linux/arch/ia64/lib/copy_page_mck.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * McKinley-optimized version of copy_page().
   4 *
   5 * Copyright (C) 2002 Hewlett-Packard Co
   6 *      David Mosberger <davidm@hpl.hp.com>
   7 *
   8 * Inputs:
   9 *      in0:    address of target page
  10 *      in1:    address of source page
  11 * Output:
  12 *      no return value
  13 *
  14 * General idea:
  15 *      - use regular loads and stores to prefetch data to avoid consuming M-slot just for
  16 *        lfetches => good for in-cache performance
  17 *      - avoid l2 bank-conflicts by not storing into the same 16-byte bank within a single
  18 *        cycle
  19 *
  20 * Principle of operation:
  21 *      First, note that L1 has a line-size of 64 bytes and L2 a line-size of 128 bytes.
  22 *      To avoid secondary misses in L2, we prefetch both source and destination with a line-size
  23 *      of 128 bytes.  When both of these lines are in the L2 and the first half of the
  24 *      source line is in L1, we start copying the remaining words.  The second half of the
  25 *      source line is prefetched in an earlier iteration, so that by the time we start
  26 *      accessing it, it's also present in the L1.
  27 *
  28 *      We use a software-pipelined loop to control the overall operation.  The pipeline
  29 *      has 2*PREFETCH_DIST+K stages.  The first PREFETCH_DIST stages are used for prefetching
  30 *      source cache-lines.  The second PREFETCH_DIST stages are used for prefetching destination
  31 *      cache-lines, the last K stages are used to copy the cache-line words not copied by
  32 *      the prefetches.  The four relevant points in the pipelined are called A, B, C, D:
  33 *      p[A] is TRUE if a source-line should be prefetched, p[B] is TRUE if a destination-line
  34 *      should be prefetched, p[C] is TRUE if the second half of an L2 line should be brought
  35 *      into L1D and p[D] is TRUE if a cacheline needs to be copied.
  36 *
  37 *      This all sounds very complicated, but thanks to the modulo-scheduled loop support,
  38 *      the resulting code is very regular and quite easy to follow (once you get the idea).
  39 *
  40 *      As a secondary optimization, the first 2*PREFETCH_DIST iterations are implemented
  41 *      as the separate .prefetch_loop.  Logically, this loop performs exactly like the
  42 *      main-loop (.line_copy), but has all known-to-be-predicated-off instructions removed,
  43 *      so that each loop iteration is faster (again, good for cached case).
  44 *
  45 *      When reading the code, it helps to keep the following picture in mind:
  46 *
  47 *             word 0 word 1
  48 *            +------+------+---
  49 *            | v[x] |  t1  | ^
  50 *            | t2   |  t3  | |
  51 *            | t4   |  t5  | |
  52 *            | t6   |  t7  | | 128 bytes
  53 *            | n[y] |  t9  | | (L2 cache line)
  54 *            | t10  |  t11 | |
  55 *            | t12  |  t13 | |
  56 *            | t14  |  t15 | v
  57 *            +------+------+---
  58 *
  59 *      Here, v[x] is copied by the (memory) prefetch.  n[y] is loaded at p[C]
  60 *      to fetch the second-half of the L2 cache line into L1, and the tX words are copied in
  61 *      an order that avoids bank conflicts.
  62 */
  63#include <asm/asmmacro.h>
  64#include <asm/page.h>
  65#include <asm/export.h>
  66
  67#define PREFETCH_DIST   8               // McKinley sustains 16 outstanding L2 misses (8 ld, 8 st)
  68
  69#define src0            r2
  70#define src1            r3
  71#define dst0            r9
  72#define dst1            r10
  73#define src_pre_mem     r11
  74#define dst_pre_mem     r14
  75#define src_pre_l2      r15
  76#define dst_pre_l2      r16
  77#define t1              r17
  78#define t2              r18
  79#define t3              r19
  80#define t4              r20
  81#define t5              t1      // alias!
  82#define t6              t2      // alias!
  83#define t7              t3      // alias!
  84#define t9              t5      // alias!
  85#define t10             t4      // alias!
  86#define t11             t7      // alias!
  87#define t12             t6      // alias!
  88#define t14             t10     // alias!
  89#define t13             r21
  90#define t15             r22
  91
  92#define saved_lc        r23
  93#define saved_pr        r24
  94
  95#define A       0
  96#define B       (PREFETCH_DIST)
  97#define C       (B + PREFETCH_DIST)
  98#define D       (C + 3)
  99#define N       (D + 1)
 100#define Nrot    ((N + 7) & ~7)
 101
 102GLOBAL_ENTRY(copy_page)
 103        .prologue
 104        alloc r8 = ar.pfs, 2, Nrot-2, 0, Nrot
 105
 106        .rotr v[2*PREFETCH_DIST], n[D-C+1]
 107        .rotp p[N]
 108
 109        .save ar.lc, saved_lc
 110        mov saved_lc = ar.lc
 111        .save pr, saved_pr
 112        mov saved_pr = pr
 113        .body
 114
 115        mov src_pre_mem = in1
 116        mov pr.rot = 0x10000
 117        mov ar.ec = 1                           // special unrolled loop
 118
 119        mov dst_pre_mem = in0
 120        mov ar.lc = 2*PREFETCH_DIST - 1
 121
 122        add src_pre_l2 = 8*8, in1
 123        add dst_pre_l2 = 8*8, in0
 124        add src0 = 8, in1                       // first t1 src
 125        add src1 = 3*8, in1                     // first t3 src
 126        add dst0 = 8, in0                       // first t1 dst
 127        add dst1 = 3*8, in0                     // first t3 dst
 128        mov t1 = (PAGE_SIZE/128) - (2*PREFETCH_DIST) - 1
 129        nop.m 0
 130        nop.i 0
 131        ;;
 132        // same as .line_copy loop, but with all predicated-off instructions removed:
 133.prefetch_loop:
 134(p[A])  ld8 v[A] = [src_pre_mem], 128           // M0
 135(p[B])  st8 [dst_pre_mem] = v[B], 128           // M2
 136        br.ctop.sptk .prefetch_loop
 137        ;;
 138        cmp.eq p16, p0 = r0, r0                 // reset p16 to 1 (br.ctop cleared it to zero)
 139        mov ar.lc = t1                          // with 64KB pages, t1 is too big to fit in 8 bits!
 140        mov ar.ec = N                           // # of stages in pipeline
 141        ;;
 142.line_copy:
 143(p[D])  ld8 t2 = [src0], 3*8                    // M0
 144(p[D])  ld8 t4 = [src1], 3*8                    // M1
 145(p[B])  st8 [dst_pre_mem] = v[B], 128           // M2 prefetch dst from memory
 146(p[D])  st8 [dst_pre_l2] = n[D-C], 128          // M3 prefetch dst from L2
 147        ;;
 148(p[A])  ld8 v[A] = [src_pre_mem], 128           // M0 prefetch src from memory
 149(p[C])  ld8 n[0] = [src_pre_l2], 128            // M1 prefetch src from L2
 150(p[D])  st8 [dst0] =  t1, 8                     // M2
 151(p[D])  st8 [dst1] =  t3, 8                     // M3
 152        ;;
 153(p[D])  ld8  t5 = [src0], 8
 154(p[D])  ld8  t7 = [src1], 3*8
 155(p[D])  st8 [dst0] =  t2, 3*8
 156(p[D])  st8 [dst1] =  t4, 3*8
 157        ;;
 158(p[D])  ld8  t6 = [src0], 3*8
 159(p[D])  ld8 t10 = [src1], 8
 160(p[D])  st8 [dst0] =  t5, 8
 161(p[D])  st8 [dst1] =  t7, 3*8
 162        ;;
 163(p[D])  ld8  t9 = [src0], 3*8
 164(p[D])  ld8 t11 = [src1], 3*8
 165(p[D])  st8 [dst0] =  t6, 3*8
 166(p[D])  st8 [dst1] = t10, 8
 167        ;;
 168(p[D])  ld8 t12 = [src0], 8
 169(p[D])  ld8 t14 = [src1], 8
 170(p[D])  st8 [dst0] =  t9, 3*8
 171(p[D])  st8 [dst1] = t11, 3*8
 172        ;;
 173(p[D])  ld8 t13 = [src0], 4*8
 174(p[D])  ld8 t15 = [src1], 4*8
 175(p[D])  st8 [dst0] = t12, 8
 176(p[D])  st8 [dst1] = t14, 8
 177        ;;
 178(p[D-1])ld8  t1 = [src0], 8
 179(p[D-1])ld8  t3 = [src1], 8
 180(p[D])  st8 [dst0] = t13, 4*8
 181(p[D])  st8 [dst1] = t15, 4*8
 182        br.ctop.sptk .line_copy
 183        ;;
 184        mov ar.lc = saved_lc
 185        mov pr = saved_pr, -1
 186        br.ret.sptk.many rp
 187END(copy_page)
 188EXPORT_SYMBOL(copy_page)
 189