e->page_size)
 261                return;
 262
 263        pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size);
 264        if (pdpe->page_size)
 265                return;
 266
 267        pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size);
 268        if (pde->page_size)
 269                return;
 270
 271        /* Fill in page table entry. */
 272        pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
 273        TEST_ASSERT(!pte->present,
 274                    "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
 275        pte->pfn = paddr >> vm->page_shift;
 276        pte->writable = true;
 277        pte->present = 1;
 278}
 279
 280void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
 281{
 282        __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
 283}
 284
 285static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
 286                                                       uint64_t vaddr)
 287{
 288        uint16_t index[4];
 289        struct pageUpperEntry *pml4e, *pdpe, *pde;
 290        struct pageTableEntry *pte;
 291        struct kvm_cpuid_entry2 *entry;
 292        struct kvm_sregs sregs;
 293        int max_phy_addr;
 294        /* Set the bottom 52 bits. */
 295        uint64_t rsvd_mask = 0x000fffffffffffff;
 296
 297        entry = kvm_get_supported_cpuid_index(0x80000008, 0);
 298        max_phy_addr = entry->eax & 0x000000ff;
 299        /* Clear the bottom bits of the reserved mask. */
 300        rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
 301
 302        /*
 303         * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
 304         * with 4-Level Paging and 5-Level Paging".
 305         * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
 306         * the XD flag (bit 63) is reserved.
 307         */
 308        vcpu_sregs_get(vm, vcpuid, &sregs);
 309        if ((sregs.efer & EFER_NX) == 0) {
 310                rsvd_mask |= (1ull << 63);
 311        }
 312
 313        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 314                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 315        TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
 316                (vaddr >> vm->page_shift)),
 317                "Invalid virtual address, vaddr: 0x%lx",
 318                vaddr);
 319        /*
 320         * Based on the mode check above there are 48 bits in the vaddr, so
 321         * shift 16 to sign extend the last bit (bit-47),
 322         */
 323        TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
 324                "Canonical check failed.  The virtual address is invalid.");
 325
 326        index[0] = (vaddr >> 12) & 0x1ffu;
 327        index[1] = (vaddr >> 21) & 0x1ffu;
 328        index[2] = (vaddr >> 30) & 0x1ffu;
 329        index[3] = (vaddr >> 39) & 0x1ffu;
 330
 331        pml4e = addr_gpa2hva(vm, vm->pgd);
 332        TEST_ASSERT(pml4e[index[3]].present,
 333                "Expected pml4e to be present for gva: 0x%08lx", vaddr);
 334        TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) &
 335                (rsvd_mask | (1ull << 7))) == 0,
 336                "Unexpected reserved bits set.");
 337
 338        pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
 339        TEST_ASSERT(pdpe[index[2]].present,
 340                "Expected pdpe to be present for gva: 0x%08lx", vaddr);
 341        TEST_ASSERT(pdpe[index[2]].page_size == 0,
 342                "Expected pdpe to map a pde not a 1-GByte page.");
 343        TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0,
 344                "Unexpected reserved bits set.");
 345
 346        pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
 347        TEST_ASSERT(pde[index[1]].present,
 348                "Expected pde to be present for gva: 0x%08lx", vaddr);
 349        TEST_ASSERT(pde[index[1]].page_size == 0,
 350                "Expected pde to map a pte not a 2-MByte page.");
 351        TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0,
 352                "Unexpected reserved bits set.");
 353
 354        pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
 355        TEST_ASSERT(pte[index[0]].present,
 356                "Expected pte to be present for gva: 0x%08lx", vaddr);
 357
 358        return &pte[index[0]];
 359}
 360
 361uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
 362{
 363        struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
 364
 365        return *(uint64_t *)pte;
 366}
 367
 368void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
 369                             uint64_t pte)
 370{
 371        struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid,
 372                                                                  vaddr);
 373
 374        *(uint64_t *)new_pte = pte;
 375}
 376
 377void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
 378{
 379        struct pageUpperEntry *pml4e, *pml4e_start;
 380        struct pageUpperEntry *pdpe, *pdpe_start;
 381        struct pageUpperEntry *pde, *pde_start;
 382        struct pageTableEntry *pte, *pte_start;
 383
 384        if (!vm->pgd_created)
 385                return;
 386
 387        fprintf(stream, "%*s                                          "
 388                "                no\n", indent, "");
 389        fprintf(stream, "%*s      index hvaddr         gpaddr         "
 390                "addr         w exec dirty\n",
 391                indent, "");
 392        pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd);
 393        for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
 394                pml4e = &pml4e_start[n1];
 395                if (!pml4e->present)
 396                        continue;
 397                fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
 398                        " %u\n",
 399                        indent, "",
 400                        pml4e - pml4e_start, pml4e,
 401                        addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
 402                        pml4e->writable, pml4e->execute_disable);
 403
 404                pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
 405                for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
 406                        pdpe = &pdpe_start[n2];
 407                        if (!pdpe->present)
 408                                continue;
 409                        fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
 410                                "%u  %u\n",
 411                                indent, "",
 412                                pdpe - pdpe_start, pdpe,
 413                                addr_hva2gpa(vm, pdpe),
 414                                (uint64_t) pdpe->pfn, pdpe->writable,
 415                                pdpe->execute_disable);
 416
 417                        pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
 418                        for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
 419                                pde = &pde_start[n3];
 420                                if (!pde->present)
 421                                        continue;
 422                                fprintf(stream, "%*spde   0x%-3zx %p "
 423                                        "0x%-12lx 0x%-10lx %u  %u\n",
 424                                        indent, "", pde - pde_start, pde,
 425                                        addr_hva2gpa(vm, pde),
 426                                        (uint64_t) pde->pfn, pde->writable,
 427                                        pde->execute_disable);
 428
 429                                pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
 430                                for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
 431                                        pte = &pte_start[n4];
 432                                        if (!pte->present)
 433                                                continue;
 434                                        fprintf(stream, "%*spte   0x%-3zx %p "
 435                                                "0x%-12lx 0x%-10lx %u  %u "
 436                                                "    %u    0x%-10lx\n",
 437                                                indent, "",
 438                                                pte - pte_start, pte,
 439                                                addr_hva2gpa(vm, pte),
 440                                                (uint64_t) pte->pfn,
 441                                                pte->writable,
 442                                                pte->execute_disable,
 443                                                pte->dirty,
 444                                                ((uint64_t) n1 << 27)
 445                                                        | ((uint64_t) n2 << 18)
 446                                                        | ((uint64_t) n3 << 9)
 447                                                        | ((uint64_t) n4));
 448                                }
 449                        }
 450                }
 451        }
 452}
 453
 454/*
 455 * Set Unusable Segment
 456 *
 457 * Input Args: None
 458 *
 459 * Output Args:
 460 *   segp - Pointer to segment register
 461 *
 462 * Return: None
 463 *
 464 * Sets the segment register pointed to by @segp to an unusable state.
 465 */
 466static void kvm_seg_set_unusable(struct kvm_segment *segp)
 467{
 468        memset(segp, 0, sizeof(*segp));
 469        segp->unusable = true;
 470}
 471
 472static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
 473{
 474        void *gdt = addr_gva2hva(vm, vm->gdt);
 475        struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
 476
 477        desc->limit0 = segp->limit & 0xFFFF;
 478        desc->base0 = segp->base & 0xFFFF;
 479        desc->base1 = segp->base >> 16;
 480        desc->type = segp->type;
 481        desc->s = segp->s;
 482        desc->dpl = segp->dpl;
 483        desc->p = segp->present;
 484        desc->limit1 = segp->limit >> 16;
 485        desc->avl = segp->avl;
 486        desc->l = segp->l;
 487        desc->db = segp->db;
 488        desc->g = segp->g;
 489        desc->base2 = segp->base >> 24;
 490        if (!segp->s)
 491                desc->base3 = segp->base >> 32;
 492}
 493
 494
 495/*
 496 * Set Long Mode Flat Kernel Code Segment
 497 *
 498 * Input Args:
 499 *   vm - VM whose GDT is being filled, or NULL to only write segp
 500 *   selector - selector value
 501 *
 502 * Output Args:
 503 *   segp - Pointer to KVM segment
 504 *
 505 * Return: None
 506 *
 507 * Sets up the KVM segment pointed to by @segp, to be a code segment
 508 * with the selector value given by @selector.
 509 */
 510static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
 511        struct kvm_segment *segp)
 512{
 513        memset(segp, 0, sizeof(*segp));
 514        segp->selector = selector;
 515        segp->limit = 0xFFFFFFFFu;
 516        segp->s = 0x1; /* kTypeCodeData */
 517        segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
 518                                          * | kFlagCodeReadable
 519                                          */
 520        segp->g = true;
 521        segp->l = true;
 522        segp->present = 1;
 523        if (vm)
 524                kvm_seg_fill_gdt_64bit(vm, segp);
 525}
 526
 527/*
 528 * Set Long Mode Flat Kernel Data Segment
 529 *
 530 * Input Args:
 531 *   vm - VM whose GDT is being filled, or NULL to only write segp
 532 *   selector - selector value
 533 *
 534 * Output Args:
 535 *   segp - Pointer to KVM segment
 536 *
 537 * Return: None
 538 *
 539 * Sets up the KVM segment pointed to by @segp, to be a data segment
 540 * with the selector value given by @selector.
 541 */
 542static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
 543        struct kvm_segment *segp)
 544{
 545        memset(segp, 0, sizeof(*segp));
 546        segp->selector = selector;
 547        segp->limit = 0xFFFFFFFFu;
 548        segp->s = 0x1; /* kTypeCodeData */
 549        segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
 550                                          * | kFlagDataWritable
 551                                          */
 552        segp->g = true;
 553        segp->present = true;
 554        if (vm)
 555                kvm_seg_fill_gdt_64bit(vm, segp);
 556}
 557
 558vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
 559{
 560        uint16_t index[4];
 561        struct pageUpperEntry *pml4e, *pdpe, *pde;
 562        struct pageTableEntry *pte;
 563
 564        TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
 565                "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
 566
 567        index[0] = (gva >> 12) & 0x1ffu;
 568        index[1] = (gva >> 21) & 0x1ffu;
 569        index[2] = (gva >> 30) & 0x1ffu;
 570        index[3] = (gva >> 39) & 0x1ffu;
 571
 572        if (!vm->pgd_created)
 573                goto unmapped_gva;
 574        pml4e = addr_gpa2hva(vm, vm->pgd);
 575        if (!pml4e[index[3]].present)
 576                goto unmapped_gva;
 577
 578        pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
 579        if (!pdpe[index[2]].present)
 580                goto unmapped_gva;
 581
 582        pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
 583        if (!pde[index[1]].present)
 584                goto unmapped_gva;
 585
 586        pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
 587        if (!pte[index[0]].present)
 588                goto unmapped_gva;
 589
 590        return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
 591
 592unmapped_gva:
 593        TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
 594        exit(EXIT_FAILURE);
 595}
 596
 597static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
 598{
 599        if (!vm->gdt)
 600                vm->gdt = vm_vaddr_alloc_page(vm);
 601
 602        dt->base = vm->gdt;
 603        dt->limit = getpagesize();
 604}
 605
 606static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
 607                                int selector)
 608{
 609        if (!vm->tss)
 610                vm->tss = vm_vaddr_alloc_page(vm);
 611
 612        memset(segp, 0, sizeof(*segp));
 613        segp->base = vm->tss;
 614        segp->limit = 0x67;
 615        segp->selector = selector;
 616        segp->type = 0xb;
 617        segp->present = 1;
 618        kvm_seg_fill_gdt_64bit(vm, segp);
 619}
 620
 621static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
 622{
 623        struct kvm_sregs sregs;
 624
 625        /* Set mode specific system register values. */
 626        vcpu_sregs_get(vm, vcpuid, &sregs);
 627
 628        sregs.idt.limit = 0;
 629
 630        kvm_setup_gdt(vm, &sregs.gdt);
 631
 632        switch (vm->mode) {
 633        case VM_MODE_PXXV48_4K:
 634                sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
 635                sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
 636                sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
 637
 638                kvm_seg_set_unusable(&sregs.ldt);
 639                kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
 640                kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
 641                kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
 642                kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
 643                break;
 644
 645        default:
 646                TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
 647        }
 648
 649        sregs.cr3 = vm->pgd;
 650        vcpu_sregs_set(vm, vcpuid, &sregs);
 651}
 652
 653void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
 654{
 655        struct kvm_mp_state mp_state;
 656        struct kvm_regs regs;
 657        vm_vaddr_t stack_vaddr;
 658        stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
 659                                     DEFAULT_GUEST_STACK_VADDR_MIN);
 660
 661        /* Create VCPU */
 662        vm_vcpu_add(vm, vcpuid);
 663        vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
 664        vcpu_setup(vm, vcpuid);
 665
 666        /* Setup guest general purpose registers */
 667        vcpu_regs_get(vm, vcpuid, &regs);
 668        regs.rflags = regs.rflags | 0x2;
 669        regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
 670        regs.rip = (unsigned long) guest_code;
 671        vcpu_regs_set(vm, vcpuid, &regs);
 672
 673        /* Setup the MP state */
 674        mp_state.mp_state = 0;
 675        vcpu_set_mp_state(vm, vcpuid, &mp_state);
 676}
 677
 678/*
 679 * Allocate an instance of struct kvm_cpuid2
 680 *
 681 * Input Args: None
 682 *
 683 * Output Args: None
 684 *
 685 * Return: A pointer to the allocated struct. The caller is responsible
 686 * for freeing this struct.
 687 *
 688 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
 689 * array to be decided at allocation time, allocation is slightly
 690 * complicated. This function uses a reasonable default length for
 691 * the array and performs the appropriate allocation.
 692 */
 693static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
 694{
 695        struct kvm_cpuid2 *cpuid;
 696        int nent = 100;
 697        size_t size;
 698
 699        size = sizeof(*cpuid);
 700        size += nent * sizeof(struct kvm_cpuid_entry2);
 701        cpuid = malloc(size);
 702        if (!cpuid) {
 703                perror("malloc");
 704                abort();
 705        }
 706
 707        cpuid->nent = nent;
 708
 709        return cpuid;
 710}
 711
 712/*
 713 * KVM Supported CPUID Get
 714 *
 715 * Input Args: None
 716 *
 717 * Output Args:
 718 *
 719 * Return: The supported KVM CPUID
 720 *
 721 * Get the guest CPUID supported by KVM.
 722 */
 723struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
 724{
 725        static struct kvm_cpuid2 *cpuid;
 726        int ret;
 727        int kvm_fd;
 728
 729        if (cpuid)
 730                return cpuid;
 731
 732        cpuid = allocate_kvm_cpuid2();
 733        kvm_fd = open_kvm_dev_path_or_exit();
 734
 735        ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
 736        TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
 737                    ret, errno);
 738
 739        close(kvm_fd);
 740        return cpuid;
 741}
 742
 743/*
 744 * KVM Get MSR
 745 *
 746 * Input Args:
 747 *   msr_index - Index of MSR
 748 *
 749 * Output Args: None
 750 *
 751 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 752 *
 753 * Get value of MSR for VCPU.
 754 */
 755uint64_t kvm_get_feature_msr(uint64_t msr_index)
 756{
 757        struct {
 758                struct kvm_msrs header;
 759                struct kvm_msr_entry entry;
 760        } buffer = {};
 761        int r, kvm_fd;
 762
 763        buffer.header.nmsrs = 1;
 764        buffer.entry.index = msr_index;
 765        kvm_fd = open_kvm_dev_path_or_exit();
 766
 767        r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
 768        TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
 769                "  rc: %i errno: %i", r, errno);
 770
 771        close(kvm_fd);
 772        return buffer.entry.data;
 773}
 774
 775/*
 776 * VM VCPU CPUID Set
 777 *
 778 * Input Args:
 779 *   vm - Virtual Machine
 780 *   vcpuid - VCPU id
 781 *
 782 * Output Args: None
 783 *
 784 * Return: KVM CPUID (KVM_GET_CPUID2)
 785 *
 786 * Set the VCPU's CPUID.
 787 */
 788struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
 789{
 790        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 791        struct kvm_cpuid2 *cpuid;
 792        int max_ent;
 793        int rc = -1;
 794
 795        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 796
 797        cpuid = allocate_kvm_cpuid2();
 798        max_ent = cpuid->nent;
 799
 800        for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
 801                rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
 802                if (!rc)
 803                        break;
 804
 805                TEST_ASSERT(rc == -1 && errno == E2BIG,
 806                            "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
 807                            rc, errno);
 808        }
 809
 810        TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
 811                    rc, errno);
 812
 813        return cpuid;
 814}
 815
 816
 817
 818/*
 819 * Locate a cpuid entry.
 820 *
 821 * Input Args:
 822 *   function: The function of the cpuid entry to find.
 823 *   index: The index of the cpuid entry.
 824 *
 825 * Output Args: None
 826 *
 827 * Return: A pointer to the cpuid entry. Never returns NULL.
 828 */
 829struct kvm_cpuid_entry2 *
 830kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
 831{
 832        struct kvm_cpuid2 *cpuid;
 833        struct kvm_cpuid_entry2 *entry = NULL;
 834        int i;
 835
 836        cpuid = kvm_get_supported_cpuid();
 837        for (i = 0; i < cpuid->nent; i++) {
 838                if (cpuid->entries[i].function == function &&
 839                    cpuid->entries[i].index == index) {
 840                        entry = &cpuid->entries[i];
 841                        break;
 842                }
 843        }
 844
 845        TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
 846                    function, index);
 847        return entry;
 848}
 849
 850/*
 851 * VM VCPU CPUID Set
 852 *
 853 * Input Args:
 854 *   vm - Virtual Machine
 855 *   vcpuid - VCPU id
 856 *   cpuid - The CPUID values to set.
 857 *
 858 * Output Args: None
 859 *
 860 * Return: void
 861 *
 862 * Set the VCPU's CPUID.
 863 */
 864void vcpu_set_cpuid(struct kvm_vm *vm,
 865                uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
 866{
 867        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 868        int rc;
 869
 870        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 871
 872        rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
 873        TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
 874                    rc, errno);
 875
 876}
 877
 878/*
 879 * VCPU Get MSR
 880 *
 881 * Input Args:
 882 *   vm - Virtual Machine
 883 *   vcpuid - VCPU ID
 884 *   msr_index - Index of MSR
 885 *
 886 * Output Args: None
 887 *
 888 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
 889 *
 890 * Get value of MSR for VCPU.
 891 */
 892uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
 893{
 894        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 895        struct {
 896                struct kvm_msrs header;
 897                struct kvm_msr_entry entry;
 898        } buffer = {};
 899        int r;
 900
 901        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 902        buffer.header.nmsrs = 1;
 903        buffer.entry.index = msr_index;
 904        r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
 905        TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
 906                "  rc: %i errno: %i", r, errno);
 907
 908        return buffer.entry.data;
 909}
 910
 911/*
 912 * _VCPU Set MSR
 913 *
 914 * Input Args:
 915 *   vm - Virtual Machine
 916 *   vcpuid - VCPU ID
 917 *   msr_index - Index of MSR
 918 *   msr_value - New value of MSR
 919 *
 920 * Output Args: None
 921 *
 922 * Return: The result of KVM_SET_MSRS.
 923 *
 924 * Sets the value of an MSR for the given VCPU.
 925 */
 926int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
 927                  uint64_t msr_value)
 928{
 929        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 930        struct {
 931                struct kvm_msrs header;
 932                struct kvm_msr_entry entry;
 933        } buffer = {};
 934        int r;
 935
 936        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
 937        memset(&buffer, 0, sizeof(buffer));
 938        buffer.header.nmsrs = 1;
 939        buffer.entry.index = msr_index;
 940        buffer.entry.data = msr_value;
 941        r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
 942        return r;
 943}
 944
 945/*
 946 * VCPU Set MSR
 947 *
 948 * Input Args:
 949 *   vm - Virtual Machine
 950 *   vcpuid - VCPU ID
 951 *   msr_index - Index of MSR
 952 *   msr_value - New value of MSR
 953 *
 954 * Output Args: None
 955 *
 956 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
 957 *
 958 * Set value of MSR for VCPU.
 959 */
 960void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
 961        uint64_t msr_value)
 962{
 963        int r;
 964
 965        r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
 966        TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
 967                "  rc: %i errno: %i", r, errno);
 968}
 969
 970void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
 971{
 972        va_list ap;
 973        struct kvm_regs regs;
 974
 975        TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
 976                    "  num: %u\n",
 977                    num);
 978
 979        va_start(ap, num);
 980        vcpu_regs_get(vm, vcpuid, &regs);
 981
 982        if (num >= 1)
 983                regs.rdi = va_arg(ap, uint64_t);
 984
 985        if (num >= 2)
 986                regs.rsi = va_arg(ap, uint64_t);
 987
 988        if (num >= 3)
 989                regs.rdx = va_arg(ap, uint64_t);
 990
 991        if (num >= 4)
 992                regs.rcx = va_arg(ap, uint64_t);
 993
 994        if (num >= 5)
 995                regs.r8 = va_arg(ap, uint64_t);
 996
 997        if (num >= 6)
 998                regs.r9 = va_arg(ap, uint64_t);
 999
1000        vcpu_regs_set(vm, vcpuid, &regs);
1001        va_end(ap);
1002}
1003
1004void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1005{
1006        struct kvm_regs regs;
1007        struct kvm_sregs sregs;
1008
1009        fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1010
1011        fprintf(stream, "%*sregs:\n", indent + 2, "");
1012        vcpu_regs_get(vm, vcpuid, &regs);
1013        regs_dump(stream, &regs, indent + 4);
1014
1015        fprintf(stream, "%*ssregs:\n", indent + 2, "");
1016        vcpu_sregs_get(vm, vcpuid, &sregs);
1017        sregs_dump(stream, &sregs, indent + 4);
1018}
1019
1020struct kvm_x86_state {
1021        struct kvm_vcpu_events events;
1022        struct kvm_mp_state mp_state;
1023        struct kvm_regs regs;
1024        struct kvm_xsave xsave;
1025        struct kvm_xcrs xcrs;
1026        struct kvm_sregs sregs;
1027        struct kvm_debugregs debugregs;
1028        union {
1029                struct kvm_nested_state nested;
1030                char nested_[16384];
1031        };
1032        struct kvm_msrs msrs;
1033};
1034
1035static int kvm_get_num_msrs_fd(int kvm_fd)
1036{
1037        struct kvm_msr_list nmsrs;
1038        int r;
1039
1040        nmsrs.nmsrs = 0;
1041        r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1042        TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1043                r);
1044
1045        return nmsrs.nmsrs;
1046}
1047
1048static int kvm_get_num_msrs(struct kvm_vm *vm)
1049{
1050        return kvm_get_num_msrs_fd(vm->kvm_fd);
1051}
1052
1053struct kvm_msr_list *kvm_get_msr_index_list(void)
1054{
1055        struct kvm_msr_list *list;
1056        int nmsrs, r, kvm_fd;
1057
1058        kvm_fd = open_kvm_dev_path_or_exit();
1059
1060        nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1061        list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1062        list->nmsrs = nmsrs;
1063        r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1064        close(kvm_fd);
1065
1066        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1067                r);
1068
1069        return list;
1070}
1071
1072struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1073{
1074        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1075        struct kvm_msr_list *list;
1076        struct kvm_x86_state *state;
1077        int nmsrs, r, i;
1078        static int nested_size = -1;
1079
1080        if (nested_size == -1) {
1081                nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1082                TEST_ASSERT(nested_size <= sizeof(state->nested_),
1083                            "Nested state size too big, %i > %zi",
1084                            nested_size, sizeof(state->nested_));
1085        }
1086
1087        /*
1088         * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1089         * guest state is consistent only after userspace re-enters the
1090         * kernel with KVM_RUN.  Complete IO prior to migrating state
1091         * to a new VM.
1092         */
1093        vcpu_run_complete_io(vm, vcpuid);
1094
1095        nmsrs = kvm_get_num_msrs(vm);
1096        list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1097        list->nmsrs = nmsrs;
1098        r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1099        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1100                r);
1101
1102        state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1103        r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1104        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1105                r);
1106
1107        r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1108        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1109                r);
1110
1111        r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1112        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1113                r);
1114
1115        r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1116        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1117                r);
1118
1119        if (kvm_check_cap(KVM_CAP_XCRS)) {
1120                r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1121                TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1122                            r);
1123        }
1124
1125        r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1126        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1127                r);
1128
1129        if (nested_size) {
1130                state->nested.size = sizeof(state->nested_);
1131                r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1132                TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1133                        r);
1134                TEST_ASSERT(state->nested.size <= nested_size,
1135                        "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1136                        state->nested.size, nested_size);
1137        } else
1138                state->nested.size = 0;
1139
1140        state->msrs.nmsrs = nmsrs;
1141        for (i = 0; i < nmsrs; i++)
1142                state->msrs.entries[i].index = list->indices[i];
1143        r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1144        TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1145                r, r == nmsrs ? -1 : list->indices[r]);
1146
1147        r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1148        TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1149                r);
1150
1151        free(list);
1152        return state;
1153}
1154
1155void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1156{
1157        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1158        int r;
1159
1160        r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1161        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1162                r);
1163
1164        if (kvm_check_cap(KVM_CAP_XCRS)) {
1165                r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1166                TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1167                            r);
1168        }
1169
1170        r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1171        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1172                r);
1173
1174        r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1175        TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1176                r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1177
1178        r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1179        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1180                r);
1181
1182        r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1183        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1184                r);
1185
1186        r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1187        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1188                r);
1189
1190        r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1191        TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1192                r);
1193
1194        if (state->nested.size) {
1195                r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1196                TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1197                        r);
1198        }
1199}
1200
1201bool is_intel_cpu(void)
1202{
1203        int eax, ebx, ecx, edx;
1204        const uint32_t *chunk;
1205        const int leaf = 0;
1206
1207        __asm__ __volatile__(
1208                "cpuid"
1209                : /* output */ "=a"(eax), "=b"(ebx),
1210                  "=c"(ecx), "=d"(edx)
1211                : /* input */ "0"(leaf), "2"(0));
1212
1213        chunk = (const uint32_t *)("GenuineIntel");
1214        return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1215}
1216
1217uint32_t kvm_get_cpuid_max_basic(void)
1218{
1219        return kvm_get_supported_cpuid_entry(0)->eax;
1220}
1221
1222uint32_t kvm_get_cpuid_max_extended(void)
1223{
1224        return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1225}
1226
1227void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1228{
1229        struct kvm_cpuid_entry2 *entry;
1230        bool pae;
1231
1232        /* SDM 4.1.4 */
1233        if (kvm_get_cpuid_max_extended() < 0x80000008) {
1234                pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1235                *pa_bits = pae ? 36 : 32;
1236                *va_bits = 32;
1237        } else {
1238                entry = kvm_get_supported_cpuid_entry(0x80000008);
1239                *pa_bits = entry->eax & 0xff;
1240                *va_bits = (entry->eax >> 8) & 0xff;
1241        }
1242}
1243
1244struct idt_entry {
1245        uint16_t offset0;
1246        uint16_t selector;
1247        uint16_t ist : 3;
1248        uint16_t : 5;
1249        uint16_t type : 4;
1250        uint16_t : 1;
1251        uint16_t dpl : 2;
1252        uint16_t p : 1;
1253        uint16_t offset1;
1254        uint32_t offset2; uint32_t reserved;
1255};
1256
1257static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1258                          int dpl, unsigned short selector)
1259{
1260        struct idt_entry *base =
1261                (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1262        struct idt_entry *e = &base[vector];
1263
1264        memset(e, 0, sizeof(*e));
1265        e->offset0 = addr;
1266        e->selector = selector;
1267        e->ist = 0;
1268        e->type = 14;
1269        e->dpl = dpl;
1270        e->p = 1;
1271        e->offset1 = addr >> 16;
1272        e->offset2 = addr >> 32;
1273}
1274
1275void kvm_exit_unexpected_vector(uint32_t value)
1276{
1277        ucall(UCALL_UNHANDLED, 1, value);
1278}
1279
1280void route_exception(struct ex_regs *regs)
1281{
1282        typedef void(*handler)(struct ex_regs *);
1283        handler *handlers = (handler *)exception_handlers;
1284
1285        if (handlers && handlers[regs->vector]) {
1286                handlers[regs->vector](regs);
1287                return;
1288        }
1289
1290        kvm_exit_unexpected_vector(regs->vector);
1291}
1292
1293void vm_init_descriptor_tables(struct kvm_vm *vm)
1294{
1295        extern void *idt_handlers;
1296        int i;
1297
1298        vm->idt = vm_vaddr_alloc_page(vm);
1299        vm->handlers = vm_vaddr_alloc_page(vm);
1300        /* Handlers have the same address in both address spaces.*/
1301        for (i = 0; i < NUM_INTERRUPTS; i++)
1302                set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1303                        DEFAULT_CODE_SELECTOR);
1304}
1305
1306void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1307{
1308        struct kvm_sregs sregs;
1309
1310        vcpu_sregs_get(vm, vcpuid, &sregs);
1311        sregs.idt.base = vm->idt;
1312        sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1313        sregs.gdt.base = vm->gdt;
1314        sregs.gdt.limit = getpagesize() - 1;
1315        kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1316        vcpu_sregs_set(vm, vcpuid, &sregs);
1317        *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1318}
1319
1320void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1321                               void (*handler)(struct ex_regs *))
1322{
1323        vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1324
1325        handlers[vector] = (vm_vaddr_t)handler;
1326}
1327
1328void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1329{
1330        struct ucall uc;
1331
1332        if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1333                uint64_t vector = uc.args[0];
1334
1335                TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1336                          vector);
1337        }
1338}
1339
1340bool set_cpuid(struct kvm_cpuid2 *cpuid,
1341               struct kvm_cpuid_entry2 *ent)
1342{
1343        int i;
1344
1345        for (i = 0; i < cpuid->nent; i++) {
1346                struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1347
1348                if (cur->function != ent->function || cur->index != ent->index)
1349                        continue;
1350
1351                memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1352                return true;
1353        }
1354
1355        return false;
1356}
1357
1358uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1359                       uint64_t a3)
1360{
1361        uint64_t r;
1362
1363        asm volatile("vmcall"
1364                     : "=a"(r)
1365                     : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1366        return r;
1367}
1368
1369struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1370{
1371        static struct kvm_cpuid2 *cpuid;
1372        int ret;
1373        int kvm_fd;
1374
1375        if (cpuid)
1376                return cpuid;
1377
1378        cpuid = allocate_kvm_cpuid2();
1379        kvm_fd = open_kvm_dev_path_or_exit();
1380
1381        ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1382        TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1383                    ret, errno);
1384
1385        close(kvm_fd);
1386        return cpuid;
1387}
1388
1389void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1390{
1391        static struct kvm_cpuid2 *cpuid_full;
1392        struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1393        int i, nent = 0;
1394
1395        if (!cpuid_full) {
1396                cpuid_sys = kvm_get_supported_cpuid();
1397                cpuid_hv = kvm_get_supported_hv_cpuid();
1398
1399                cpuid_full = malloc(sizeof(*cpuid_full) +
1400                                    (cpuid_sys->nent + cpuid_hv->nent) *
1401                                    sizeof(struct kvm_cpuid_entry2));
1402                if (!cpuid_full) {
1403                        perror("malloc");
1404                        abort();
1405                }
1406
1407                /* Need to skip KVM CPUID leaves 0x400000xx */
1408                for (i = 0; i < cpuid_sys->nent; i++) {
1409                        if (cpuid_sys->entries[i].function >= 0x40000000 &&
1410                            cpuid_sys->entries[i].function < 0x40000100)
1411                                continue;
1412                        cpuid_full->entries[nent] = cpuid_sys->entries[i];
1413                        nent++;
1414                }
1415
1416                memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1417                       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1418                cpuid_full->nent = nent + cpuid_hv->nent;
1419        }
1420
1421        vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1422}
1423
1424struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1425{
1426        static struct kvm_cpuid2 *cpuid;
1427
1428        cpuid = allocate_kvm_cpuid2();
1429
1430        vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1431
1432        return cpuid;
1433}
1434
1435#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541
1436#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163
1437#define X86EMUL_CPUID_VENDOR_AuthenticAMD_edx 0x69746e65
1438
1439static inline unsigned x86_family(unsigned int eax)
1440{
1441        unsigned int x86;
1442
1443        x86 = (eax >> 8) & 0xf;
1444
1445        if (x86 == 0xf)
1446                x86 += (eax >> 20) & 0xff;
1447
1448        return x86;
1449}
1450
1451unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1452{
1453        const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1454        unsigned long ht_gfn, max_gfn, max_pfn;
1455        uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1456
1457        max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1458
1459        /* Avoid reserved HyperTransport region on AMD processors.  */
1460        eax = ecx = 0;
1461        cpuid(&eax, &ebx, &ecx, &edx);
1462        if (ebx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx ||
1463            ecx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx ||
1464            edx != X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
1465                return max_gfn;
1466
1467        /* On parts with <40 physical address bits, the area is fully hidden */
1468        if (vm->pa_bits < 40)
1469                return max_gfn;
1470
1471        /* Before family 17h, the HyperTransport area is just below 1T.  */
1472        ht_gfn = (1 << 28) - num_ht_pages;
1473        eax = 1;
1474        cpuid(&eax, &ebx, &ecx, &edx);
1475        if (x86_family(eax) < 0x17)
1476                goto done;
1477
1478        /*
1479         * Otherwise it's at the top of the physical address space, possibly
1480         * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1481         * the old conservative value if MAXPHYADDR is not enumerated.
1482         */
1483        eax = 0x80000000;
1484        cpuid(&eax, &ebx, &ecx, &edx);
1485        max_ext_leaf = eax;
1486        if (max_ext_leaf < 0x80000008)
1487                goto done;
1488
1489        eax = 0x80000008;
1490        cpuid(&eax, &ebx, &ecx, &edx);
1491        max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1492        if (max_ext_leaf >= 0x8000001f) {
1493                eax = 0x8000001f;
1494                cpuid(&eax, &ebx, &ecx, &edx);
1495                max_pfn >>= (ebx >> 6) & 0x3f;
1496        }
1497
1498        ht_gfn = max_pfn - num_ht_pages;
1499done:
1500        return min(max_gfn, ht_gfn - 1);
1501}
1502