linux/arch/arm/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/fault.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Modifications for ARM processor (c) 1995-2004 Russell King
   7 */
   8#include <linux/extable.h>
   9#include <linux/signal.h>
  10#include <linux/mm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/kprobes.h>
  14#include <linux/uaccess.h>
  15#include <linux/page-flags.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/debug.h>
  18#include <linux/highmem.h>
  19#include <linux/perf_event.h>
  20#include <linux/kfence.h>
  21
  22#include <asm/system_misc.h>
  23#include <asm/system_info.h>
  24#include <asm/tlbflush.h>
  25
  26#include "fault.h"
  27
  28#ifdef CONFIG_MMU
  29
  30/*
  31 * This is useful to dump out the page tables associated with
  32 * 'addr' in mm 'mm'.
  33 */
  34void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
  35{
  36        pgd_t *pgd;
  37
  38        if (!mm)
  39                mm = &init_mm;
  40
  41        pgd = pgd_offset(mm, addr);
  42        printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
  43
  44        do {
  45                p4d_t *p4d;
  46                pud_t *pud;
  47                pmd_t *pmd;
  48                pte_t *pte;
  49
  50                p4d = p4d_offset(pgd, addr);
  51                if (p4d_none(*p4d))
  52                        break;
  53
  54                if (p4d_bad(*p4d)) {
  55                        pr_cont("(bad)");
  56                        break;
  57                }
  58
  59                pud = pud_offset(p4d, addr);
  60                if (PTRS_PER_PUD != 1)
  61                        pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
  62
  63                if (pud_none(*pud))
  64                        break;
  65
  66                if (pud_bad(*pud)) {
  67                        pr_cont("(bad)");
  68                        break;
  69                }
  70
  71                pmd = pmd_offset(pud, addr);
  72                if (PTRS_PER_PMD != 1)
  73                        pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
  74
  75                if (pmd_none(*pmd))
  76                        break;
  77
  78                if (pmd_bad(*pmd)) {
  79                        pr_cont("(bad)");
  80                        break;
  81                }
  82
  83                /* We must not map this if we have highmem enabled */
  84                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
  85                        break;
  86
  87                pte = pte_offset_map(pmd, addr);
  88                pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
  89#ifndef CONFIG_ARM_LPAE
  90                pr_cont(", *ppte=%08llx",
  91                       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
  92#endif
  93                pte_unmap(pte);
  94        } while(0);
  95
  96        pr_cont("\n");
  97}
  98#else                                   /* CONFIG_MMU */
  99void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
 100{ }
 101#endif                                  /* CONFIG_MMU */
 102
 103static inline bool is_write_fault(unsigned int fsr)
 104{
 105        return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
 106}
 107
 108static void die_kernel_fault(const char *msg, struct mm_struct *mm,
 109                             unsigned long addr, unsigned int fsr,
 110                             struct pt_regs *regs)
 111{
 112        bust_spinlocks(1);
 113        pr_alert("8<--- cut here ---\n");
 114        pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
 115                 msg, addr);
 116
 117        show_pte(KERN_ALERT, mm, addr);
 118        die("Oops", regs, fsr);
 119        bust_spinlocks(0);
 120        make_task_dead(SIGKILL);
 121}
 122
 123/*
 124 * Oops.  The kernel tried to access some page that wasn't present.
 125 */
 126static void
 127__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 128                  struct pt_regs *regs)
 129{
 130        const char *msg;
 131        /*
 132         * Are we prepared to handle this kernel fault?
 133         */
 134        if (fixup_exception(regs))
 135                return;
 136
 137        /*
 138         * No handler, we'll have to terminate things with extreme prejudice.
 139         */
 140        if (addr < PAGE_SIZE) {
 141                msg = "NULL pointer dereference";
 142        } else {
 143                if (kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
 144                        return;
 145
 146                msg = "paging request";
 147        }
 148
 149        die_kernel_fault(msg, mm, addr, fsr, regs);
 150}
 151
 152/*
 153 * Something tried to access memory that isn't in our memory map..
 154 * User mode accesses just cause a SIGSEGV
 155 */
 156static void
 157__do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
 158                int code, struct pt_regs *regs)
 159{
 160        struct task_struct *tsk = current;
 161
 162        if (addr > TASK_SIZE)
 163                harden_branch_predictor();
 164
 165#ifdef CONFIG_DEBUG_USER
 166        if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
 167            ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
 168                pr_err("8<--- cut here ---\n");
 169                pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 170                       tsk->comm, sig, addr, fsr);
 171                show_pte(KERN_ERR, tsk->mm, addr);
 172                show_regs(regs);
 173        }
 174#endif
 175#ifndef CONFIG_KUSER_HELPERS
 176        if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
 177                printk_ratelimited(KERN_DEBUG
 178                                   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
 179                                   tsk->comm, addr);
 180#endif
 181
 182        tsk->thread.address = addr;
 183        tsk->thread.error_code = fsr;
 184        tsk->thread.trap_no = 14;
 185        force_sig_fault(sig, code, (void __user *)addr);
 186}
 187
 188void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 189{
 190        struct task_struct *tsk = current;
 191        struct mm_struct *mm = tsk->active_mm;
 192
 193        /*
 194         * If we are in kernel mode at this point, we
 195         * have no context to handle this fault with.
 196         */
 197        if (user_mode(regs))
 198                __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 199        else
 200                __do_kernel_fault(mm, addr, fsr, regs);
 201}
 202
 203#ifdef CONFIG_MMU
 204#define VM_FAULT_BADMAP         ((__force vm_fault_t)0x010000)
 205#define VM_FAULT_BADACCESS      ((__force vm_fault_t)0x020000)
 206
 207static inline bool is_permission_fault(unsigned int fsr)
 208{
 209        int fs = fsr_fs(fsr);
 210#ifdef CONFIG_ARM_LPAE
 211        if ((fs & FS_PERM_NOLL_MASK) == FS_PERM_NOLL)
 212                return true;
 213#else
 214        if (fs == FS_L1_PERM || fs == FS_L2_PERM)
 215                return true;
 216#endif
 217        return false;
 218}
 219
 220static vm_fault_t __kprobes
 221__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags,
 222                unsigned long vma_flags, struct pt_regs *regs)
 223{
 224        struct vm_area_struct *vma = find_vma(mm, addr);
 225        if (unlikely(!vma))
 226                return VM_FAULT_BADMAP;
 227
 228        if (unlikely(vma->vm_start > addr)) {
 229                if (!(vma->vm_flags & VM_GROWSDOWN))
 230                        return VM_FAULT_BADMAP;
 231                if (addr < FIRST_USER_ADDRESS)
 232                        return VM_FAULT_BADMAP;
 233                if (expand_stack(vma, addr))
 234                        return VM_FAULT_BADMAP;
 235        }
 236
 237        /*
 238         * ok, we have a good vm_area for this memory access, check the
 239         * permissions on the VMA allow for the fault which occurred.
 240         */
 241        if (!(vma->vm_flags & vma_flags))
 242                return VM_FAULT_BADACCESS;
 243
 244        return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
 245}
 246
 247static int __kprobes
 248do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 249{
 250        struct mm_struct *mm = current->mm;
 251        int sig, code;
 252        vm_fault_t fault;
 253        unsigned int flags = FAULT_FLAG_DEFAULT;
 254        unsigned long vm_flags = VM_ACCESS_FLAGS;
 255
 256        if (kprobe_page_fault(regs, fsr))
 257                return 0;
 258
 259
 260        /* Enable interrupts if they were enabled in the parent context. */
 261        if (interrupts_enabled(regs))
 262                local_irq_enable();
 263
 264        /*
 265         * If we're in an interrupt or have no user
 266         * context, we must not take the fault..
 267         */
 268        if (faulthandler_disabled() || !mm)
 269                goto no_context;
 270
 271        if (user_mode(regs))
 272                flags |= FAULT_FLAG_USER;
 273
 274        if (is_write_fault(fsr)) {
 275                flags |= FAULT_FLAG_WRITE;
 276                vm_flags = VM_WRITE;
 277        }
 278
 279        if (fsr & FSR_LNX_PF) {
 280                vm_flags = VM_EXEC;
 281
 282                if (is_permission_fault(fsr) && !user_mode(regs))
 283                        die_kernel_fault("execution of memory",
 284                                         mm, addr, fsr, regs);
 285        }
 286
 287        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 288
 289        /*
 290         * As per x86, we may deadlock here.  However, since the kernel only
 291         * validly references user space from well defined areas of the code,
 292         * we can bug out early if this is from code which shouldn't.
 293         */
 294        if (!mmap_read_trylock(mm)) {
 295                if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 296                        goto no_context;
 297retry:
 298                mmap_read_lock(mm);
 299        } else {
 300                /*
 301                 * The above down_read_trylock() might have succeeded in
 302                 * which case, we'll have missed the might_sleep() from
 303                 * down_read()
 304                 */
 305                might_sleep();
 306#ifdef CONFIG_DEBUG_VM
 307                if (!user_mode(regs) &&
 308                    !search_exception_tables(regs->ARM_pc))
 309                        goto no_context;
 310#endif
 311        }
 312
 313        fault = __do_page_fault(mm, addr, flags, vm_flags, regs);
 314
 315        /* If we need to retry but a fatal signal is pending, handle the
 316         * signal first. We do not need to release the mmap_lock because
 317         * it would already be released in __lock_page_or_retry in
 318         * mm/filemap.c. */
 319        if (fault_signal_pending(fault, regs)) {
 320                if (!user_mode(regs))
 321                        goto no_context;
 322                return 0;
 323        }
 324
 325        if (!(fault & VM_FAULT_ERROR)) {
 326                if (fault & VM_FAULT_RETRY) {
 327                        flags |= FAULT_FLAG_TRIED;
 328                        goto retry;
 329                }
 330        }
 331
 332        mmap_read_unlock(mm);
 333
 334        /*
 335         * Handle the "normal" case first - VM_FAULT_MAJOR
 336         */
 337        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 338                return 0;
 339
 340        /*
 341         * If we are in kernel mode at this point, we
 342         * have no context to handle this fault with.
 343         */
 344        if (!user_mode(regs))
 345                goto no_context;
 346
 347        if (fault & VM_FAULT_OOM) {
 348                /*
 349                 * We ran out of memory, call the OOM killer, and return to
 350                 * userspace (which will retry the fault, or kill us if we
 351                 * got oom-killed)
 352                 */
 353                pagefault_out_of_memory();
 354                return 0;
 355        }
 356
 357        if (fault & VM_FAULT_SIGBUS) {
 358                /*
 359                 * We had some memory, but were unable to
 360                 * successfully fix up this page fault.
 361                 */
 362                sig = SIGBUS;
 363                code = BUS_ADRERR;
 364        } else {
 365                /*
 366                 * Something tried to access memory that
 367                 * isn't in our memory map..
 368                 */
 369                sig = SIGSEGV;
 370                code = fault == VM_FAULT_BADACCESS ?
 371                        SEGV_ACCERR : SEGV_MAPERR;
 372        }
 373
 374        __do_user_fault(addr, fsr, sig, code, regs);
 375        return 0;
 376
 377no_context:
 378        __do_kernel_fault(mm, addr, fsr, regs);
 379        return 0;
 380}
 381#else                                   /* CONFIG_MMU */
 382static int
 383do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 384{
 385        return 0;
 386}
 387#endif                                  /* CONFIG_MMU */
 388
 389/*
 390 * First Level Translation Fault Handler
 391 *
 392 * We enter here because the first level page table doesn't contain
 393 * a valid entry for the address.
 394 *
 395 * If the address is in kernel space (>= TASK_SIZE), then we are
 396 * probably faulting in the vmalloc() area.
 397 *
 398 * If the init_task's first level page tables contains the relevant
 399 * entry, we copy the it to this task.  If not, we send the process
 400 * a signal, fixup the exception, or oops the kernel.
 401 *
 402 * NOTE! We MUST NOT take any locks for this case. We may be in an
 403 * interrupt or a critical region, and should only copy the information
 404 * from the master page table, nothing more.
 405 */
 406#ifdef CONFIG_MMU
 407static int __kprobes
 408do_translation_fault(unsigned long addr, unsigned int fsr,
 409                     struct pt_regs *regs)
 410{
 411        unsigned int index;
 412        pgd_t *pgd, *pgd_k;
 413        p4d_t *p4d, *p4d_k;
 414        pud_t *pud, *pud_k;
 415        pmd_t *pmd, *pmd_k;
 416
 417        if (addr < TASK_SIZE)
 418                return do_page_fault(addr, fsr, regs);
 419
 420        if (user_mode(regs))
 421                goto bad_area;
 422
 423        index = pgd_index(addr);
 424
 425        pgd = cpu_get_pgd() + index;
 426        pgd_k = init_mm.pgd + index;
 427
 428        p4d = p4d_offset(pgd, addr);
 429        p4d_k = p4d_offset(pgd_k, addr);
 430
 431        if (p4d_none(*p4d_k))
 432                goto bad_area;
 433        if (!p4d_present(*p4d))
 434                set_p4d(p4d, *p4d_k);
 435
 436        pud = pud_offset(p4d, addr);
 437        pud_k = pud_offset(p4d_k, addr);
 438
 439        if (pud_none(*pud_k))
 440                goto bad_area;
 441        if (!pud_present(*pud))
 442                set_pud(pud, *pud_k);
 443
 444        pmd = pmd_offset(pud, addr);
 445        pmd_k = pmd_offset(pud_k, addr);
 446
 447#ifdef CONFIG_ARM_LPAE
 448        /*
 449         * Only one hardware entry per PMD with LPAE.
 450         */
 451        index = 0;
 452#else
 453        /*
 454         * On ARM one Linux PGD entry contains two hardware entries (see page
 455         * tables layout in pgtable.h). We normally guarantee that we always
 456         * fill both L1 entries. But create_mapping() doesn't follow the rule.
 457         * It can create inidividual L1 entries, so here we have to call
 458         * pmd_none() check for the entry really corresponded to address, not
 459         * for the first of pair.
 460         */
 461        index = (addr >> SECTION_SHIFT) & 1;
 462#endif
 463        if (pmd_none(pmd_k[index]))
 464                goto bad_area;
 465
 466        copy_pmd(pmd, pmd_k);
 467        return 0;
 468
 469bad_area:
 470        do_bad_area(addr, fsr, regs);
 471        return 0;
 472}
 473#else                                   /* CONFIG_MMU */
 474static int
 475do_translation_fault(unsigned long addr, unsigned int fsr,
 476                     struct pt_regs *regs)
 477{
 478        return 0;
 479}
 480#endif                                  /* CONFIG_MMU */
 481
 482/*
 483 * Some section permission faults need to be handled gracefully.
 484 * They can happen due to a __{get,put}_user during an oops.
 485 */
 486#ifndef CONFIG_ARM_LPAE
 487static int
 488do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 489{
 490        do_bad_area(addr, fsr, regs);
 491        return 0;
 492}
 493#endif /* CONFIG_ARM_LPAE */
 494
 495/*
 496 * This abort handler always returns "fault".
 497 */
 498static int
 499do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 500{
 501        return 1;
 502}
 503
 504struct fsr_info {
 505        int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 506        int     sig;
 507        int     code;
 508        const char *name;
 509};
 510
 511/* FSR definition */
 512#ifdef CONFIG_ARM_LPAE
 513#include "fsr-3level.c"
 514#else
 515#include "fsr-2level.c"
 516#endif
 517
 518void __init
 519hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 520                int sig, int code, const char *name)
 521{
 522        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 523                BUG();
 524
 525        fsr_info[nr].fn   = fn;
 526        fsr_info[nr].sig  = sig;
 527        fsr_info[nr].code = code;
 528        fsr_info[nr].name = name;
 529}
 530
 531/*
 532 * Dispatch a data abort to the relevant handler.
 533 */
 534asmlinkage void
 535do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 536{
 537        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 538
 539        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 540                return;
 541
 542        pr_alert("8<--- cut here ---\n");
 543        pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 544                inf->name, fsr, addr);
 545        show_pte(KERN_ALERT, current->mm, addr);
 546
 547        arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
 548                       fsr, 0);
 549}
 550
 551void __init
 552hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 553                 int sig, int code, const char *name)
 554{
 555        if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
 556                BUG();
 557
 558        ifsr_info[nr].fn   = fn;
 559        ifsr_info[nr].sig  = sig;
 560        ifsr_info[nr].code = code;
 561        ifsr_info[nr].name = name;
 562}
 563
 564asmlinkage void
 565do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
 566{
 567        const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 568
 569        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 570                return;
 571
 572        pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 573                inf->name, ifsr, addr);
 574
 575        arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
 576                       ifsr, 0);
 577}
 578
 579/*
 580 * Abort handler to be used only during first unmasking of asynchronous aborts
 581 * on the boot CPU. This makes sure that the machine will not die if the
 582 * firmware/bootloader left an imprecise abort pending for us to trip over.
 583 */
 584static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
 585                                      struct pt_regs *regs)
 586{
 587        pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
 588                "first unmask, this is most likely caused by a "
 589                "firmware/bootloader bug.\n", fsr);
 590
 591        return 0;
 592}
 593
 594void __init early_abt_enable(void)
 595{
 596        fsr_info[FSR_FS_AEA].fn = early_abort_handler;
 597        local_abt_enable();
 598        fsr_info[FSR_FS_AEA].fn = do_bad;
 599}
 600
 601#ifndef CONFIG_ARM_LPAE
 602static int __init exceptions_init(void)
 603{
 604        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 605                hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
 606                                "I-cache maintenance fault");
 607        }
 608
 609        if (cpu_architecture() >= CPU_ARCH_ARMv7) {
 610                /*
 611                 * TODO: Access flag faults introduced in ARMv6K.
 612                 * Runtime check for 'K' extension is needed
 613                 */
 614                hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
 615                                "section access flag fault");
 616                hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
 617                                "section access flag fault");
 618        }
 619
 620        return 0;
 621}
 622
 623arch_initcall(exceptions_init);
 624#endif
 625