linux/arch/mips/kernel/perf_event_mipsxx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Linux performance counter support for MIPS.
   4 *
   5 * Copyright (C) 2010 MIPS Technologies, Inc.
   6 * Copyright (C) 2011 Cavium Networks, Inc.
   7 * Author: Deng-Cheng Zhu
   8 *
   9 * This code is based on the implementation for ARM, which is in turn
  10 * based on the sparc64 perf event code and the x86 code. Performance
  11 * counter access is based on the MIPS Oprofile code. And the callchain
  12 * support references the code of MIPS stacktrace.c.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/interrupt.h>
  17#include <linux/smp.h>
  18#include <linux/kernel.h>
  19#include <linux/perf_event.h>
  20#include <linux/uaccess.h>
  21
  22#include <asm/irq.h>
  23#include <asm/irq_regs.h>
  24#include <asm/stacktrace.h>
  25#include <asm/time.h> /* For perf_irq */
  26
  27#define MIPS_MAX_HWEVENTS 4
  28#define MIPS_TCS_PER_COUNTER 2
  29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  30
  31struct cpu_hw_events {
  32        /* Array of events on this cpu. */
  33        struct perf_event       *events[MIPS_MAX_HWEVENTS];
  34
  35        /*
  36         * Set the bit (indexed by the counter number) when the counter
  37         * is used for an event.
  38         */
  39        unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  40
  41        /*
  42         * Software copy of the control register for each performance counter.
  43         * MIPS CPUs vary in performance counters. They use this differently,
  44         * and even may not use it.
  45         */
  46        unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
  47};
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49        .saved_ctrl = {0},
  50};
  51
  52/* The description of MIPS performance events. */
  53struct mips_perf_event {
  54        unsigned int event_id;
  55        /*
  56         * MIPS performance counters are indexed starting from 0.
  57         * CNTR_EVEN indicates the indexes of the counters to be used are
  58         * even numbers.
  59         */
  60        unsigned int cntr_mask;
  61        #define CNTR_EVEN       0x55555555
  62        #define CNTR_ODD        0xaaaaaaaa
  63        #define CNTR_ALL        0xffffffff
  64        enum {
  65                T  = 0,
  66                V  = 1,
  67                P  = 2,
  68        } range;
  69};
  70
  71static struct mips_perf_event raw_event;
  72static DEFINE_MUTEX(raw_event_mutex);
  73
  74#define C(x) PERF_COUNT_HW_CACHE_##x
  75
  76struct mips_pmu {
  77        u64             max_period;
  78        u64             valid_count;
  79        u64             overflow;
  80        const char      *name;
  81        int             irq;
  82        u64             (*read_counter)(unsigned int idx);
  83        void            (*write_counter)(unsigned int idx, u64 val);
  84        const struct mips_perf_event *(*map_raw_event)(u64 config);
  85        const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  86        const struct mips_perf_event (*cache_event_map)
  87                                [PERF_COUNT_HW_CACHE_MAX]
  88                                [PERF_COUNT_HW_CACHE_OP_MAX]
  89                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  90        unsigned int    num_counters;
  91};
  92
  93static int counter_bits;
  94static struct mips_pmu mipspmu;
  95
  96#define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
  97                                         MIPS_PERFCTRL_EVENT)
  98#define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
  99
 100#ifdef CONFIG_CPU_BMIPS5000
 101#define M_PERFCTL_MT_EN(filter)         0
 102#else /* !CONFIG_CPU_BMIPS5000 */
 103#define M_PERFCTL_MT_EN(filter)         (filter)
 104#endif /* CONFIG_CPU_BMIPS5000 */
 105
 106#define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
 107#define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
 108#define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
 109
 110#define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
 111                                         MIPS_PERFCTRL_K |              \
 112                                         MIPS_PERFCTRL_U |              \
 113                                         MIPS_PERFCTRL_S |              \
 114                                         MIPS_PERFCTRL_IE)
 115
 116#ifdef CONFIG_MIPS_MT_SMP
 117#define M_PERFCTL_CONFIG_MASK           0x3fff801f
 118#else
 119#define M_PERFCTL_CONFIG_MASK           0x1f
 120#endif
 121
 122#define CNTR_BIT_MASK(n)        (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
 123
 124#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 125static DEFINE_RWLOCK(pmuint_rwlock);
 126
 127#if defined(CONFIG_CPU_BMIPS5000)
 128#define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
 129                         0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 130#else
 131#define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
 132                         0 : cpu_vpe_id(&current_cpu_data))
 133#endif
 134
 135/* Copied from op_model_mipsxx.c */
 136static unsigned int vpe_shift(void)
 137{
 138        if (num_possible_cpus() > 1)
 139                return 1;
 140
 141        return 0;
 142}
 143
 144static unsigned int counters_total_to_per_cpu(unsigned int counters)
 145{
 146        return counters >> vpe_shift();
 147}
 148
 149#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 150#define vpe_id()        0
 151
 152#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 153
 154static void resume_local_counters(void);
 155static void pause_local_counters(void);
 156static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 157static int mipsxx_pmu_handle_shared_irq(void);
 158
 159/* 0: Not Loongson-3
 160 * 1: Loongson-3A1000/3B1000/3B1500
 161 * 2: Loongson-3A2000/3A3000
 162 * 3: Loongson-3A4000+
 163 */
 164
 165#define LOONGSON_PMU_TYPE0 0
 166#define LOONGSON_PMU_TYPE1 1
 167#define LOONGSON_PMU_TYPE2 2
 168#define LOONGSON_PMU_TYPE3 3
 169
 170static inline int get_loongson3_pmu_type(void)
 171{
 172        if (boot_cpu_type() != CPU_LOONGSON64)
 173                return LOONGSON_PMU_TYPE0;
 174        if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
 175                return LOONGSON_PMU_TYPE1;
 176        if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
 177                return LOONGSON_PMU_TYPE2;
 178        if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
 179                return LOONGSON_PMU_TYPE3;
 180
 181        return LOONGSON_PMU_TYPE0;
 182}
 183
 184static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 185{
 186        if (vpe_id() == 1)
 187                idx = (idx + 2) & 3;
 188        return idx;
 189}
 190
 191static u64 mipsxx_pmu_read_counter(unsigned int idx)
 192{
 193        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 194
 195        switch (idx) {
 196        case 0:
 197                /*
 198                 * The counters are unsigned, we must cast to truncate
 199                 * off the high bits.
 200                 */
 201                return (u32)read_c0_perfcntr0();
 202        case 1:
 203                return (u32)read_c0_perfcntr1();
 204        case 2:
 205                return (u32)read_c0_perfcntr2();
 206        case 3:
 207                return (u32)read_c0_perfcntr3();
 208        default:
 209                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 210                return 0;
 211        }
 212}
 213
 214static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 215{
 216        u64 mask = CNTR_BIT_MASK(counter_bits);
 217        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 218
 219        switch (idx) {
 220        case 0:
 221                return read_c0_perfcntr0_64() & mask;
 222        case 1:
 223                return read_c0_perfcntr1_64() & mask;
 224        case 2:
 225                return read_c0_perfcntr2_64() & mask;
 226        case 3:
 227                return read_c0_perfcntr3_64() & mask;
 228        default:
 229                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 230                return 0;
 231        }
 232}
 233
 234static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 235{
 236        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 237
 238        switch (idx) {
 239        case 0:
 240                write_c0_perfcntr0(val);
 241                return;
 242        case 1:
 243                write_c0_perfcntr1(val);
 244                return;
 245        case 2:
 246                write_c0_perfcntr2(val);
 247                return;
 248        case 3:
 249                write_c0_perfcntr3(val);
 250                return;
 251        }
 252}
 253
 254static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 255{
 256        val &= CNTR_BIT_MASK(counter_bits);
 257        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 258
 259        switch (idx) {
 260        case 0:
 261                write_c0_perfcntr0_64(val);
 262                return;
 263        case 1:
 264                write_c0_perfcntr1_64(val);
 265                return;
 266        case 2:
 267                write_c0_perfcntr2_64(val);
 268                return;
 269        case 3:
 270                write_c0_perfcntr3_64(val);
 271                return;
 272        }
 273}
 274
 275static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 276{
 277        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 278
 279        switch (idx) {
 280        case 0:
 281                return read_c0_perfctrl0();
 282        case 1:
 283                return read_c0_perfctrl1();
 284        case 2:
 285                return read_c0_perfctrl2();
 286        case 3:
 287                return read_c0_perfctrl3();
 288        default:
 289                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 290                return 0;
 291        }
 292}
 293
 294static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 295{
 296        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 297
 298        switch (idx) {
 299        case 0:
 300                write_c0_perfctrl0(val);
 301                return;
 302        case 1:
 303                write_c0_perfctrl1(val);
 304                return;
 305        case 2:
 306                write_c0_perfctrl2(val);
 307                return;
 308        case 3:
 309                write_c0_perfctrl3(val);
 310                return;
 311        }
 312}
 313
 314static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 315                                    struct hw_perf_event *hwc)
 316{
 317        int i;
 318        unsigned long cntr_mask;
 319
 320        /*
 321         * We only need to care the counter mask. The range has been
 322         * checked definitely.
 323         */
 324        if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 325                cntr_mask = (hwc->event_base >> 10) & 0xffff;
 326        else
 327                cntr_mask = (hwc->event_base >> 8) & 0xffff;
 328
 329        for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 330                /*
 331                 * Note that some MIPS perf events can be counted by both
 332                 * even and odd counters, wheresas many other are only by
 333                 * even _or_ odd counters. This introduces an issue that
 334                 * when the former kind of event takes the counter the
 335                 * latter kind of event wants to use, then the "counter
 336                 * allocation" for the latter event will fail. In fact if
 337                 * they can be dynamically swapped, they both feel happy.
 338                 * But here we leave this issue alone for now.
 339                 */
 340                if (test_bit(i, &cntr_mask) &&
 341                        !test_and_set_bit(i, cpuc->used_mask))
 342                        return i;
 343        }
 344
 345        return -EAGAIN;
 346}
 347
 348static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 349{
 350        struct perf_event *event = container_of(evt, struct perf_event, hw);
 351        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 352        unsigned int range = evt->event_base >> 24;
 353
 354        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 355
 356        if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 357                cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
 358                        (evt->config_base & M_PERFCTL_CONFIG_MASK) |
 359                        /* Make sure interrupt enabled. */
 360                        MIPS_PERFCTRL_IE;
 361        else
 362                cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 363                        (evt->config_base & M_PERFCTL_CONFIG_MASK) |
 364                        /* Make sure interrupt enabled. */
 365                        MIPS_PERFCTRL_IE;
 366
 367        if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
 368                /* enable the counter for the calling thread */
 369                cpuc->saved_ctrl[idx] |=
 370                        (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
 371        } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
 372                /* The counter is processor wide. Set it up to count all TCs. */
 373                pr_debug("Enabling perf counter for all TCs\n");
 374                cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
 375        } else {
 376                unsigned int cpu, ctrl;
 377
 378                /*
 379                 * Set up the counter for a particular CPU when event->cpu is
 380                 * a valid CPU number. Otherwise set up the counter for the CPU
 381                 * scheduling this thread.
 382                 */
 383                cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
 384
 385                ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
 386                ctrl |= M_TC_EN_VPE;
 387                cpuc->saved_ctrl[idx] |= ctrl;
 388                pr_debug("Enabling perf counter for CPU%d\n", cpu);
 389        }
 390        /*
 391         * We do not actually let the counter run. Leave it until start().
 392         */
 393}
 394
 395static void mipsxx_pmu_disable_event(int idx)
 396{
 397        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 398        unsigned long flags;
 399
 400        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 401
 402        local_irq_save(flags);
 403        cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 404                ~M_PERFCTL_COUNT_EVENT_WHENEVER;
 405        mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 406        local_irq_restore(flags);
 407}
 408
 409static int mipspmu_event_set_period(struct perf_event *event,
 410                                    struct hw_perf_event *hwc,
 411                                    int idx)
 412{
 413        u64 left = local64_read(&hwc->period_left);
 414        u64 period = hwc->sample_period;
 415        int ret = 0;
 416
 417        if (unlikely((left + period) & (1ULL << 63))) {
 418                /* left underflowed by more than period. */
 419                left = period;
 420                local64_set(&hwc->period_left, left);
 421                hwc->last_period = period;
 422                ret = 1;
 423        } else  if (unlikely((left + period) <= period)) {
 424                /* left underflowed by less than period. */
 425                left += period;
 426                local64_set(&hwc->period_left, left);
 427                hwc->last_period = period;
 428                ret = 1;
 429        }
 430
 431        if (left > mipspmu.max_period) {
 432                left = mipspmu.max_period;
 433                local64_set(&hwc->period_left, left);
 434        }
 435
 436        local64_set(&hwc->prev_count, mipspmu.overflow - left);
 437
 438        if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 439                mipsxx_pmu_write_control(idx,
 440                                M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
 441
 442        mipspmu.write_counter(idx, mipspmu.overflow - left);
 443
 444        perf_event_update_userpage(event);
 445
 446        return ret;
 447}
 448
 449static void mipspmu_event_update(struct perf_event *event,
 450                                 struct hw_perf_event *hwc,
 451                                 int idx)
 452{
 453        u64 prev_raw_count, new_raw_count;
 454        u64 delta;
 455
 456again:
 457        prev_raw_count = local64_read(&hwc->prev_count);
 458        new_raw_count = mipspmu.read_counter(idx);
 459
 460        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 461                                new_raw_count) != prev_raw_count)
 462                goto again;
 463
 464        delta = new_raw_count - prev_raw_count;
 465
 466        local64_add(delta, &event->count);
 467        local64_sub(delta, &hwc->period_left);
 468}
 469
 470static void mipspmu_start(struct perf_event *event, int flags)
 471{
 472        struct hw_perf_event *hwc = &event->hw;
 473
 474        if (flags & PERF_EF_RELOAD)
 475                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 476
 477        hwc->state = 0;
 478
 479        /* Set the period for the event. */
 480        mipspmu_event_set_period(event, hwc, hwc->idx);
 481
 482        /* Enable the event. */
 483        mipsxx_pmu_enable_event(hwc, hwc->idx);
 484}
 485
 486static void mipspmu_stop(struct perf_event *event, int flags)
 487{
 488        struct hw_perf_event *hwc = &event->hw;
 489
 490        if (!(hwc->state & PERF_HES_STOPPED)) {
 491                /* We are working on a local event. */
 492                mipsxx_pmu_disable_event(hwc->idx);
 493                barrier();
 494                mipspmu_event_update(event, hwc, hwc->idx);
 495                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 496        }
 497}
 498
 499static int mipspmu_add(struct perf_event *event, int flags)
 500{
 501        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 502        struct hw_perf_event *hwc = &event->hw;
 503        int idx;
 504        int err = 0;
 505
 506        perf_pmu_disable(event->pmu);
 507
 508        /* To look for a free counter for this event. */
 509        idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 510        if (idx < 0) {
 511                err = idx;
 512                goto out;
 513        }
 514
 515        /*
 516         * If there is an event in the counter we are going to use then
 517         * make sure it is disabled.
 518         */
 519        event->hw.idx = idx;
 520        mipsxx_pmu_disable_event(idx);
 521        cpuc->events[idx] = event;
 522
 523        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 524        if (flags & PERF_EF_START)
 525                mipspmu_start(event, PERF_EF_RELOAD);
 526
 527        /* Propagate our changes to the userspace mapping. */
 528        perf_event_update_userpage(event);
 529
 530out:
 531        perf_pmu_enable(event->pmu);
 532        return err;
 533}
 534
 535static void mipspmu_del(struct perf_event *event, int flags)
 536{
 537        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 538        struct hw_perf_event *hwc = &event->hw;
 539        int idx = hwc->idx;
 540
 541        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 542
 543        mipspmu_stop(event, PERF_EF_UPDATE);
 544        cpuc->events[idx] = NULL;
 545        clear_bit(idx, cpuc->used_mask);
 546
 547        perf_event_update_userpage(event);
 548}
 549
 550static void mipspmu_read(struct perf_event *event)
 551{
 552        struct hw_perf_event *hwc = &event->hw;
 553
 554        /* Don't read disabled counters! */
 555        if (hwc->idx < 0)
 556                return;
 557
 558        mipspmu_event_update(event, hwc, hwc->idx);
 559}
 560
 561static void mipspmu_enable(struct pmu *pmu)
 562{
 563#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 564        write_unlock(&pmuint_rwlock);
 565#endif
 566        resume_local_counters();
 567}
 568
 569/*
 570 * MIPS performance counters can be per-TC. The control registers can
 571 * not be directly accessed across CPUs. Hence if we want to do global
 572 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 573 * can not make sure this function is called with interrupts enabled. So
 574 * here we pause local counters and then grab a rwlock and leave the
 575 * counters on other CPUs alone. If any counter interrupt raises while
 576 * we own the write lock, simply pause local counters on that CPU and
 577 * spin in the handler. Also we know we won't be switched to another
 578 * CPU after pausing local counters and before grabbing the lock.
 579 */
 580static void mipspmu_disable(struct pmu *pmu)
 581{
 582        pause_local_counters();
 583#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 584        write_lock(&pmuint_rwlock);
 585#endif
 586}
 587
 588static atomic_t active_events = ATOMIC_INIT(0);
 589static DEFINE_MUTEX(pmu_reserve_mutex);
 590static int (*save_perf_irq)(void);
 591
 592static int mipspmu_get_irq(void)
 593{
 594        int err;
 595
 596        if (mipspmu.irq >= 0) {
 597                /* Request my own irq handler. */
 598                err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 599                                  IRQF_PERCPU | IRQF_NOBALANCING |
 600                                  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 601                                  IRQF_SHARED,
 602                                  "mips_perf_pmu", &mipspmu);
 603                if (err) {
 604                        pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 605                                mipspmu.irq);
 606                }
 607        } else if (cp0_perfcount_irq < 0) {
 608                /*
 609                 * We are sharing the irq number with the timer interrupt.
 610                 */
 611                save_perf_irq = perf_irq;
 612                perf_irq = mipsxx_pmu_handle_shared_irq;
 613                err = 0;
 614        } else {
 615                pr_warn("The platform hasn't properly defined its interrupt controller\n");
 616                err = -ENOENT;
 617        }
 618
 619        return err;
 620}
 621
 622static void mipspmu_free_irq(void)
 623{
 624        if (mipspmu.irq >= 0)
 625                free_irq(mipspmu.irq, &mipspmu);
 626        else if (cp0_perfcount_irq < 0)
 627                perf_irq = save_perf_irq;
 628}
 629
 630/*
 631 * mipsxx/rm9000/loongson2 have different performance counters, they have
 632 * specific low-level init routines.
 633 */
 634static void reset_counters(void *arg);
 635static int __hw_perf_event_init(struct perf_event *event);
 636
 637static void hw_perf_event_destroy(struct perf_event *event)
 638{
 639        if (atomic_dec_and_mutex_lock(&active_events,
 640                                &pmu_reserve_mutex)) {
 641                /*
 642                 * We must not call the destroy function with interrupts
 643                 * disabled.
 644                 */
 645                on_each_cpu(reset_counters,
 646                        (void *)(long)mipspmu.num_counters, 1);
 647                mipspmu_free_irq();
 648                mutex_unlock(&pmu_reserve_mutex);
 649        }
 650}
 651
 652static int mipspmu_event_init(struct perf_event *event)
 653{
 654        int err = 0;
 655
 656        /* does not support taken branch sampling */
 657        if (has_branch_stack(event))
 658                return -EOPNOTSUPP;
 659
 660        switch (event->attr.type) {
 661        case PERF_TYPE_RAW:
 662        case PERF_TYPE_HARDWARE:
 663        case PERF_TYPE_HW_CACHE:
 664                break;
 665
 666        default:
 667                return -ENOENT;
 668        }
 669
 670        if (event->cpu >= 0 && !cpu_online(event->cpu))
 671                return -ENODEV;
 672
 673        if (!atomic_inc_not_zero(&active_events)) {
 674                mutex_lock(&pmu_reserve_mutex);
 675                if (atomic_read(&active_events) == 0)
 676                        err = mipspmu_get_irq();
 677
 678                if (!err)
 679                        atomic_inc(&active_events);
 680                mutex_unlock(&pmu_reserve_mutex);
 681        }
 682
 683        if (err)
 684                return err;
 685
 686        return __hw_perf_event_init(event);
 687}
 688
 689static struct pmu pmu = {
 690        .pmu_enable     = mipspmu_enable,
 691        .pmu_disable    = mipspmu_disable,
 692        .event_init     = mipspmu_event_init,
 693        .add            = mipspmu_add,
 694        .del            = mipspmu_del,
 695        .start          = mipspmu_start,
 696        .stop           = mipspmu_stop,
 697        .read           = mipspmu_read,
 698};
 699
 700static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 701{
 702/*
 703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 704 * event_id.
 705 */
 706#ifdef CONFIG_MIPS_MT_SMP
 707        if (num_possible_cpus() > 1)
 708                return ((unsigned int)pev->range << 24) |
 709                        (pev->cntr_mask & 0xffff00) |
 710                        (pev->event_id & 0xff);
 711        else
 712#endif /* CONFIG_MIPS_MT_SMP */
 713        {
 714                if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 715                        return (pev->cntr_mask & 0xfffc00) |
 716                                (pev->event_id & 0x3ff);
 717                else
 718                        return (pev->cntr_mask & 0xffff00) |
 719                                (pev->event_id & 0xff);
 720        }
 721}
 722
 723static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 724{
 725
 726        if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 727                return ERR_PTR(-EOPNOTSUPP);
 728        return &(*mipspmu.general_event_map)[idx];
 729}
 730
 731static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 732{
 733        unsigned int cache_type, cache_op, cache_result;
 734        const struct mips_perf_event *pev;
 735
 736        cache_type = (config >> 0) & 0xff;
 737        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 738                return ERR_PTR(-EINVAL);
 739
 740        cache_op = (config >> 8) & 0xff;
 741        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 742                return ERR_PTR(-EINVAL);
 743
 744        cache_result = (config >> 16) & 0xff;
 745        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 746                return ERR_PTR(-EINVAL);
 747
 748        pev = &((*mipspmu.cache_event_map)
 749                                        [cache_type]
 750                                        [cache_op]
 751                                        [cache_result]);
 752
 753        if (pev->cntr_mask == 0)
 754                return ERR_PTR(-EOPNOTSUPP);
 755
 756        return pev;
 757
 758}
 759
 760static int validate_group(struct perf_event *event)
 761{
 762        struct perf_event *sibling, *leader = event->group_leader;
 763        struct cpu_hw_events fake_cpuc;
 764
 765        memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 766
 767        if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 768                return -EINVAL;
 769
 770        for_each_sibling_event(sibling, leader) {
 771                if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 772                        return -EINVAL;
 773        }
 774
 775        if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 776                return -EINVAL;
 777
 778        return 0;
 779}
 780
 781/* This is needed by specific irq handlers in perf_event_*.c */
 782static void handle_associated_event(struct cpu_hw_events *cpuc,
 783                                    int idx, struct perf_sample_data *data,
 784                                    struct pt_regs *regs)
 785{
 786        struct perf_event *event = cpuc->events[idx];
 787        struct hw_perf_event *hwc = &event->hw;
 788
 789        mipspmu_event_update(event, hwc, idx);
 790        data->period = event->hw.last_period;
 791        if (!mipspmu_event_set_period(event, hwc, idx))
 792                return;
 793
 794        if (perf_event_overflow(event, data, regs))
 795                mipsxx_pmu_disable_event(idx);
 796}
 797
 798
 799static int __n_counters(void)
 800{
 801        if (!cpu_has_perf)
 802                return 0;
 803        if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
 804                return 1;
 805        if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
 806                return 2;
 807        if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
 808                return 3;
 809
 810        return 4;
 811}
 812
 813static int n_counters(void)
 814{
 815        int counters;
 816
 817        switch (current_cpu_type()) {
 818        case CPU_R10000:
 819                counters = 2;
 820                break;
 821
 822        case CPU_R12000:
 823        case CPU_R14000:
 824        case CPU_R16000:
 825                counters = 4;
 826                break;
 827
 828        default:
 829                counters = __n_counters();
 830        }
 831
 832        return counters;
 833}
 834
 835static void loongson3_reset_counters(void *arg)
 836{
 837        int counters = (int)(long)arg;
 838
 839        switch (counters) {
 840        case 4:
 841                mipsxx_pmu_write_control(3, 0);
 842                mipspmu.write_counter(3, 0);
 843                mipsxx_pmu_write_control(3, 127<<5);
 844                mipspmu.write_counter(3, 0);
 845                mipsxx_pmu_write_control(3, 191<<5);
 846                mipspmu.write_counter(3, 0);
 847                mipsxx_pmu_write_control(3, 255<<5);
 848                mipspmu.write_counter(3, 0);
 849                mipsxx_pmu_write_control(3, 319<<5);
 850                mipspmu.write_counter(3, 0);
 851                mipsxx_pmu_write_control(3, 383<<5);
 852                mipspmu.write_counter(3, 0);
 853                mipsxx_pmu_write_control(3, 575<<5);
 854                mipspmu.write_counter(3, 0);
 855                fallthrough;
 856        case 3:
 857                mipsxx_pmu_write_control(2, 0);
 858                mipspmu.write_counter(2, 0);
 859                mipsxx_pmu_write_control(2, 127<<5);
 860                mipspmu.write_counter(2, 0);
 861                mipsxx_pmu_write_control(2, 191<<5);
 862                mipspmu.write_counter(2, 0);
 863                mipsxx_pmu_write_control(2, 255<<5);
 864                mipspmu.write_counter(2, 0);
 865                mipsxx_pmu_write_control(2, 319<<5);
 866                mipspmu.write_counter(2, 0);
 867                mipsxx_pmu_write_control(2, 383<<5);
 868                mipspmu.write_counter(2, 0);
 869                mipsxx_pmu_write_control(2, 575<<5);
 870                mipspmu.write_counter(2, 0);
 871                fallthrough;
 872        case 2:
 873                mipsxx_pmu_write_control(1, 0);
 874                mipspmu.write_counter(1, 0);
 875                mipsxx_pmu_write_control(1, 127<<5);
 876                mipspmu.write_counter(1, 0);
 877                mipsxx_pmu_write_control(1, 191<<5);
 878                mipspmu.write_counter(1, 0);
 879                mipsxx_pmu_write_control(1, 255<<5);
 880                mipspmu.write_counter(1, 0);
 881                mipsxx_pmu_write_control(1, 319<<5);
 882                mipspmu.write_counter(1, 0);
 883                mipsxx_pmu_write_control(1, 383<<5);
 884                mipspmu.write_counter(1, 0);
 885                mipsxx_pmu_write_control(1, 575<<5);
 886                mipspmu.write_counter(1, 0);
 887                fallthrough;
 888        case 1:
 889                mipsxx_pmu_write_control(0, 0);
 890                mipspmu.write_counter(0, 0);
 891                mipsxx_pmu_write_control(0, 127<<5);
 892                mipspmu.write_counter(0, 0);
 893                mipsxx_pmu_write_control(0, 191<<5);
 894                mipspmu.write_counter(0, 0);
 895                mipsxx_pmu_write_control(0, 255<<5);
 896                mipspmu.write_counter(0, 0);
 897                mipsxx_pmu_write_control(0, 319<<5);
 898                mipspmu.write_counter(0, 0);
 899                mipsxx_pmu_write_control(0, 383<<5);
 900                mipspmu.write_counter(0, 0);
 901                mipsxx_pmu_write_control(0, 575<<5);
 902                mipspmu.write_counter(0, 0);
 903                break;
 904        }
 905}
 906
 907static void reset_counters(void *arg)
 908{
 909        int counters = (int)(long)arg;
 910
 911        if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
 912                loongson3_reset_counters(arg);
 913                return;
 914        }
 915
 916        switch (counters) {
 917        case 4:
 918                mipsxx_pmu_write_control(3, 0);
 919                mipspmu.write_counter(3, 0);
 920                fallthrough;
 921        case 3:
 922                mipsxx_pmu_write_control(2, 0);
 923                mipspmu.write_counter(2, 0);
 924                fallthrough;
 925        case 2:
 926                mipsxx_pmu_write_control(1, 0);
 927                mipspmu.write_counter(1, 0);
 928                fallthrough;
 929        case 1:
 930                mipsxx_pmu_write_control(0, 0);
 931                mipspmu.write_counter(0, 0);
 932                break;
 933        }
 934}
 935
 936/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 937static const struct mips_perf_event mipsxxcore_event_map
 938                                [PERF_COUNT_HW_MAX] = {
 939        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 940        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 941        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 942        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 943};
 944
 945/* 74K/proAptiv core has different branch event code. */
 946static const struct mips_perf_event mipsxxcore_event_map2
 947                                [PERF_COUNT_HW_MAX] = {
 948        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 949        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 950        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 951        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 952};
 953
 954static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
 955        [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 956        [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 957        /* These only count dcache, not icache */
 958        [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 959        [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 960        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 961        [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 962};
 963
 964static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
 965        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 966        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 967        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 968        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 969};
 970
 971static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
 972        [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
 973        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
 974        [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
 975        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
 976        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
 977};
 978
 979static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
 980        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
 981        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
 982        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
 983        [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
 984        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
 985        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
 986};
 987
 988static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 989        [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 990        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 991        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 992        [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
 993        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 994        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 995        [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 996};
 997
 998static const struct mips_perf_event bmips5000_event_map
 999                                [PERF_COUNT_HW_MAX] = {
1000        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003};
1004
1005/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1006static const struct mips_perf_event mipsxxcore_cache_map
1007                                [PERF_COUNT_HW_CACHE_MAX]
1008                                [PERF_COUNT_HW_CACHE_OP_MAX]
1009                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1010[C(L1D)] = {
1011        /*
1012         * Like some other architectures (e.g. ARM), the performance
1013         * counters don't differentiate between read and write
1014         * accesses/misses, so this isn't strictly correct, but it's the
1015         * best we can do. Writes and reads get combined.
1016         */
1017        [C(OP_READ)] = {
1018                [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
1019                [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1020        },
1021        [C(OP_WRITE)] = {
1022                [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
1023                [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1024        },
1025},
1026[C(L1I)] = {
1027        [C(OP_READ)] = {
1028                [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
1029                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
1030        },
1031        [C(OP_WRITE)] = {
1032                [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
1033                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
1034        },
1035        [C(OP_PREFETCH)] = {
1036                [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
1037                /*
1038                 * Note that MIPS has only "hit" events countable for
1039                 * the prefetch operation.
1040                 */
1041        },
1042},
1043[C(LL)] = {
1044        [C(OP_READ)] = {
1045                [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
1046                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
1047        },
1048        [C(OP_WRITE)] = {
1049                [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
1050                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
1051        },
1052},
1053[C(DTLB)] = {
1054        [C(OP_READ)] = {
1055                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1056                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1057        },
1058        [C(OP_WRITE)] = {
1059                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1060                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1061        },
1062},
1063[C(ITLB)] = {
1064        [C(OP_READ)] = {
1065                [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
1066                [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
1067        },
1068        [C(OP_WRITE)] = {
1069                [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
1070                [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
1071        },
1072},
1073[C(BPU)] = {
1074        /* Using the same code for *HW_BRANCH* */
1075        [C(OP_READ)] = {
1076                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
1077                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1078        },
1079        [C(OP_WRITE)] = {
1080                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
1081                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1082        },
1083},
1084};
1085
1086/* 74K/proAptiv core has completely different cache event map. */
1087static const struct mips_perf_event mipsxxcore_cache_map2
1088                                [PERF_COUNT_HW_CACHE_MAX]
1089                                [PERF_COUNT_HW_CACHE_OP_MAX]
1090                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1091[C(L1D)] = {
1092        /*
1093         * Like some other architectures (e.g. ARM), the performance
1094         * counters don't differentiate between read and write
1095         * accesses/misses, so this isn't strictly correct, but it's the
1096         * best we can do. Writes and reads get combined.
1097         */
1098        [C(OP_READ)] = {
1099                [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
1100                [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
1101        },
1102        [C(OP_WRITE)] = {
1103                [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
1104                [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
1105        },
1106},
1107[C(L1I)] = {
1108        [C(OP_READ)] = {
1109                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1110                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1111        },
1112        [C(OP_WRITE)] = {
1113                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1114                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1115        },
1116        [C(OP_PREFETCH)] = {
1117                [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
1118                /*
1119                 * Note that MIPS has only "hit" events countable for
1120                 * the prefetch operation.
1121                 */
1122        },
1123},
1124[C(LL)] = {
1125        [C(OP_READ)] = {
1126                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1127                [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1128        },
1129        [C(OP_WRITE)] = {
1130                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1131                [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1132        },
1133},
1134/*
1135 * 74K core does not have specific DTLB events. proAptiv core has
1136 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1137 * not included here. One can use raw events if really needed.
1138 */
1139[C(ITLB)] = {
1140        [C(OP_READ)] = {
1141                [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1142                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1143        },
1144        [C(OP_WRITE)] = {
1145                [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1146                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1147        },
1148},
1149[C(BPU)] = {
1150        /* Using the same code for *HW_BRANCH* */
1151        [C(OP_READ)] = {
1152                [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1153                [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1154        },
1155        [C(OP_WRITE)] = {
1156                [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1157                [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1158        },
1159},
1160};
1161
1162static const struct mips_perf_event i6x00_cache_map
1163                                [PERF_COUNT_HW_CACHE_MAX]
1164                                [PERF_COUNT_HW_CACHE_OP_MAX]
1165                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1166[C(L1D)] = {
1167        [C(OP_READ)] = {
1168                [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1169                [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1170        },
1171        [C(OP_WRITE)] = {
1172                [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1173                [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1174        },
1175},
1176[C(L1I)] = {
1177        [C(OP_READ)] = {
1178                [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1179                [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1180        },
1181},
1182[C(DTLB)] = {
1183        /* Can't distinguish read & write */
1184        [C(OP_READ)] = {
1185                [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1186                [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1187        },
1188        [C(OP_WRITE)] = {
1189                [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1190                [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1191        },
1192},
1193[C(BPU)] = {
1194        /* Conditional branches / mispredicted */
1195        [C(OP_READ)] = {
1196                [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1197                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1198        },
1199},
1200};
1201
1202static const struct mips_perf_event loongson3_cache_map1
1203                                [PERF_COUNT_HW_CACHE_MAX]
1204                                [PERF_COUNT_HW_CACHE_OP_MAX]
1205                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1206[C(L1D)] = {
1207        /*
1208         * Like some other architectures (e.g. ARM), the performance
1209         * counters don't differentiate between read and write
1210         * accesses/misses, so this isn't strictly correct, but it's the
1211         * best we can do. Writes and reads get combined.
1212         */
1213        [C(OP_READ)] = {
1214                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1215        },
1216        [C(OP_WRITE)] = {
1217                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1218        },
1219},
1220[C(L1I)] = {
1221        [C(OP_READ)] = {
1222                [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1223        },
1224        [C(OP_WRITE)] = {
1225                [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1226        },
1227},
1228[C(DTLB)] = {
1229        [C(OP_READ)] = {
1230                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1231        },
1232        [C(OP_WRITE)] = {
1233                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1234        },
1235},
1236[C(ITLB)] = {
1237        [C(OP_READ)] = {
1238                [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1239        },
1240        [C(OP_WRITE)] = {
1241                [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1242        },
1243},
1244[C(BPU)] = {
1245        /* Using the same code for *HW_BRANCH* */
1246        [C(OP_READ)] = {
1247                [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1248                [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1249        },
1250        [C(OP_WRITE)] = {
1251                [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1252                [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1253        },
1254},
1255};
1256
1257static const struct mips_perf_event loongson3_cache_map2
1258                                [PERF_COUNT_HW_CACHE_MAX]
1259                                [PERF_COUNT_HW_CACHE_OP_MAX]
1260                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1261[C(L1D)] = {
1262        /*
1263         * Like some other architectures (e.g. ARM), the performance
1264         * counters don't differentiate between read and write
1265         * accesses/misses, so this isn't strictly correct, but it's the
1266         * best we can do. Writes and reads get combined.
1267         */
1268        [C(OP_READ)] = {
1269                [C(RESULT_ACCESS)]      = { 0x156, CNTR_ALL },
1270        },
1271        [C(OP_WRITE)] = {
1272                [C(RESULT_ACCESS)]      = { 0x155, CNTR_ALL },
1273                [C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
1274        },
1275},
1276[C(L1I)] = {
1277        [C(OP_READ)] = {
1278                [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1279        },
1280        [C(OP_WRITE)] = {
1281                [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1282        },
1283},
1284[C(LL)] = {
1285        [C(OP_READ)] = {
1286                [C(RESULT_ACCESS)]      = { 0x1b6, CNTR_ALL },
1287        },
1288        [C(OP_WRITE)] = {
1289                [C(RESULT_ACCESS)]      = { 0x1b7, CNTR_ALL },
1290        },
1291        [C(OP_PREFETCH)] = {
1292                [C(RESULT_ACCESS)]      = { 0x1bf, CNTR_ALL },
1293        },
1294},
1295[C(DTLB)] = {
1296        [C(OP_READ)] = {
1297                [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1298        },
1299        [C(OP_WRITE)] = {
1300                [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1301        },
1302},
1303[C(ITLB)] = {
1304        [C(OP_READ)] = {
1305                [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1306        },
1307        [C(OP_WRITE)] = {
1308                [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1309        },
1310},
1311[C(BPU)] = {
1312        /* Using the same code for *HW_BRANCH* */
1313        [C(OP_READ)] = {
1314                [C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
1315                [C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
1316        },
1317},
1318};
1319
1320static const struct mips_perf_event loongson3_cache_map3
1321                                [PERF_COUNT_HW_CACHE_MAX]
1322                                [PERF_COUNT_HW_CACHE_OP_MAX]
1323                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1324[C(L1D)] = {
1325        /*
1326         * Like some other architectures (e.g. ARM), the performance
1327         * counters don't differentiate between read and write
1328         * accesses/misses, so this isn't strictly correct, but it's the
1329         * best we can do. Writes and reads get combined.
1330         */
1331        [C(OP_READ)] = {
1332                [C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
1333                [C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
1334        },
1335        [C(OP_PREFETCH)] = {
1336                [C(RESULT_ACCESS)]      = { 0xaa, CNTR_ALL },
1337                [C(RESULT_MISS)]        = { 0xa9, CNTR_ALL },
1338        },
1339},
1340[C(L1I)] = {
1341        [C(OP_READ)] = {
1342                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ALL },
1343                [C(RESULT_MISS)]        = { 0x1d, CNTR_ALL },
1344        },
1345},
1346[C(LL)] = {
1347        [C(OP_READ)] = {
1348                [C(RESULT_ACCESS)]      = { 0x2e, CNTR_ALL },
1349                [C(RESULT_MISS)]        = { 0x2f, CNTR_ALL },
1350        },
1351},
1352[C(DTLB)] = {
1353        [C(OP_READ)] = {
1354                [C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
1355                [C(RESULT_MISS)]        = { 0x1b, CNTR_ALL },
1356        },
1357},
1358[C(ITLB)] = {
1359        [C(OP_READ)] = {
1360                [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1361        },
1362},
1363[C(BPU)] = {
1364        /* Using the same code for *HW_BRANCH* */
1365        [C(OP_READ)] = {
1366                [C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
1367                [C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
1368        },
1369},
1370};
1371
1372/* BMIPS5000 */
1373static const struct mips_perf_event bmips5000_cache_map
1374                                [PERF_COUNT_HW_CACHE_MAX]
1375                                [PERF_COUNT_HW_CACHE_OP_MAX]
1376                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1377[C(L1D)] = {
1378        /*
1379         * Like some other architectures (e.g. ARM), the performance
1380         * counters don't differentiate between read and write
1381         * accesses/misses, so this isn't strictly correct, but it's the
1382         * best we can do. Writes and reads get combined.
1383         */
1384        [C(OP_READ)] = {
1385                [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1386                [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1387        },
1388        [C(OP_WRITE)] = {
1389                [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1390                [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1391        },
1392},
1393[C(L1I)] = {
1394        [C(OP_READ)] = {
1395                [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1396                [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1397        },
1398        [C(OP_WRITE)] = {
1399                [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1400                [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1401        },
1402        [C(OP_PREFETCH)] = {
1403                [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1404                /*
1405                 * Note that MIPS has only "hit" events countable for
1406                 * the prefetch operation.
1407                 */
1408        },
1409},
1410[C(LL)] = {
1411        [C(OP_READ)] = {
1412                [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1413                [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1414        },
1415        [C(OP_WRITE)] = {
1416                [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1417                [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1418        },
1419},
1420[C(BPU)] = {
1421        /* Using the same code for *HW_BRANCH* */
1422        [C(OP_READ)] = {
1423                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1424        },
1425        [C(OP_WRITE)] = {
1426                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1427        },
1428},
1429};
1430
1431static const struct mips_perf_event octeon_cache_map
1432                                [PERF_COUNT_HW_CACHE_MAX]
1433                                [PERF_COUNT_HW_CACHE_OP_MAX]
1434                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1435[C(L1D)] = {
1436        [C(OP_READ)] = {
1437                [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1438                [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1439        },
1440        [C(OP_WRITE)] = {
1441                [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1442        },
1443},
1444[C(L1I)] = {
1445        [C(OP_READ)] = {
1446                [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1447        },
1448        [C(OP_PREFETCH)] = {
1449                [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1450        },
1451},
1452[C(DTLB)] = {
1453        /*
1454         * Only general DTLB misses are counted use the same event for
1455         * read and write.
1456         */
1457        [C(OP_READ)] = {
1458                [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1459        },
1460        [C(OP_WRITE)] = {
1461                [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1462        },
1463},
1464[C(ITLB)] = {
1465        [C(OP_READ)] = {
1466                [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1467        },
1468},
1469};
1470
1471static int __hw_perf_event_init(struct perf_event *event)
1472{
1473        struct perf_event_attr *attr = &event->attr;
1474        struct hw_perf_event *hwc = &event->hw;
1475        const struct mips_perf_event *pev;
1476        int err;
1477
1478        /* Returning MIPS event descriptor for generic perf event. */
1479        if (PERF_TYPE_HARDWARE == event->attr.type) {
1480                if (event->attr.config >= PERF_COUNT_HW_MAX)
1481                        return -EINVAL;
1482                pev = mipspmu_map_general_event(event->attr.config);
1483        } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1484                pev = mipspmu_map_cache_event(event->attr.config);
1485        } else if (PERF_TYPE_RAW == event->attr.type) {
1486                /* We are working on the global raw event. */
1487                mutex_lock(&raw_event_mutex);
1488                pev = mipspmu.map_raw_event(event->attr.config);
1489        } else {
1490                /* The event type is not (yet) supported. */
1491                return -EOPNOTSUPP;
1492        }
1493
1494        if (IS_ERR(pev)) {
1495                if (PERF_TYPE_RAW == event->attr.type)
1496                        mutex_unlock(&raw_event_mutex);
1497                return PTR_ERR(pev);
1498        }
1499
1500        /*
1501         * We allow max flexibility on how each individual counter shared
1502         * by the single CPU operates (the mode exclusion and the range).
1503         */
1504        hwc->config_base = MIPS_PERFCTRL_IE;
1505
1506        hwc->event_base = mipspmu_perf_event_encode(pev);
1507        if (PERF_TYPE_RAW == event->attr.type)
1508                mutex_unlock(&raw_event_mutex);
1509
1510        if (!attr->exclude_user)
1511                hwc->config_base |= MIPS_PERFCTRL_U;
1512        if (!attr->exclude_kernel) {
1513                hwc->config_base |= MIPS_PERFCTRL_K;
1514                /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1515                hwc->config_base |= MIPS_PERFCTRL_EXL;
1516        }
1517        if (!attr->exclude_hv)
1518                hwc->config_base |= MIPS_PERFCTRL_S;
1519
1520        hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1521        /*
1522         * The event can belong to another cpu. We do not assign a local
1523         * counter for it for now.
1524         */
1525        hwc->idx = -1;
1526        hwc->config = 0;
1527
1528        if (!hwc->sample_period) {
1529                hwc->sample_period  = mipspmu.max_period;
1530                hwc->last_period    = hwc->sample_period;
1531                local64_set(&hwc->period_left, hwc->sample_period);
1532        }
1533
1534        err = 0;
1535        if (event->group_leader != event)
1536                err = validate_group(event);
1537
1538        event->destroy = hw_perf_event_destroy;
1539
1540        if (err)
1541                event->destroy(event);
1542
1543        return err;
1544}
1545
1546static void pause_local_counters(void)
1547{
1548        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1549        int ctr = mipspmu.num_counters;
1550        unsigned long flags;
1551
1552        local_irq_save(flags);
1553        do {
1554                ctr--;
1555                cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1556                mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1557                                         ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1558        } while (ctr > 0);
1559        local_irq_restore(flags);
1560}
1561
1562static void resume_local_counters(void)
1563{
1564        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1565        int ctr = mipspmu.num_counters;
1566
1567        do {
1568                ctr--;
1569                mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1570        } while (ctr > 0);
1571}
1572
1573static int mipsxx_pmu_handle_shared_irq(void)
1574{
1575        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1576        struct perf_sample_data data;
1577        unsigned int counters = mipspmu.num_counters;
1578        u64 counter;
1579        int n, handled = IRQ_NONE;
1580        struct pt_regs *regs;
1581
1582        if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1583                return handled;
1584        /*
1585         * First we pause the local counters, so that when we are locked
1586         * here, the counters are all paused. When it gets locked due to
1587         * perf_disable(), the timer interrupt handler will be delayed.
1588         *
1589         * See also mipsxx_pmu_start().
1590         */
1591        pause_local_counters();
1592#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1593        read_lock(&pmuint_rwlock);
1594#endif
1595
1596        regs = get_irq_regs();
1597
1598        perf_sample_data_init(&data, 0, 0);
1599
1600        for (n = counters - 1; n >= 0; n--) {
1601                if (!test_bit(n, cpuc->used_mask))
1602                        continue;
1603
1604                counter = mipspmu.read_counter(n);
1605                if (!(counter & mipspmu.overflow))
1606                        continue;
1607
1608                handle_associated_event(cpuc, n, &data, regs);
1609                handled = IRQ_HANDLED;
1610        }
1611
1612#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1613        read_unlock(&pmuint_rwlock);
1614#endif
1615        resume_local_counters();
1616
1617        /*
1618         * Do all the work for the pending perf events. We can do this
1619         * in here because the performance counter interrupt is a regular
1620         * interrupt, not NMI.
1621         */
1622        if (handled == IRQ_HANDLED)
1623                irq_work_run();
1624
1625        return handled;
1626}
1627
1628static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1629{
1630        return mipsxx_pmu_handle_shared_irq();
1631}
1632
1633/* 24K */
1634#define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1635        ((b) == 0 || (b) == 1 || (b) == 11)
1636
1637/* 34K */
1638#define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1639        ((b) == 0 || (b) == 1 || (b) == 11)
1640#ifdef CONFIG_MIPS_MT_SMP
1641#define IS_RANGE_P_34K_EVENT(r, b)                                      \
1642        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1643         (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1644         (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1645         ((b) >= 64 && (b) <= 67))
1646#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1647#endif
1648
1649/* 74K */
1650#define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1651        ((b) == 0 || (b) == 1)
1652
1653/* proAptiv */
1654#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1655        ((b) == 0 || (b) == 1)
1656/* P5600 */
1657#define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1658        ((b) == 0 || (b) == 1)
1659
1660/* 1004K */
1661#define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1662        ((b) == 0 || (b) == 1 || (b) == 11)
1663#ifdef CONFIG_MIPS_MT_SMP
1664#define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1665        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1666         (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1667         (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1668         (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1669         ((b) >= 64 && (b) <= 67))
1670#define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1671#endif
1672
1673/* interAptiv */
1674#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1675        ((b) == 0 || (b) == 1 || (b) == 11)
1676#ifdef CONFIG_MIPS_MT_SMP
1677/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1678#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1679        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1680         (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1681         (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1682         (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1683         ((b) >= 64 && (b) <= 67))
1684#define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1685#endif
1686
1687/* BMIPS5000 */
1688#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1689        ((b) == 0 || (b) == 1)
1690
1691
1692/*
1693 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1694 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1695 * indicate the even/odd bank selector. So, for example, when user wants to take
1696 * the Event Num of 15 for odd counters (by referring to the user manual), then
1697 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1698 * to be used.
1699 *
1700 * Some newer cores have even more events, in which case the user can use raw
1701 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1702 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1703 */
1704static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1705{
1706        /* currently most cores have 7-bit event numbers */
1707        int pmu_type;
1708        unsigned int raw_id = config & 0xff;
1709        unsigned int base_id = raw_id & 0x7f;
1710
1711        switch (current_cpu_type()) {
1712        case CPU_24K:
1713                if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1714                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1715                else
1716                        raw_event.cntr_mask =
1717                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1718#ifdef CONFIG_MIPS_MT_SMP
1719                /*
1720                 * This is actually doing nothing. Non-multithreading
1721                 * CPUs will not check and calculate the range.
1722                 */
1723                raw_event.range = P;
1724#endif
1725                break;
1726        case CPU_34K:
1727                if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1728                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1729                else
1730                        raw_event.cntr_mask =
1731                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1732#ifdef CONFIG_MIPS_MT_SMP
1733                if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1734                        raw_event.range = P;
1735                else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1736                        raw_event.range = V;
1737                else
1738                        raw_event.range = T;
1739#endif
1740                break;
1741        case CPU_74K:
1742        case CPU_1074K:
1743                if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1744                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1745                else
1746                        raw_event.cntr_mask =
1747                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1748#ifdef CONFIG_MIPS_MT_SMP
1749                raw_event.range = P;
1750#endif
1751                break;
1752        case CPU_PROAPTIV:
1753                if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1754                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1755                else
1756                        raw_event.cntr_mask =
1757                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1758#ifdef CONFIG_MIPS_MT_SMP
1759                raw_event.range = P;
1760#endif
1761                break;
1762        case CPU_P5600:
1763        case CPU_P6600:
1764                /* 8-bit event numbers */
1765                raw_id = config & 0x1ff;
1766                base_id = raw_id & 0xff;
1767                if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1768                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1769                else
1770                        raw_event.cntr_mask =
1771                                raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1772#ifdef CONFIG_MIPS_MT_SMP
1773                raw_event.range = P;
1774#endif
1775                break;
1776        case CPU_I6400:
1777        case CPU_I6500:
1778                /* 8-bit event numbers */
1779                base_id = config & 0xff;
1780                raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781                break;
1782        case CPU_1004K:
1783                if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1784                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1785                else
1786                        raw_event.cntr_mask =
1787                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1788#ifdef CONFIG_MIPS_MT_SMP
1789                if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1790                        raw_event.range = P;
1791                else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1792                        raw_event.range = V;
1793                else
1794                        raw_event.range = T;
1795#endif
1796                break;
1797        case CPU_INTERAPTIV:
1798                if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1799                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1800                else
1801                        raw_event.cntr_mask =
1802                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1803#ifdef CONFIG_MIPS_MT_SMP
1804                if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1805                        raw_event.range = P;
1806                else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1807                        raw_event.range = V;
1808                else
1809                        raw_event.range = T;
1810#endif
1811                break;
1812        case CPU_BMIPS5000:
1813                if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1814                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1815                else
1816                        raw_event.cntr_mask =
1817                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1818                break;
1819        case CPU_LOONGSON64:
1820                pmu_type = get_loongson3_pmu_type();
1821
1822                switch (pmu_type) {
1823                case LOONGSON_PMU_TYPE1:
1824                        raw_event.cntr_mask =
1825                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1826                        break;
1827                case LOONGSON_PMU_TYPE2:
1828                        base_id = config & 0x3ff;
1829                        raw_event.cntr_mask = CNTR_ALL;
1830
1831                        if ((base_id >= 1 && base_id < 28) ||
1832                                (base_id >= 64 && base_id < 90) ||
1833                                (base_id >= 128 && base_id < 164) ||
1834                                (base_id >= 192 && base_id < 200) ||
1835                                (base_id >= 256 && base_id < 275) ||
1836                                (base_id >= 320 && base_id < 361) ||
1837                                (base_id >= 384 && base_id < 574))
1838                                break;
1839
1840                        return ERR_PTR(-EOPNOTSUPP);
1841                case LOONGSON_PMU_TYPE3:
1842                        base_id = raw_id;
1843                        raw_event.cntr_mask = CNTR_ALL;
1844                        break;
1845                }
1846                break;
1847        }
1848
1849        raw_event.event_id = base_id;
1850
1851        return &raw_event;
1852}
1853
1854static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1855{
1856        unsigned int base_id = config & 0x7f;
1857        unsigned int event_max;
1858
1859
1860        raw_event.cntr_mask = CNTR_ALL;
1861        raw_event.event_id = base_id;
1862
1863        if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
1864                event_max = 0x5f;
1865        else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
1866                event_max = 0x42;
1867        else
1868                event_max = 0x3a;
1869
1870        if (base_id > event_max) {
1871                return ERR_PTR(-EOPNOTSUPP);
1872        }
1873
1874        switch (base_id) {
1875        case 0x00:
1876        case 0x0f:
1877        case 0x1e:
1878        case 0x1f:
1879        case 0x2f:
1880        case 0x34:
1881        case 0x3e ... 0x3f:
1882                return ERR_PTR(-EOPNOTSUPP);
1883        default:
1884                break;
1885        }
1886
1887        return &raw_event;
1888}
1889
1890static int __init
1891init_hw_perf_events(void)
1892{
1893        int counters, irq, pmu_type;
1894
1895        pr_info("Performance counters: ");
1896
1897        counters = n_counters();
1898        if (counters == 0) {
1899                pr_cont("No available PMU.\n");
1900                return -ENODEV;
1901        }
1902
1903#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1904        if (!cpu_has_mipsmt_pertccounters)
1905                counters = counters_total_to_per_cpu(counters);
1906#endif
1907
1908        if (get_c0_perfcount_int)
1909                irq = get_c0_perfcount_int();
1910        else if (cp0_perfcount_irq >= 0)
1911                irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1912        else
1913                irq = -1;
1914
1915        mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1916
1917        switch (current_cpu_type()) {
1918        case CPU_24K:
1919                mipspmu.name = "mips/24K";
1920                mipspmu.general_event_map = &mipsxxcore_event_map;
1921                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1922                break;
1923        case CPU_34K:
1924                mipspmu.name = "mips/34K";
1925                mipspmu.general_event_map = &mipsxxcore_event_map;
1926                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1927                break;
1928        case CPU_74K:
1929                mipspmu.name = "mips/74K";
1930                mipspmu.general_event_map = &mipsxxcore_event_map2;
1931                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1932                break;
1933        case CPU_PROAPTIV:
1934                mipspmu.name = "mips/proAptiv";
1935                mipspmu.general_event_map = &mipsxxcore_event_map2;
1936                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1937                break;
1938        case CPU_P5600:
1939                mipspmu.name = "mips/P5600";
1940                mipspmu.general_event_map = &mipsxxcore_event_map2;
1941                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1942                break;
1943        case CPU_P6600:
1944                mipspmu.name = "mips/P6600";
1945                mipspmu.general_event_map = &mipsxxcore_event_map2;
1946                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1947                break;
1948        case CPU_I6400:
1949                mipspmu.name = "mips/I6400";
1950                mipspmu.general_event_map = &i6x00_event_map;
1951                mipspmu.cache_event_map = &i6x00_cache_map;
1952                break;
1953        case CPU_I6500:
1954                mipspmu.name = "mips/I6500";
1955                mipspmu.general_event_map = &i6x00_event_map;
1956                mipspmu.cache_event_map = &i6x00_cache_map;
1957                break;
1958        case CPU_1004K:
1959                mipspmu.name = "mips/1004K";
1960                mipspmu.general_event_map = &mipsxxcore_event_map;
1961                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1962                break;
1963        case CPU_1074K:
1964                mipspmu.name = "mips/1074K";
1965                mipspmu.general_event_map = &mipsxxcore_event_map;
1966                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1967                break;
1968        case CPU_INTERAPTIV:
1969                mipspmu.name = "mips/interAptiv";
1970                mipspmu.general_event_map = &mipsxxcore_event_map;
1971                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1972                break;
1973        case CPU_LOONGSON32:
1974                mipspmu.name = "mips/loongson1";
1975                mipspmu.general_event_map = &mipsxxcore_event_map;
1976                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1977                break;
1978        case CPU_LOONGSON64:
1979                mipspmu.name = "mips/loongson3";
1980                pmu_type = get_loongson3_pmu_type();
1981
1982                switch (pmu_type) {
1983                case LOONGSON_PMU_TYPE1:
1984                        counters = 2;
1985                        mipspmu.general_event_map = &loongson3_event_map1;
1986                        mipspmu.cache_event_map = &loongson3_cache_map1;
1987                        break;
1988                case LOONGSON_PMU_TYPE2:
1989                        counters = 4;
1990                        mipspmu.general_event_map = &loongson3_event_map2;
1991                        mipspmu.cache_event_map = &loongson3_cache_map2;
1992                        break;
1993                case LOONGSON_PMU_TYPE3:
1994                        counters = 4;
1995                        mipspmu.general_event_map = &loongson3_event_map3;
1996                        mipspmu.cache_event_map = &loongson3_cache_map3;
1997                        break;
1998                }
1999                break;
2000        case CPU_CAVIUM_OCTEON:
2001        case CPU_CAVIUM_OCTEON_PLUS:
2002        case CPU_CAVIUM_OCTEON2:
2003        case CPU_CAVIUM_OCTEON3:
2004                mipspmu.name = "octeon";
2005                mipspmu.general_event_map = &octeon_event_map;
2006                mipspmu.cache_event_map = &octeon_cache_map;
2007                mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2008                break;
2009        case CPU_BMIPS5000:
2010                mipspmu.name = "BMIPS5000";
2011                mipspmu.general_event_map = &bmips5000_event_map;
2012                mipspmu.cache_event_map = &bmips5000_cache_map;
2013                break;
2014        default:
2015                pr_cont("Either hardware does not support performance "
2016                        "counters, or not yet implemented.\n");
2017                return -ENODEV;
2018        }
2019
2020        mipspmu.num_counters = counters;
2021        mipspmu.irq = irq;
2022
2023        if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2024                if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2025                        counter_bits = 48;
2026                        mipspmu.max_period = (1ULL << 47) - 1;
2027                        mipspmu.valid_count = (1ULL << 47) - 1;
2028                        mipspmu.overflow = 1ULL << 47;
2029                } else {
2030                        counter_bits = 64;
2031                        mipspmu.max_period = (1ULL << 63) - 1;
2032                        mipspmu.valid_count = (1ULL << 63) - 1;
2033                        mipspmu.overflow = 1ULL << 63;
2034                }
2035                mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2036                mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2037        } else {
2038                counter_bits = 32;
2039                mipspmu.max_period = (1ULL << 31) - 1;
2040                mipspmu.valid_count = (1ULL << 31) - 1;
2041                mipspmu.overflow = 1ULL << 31;
2042                mipspmu.read_counter = mipsxx_pmu_read_counter;
2043                mipspmu.write_counter = mipsxx_pmu_write_counter;
2044        }
2045
2046        on_each_cpu(reset_counters, (void *)(long)counters, 1);
2047
2048        pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2049                "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2050                irq < 0 ? " (share with timer interrupt)" : "");
2051
2052        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2053
2054        return 0;
2055}
2056early_initcall(init_hw_perf_events);
2057