linux/arch/arm/net/bpf_jit_32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/bitops.h>
  11#include <linux/compiler.h>
  12#include <linux/errno.h>
  13#include <linux/filter.h>
  14#include <linux/netdevice.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/if_vlan.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/hwcap.h>
  21#include <asm/opcodes.h>
  22#include <asm/system_info.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * eBPF prog stack layout:
  28 *
  29 *                         high
  30 * original ARM_SP =>     +-----+
  31 *                        |     | callee saved registers
  32 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  33 *                        | ... | eBPF JIT scratch space
  34 * eBPF fp register =>    +-----+
  35 *   (BPF_FP)             | ... | eBPF prog stack
  36 *                        +-----+
  37 *                        |RSVD | JIT scratchpad
  38 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  39 *                        | ... | caller-saved registers
  40 *                        +-----+
  41 *                        | ... | arguments passed on stack
  42 * ARM_SP during call =>  +-----|
  43 *                        |     |
  44 *                        | ... | Function call stack
  45 *                        |     |
  46 *                        +-----+
  47 *                          low
  48 *
  49 * The callee saved registers depends on whether frame pointers are enabled.
  50 * With frame pointers (to be compliant with the ABI):
  51 *
  52 *                              high
  53 * original ARM_SP =>     +--------------+ \
  54 *                        |      pc      | |
  55 * current ARM_FP =>      +--------------+ } callee saved registers
  56 *                        |r4-r9,fp,ip,lr| |
  57 *                        +--------------+ /
  58 *                              low
  59 *
  60 * Without frame pointers:
  61 *
  62 *                              high
  63 * original ARM_SP =>     +--------------+
  64 *                        |  r4-r9,fp,lr | callee saved registers
  65 * current ARM_FP =>      +--------------+
  66 *                              low
  67 *
  68 * When popping registers off the stack at the end of a BPF function, we
  69 * reference them via the current ARM_FP register.
  70 *
  71 * Some eBPF operations are implemented via a call to a helper function.
  72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
  73 * program to preserve any caller-saved ARM registers during the call. The
  74 * JIT emits code to push and pop those registers onto the stack, immediately
  75 * above the callee stack frame.
  76 */
  77#define CALLEE_MASK     (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  78                         1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  79                         1 << ARM_FP)
  80#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  81#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  82
  83#define CALLER_MASK     (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
  84
  85enum {
  86        /* Stack layout - these are offsets from (top of stack - 4) */
  87        BPF_R2_HI,
  88        BPF_R2_LO,
  89        BPF_R3_HI,
  90        BPF_R3_LO,
  91        BPF_R4_HI,
  92        BPF_R4_LO,
  93        BPF_R5_HI,
  94        BPF_R5_LO,
  95        BPF_R7_HI,
  96        BPF_R7_LO,
  97        BPF_R8_HI,
  98        BPF_R8_LO,
  99        BPF_R9_HI,
 100        BPF_R9_LO,
 101        BPF_FP_HI,
 102        BPF_FP_LO,
 103        BPF_TC_HI,
 104        BPF_TC_LO,
 105        BPF_AX_HI,
 106        BPF_AX_LO,
 107        /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 108         * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 109         * BPF_REG_FP and Tail call counts.
 110         */
 111        BPF_JIT_SCRATCH_REGS,
 112};
 113
 114/*
 115 * Negative "register" values indicate the register is stored on the stack
 116 * and are the offset from the top of the eBPF JIT scratch space.
 117 */
 118#define STACK_OFFSET(k) (-4 - (k) * 4)
 119#define SCRATCH_SIZE    (BPF_JIT_SCRATCH_REGS * 4)
 120
 121#ifdef CONFIG_FRAME_POINTER
 122#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 123#else
 124#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 125#endif
 126
 127#define TMP_REG_1       (MAX_BPF_JIT_REG + 0)   /* TEMP Register 1 */
 128#define TMP_REG_2       (MAX_BPF_JIT_REG + 1)   /* TEMP Register 2 */
 129#define TCALL_CNT       (MAX_BPF_JIT_REG + 2)   /* Tail Call Count */
 130
 131#define FLAG_IMM_OVERFLOW       (1 << 0)
 132
 133/*
 134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 135 *
 136 * 1. First argument is passed using the arm 32bit registers and rest of the
 137 * arguments are passed on stack scratch space.
 138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 139 * arguments are mapped to scratch space on stack.
 140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 141 * registers.
 142 *
 143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 145 * scratch memory space and we have to build eBPF 64 bit register from those.
 146 *
 147 */
 148static const s8 bpf2a32[][2] = {
 149        /* return value from in-kernel function, and exit value from eBPF */
 150        [BPF_REG_0] = {ARM_R1, ARM_R0},
 151        /* arguments from eBPF program to in-kernel function */
 152        [BPF_REG_1] = {ARM_R3, ARM_R2},
 153        /* Stored on stack scratch space */
 154        [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 155        [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 156        [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 157        [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 158        /* callee saved registers that in-kernel function will preserve */
 159        [BPF_REG_6] = {ARM_R5, ARM_R4},
 160        /* Stored on stack scratch space */
 161        [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 162        [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 163        [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 164        /* Read only Frame Pointer to access Stack */
 165        [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 166        /* Temporary Register for BPF JIT, can be used
 167         * for constant blindings and others.
 168         */
 169        [TMP_REG_1] = {ARM_R7, ARM_R6},
 170        [TMP_REG_2] = {ARM_R9, ARM_R8},
 171        /* Tail call count. Stored on stack scratch space. */
 172        [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 173        /* temporary register for blinding constants.
 174         * Stored on stack scratch space.
 175         */
 176        [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 177};
 178
 179#define dst_lo  dst[1]
 180#define dst_hi  dst[0]
 181#define src_lo  src[1]
 182#define src_hi  src[0]
 183
 184/*
 185 * JIT Context:
 186 *
 187 * prog                 :       bpf_prog
 188 * idx                  :       index of current last JITed instruction.
 189 * prologue_bytes       :       bytes used in prologue.
 190 * epilogue_offset      :       offset of epilogue starting.
 191 * offsets              :       array of eBPF instruction offsets in
 192 *                              JITed code.
 193 * target               :       final JITed code.
 194 * epilogue_bytes       :       no of bytes used in epilogue.
 195 * imm_count            :       no of immediate counts used for global
 196 *                              variables.
 197 * imms                 :       array of global variable addresses.
 198 */
 199
 200struct jit_ctx {
 201        const struct bpf_prog *prog;
 202        unsigned int idx;
 203        unsigned int prologue_bytes;
 204        unsigned int epilogue_offset;
 205        unsigned int cpu_architecture;
 206        u32 flags;
 207        u32 *offsets;
 208        u32 *target;
 209        u32 stack_size;
 210#if __LINUX_ARM_ARCH__ < 7
 211        u16 epilogue_bytes;
 212        u16 imm_count;
 213        u32 *imms;
 214#endif
 215};
 216
 217/*
 218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 219 * (where the assembly routines like __aeabi_uidiv could cause problems).
 220 */
 221static u32 jit_udiv32(u32 dividend, u32 divisor)
 222{
 223        return dividend / divisor;
 224}
 225
 226static u32 jit_mod32(u32 dividend, u32 divisor)
 227{
 228        return dividend % divisor;
 229}
 230
 231static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 232{
 233        inst |= (cond << 28);
 234        inst = __opcode_to_mem_arm(inst);
 235
 236        if (ctx->target != NULL)
 237                ctx->target[ctx->idx] = inst;
 238
 239        ctx->idx++;
 240}
 241
 242/*
 243 * Emit an instruction that will be executed unconditionally.
 244 */
 245static inline void emit(u32 inst, struct jit_ctx *ctx)
 246{
 247        _emit(ARM_COND_AL, inst, ctx);
 248}
 249
 250/*
 251 * This is rather horrid, but necessary to convert an integer constant
 252 * to an immediate operand for the opcodes, and be able to detect at
 253 * build time whether the constant can't be converted (iow, usable in
 254 * BUILD_BUG_ON()).
 255 */
 256#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 257#define const_imm8m(x)                                  \
 258        ({ int r;                                       \
 259           u32 v = (x);                                 \
 260           if (!(v & ~0x000000ff))                      \
 261                r = imm12val(v, 0);                     \
 262           else if (!(v & ~0xc000003f))                 \
 263                r = imm12val(v, 2);                     \
 264           else if (!(v & ~0xf000000f))                 \
 265                r = imm12val(v, 4);                     \
 266           else if (!(v & ~0xfc000003))                 \
 267                r = imm12val(v, 6);                     \
 268           else if (!(v & ~0xff000000))                 \
 269                r = imm12val(v, 8);                     \
 270           else if (!(v & ~0x3fc00000))                 \
 271                r = imm12val(v, 10);                    \
 272           else if (!(v & ~0x0ff00000))                 \
 273                r = imm12val(v, 12);                    \
 274           else if (!(v & ~0x03fc0000))                 \
 275                r = imm12val(v, 14);                    \
 276           else if (!(v & ~0x00ff0000))                 \
 277                r = imm12val(v, 16);                    \
 278           else if (!(v & ~0x003fc000))                 \
 279                r = imm12val(v, 18);                    \
 280           else if (!(v & ~0x000ff000))                 \
 281                r = imm12val(v, 20);                    \
 282           else if (!(v & ~0x0003fc00))                 \
 283                r = imm12val(v, 22);                    \
 284           else if (!(v & ~0x0000ff00))                 \
 285                r = imm12val(v, 24);                    \
 286           else if (!(v & ~0x00003fc0))                 \
 287                r = imm12val(v, 26);                    \
 288           else if (!(v & ~0x00000ff0))                 \
 289                r = imm12val(v, 28);                    \
 290           else if (!(v & ~0x000003fc))                 \
 291                r = imm12val(v, 30);                    \
 292           else                                         \
 293                r = -1;                                 \
 294           r; })
 295
 296/*
 297 * Checks if immediate value can be converted to imm12(12 bits) value.
 298 */
 299static int imm8m(u32 x)
 300{
 301        u32 rot;
 302
 303        for (rot = 0; rot < 16; rot++)
 304                if ((x & ~ror32(0xff, 2 * rot)) == 0)
 305                        return rol32(x, 2 * rot) | (rot << 8);
 306        return -1;
 307}
 308
 309#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 310
 311static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 312{
 313        op |= rt << 12 | rn << 16;
 314        if (imm12 >= 0)
 315                op |= ARM_INST_LDST__U;
 316        else
 317                imm12 = -imm12;
 318        return op | (imm12 & ARM_INST_LDST__IMM12);
 319}
 320
 321static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 322{
 323        op |= rt << 12 | rn << 16;
 324        if (imm8 >= 0)
 325                op |= ARM_INST_LDST__U;
 326        else
 327                imm8 = -imm8;
 328        return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 329}
 330
 331#define ARM_LDR_I(rt, rn, off)  arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 332#define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 333#define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 334#define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 335
 336#define ARM_STR_I(rt, rn, off)  arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 337#define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 338#define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 339#define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 340
 341/*
 342 * Initializes the JIT space with undefined instructions.
 343 */
 344static void jit_fill_hole(void *area, unsigned int size)
 345{
 346        u32 *ptr;
 347        /* We are guaranteed to have aligned memory. */
 348        for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 349                *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 350}
 351
 352#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 353/* EABI requires the stack to be aligned to 64-bit boundaries */
 354#define STACK_ALIGNMENT 8
 355#else
 356/* Stack must be aligned to 32-bit boundaries */
 357#define STACK_ALIGNMENT 4
 358#endif
 359
 360/* total stack size used in JITed code */
 361#define _STACK_SIZE     (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 362#define STACK_SIZE      ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 363
 364#if __LINUX_ARM_ARCH__ < 7
 365
 366static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 367{
 368        unsigned int i = 0, offset;
 369        u16 imm;
 370
 371        /* on the "fake" run we just count them (duplicates included) */
 372        if (ctx->target == NULL) {
 373                ctx->imm_count++;
 374                return 0;
 375        }
 376
 377        while ((i < ctx->imm_count) && ctx->imms[i]) {
 378                if (ctx->imms[i] == k)
 379                        break;
 380                i++;
 381        }
 382
 383        if (ctx->imms[i] == 0)
 384                ctx->imms[i] = k;
 385
 386        /* constants go just after the epilogue */
 387        offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 388        offset += ctx->prologue_bytes;
 389        offset += ctx->epilogue_bytes;
 390        offset += i * 4;
 391
 392        ctx->target[offset / 4] = k;
 393
 394        /* PC in ARM mode == address of the instruction + 8 */
 395        imm = offset - (8 + ctx->idx * 4);
 396
 397        if (imm & ~0xfff) {
 398                /*
 399                 * literal pool is too far, signal it into flags. we
 400                 * can only detect it on the second pass unfortunately.
 401                 */
 402                ctx->flags |= FLAG_IMM_OVERFLOW;
 403                return 0;
 404        }
 405
 406        return imm;
 407}
 408
 409#endif /* __LINUX_ARM_ARCH__ */
 410
 411static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 412                                 const struct jit_ctx *ctx) {
 413        int to, from;
 414
 415        if (ctx->target == NULL)
 416                return 0;
 417        to = ctx->offsets[bpf_to];
 418        from = ctx->offsets[bpf_from];
 419
 420        return to - from - 1;
 421}
 422
 423/*
 424 * Move an immediate that's not an imm8m to a core register.
 425 */
 426static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 427{
 428#if __LINUX_ARM_ARCH__ < 7
 429        emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 430#else
 431        emit(ARM_MOVW(rd, val & 0xffff), ctx);
 432        if (val > 0xffff)
 433                emit(ARM_MOVT(rd, val >> 16), ctx);
 434#endif
 435}
 436
 437static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 438{
 439        int imm12 = imm8m(val);
 440
 441        if (imm12 >= 0)
 442                emit(ARM_MOV_I(rd, imm12), ctx);
 443        else
 444                emit_mov_i_no8m(rd, val, ctx);
 445}
 446
 447static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 448{
 449        if (elf_hwcap & HWCAP_THUMB)
 450                emit(ARM_BX(tgt_reg), ctx);
 451        else
 452                emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 453}
 454
 455static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 456{
 457#if __LINUX_ARM_ARCH__ < 5
 458        emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 459        emit_bx_r(tgt_reg, ctx);
 460#else
 461        emit(ARM_BLX_R(tgt_reg), ctx);
 462#endif
 463}
 464
 465static inline int epilogue_offset(const struct jit_ctx *ctx)
 466{
 467        int to, from;
 468        /* No need for 1st dummy run */
 469        if (ctx->target == NULL)
 470                return 0;
 471        to = ctx->epilogue_offset;
 472        from = ctx->idx;
 473
 474        return to - from - 2;
 475}
 476
 477static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 478{
 479        const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
 480        const s8 *tmp = bpf2a32[TMP_REG_1];
 481
 482#if __LINUX_ARM_ARCH__ == 7
 483        if (elf_hwcap & HWCAP_IDIVA) {
 484                if (op == BPF_DIV)
 485                        emit(ARM_UDIV(rd, rm, rn), ctx);
 486                else {
 487                        emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 488                        emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 489                }
 490                return;
 491        }
 492#endif
 493
 494        /*
 495         * For BPF_ALU | BPF_DIV | BPF_K instructions
 496         * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 497         * function, we need to save it on caller side to save
 498         * it from getting destroyed within callee.
 499         * After the return from the callee, we restore ARM_R0
 500         * ARM_R1.
 501         */
 502        if (rn != ARM_R1) {
 503                emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 504                emit(ARM_MOV_R(ARM_R1, rn), ctx);
 505        }
 506        if (rm != ARM_R0) {
 507                emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 508                emit(ARM_MOV_R(ARM_R0, rm), ctx);
 509        }
 510
 511        /* Push caller-saved registers on stack */
 512        emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
 513
 514        /* Call appropriate function */
 515        emit_mov_i(ARM_IP, op == BPF_DIV ?
 516                   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 517        emit_blx_r(ARM_IP, ctx);
 518
 519        /* Restore caller-saved registers from stack */
 520        emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
 521
 522        /* Save return value */
 523        if (rd != ARM_R0)
 524                emit(ARM_MOV_R(rd, ARM_R0), ctx);
 525
 526        /* Restore ARM_R0 and ARM_R1 */
 527        if (rn != ARM_R1)
 528                emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 529        if (rm != ARM_R0)
 530                emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 531}
 532
 533/* Is the translated BPF register on stack? */
 534static bool is_stacked(s8 reg)
 535{
 536        return reg < 0;
 537}
 538
 539/* If a BPF register is on the stack (stk is true), load it to the
 540 * supplied temporary register and return the temporary register
 541 * for subsequent operations, otherwise just use the CPU register.
 542 */
 543static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 544{
 545        if (is_stacked(reg)) {
 546                emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 547                reg = tmp;
 548        }
 549        return reg;
 550}
 551
 552static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 553                                   struct jit_ctx *ctx)
 554{
 555        if (is_stacked(reg[1])) {
 556                if (__LINUX_ARM_ARCH__ >= 6 ||
 557                    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 558                        emit(ARM_LDRD_I(tmp[1], ARM_FP,
 559                                        EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 560                } else {
 561                        emit(ARM_LDR_I(tmp[1], ARM_FP,
 562                                       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 563                        emit(ARM_LDR_I(tmp[0], ARM_FP,
 564                                       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 565                }
 566                reg = tmp;
 567        }
 568        return reg;
 569}
 570
 571/* If a BPF register is on the stack (stk is true), save the register
 572 * back to the stack.  If the source register is not the same, then
 573 * move it into the correct register.
 574 */
 575static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 576{
 577        if (is_stacked(reg))
 578                emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 579        else if (reg != src)
 580                emit(ARM_MOV_R(reg, src), ctx);
 581}
 582
 583static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 584                              struct jit_ctx *ctx)
 585{
 586        if (is_stacked(reg[1])) {
 587                if (__LINUX_ARM_ARCH__ >= 6 ||
 588                    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 589                        emit(ARM_STRD_I(src[1], ARM_FP,
 590                                       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 591                } else {
 592                        emit(ARM_STR_I(src[1], ARM_FP,
 593                                       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 594                        emit(ARM_STR_I(src[0], ARM_FP,
 595                                       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 596                }
 597        } else {
 598                if (reg[1] != src[1])
 599                        emit(ARM_MOV_R(reg[1], src[1]), ctx);
 600                if (reg[0] != src[0])
 601                        emit(ARM_MOV_R(reg[0], src[0]), ctx);
 602        }
 603}
 604
 605static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 606                                  struct jit_ctx *ctx)
 607{
 608        const s8 *tmp = bpf2a32[TMP_REG_1];
 609
 610        if (is_stacked(dst)) {
 611                emit_mov_i(tmp[1], val, ctx);
 612                arm_bpf_put_reg32(dst, tmp[1], ctx);
 613        } else {
 614                emit_mov_i(dst, val, ctx);
 615        }
 616}
 617
 618static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 619{
 620        const s8 *tmp = bpf2a32[TMP_REG_1];
 621        const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 622
 623        emit_mov_i(rd[1], (u32)val, ctx);
 624        emit_mov_i(rd[0], val >> 32, ctx);
 625
 626        arm_bpf_put_reg64(dst, rd, ctx);
 627}
 628
 629/* Sign extended move */
 630static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 631                                       const u32 val, struct jit_ctx *ctx) {
 632        u64 val64 = val;
 633
 634        if (is64 && (val & (1<<31)))
 635                val64 |= 0xffffffff00000000ULL;
 636        emit_a32_mov_i64(dst, val64, ctx);
 637}
 638
 639static inline void emit_a32_add_r(const u8 dst, const u8 src,
 640                              const bool is64, const bool hi,
 641                              struct jit_ctx *ctx) {
 642        /* 64 bit :
 643         *      adds dst_lo, dst_lo, src_lo
 644         *      adc dst_hi, dst_hi, src_hi
 645         * 32 bit :
 646         *      add dst_lo, dst_lo, src_lo
 647         */
 648        if (!hi && is64)
 649                emit(ARM_ADDS_R(dst, dst, src), ctx);
 650        else if (hi && is64)
 651                emit(ARM_ADC_R(dst, dst, src), ctx);
 652        else
 653                emit(ARM_ADD_R(dst, dst, src), ctx);
 654}
 655
 656static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 657                                  const bool is64, const bool hi,
 658                                  struct jit_ctx *ctx) {
 659        /* 64 bit :
 660         *      subs dst_lo, dst_lo, src_lo
 661         *      sbc dst_hi, dst_hi, src_hi
 662         * 32 bit :
 663         *      sub dst_lo, dst_lo, src_lo
 664         */
 665        if (!hi && is64)
 666                emit(ARM_SUBS_R(dst, dst, src), ctx);
 667        else if (hi && is64)
 668                emit(ARM_SBC_R(dst, dst, src), ctx);
 669        else
 670                emit(ARM_SUB_R(dst, dst, src), ctx);
 671}
 672
 673static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 674                              const bool hi, const u8 op, struct jit_ctx *ctx){
 675        switch (BPF_OP(op)) {
 676        /* dst = dst + src */
 677        case BPF_ADD:
 678                emit_a32_add_r(dst, src, is64, hi, ctx);
 679                break;
 680        /* dst = dst - src */
 681        case BPF_SUB:
 682                emit_a32_sub_r(dst, src, is64, hi, ctx);
 683                break;
 684        /* dst = dst | src */
 685        case BPF_OR:
 686                emit(ARM_ORR_R(dst, dst, src), ctx);
 687                break;
 688        /* dst = dst & src */
 689        case BPF_AND:
 690                emit(ARM_AND_R(dst, dst, src), ctx);
 691                break;
 692        /* dst = dst ^ src */
 693        case BPF_XOR:
 694                emit(ARM_EOR_R(dst, dst, src), ctx);
 695                break;
 696        /* dst = dst * src */
 697        case BPF_MUL:
 698                emit(ARM_MUL(dst, dst, src), ctx);
 699                break;
 700        /* dst = dst << src */
 701        case BPF_LSH:
 702                emit(ARM_LSL_R(dst, dst, src), ctx);
 703                break;
 704        /* dst = dst >> src */
 705        case BPF_RSH:
 706                emit(ARM_LSR_R(dst, dst, src), ctx);
 707                break;
 708        /* dst = dst >> src (signed)*/
 709        case BPF_ARSH:
 710                emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 711                break;
 712        }
 713}
 714
 715/* ALU operation (32 bit)
 716 * dst = dst (op) src
 717 */
 718static inline void emit_a32_alu_r(const s8 dst, const s8 src,
 719                                  struct jit_ctx *ctx, const bool is64,
 720                                  const bool hi, const u8 op) {
 721        const s8 *tmp = bpf2a32[TMP_REG_1];
 722        s8 rn, rd;
 723
 724        rn = arm_bpf_get_reg32(src, tmp[1], ctx);
 725        rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 726        /* ALU operation */
 727        emit_alu_r(rd, rn, is64, hi, op, ctx);
 728        arm_bpf_put_reg32(dst, rd, ctx);
 729}
 730
 731/* ALU operation (64 bit) */
 732static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 733                                  const s8 src[], struct jit_ctx *ctx,
 734                                  const u8 op) {
 735        const s8 *tmp = bpf2a32[TMP_REG_1];
 736        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 737        const s8 *rd;
 738
 739        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 740        if (is64) {
 741                const s8 *rs;
 742
 743                rs = arm_bpf_get_reg64(src, tmp2, ctx);
 744
 745                /* ALU operation */
 746                emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 747                emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 748        } else {
 749                s8 rs;
 750
 751                rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 752
 753                /* ALU operation */
 754                emit_alu_r(rd[1], rs, true, false, op, ctx);
 755                if (!ctx->prog->aux->verifier_zext)
 756                        emit_a32_mov_i(rd[0], 0, ctx);
 757        }
 758
 759        arm_bpf_put_reg64(dst, rd, ctx);
 760}
 761
 762/* dst = src (4 bytes)*/
 763static inline void emit_a32_mov_r(const s8 dst, const s8 src,
 764                                  struct jit_ctx *ctx) {
 765        const s8 *tmp = bpf2a32[TMP_REG_1];
 766        s8 rt;
 767
 768        rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 769        arm_bpf_put_reg32(dst, rt, ctx);
 770}
 771
 772/* dst = src */
 773static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 774                                  const s8 src[],
 775                                  struct jit_ctx *ctx) {
 776        if (!is64) {
 777                emit_a32_mov_r(dst_lo, src_lo, ctx);
 778                if (!ctx->prog->aux->verifier_zext)
 779                        /* Zero out high 4 bytes */
 780                        emit_a32_mov_i(dst_hi, 0, ctx);
 781        } else if (__LINUX_ARM_ARCH__ < 6 &&
 782                   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 783                /* complete 8 byte move */
 784                emit_a32_mov_r(dst_lo, src_lo, ctx);
 785                emit_a32_mov_r(dst_hi, src_hi, ctx);
 786        } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 787                const u8 *tmp = bpf2a32[TMP_REG_1];
 788
 789                emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 790                emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 791        } else if (is_stacked(src_lo)) {
 792                emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 793        } else if (is_stacked(dst_lo)) {
 794                emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 795        } else {
 796                emit(ARM_MOV_R(dst[0], src[0]), ctx);
 797                emit(ARM_MOV_R(dst[1], src[1]), ctx);
 798        }
 799}
 800
 801/* Shift operations */
 802static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 803                                struct jit_ctx *ctx, const u8 op) {
 804        const s8 *tmp = bpf2a32[TMP_REG_1];
 805        s8 rd;
 806
 807        rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 808
 809        /* Do shift operation */
 810        switch (op) {
 811        case BPF_LSH:
 812                emit(ARM_LSL_I(rd, rd, val), ctx);
 813                break;
 814        case BPF_RSH:
 815                emit(ARM_LSR_I(rd, rd, val), ctx);
 816                break;
 817        case BPF_ARSH:
 818                emit(ARM_ASR_I(rd, rd, val), ctx);
 819                break;
 820        case BPF_NEG:
 821                emit(ARM_RSB_I(rd, rd, val), ctx);
 822                break;
 823        }
 824
 825        arm_bpf_put_reg32(dst, rd, ctx);
 826}
 827
 828/* dst = ~dst (64 bit) */
 829static inline void emit_a32_neg64(const s8 dst[],
 830                                struct jit_ctx *ctx){
 831        const s8 *tmp = bpf2a32[TMP_REG_1];
 832        const s8 *rd;
 833
 834        /* Setup Operand */
 835        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 836
 837        /* Do Negate Operation */
 838        emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 839        emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 840
 841        arm_bpf_put_reg64(dst, rd, ctx);
 842}
 843
 844/* dst = dst << src */
 845static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 846                                    struct jit_ctx *ctx) {
 847        const s8 *tmp = bpf2a32[TMP_REG_1];
 848        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 849        const s8 *rd;
 850        s8 rt;
 851
 852        /* Setup Operands */
 853        rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 854        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 855
 856        /* Do LSH operation */
 857        emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 858        emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 859        emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 860        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 861        emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 862        emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 863
 864        arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 865        arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 866}
 867
 868/* dst = dst >> src (signed)*/
 869static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
 870                                     struct jit_ctx *ctx) {
 871        const s8 *tmp = bpf2a32[TMP_REG_1];
 872        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 873        const s8 *rd;
 874        s8 rt;
 875
 876        /* Setup Operands */
 877        rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 878        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 879
 880        /* Do the ARSH operation */
 881        emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 882        emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 883        emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 884        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 885        _emit(ARM_COND_PL,
 886              ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
 887        emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
 888
 889        arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 890        arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 891}
 892
 893/* dst = dst >> src */
 894static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
 895                                    struct jit_ctx *ctx) {
 896        const s8 *tmp = bpf2a32[TMP_REG_1];
 897        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 898        const s8 *rd;
 899        s8 rt;
 900
 901        /* Setup Operands */
 902        rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 903        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 904
 905        /* Do RSH operation */
 906        emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 907        emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 908        emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 909        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 910        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
 911        emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
 912
 913        arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 914        arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 915}
 916
 917/* dst = dst << val */
 918static inline void emit_a32_lsh_i64(const s8 dst[],
 919                                    const u32 val, struct jit_ctx *ctx){
 920        const s8 *tmp = bpf2a32[TMP_REG_1];
 921        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 922        const s8 *rd;
 923
 924        /* Setup operands */
 925        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 926
 927        /* Do LSH operation */
 928        if (val < 32) {
 929                emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
 930                emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
 931                emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
 932        } else {
 933                if (val == 32)
 934                        emit(ARM_MOV_R(rd[0], rd[1]), ctx);
 935                else
 936                        emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
 937                emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
 938        }
 939
 940        arm_bpf_put_reg64(dst, rd, ctx);
 941}
 942
 943/* dst = dst >> val */
 944static inline void emit_a32_rsh_i64(const s8 dst[],
 945                                    const u32 val, struct jit_ctx *ctx) {
 946        const s8 *tmp = bpf2a32[TMP_REG_1];
 947        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 948        const s8 *rd;
 949
 950        /* Setup operands */
 951        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 952
 953        /* Do LSR operation */
 954        if (val == 0) {
 955                /* An immediate value of 0 encodes a shift amount of 32
 956                 * for LSR. To shift by 0, don't do anything.
 957                 */
 958        } else if (val < 32) {
 959                emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 960                emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 961                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
 962        } else if (val == 32) {
 963                emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 964                emit(ARM_MOV_I(rd[0], 0), ctx);
 965        } else {
 966                emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
 967                emit(ARM_MOV_I(rd[0], 0), ctx);
 968        }
 969
 970        arm_bpf_put_reg64(dst, rd, ctx);
 971}
 972
 973/* dst = dst >> val (signed) */
 974static inline void emit_a32_arsh_i64(const s8 dst[],
 975                                     const u32 val, struct jit_ctx *ctx){
 976        const s8 *tmp = bpf2a32[TMP_REG_1];
 977        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 978        const s8 *rd;
 979
 980        /* Setup operands */
 981        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 982
 983        /* Do ARSH operation */
 984        if (val == 0) {
 985                /* An immediate value of 0 encodes a shift amount of 32
 986                 * for ASR. To shift by 0, don't do anything.
 987                 */
 988        } else if (val < 32) {
 989                emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 990                emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 991                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
 992        } else if (val == 32) {
 993                emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 994                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 995        } else {
 996                emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
 997                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 998        }
 999
1000        arm_bpf_put_reg64(dst, rd, ctx);
1001}
1002
1003static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1004                                    struct jit_ctx *ctx) {
1005        const s8 *tmp = bpf2a32[TMP_REG_1];
1006        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1007        const s8 *rd, *rt;
1008
1009        /* Setup operands for multiplication */
1010        rd = arm_bpf_get_reg64(dst, tmp, ctx);
1011        rt = arm_bpf_get_reg64(src, tmp2, ctx);
1012
1013        /* Do Multiplication */
1014        emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1015        emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1016        emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1017
1018        emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1019        emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1020
1021        arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1022        arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1023}
1024
1025static bool is_ldst_imm(s16 off, const u8 size)
1026{
1027        s16 off_max = 0;
1028
1029        switch (size) {
1030        case BPF_B:
1031        case BPF_W:
1032                off_max = 0xfff;
1033                break;
1034        case BPF_H:
1035                off_max = 0xff;
1036                break;
1037        case BPF_DW:
1038                /* Need to make sure off+4 does not overflow. */
1039                off_max = 0xfff - 4;
1040                break;
1041        }
1042        return -off_max <= off && off <= off_max;
1043}
1044
1045/* *(size *)(dst + off) = src */
1046static inline void emit_str_r(const s8 dst, const s8 src[],
1047                              s16 off, struct jit_ctx *ctx, const u8 sz){
1048        const s8 *tmp = bpf2a32[TMP_REG_1];
1049        s8 rd;
1050
1051        rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1052
1053        if (!is_ldst_imm(off, sz)) {
1054                emit_a32_mov_i(tmp[0], off, ctx);
1055                emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1056                rd = tmp[0];
1057                off = 0;
1058        }
1059        switch (sz) {
1060        case BPF_B:
1061                /* Store a Byte */
1062                emit(ARM_STRB_I(src_lo, rd, off), ctx);
1063                break;
1064        case BPF_H:
1065                /* Store a HalfWord */
1066                emit(ARM_STRH_I(src_lo, rd, off), ctx);
1067                break;
1068        case BPF_W:
1069                /* Store a Word */
1070                emit(ARM_STR_I(src_lo, rd, off), ctx);
1071                break;
1072        case BPF_DW:
1073                /* Store a Double Word */
1074                emit(ARM_STR_I(src_lo, rd, off), ctx);
1075                emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1076                break;
1077        }
1078}
1079
1080/* dst = *(size*)(src + off) */
1081static inline void emit_ldx_r(const s8 dst[], const s8 src,
1082                              s16 off, struct jit_ctx *ctx, const u8 sz){
1083        const s8 *tmp = bpf2a32[TMP_REG_1];
1084        const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1085        s8 rm = src;
1086
1087        if (!is_ldst_imm(off, sz)) {
1088                emit_a32_mov_i(tmp[0], off, ctx);
1089                emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1090                rm = tmp[0];
1091                off = 0;
1092        } else if (rd[1] == rm) {
1093                emit(ARM_MOV_R(tmp[0], rm), ctx);
1094                rm = tmp[0];
1095        }
1096        switch (sz) {
1097        case BPF_B:
1098                /* Load a Byte */
1099                emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1100                if (!ctx->prog->aux->verifier_zext)
1101                        emit_a32_mov_i(rd[0], 0, ctx);
1102                break;
1103        case BPF_H:
1104                /* Load a HalfWord */
1105                emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1106                if (!ctx->prog->aux->verifier_zext)
1107                        emit_a32_mov_i(rd[0], 0, ctx);
1108                break;
1109        case BPF_W:
1110                /* Load a Word */
1111                emit(ARM_LDR_I(rd[1], rm, off), ctx);
1112                if (!ctx->prog->aux->verifier_zext)
1113                        emit_a32_mov_i(rd[0], 0, ctx);
1114                break;
1115        case BPF_DW:
1116                /* Load a Double Word */
1117                emit(ARM_LDR_I(rd[1], rm, off), ctx);
1118                emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1119                break;
1120        }
1121        arm_bpf_put_reg64(dst, rd, ctx);
1122}
1123
1124/* Arithmatic Operation */
1125static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1126                             const u8 rn, struct jit_ctx *ctx, u8 op,
1127                             bool is_jmp64) {
1128        switch (op) {
1129        case BPF_JSET:
1130                if (is_jmp64) {
1131                        emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1132                        emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1133                        emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1134                } else {
1135                        emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1136                }
1137                break;
1138        case BPF_JEQ:
1139        case BPF_JNE:
1140        case BPF_JGT:
1141        case BPF_JGE:
1142        case BPF_JLE:
1143        case BPF_JLT:
1144                if (is_jmp64) {
1145                        emit(ARM_CMP_R(rd, rm), ctx);
1146                        /* Only compare low halve if high halve are equal. */
1147                        _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1148                } else {
1149                        emit(ARM_CMP_R(rt, rn), ctx);
1150                }
1151                break;
1152        case BPF_JSLE:
1153        case BPF_JSGT:
1154                emit(ARM_CMP_R(rn, rt), ctx);
1155                if (is_jmp64)
1156                        emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1157                break;
1158        case BPF_JSLT:
1159        case BPF_JSGE:
1160                emit(ARM_CMP_R(rt, rn), ctx);
1161                if (is_jmp64)
1162                        emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1163                break;
1164        }
1165}
1166
1167static int out_offset = -1; /* initialized on the first pass of build_body() */
1168static int emit_bpf_tail_call(struct jit_ctx *ctx)
1169{
1170
1171        /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1172        const s8 *r2 = bpf2a32[BPF_REG_2];
1173        const s8 *r3 = bpf2a32[BPF_REG_3];
1174        const s8 *tmp = bpf2a32[TMP_REG_1];
1175        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1176        const s8 *tcc = bpf2a32[TCALL_CNT];
1177        const s8 *tc;
1178        const int idx0 = ctx->idx;
1179#define cur_offset (ctx->idx - idx0)
1180#define jmp_offset (out_offset - (cur_offset) - 2)
1181        u32 lo, hi;
1182        s8 r_array, r_index;
1183        int off;
1184
1185        /* if (index >= array->map.max_entries)
1186         *      goto out;
1187         */
1188        BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1189                     ARM_INST_LDST__IMM12);
1190        off = offsetof(struct bpf_array, map.max_entries);
1191        r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1192        /* index is 32-bit for arrays */
1193        r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1194        /* array->map.max_entries */
1195        emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1196        /* index >= array->map.max_entries */
1197        emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1198        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1199
1200        /* tmp2[0] = array, tmp2[1] = index */
1201
1202        /*
1203         * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1204         *      goto out;
1205         * tail_call_cnt++;
1206         */
1207        lo = (u32)MAX_TAIL_CALL_CNT;
1208        hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1209        tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1210        emit(ARM_CMP_I(tc[0], hi), ctx);
1211        _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1212        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1213        emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1214        emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1215        arm_bpf_put_reg64(tcc, tmp, ctx);
1216
1217        /* prog = array->ptrs[index]
1218         * if (prog == NULL)
1219         *      goto out;
1220         */
1221        BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1222        off = imm8m(offsetof(struct bpf_array, ptrs));
1223        emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1224        emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1225        emit(ARM_CMP_I(tmp[1], 0), ctx);
1226        _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1227
1228        /* goto *(prog->bpf_func + prologue_size); */
1229        BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1230                     ARM_INST_LDST__IMM12);
1231        off = offsetof(struct bpf_prog, bpf_func);
1232        emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1233        emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1234        emit_bx_r(tmp[1], ctx);
1235
1236        /* out: */
1237        if (out_offset == -1)
1238                out_offset = cur_offset;
1239        if (cur_offset != out_offset) {
1240                pr_err_once("tail_call out_offset = %d, expected %d!\n",
1241                            cur_offset, out_offset);
1242                return -1;
1243        }
1244        return 0;
1245#undef cur_offset
1246#undef jmp_offset
1247}
1248
1249/* 0xabcd => 0xcdab */
1250static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1251{
1252#if __LINUX_ARM_ARCH__ < 6
1253        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1254
1255        emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1256        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1257        emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1258        emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1259#else /* ARMv6+ */
1260        emit(ARM_REV16(rd, rn), ctx);
1261#endif
1262}
1263
1264/* 0xabcdefgh => 0xghefcdab */
1265static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1266{
1267#if __LINUX_ARM_ARCH__ < 6
1268        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1269
1270        emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1271        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1272        emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1273
1274        emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1275        emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1276        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1277        emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1278        emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1279        emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1280        emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1281
1282#else /* ARMv6+ */
1283        emit(ARM_REV(rd, rn), ctx);
1284#endif
1285}
1286
1287// push the scratch stack register on top of the stack
1288static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1289{
1290        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1291        const s8 *rt;
1292        u16 reg_set = 0;
1293
1294        rt = arm_bpf_get_reg64(src, tmp2, ctx);
1295
1296        reg_set = (1 << rt[1]) | (1 << rt[0]);
1297        emit(ARM_PUSH(reg_set), ctx);
1298}
1299
1300static void build_prologue(struct jit_ctx *ctx)
1301{
1302        const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1303        const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1304        const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1305        const s8 *tcc = bpf2a32[TCALL_CNT];
1306
1307        /* Save callee saved registers. */
1308#ifdef CONFIG_FRAME_POINTER
1309        u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1310        emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1311        emit(ARM_PUSH(reg_set), ctx);
1312        emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1313#else
1314        emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1315        emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1316#endif
1317        /* mov r3, #0 */
1318        /* sub r2, sp, #SCRATCH_SIZE */
1319        emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1320        emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1321
1322        ctx->stack_size = imm8m(STACK_SIZE);
1323
1324        /* Set up function call stack */
1325        emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1326
1327        /* Set up BPF prog stack base register */
1328        emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1329
1330        /* Initialize Tail Count */
1331        emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1332        emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1333
1334        /* Move BPF_CTX to BPF_R1 */
1335        emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1336
1337        /* end of prologue */
1338}
1339
1340/* restore callee saved registers. */
1341static void build_epilogue(struct jit_ctx *ctx)
1342{
1343#ifdef CONFIG_FRAME_POINTER
1344        /* When using frame pointers, some additional registers need to
1345         * be loaded. */
1346        u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1347        emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1348        emit(ARM_LDM(ARM_SP, reg_set), ctx);
1349#else
1350        /* Restore callee saved registers. */
1351        emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1352        emit(ARM_POP(CALLEE_POP_MASK), ctx);
1353#endif
1354}
1355
1356/*
1357 * Convert an eBPF instruction to native instruction, i.e
1358 * JITs an eBPF instruction.
1359 * Returns :
1360 *      0  - Successfully JITed an 8-byte eBPF instruction
1361 *      >0 - Successfully JITed a 16-byte eBPF instruction
1362 *      <0 - Failed to JIT.
1363 */
1364static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1365{
1366        const u8 code = insn->code;
1367        const s8 *dst = bpf2a32[insn->dst_reg];
1368        const s8 *src = bpf2a32[insn->src_reg];
1369        const s8 *tmp = bpf2a32[TMP_REG_1];
1370        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1371        const s16 off = insn->off;
1372        const s32 imm = insn->imm;
1373        const int i = insn - ctx->prog->insnsi;
1374        const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1375        const s8 *rd, *rs;
1376        s8 rd_lo, rt, rm, rn;
1377        s32 jmp_offset;
1378
1379#define check_imm(bits, imm) do {                               \
1380        if ((imm) >= (1 << ((bits) - 1)) ||                     \
1381            (imm) < -(1 << ((bits) - 1))) {                     \
1382                pr_info("[%2d] imm=%d(0x%x) out of range\n",    \
1383                        i, imm, imm);                           \
1384                return -EINVAL;                                 \
1385        }                                                       \
1386} while (0)
1387#define check_imm24(imm) check_imm(24, imm)
1388
1389        switch (code) {
1390        /* ALU operations */
1391
1392        /* dst = src */
1393        case BPF_ALU | BPF_MOV | BPF_K:
1394        case BPF_ALU | BPF_MOV | BPF_X:
1395        case BPF_ALU64 | BPF_MOV | BPF_K:
1396        case BPF_ALU64 | BPF_MOV | BPF_X:
1397                switch (BPF_SRC(code)) {
1398                case BPF_X:
1399                        if (imm == 1) {
1400                                /* Special mov32 for zext */
1401                                emit_a32_mov_i(dst_hi, 0, ctx);
1402                                break;
1403                        }
1404                        emit_a32_mov_r64(is64, dst, src, ctx);
1405                        break;
1406                case BPF_K:
1407                        /* Sign-extend immediate value to destination reg */
1408                        emit_a32_mov_se_i64(is64, dst, imm, ctx);
1409                        break;
1410                }
1411                break;
1412        /* dst = dst + src/imm */
1413        /* dst = dst - src/imm */
1414        /* dst = dst | src/imm */
1415        /* dst = dst & src/imm */
1416        /* dst = dst ^ src/imm */
1417        /* dst = dst * src/imm */
1418        /* dst = dst << src */
1419        /* dst = dst >> src */
1420        case BPF_ALU | BPF_ADD | BPF_K:
1421        case BPF_ALU | BPF_ADD | BPF_X:
1422        case BPF_ALU | BPF_SUB | BPF_K:
1423        case BPF_ALU | BPF_SUB | BPF_X:
1424        case BPF_ALU | BPF_OR | BPF_K:
1425        case BPF_ALU | BPF_OR | BPF_X:
1426        case BPF_ALU | BPF_AND | BPF_K:
1427        case BPF_ALU | BPF_AND | BPF_X:
1428        case BPF_ALU | BPF_XOR | BPF_K:
1429        case BPF_ALU | BPF_XOR | BPF_X:
1430        case BPF_ALU | BPF_MUL | BPF_K:
1431        case BPF_ALU | BPF_MUL | BPF_X:
1432        case BPF_ALU | BPF_LSH | BPF_X:
1433        case BPF_ALU | BPF_RSH | BPF_X:
1434        case BPF_ALU | BPF_ARSH | BPF_X:
1435        case BPF_ALU64 | BPF_ADD | BPF_K:
1436        case BPF_ALU64 | BPF_ADD | BPF_X:
1437        case BPF_ALU64 | BPF_SUB | BPF_K:
1438        case BPF_ALU64 | BPF_SUB | BPF_X:
1439        case BPF_ALU64 | BPF_OR | BPF_K:
1440        case BPF_ALU64 | BPF_OR | BPF_X:
1441        case BPF_ALU64 | BPF_AND | BPF_K:
1442        case BPF_ALU64 | BPF_AND | BPF_X:
1443        case BPF_ALU64 | BPF_XOR | BPF_K:
1444        case BPF_ALU64 | BPF_XOR | BPF_X:
1445                switch (BPF_SRC(code)) {
1446                case BPF_X:
1447                        emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1448                        break;
1449                case BPF_K:
1450                        /* Move immediate value to the temporary register
1451                         * and then do the ALU operation on the temporary
1452                         * register as this will sign-extend the immediate
1453                         * value into temporary reg and then it would be
1454                         * safe to do the operation on it.
1455                         */
1456                        emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1457                        emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1458                        break;
1459                }
1460                break;
1461        /* dst = dst / src(imm) */
1462        /* dst = dst % src(imm) */
1463        case BPF_ALU | BPF_DIV | BPF_K:
1464        case BPF_ALU | BPF_DIV | BPF_X:
1465        case BPF_ALU | BPF_MOD | BPF_K:
1466        case BPF_ALU | BPF_MOD | BPF_X:
1467                rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1468                switch (BPF_SRC(code)) {
1469                case BPF_X:
1470                        rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1471                        break;
1472                case BPF_K:
1473                        rt = tmp2[0];
1474                        emit_a32_mov_i(rt, imm, ctx);
1475                        break;
1476                default:
1477                        rt = src_lo;
1478                        break;
1479                }
1480                emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1481                arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1482                if (!ctx->prog->aux->verifier_zext)
1483                        emit_a32_mov_i(dst_hi, 0, ctx);
1484                break;
1485        case BPF_ALU64 | BPF_DIV | BPF_K:
1486        case BPF_ALU64 | BPF_DIV | BPF_X:
1487        case BPF_ALU64 | BPF_MOD | BPF_K:
1488        case BPF_ALU64 | BPF_MOD | BPF_X:
1489                goto notyet;
1490        /* dst = dst << imm */
1491        /* dst = dst >> imm */
1492        /* dst = dst >> imm (signed) */
1493        case BPF_ALU | BPF_LSH | BPF_K:
1494        case BPF_ALU | BPF_RSH | BPF_K:
1495        case BPF_ALU | BPF_ARSH | BPF_K:
1496                if (unlikely(imm > 31))
1497                        return -EINVAL;
1498                if (imm)
1499                        emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1500                if (!ctx->prog->aux->verifier_zext)
1501                        emit_a32_mov_i(dst_hi, 0, ctx);
1502                break;
1503        /* dst = dst << imm */
1504        case BPF_ALU64 | BPF_LSH | BPF_K:
1505                if (unlikely(imm > 63))
1506                        return -EINVAL;
1507                emit_a32_lsh_i64(dst, imm, ctx);
1508                break;
1509        /* dst = dst >> imm */
1510        case BPF_ALU64 | BPF_RSH | BPF_K:
1511                if (unlikely(imm > 63))
1512                        return -EINVAL;
1513                emit_a32_rsh_i64(dst, imm, ctx);
1514                break;
1515        /* dst = dst << src */
1516        case BPF_ALU64 | BPF_LSH | BPF_X:
1517                emit_a32_lsh_r64(dst, src, ctx);
1518                break;
1519        /* dst = dst >> src */
1520        case BPF_ALU64 | BPF_RSH | BPF_X:
1521                emit_a32_rsh_r64(dst, src, ctx);
1522                break;
1523        /* dst = dst >> src (signed) */
1524        case BPF_ALU64 | BPF_ARSH | BPF_X:
1525                emit_a32_arsh_r64(dst, src, ctx);
1526                break;
1527        /* dst = dst >> imm (signed) */
1528        case BPF_ALU64 | BPF_ARSH | BPF_K:
1529                if (unlikely(imm > 63))
1530                        return -EINVAL;
1531                emit_a32_arsh_i64(dst, imm, ctx);
1532                break;
1533        /* dst = ~dst */
1534        case BPF_ALU | BPF_NEG:
1535                emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1536                if (!ctx->prog->aux->verifier_zext)
1537                        emit_a32_mov_i(dst_hi, 0, ctx);
1538                break;
1539        /* dst = ~dst (64 bit) */
1540        case BPF_ALU64 | BPF_NEG:
1541                emit_a32_neg64(dst, ctx);
1542                break;
1543        /* dst = dst * src/imm */
1544        case BPF_ALU64 | BPF_MUL | BPF_X:
1545        case BPF_ALU64 | BPF_MUL | BPF_K:
1546                switch (BPF_SRC(code)) {
1547                case BPF_X:
1548                        emit_a32_mul_r64(dst, src, ctx);
1549                        break;
1550                case BPF_K:
1551                        /* Move immediate value to the temporary register
1552                         * and then do the multiplication on it as this
1553                         * will sign-extend the immediate value into temp
1554                         * reg then it would be safe to do the operation
1555                         * on it.
1556                         */
1557                        emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1558                        emit_a32_mul_r64(dst, tmp2, ctx);
1559                        break;
1560                }
1561                break;
1562        /* dst = htole(dst) */
1563        /* dst = htobe(dst) */
1564        case BPF_ALU | BPF_END | BPF_FROM_LE:
1565        case BPF_ALU | BPF_END | BPF_FROM_BE:
1566                rd = arm_bpf_get_reg64(dst, tmp, ctx);
1567                if (BPF_SRC(code) == BPF_FROM_LE)
1568                        goto emit_bswap_uxt;
1569                switch (imm) {
1570                case 16:
1571                        emit_rev16(rd[1], rd[1], ctx);
1572                        goto emit_bswap_uxt;
1573                case 32:
1574                        emit_rev32(rd[1], rd[1], ctx);
1575                        goto emit_bswap_uxt;
1576                case 64:
1577                        emit_rev32(ARM_LR, rd[1], ctx);
1578                        emit_rev32(rd[1], rd[0], ctx);
1579                        emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1580                        break;
1581                }
1582                goto exit;
1583emit_bswap_uxt:
1584                switch (imm) {
1585                case 16:
1586                        /* zero-extend 16 bits into 64 bits */
1587#if __LINUX_ARM_ARCH__ < 6
1588                        emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1589                        emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1590#else /* ARMv6+ */
1591                        emit(ARM_UXTH(rd[1], rd[1]), ctx);
1592#endif
1593                        if (!ctx->prog->aux->verifier_zext)
1594                                emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1595                        break;
1596                case 32:
1597                        /* zero-extend 32 bits into 64 bits */
1598                        if (!ctx->prog->aux->verifier_zext)
1599                                emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1600                        break;
1601                case 64:
1602                        /* nop */
1603                        break;
1604                }
1605exit:
1606                arm_bpf_put_reg64(dst, rd, ctx);
1607                break;
1608        /* dst = imm64 */
1609        case BPF_LD | BPF_IMM | BPF_DW:
1610        {
1611                u64 val = (u32)imm | (u64)insn[1].imm << 32;
1612
1613                emit_a32_mov_i64(dst, val, ctx);
1614
1615                return 1;
1616        }
1617        /* LDX: dst = *(size *)(src + off) */
1618        case BPF_LDX | BPF_MEM | BPF_W:
1619        case BPF_LDX | BPF_MEM | BPF_H:
1620        case BPF_LDX | BPF_MEM | BPF_B:
1621        case BPF_LDX | BPF_MEM | BPF_DW:
1622                rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1623                emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1624                break;
1625        /* speculation barrier */
1626        case BPF_ST | BPF_NOSPEC:
1627                break;
1628        /* ST: *(size *)(dst + off) = imm */
1629        case BPF_ST | BPF_MEM | BPF_W:
1630        case BPF_ST | BPF_MEM | BPF_H:
1631        case BPF_ST | BPF_MEM | BPF_B:
1632        case BPF_ST | BPF_MEM | BPF_DW:
1633                switch (BPF_SIZE(code)) {
1634                case BPF_DW:
1635                        /* Sign-extend immediate value into temp reg */
1636                        emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1637                        break;
1638                case BPF_W:
1639                case BPF_H:
1640                case BPF_B:
1641                        emit_a32_mov_i(tmp2[1], imm, ctx);
1642                        break;
1643                }
1644                emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1645                break;
1646        /* Atomic ops */
1647        case BPF_STX | BPF_ATOMIC | BPF_W:
1648        case BPF_STX | BPF_ATOMIC | BPF_DW:
1649                goto notyet;
1650        /* STX: *(size *)(dst + off) = src */
1651        case BPF_STX | BPF_MEM | BPF_W:
1652        case BPF_STX | BPF_MEM | BPF_H:
1653        case BPF_STX | BPF_MEM | BPF_B:
1654        case BPF_STX | BPF_MEM | BPF_DW:
1655                rs = arm_bpf_get_reg64(src, tmp2, ctx);
1656                emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1657                break;
1658        /* PC += off if dst == src */
1659        /* PC += off if dst > src */
1660        /* PC += off if dst >= src */
1661        /* PC += off if dst < src */
1662        /* PC += off if dst <= src */
1663        /* PC += off if dst != src */
1664        /* PC += off if dst > src (signed) */
1665        /* PC += off if dst >= src (signed) */
1666        /* PC += off if dst < src (signed) */
1667        /* PC += off if dst <= src (signed) */
1668        /* PC += off if dst & src */
1669        case BPF_JMP | BPF_JEQ | BPF_X:
1670        case BPF_JMP | BPF_JGT | BPF_X:
1671        case BPF_JMP | BPF_JGE | BPF_X:
1672        case BPF_JMP | BPF_JNE | BPF_X:
1673        case BPF_JMP | BPF_JSGT | BPF_X:
1674        case BPF_JMP | BPF_JSGE | BPF_X:
1675        case BPF_JMP | BPF_JSET | BPF_X:
1676        case BPF_JMP | BPF_JLE | BPF_X:
1677        case BPF_JMP | BPF_JLT | BPF_X:
1678        case BPF_JMP | BPF_JSLT | BPF_X:
1679        case BPF_JMP | BPF_JSLE | BPF_X:
1680        case BPF_JMP32 | BPF_JEQ | BPF_X:
1681        case BPF_JMP32 | BPF_JGT | BPF_X:
1682        case BPF_JMP32 | BPF_JGE | BPF_X:
1683        case BPF_JMP32 | BPF_JNE | BPF_X:
1684        case BPF_JMP32 | BPF_JSGT | BPF_X:
1685        case BPF_JMP32 | BPF_JSGE | BPF_X:
1686        case BPF_JMP32 | BPF_JSET | BPF_X:
1687        case BPF_JMP32 | BPF_JLE | BPF_X:
1688        case BPF_JMP32 | BPF_JLT | BPF_X:
1689        case BPF_JMP32 | BPF_JSLT | BPF_X:
1690        case BPF_JMP32 | BPF_JSLE | BPF_X:
1691                /* Setup source registers */
1692                rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1693                rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1694                goto go_jmp;
1695        /* PC += off if dst == imm */
1696        /* PC += off if dst > imm */
1697        /* PC += off if dst >= imm */
1698        /* PC += off if dst < imm */
1699        /* PC += off if dst <= imm */
1700        /* PC += off if dst != imm */
1701        /* PC += off if dst > imm (signed) */
1702        /* PC += off if dst >= imm (signed) */
1703        /* PC += off if dst < imm (signed) */
1704        /* PC += off if dst <= imm (signed) */
1705        /* PC += off if dst & imm */
1706        case BPF_JMP | BPF_JEQ | BPF_K:
1707        case BPF_JMP | BPF_JGT | BPF_K:
1708        case BPF_JMP | BPF_JGE | BPF_K:
1709        case BPF_JMP | BPF_JNE | BPF_K:
1710        case BPF_JMP | BPF_JSGT | BPF_K:
1711        case BPF_JMP | BPF_JSGE | BPF_K:
1712        case BPF_JMP | BPF_JSET | BPF_K:
1713        case BPF_JMP | BPF_JLT | BPF_K:
1714        case BPF_JMP | BPF_JLE | BPF_K:
1715        case BPF_JMP | BPF_JSLT | BPF_K:
1716        case BPF_JMP | BPF_JSLE | BPF_K:
1717        case BPF_JMP32 | BPF_JEQ | BPF_K:
1718        case BPF_JMP32 | BPF_JGT | BPF_K:
1719        case BPF_JMP32 | BPF_JGE | BPF_K:
1720        case BPF_JMP32 | BPF_JNE | BPF_K:
1721        case BPF_JMP32 | BPF_JSGT | BPF_K:
1722        case BPF_JMP32 | BPF_JSGE | BPF_K:
1723        case BPF_JMP32 | BPF_JSET | BPF_K:
1724        case BPF_JMP32 | BPF_JLT | BPF_K:
1725        case BPF_JMP32 | BPF_JLE | BPF_K:
1726        case BPF_JMP32 | BPF_JSLT | BPF_K:
1727        case BPF_JMP32 | BPF_JSLE | BPF_K:
1728                if (off == 0)
1729                        break;
1730                rm = tmp2[0];
1731                rn = tmp2[1];
1732                /* Sign-extend immediate value */
1733                emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1734go_jmp:
1735                /* Setup destination register */
1736                rd = arm_bpf_get_reg64(dst, tmp, ctx);
1737
1738                /* Check for the condition */
1739                emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1740                          BPF_CLASS(code) == BPF_JMP);
1741
1742                /* Setup JUMP instruction */
1743                jmp_offset = bpf2a32_offset(i+off, i, ctx);
1744                switch (BPF_OP(code)) {
1745                case BPF_JNE:
1746                case BPF_JSET:
1747                        _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1748                        break;
1749                case BPF_JEQ:
1750                        _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1751                        break;
1752                case BPF_JGT:
1753                        _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1754                        break;
1755                case BPF_JGE:
1756                        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1757                        break;
1758                case BPF_JSGT:
1759                        _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1760                        break;
1761                case BPF_JSGE:
1762                        _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1763                        break;
1764                case BPF_JLE:
1765                        _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1766                        break;
1767                case BPF_JLT:
1768                        _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1769                        break;
1770                case BPF_JSLT:
1771                        _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1772                        break;
1773                case BPF_JSLE:
1774                        _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1775                        break;
1776                }
1777                break;
1778        /* JMP OFF */
1779        case BPF_JMP | BPF_JA:
1780        {
1781                if (off == 0)
1782                        break;
1783                jmp_offset = bpf2a32_offset(i+off, i, ctx);
1784                check_imm24(jmp_offset);
1785                emit(ARM_B(jmp_offset), ctx);
1786                break;
1787        }
1788        /* tail call */
1789        case BPF_JMP | BPF_TAIL_CALL:
1790                if (emit_bpf_tail_call(ctx))
1791                        return -EFAULT;
1792                break;
1793        /* function call */
1794        case BPF_JMP | BPF_CALL:
1795        {
1796                const s8 *r0 = bpf2a32[BPF_REG_0];
1797                const s8 *r1 = bpf2a32[BPF_REG_1];
1798                const s8 *r2 = bpf2a32[BPF_REG_2];
1799                const s8 *r3 = bpf2a32[BPF_REG_3];
1800                const s8 *r4 = bpf2a32[BPF_REG_4];
1801                const s8 *r5 = bpf2a32[BPF_REG_5];
1802                const u32 func = (u32)__bpf_call_base + (u32)imm;
1803
1804                emit_a32_mov_r64(true, r0, r1, ctx);
1805                emit_a32_mov_r64(true, r1, r2, ctx);
1806                emit_push_r64(r5, ctx);
1807                emit_push_r64(r4, ctx);
1808                emit_push_r64(r3, ctx);
1809
1810                emit_a32_mov_i(tmp[1], func, ctx);
1811                emit_blx_r(tmp[1], ctx);
1812
1813                emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1814                break;
1815        }
1816        /* function return */
1817        case BPF_JMP | BPF_EXIT:
1818                /* Optimization: when last instruction is EXIT
1819                 * simply fallthrough to epilogue.
1820                 */
1821                if (i == ctx->prog->len - 1)
1822                        break;
1823                jmp_offset = epilogue_offset(ctx);
1824                check_imm24(jmp_offset);
1825                emit(ARM_B(jmp_offset), ctx);
1826                break;
1827notyet:
1828                pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1829                return -EFAULT;
1830        default:
1831                pr_err_once("unknown opcode %02x\n", code);
1832                return -EINVAL;
1833        }
1834
1835        if (ctx->flags & FLAG_IMM_OVERFLOW)
1836                /*
1837                 * this instruction generated an overflow when
1838                 * trying to access the literal pool, so
1839                 * delegate this filter to the kernel interpreter.
1840                 */
1841                return -1;
1842        return 0;
1843}
1844
1845static int build_body(struct jit_ctx *ctx)
1846{
1847        const struct bpf_prog *prog = ctx->prog;
1848        unsigned int i;
1849
1850        for (i = 0; i < prog->len; i++) {
1851                const struct bpf_insn *insn = &(prog->insnsi[i]);
1852                int ret;
1853
1854                ret = build_insn(insn, ctx);
1855
1856                /* It's used with loading the 64 bit immediate value. */
1857                if (ret > 0) {
1858                        i++;
1859                        if (ctx->target == NULL)
1860                                ctx->offsets[i] = ctx->idx;
1861                        continue;
1862                }
1863
1864                if (ctx->target == NULL)
1865                        ctx->offsets[i] = ctx->idx;
1866
1867                /* If unsuccesfull, return with error code */
1868                if (ret)
1869                        return ret;
1870        }
1871        return 0;
1872}
1873
1874static int validate_code(struct jit_ctx *ctx)
1875{
1876        int i;
1877
1878        for (i = 0; i < ctx->idx; i++) {
1879                if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1880                        return -1;
1881        }
1882
1883        return 0;
1884}
1885
1886bool bpf_jit_needs_zext(void)
1887{
1888        return true;
1889}
1890
1891struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1892{
1893        struct bpf_prog *tmp, *orig_prog = prog;
1894        struct bpf_binary_header *header;
1895        bool tmp_blinded = false;
1896        struct jit_ctx ctx;
1897        unsigned int tmp_idx;
1898        unsigned int image_size;
1899        u8 *image_ptr;
1900
1901        /* If BPF JIT was not enabled then we must fall back to
1902         * the interpreter.
1903         */
1904        if (!prog->jit_requested)
1905                return orig_prog;
1906
1907        /* If constant blinding was enabled and we failed during blinding
1908         * then we must fall back to the interpreter. Otherwise, we save
1909         * the new JITed code.
1910         */
1911        tmp = bpf_jit_blind_constants(prog);
1912
1913        if (IS_ERR(tmp))
1914                return orig_prog;
1915        if (tmp != prog) {
1916                tmp_blinded = true;
1917                prog = tmp;
1918        }
1919
1920        memset(&ctx, 0, sizeof(ctx));
1921        ctx.prog = prog;
1922        ctx.cpu_architecture = cpu_architecture();
1923
1924        /* Not able to allocate memory for offsets[] , then
1925         * we must fall back to the interpreter
1926         */
1927        ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1928        if (ctx.offsets == NULL) {
1929                prog = orig_prog;
1930                goto out;
1931        }
1932
1933        /* 1) fake pass to find in the length of the JITed code,
1934         * to compute ctx->offsets and other context variables
1935         * needed to compute final JITed code.
1936         * Also, calculate random starting pointer/start of JITed code
1937         * which is prefixed by random number of fault instructions.
1938         *
1939         * If the first pass fails then there is no chance of it
1940         * being successful in the second pass, so just fall back
1941         * to the interpreter.
1942         */
1943        if (build_body(&ctx)) {
1944                prog = orig_prog;
1945                goto out_off;
1946        }
1947
1948        tmp_idx = ctx.idx;
1949        build_prologue(&ctx);
1950        ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1951
1952        ctx.epilogue_offset = ctx.idx;
1953
1954#if __LINUX_ARM_ARCH__ < 7
1955        tmp_idx = ctx.idx;
1956        build_epilogue(&ctx);
1957        ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1958
1959        ctx.idx += ctx.imm_count;
1960        if (ctx.imm_count) {
1961                ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1962                if (ctx.imms == NULL) {
1963                        prog = orig_prog;
1964                        goto out_off;
1965                }
1966        }
1967#else
1968        /* there's nothing about the epilogue on ARMv7 */
1969        build_epilogue(&ctx);
1970#endif
1971        /* Now we can get the actual image size of the JITed arm code.
1972         * Currently, we are not considering the THUMB-2 instructions
1973         * for jit, although it can decrease the size of the image.
1974         *
1975         * As each arm instruction is of length 32bit, we are translating
1976         * number of JITed intructions into the size required to store these
1977         * JITed code.
1978         */
1979        image_size = sizeof(u32) * ctx.idx;
1980
1981        /* Now we know the size of the structure to make */
1982        header = bpf_jit_binary_alloc(image_size, &image_ptr,
1983                                      sizeof(u32), jit_fill_hole);
1984        /* Not able to allocate memory for the structure then
1985         * we must fall back to the interpretation
1986         */
1987        if (header == NULL) {
1988                prog = orig_prog;
1989                goto out_imms;
1990        }
1991
1992        /* 2.) Actual pass to generate final JIT code */
1993        ctx.target = (u32 *) image_ptr;
1994        ctx.idx = 0;
1995
1996        build_prologue(&ctx);
1997
1998        /* If building the body of the JITed code fails somehow,
1999         * we fall back to the interpretation.
2000         */
2001        if (build_body(&ctx) < 0) {
2002                image_ptr = NULL;
2003                bpf_jit_binary_free(header);
2004                prog = orig_prog;
2005                goto out_imms;
2006        }
2007        build_epilogue(&ctx);
2008
2009        /* 3.) Extra pass to validate JITed Code */
2010        if (validate_code(&ctx)) {
2011                image_ptr = NULL;
2012                bpf_jit_binary_free(header);
2013                prog = orig_prog;
2014                goto out_imms;
2015        }
2016        flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2017
2018        if (bpf_jit_enable > 1)
2019                /* there are 2 passes here */
2020                bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2021
2022        bpf_jit_binary_lock_ro(header);
2023        prog->bpf_func = (void *)ctx.target;
2024        prog->jited = 1;
2025        prog->jited_len = image_size;
2026
2027out_imms:
2028#if __LINUX_ARM_ARCH__ < 7
2029        if (ctx.imm_count)
2030                kfree(ctx.imms);
2031#endif
2032out_off:
2033        kfree(ctx.offsets);
2034out:
2035        if (tmp_blinded)
2036                bpf_jit_prog_release_other(prog, prog == orig_prog ?
2037                                           tmp : orig_prog);
2038        return prog;
2039}
2040
2041