linux/arch/powerpc/kernel/rtas-proc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *   Copyright (C) 2000 Tilmann Bitterberg
   4 *   (tilmann@bitterberg.de)
   5 *
   6 *   RTAS (Runtime Abstraction Services) stuff
   7 *   Intention is to provide a clean user interface
   8 *   to use the RTAS.
   9 *
  10 *   TODO:
  11 *   Split off a header file and maybe move it to a different
  12 *   location. Write Documentation on what the /proc/rtas/ entries
  13 *   actually do.
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/sched.h>
  18#include <linux/proc_fs.h>
  19#include <linux/stat.h>
  20#include <linux/ctype.h>
  21#include <linux/time.h>
  22#include <linux/string.h>
  23#include <linux/init.h>
  24#include <linux/seq_file.h>
  25#include <linux/bitops.h>
  26#include <linux/rtc.h>
  27
  28#include <linux/uaccess.h>
  29#include <asm/processor.h>
  30#include <asm/io.h>
  31#include <asm/prom.h>
  32#include <asm/rtas.h>
  33#include <asm/machdep.h> /* for ppc_md */
  34#include <asm/time.h>
  35
  36/* Token for Sensors */
  37#define KEY_SWITCH              0x0001
  38#define ENCLOSURE_SWITCH        0x0002
  39#define THERMAL_SENSOR          0x0003
  40#define LID_STATUS              0x0004
  41#define POWER_SOURCE            0x0005
  42#define BATTERY_VOLTAGE         0x0006
  43#define BATTERY_REMAINING       0x0007
  44#define BATTERY_PERCENTAGE      0x0008
  45#define EPOW_SENSOR             0x0009
  46#define BATTERY_CYCLESTATE      0x000a
  47#define BATTERY_CHARGING        0x000b
  48
  49/* IBM specific sensors */
  50#define IBM_SURVEILLANCE        0x2328 /* 9000 */
  51#define IBM_FANRPM              0x2329 /* 9001 */
  52#define IBM_VOLTAGE             0x232a /* 9002 */
  53#define IBM_DRCONNECTOR         0x232b /* 9003 */
  54#define IBM_POWERSUPPLY         0x232c /* 9004 */
  55
  56/* Status return values */
  57#define SENSOR_CRITICAL_HIGH    13
  58#define SENSOR_WARNING_HIGH     12
  59#define SENSOR_NORMAL           11
  60#define SENSOR_WARNING_LOW      10
  61#define SENSOR_CRITICAL_LOW      9
  62#define SENSOR_SUCCESS           0
  63#define SENSOR_HW_ERROR         -1
  64#define SENSOR_BUSY             -2
  65#define SENSOR_NOT_EXIST        -3
  66#define SENSOR_DR_ENTITY        -9000
  67
  68/* Location Codes */
  69#define LOC_SCSI_DEV_ADDR       'A'
  70#define LOC_SCSI_DEV_LOC        'B'
  71#define LOC_CPU                 'C'
  72#define LOC_DISKETTE            'D'
  73#define LOC_ETHERNET            'E'
  74#define LOC_FAN                 'F'
  75#define LOC_GRAPHICS            'G'
  76/* reserved / not used          'H' */
  77#define LOC_IO_ADAPTER          'I'
  78/* reserved / not used          'J' */
  79#define LOC_KEYBOARD            'K'
  80#define LOC_LCD                 'L'
  81#define LOC_MEMORY              'M'
  82#define LOC_NV_MEMORY           'N'
  83#define LOC_MOUSE               'O'
  84#define LOC_PLANAR              'P'
  85#define LOC_OTHER_IO            'Q'
  86#define LOC_PARALLEL            'R'
  87#define LOC_SERIAL              'S'
  88#define LOC_DEAD_RING           'T'
  89#define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
  90#define LOC_VOLTAGE             'V'
  91#define LOC_SWITCH_ADAPTER      'W'
  92#define LOC_OTHER               'X'
  93#define LOC_FIRMWARE            'Y'
  94#define LOC_SCSI                'Z'
  95
  96/* Tokens for indicators */
  97#define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
  98#define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
  99#define SYSTEM_POWER_STATE      0x0003 
 100#define WARNING_LIGHT           0x0004
 101#define DISK_ACTIVITY_LIGHT     0x0005
 102#define HEX_DISPLAY_UNIT        0x0006
 103#define BATTERY_WARNING_TIME    0x0007
 104#define CONDITION_CYCLE_REQUEST 0x0008
 105#define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
 106#define DR_ACTION               0x2329 /* 9001 */
 107#define DR_INDICATOR            0x232a /* 9002 */
 108/* 9003 - 9004: Vendor specific */
 109/* 9006 - 9999: Vendor specific */
 110
 111/* other */
 112#define MAX_SENSORS              17  /* I only know of 17 sensors */    
 113#define MAX_LINELENGTH          256
 114#define SENSOR_PREFIX           "ibm,sensor-"
 115#define cel_to_fahr(x)          ((x*9/5)+32)
 116
 117struct individual_sensor {
 118        unsigned int token;
 119        unsigned int quant;
 120};
 121
 122struct rtas_sensors {
 123        struct individual_sensor sensor[MAX_SENSORS];
 124        unsigned int quant;
 125};
 126
 127/* Globals */
 128static struct rtas_sensors sensors;
 129static struct device_node *rtas_node = NULL;
 130static unsigned long power_on_time = 0; /* Save the time the user set */
 131static char progress_led[MAX_LINELENGTH];
 132
 133static unsigned long rtas_tone_frequency = 1000;
 134static unsigned long rtas_tone_volume = 0;
 135
 136/* ****************************************************************** */
 137/* Declarations */
 138static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
 139static int ppc_rtas_clock_show(struct seq_file *m, void *v);
 140static ssize_t ppc_rtas_clock_write(struct file *file,
 141                const char __user *buf, size_t count, loff_t *ppos);
 142static int ppc_rtas_progress_show(struct seq_file *m, void *v);
 143static ssize_t ppc_rtas_progress_write(struct file *file,
 144                const char __user *buf, size_t count, loff_t *ppos);
 145static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
 146static ssize_t ppc_rtas_poweron_write(struct file *file,
 147                const char __user *buf, size_t count, loff_t *ppos);
 148
 149static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 150                const char __user *buf, size_t count, loff_t *ppos);
 151static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
 152static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 153                const char __user *buf, size_t count, loff_t *ppos);
 154static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
 155static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
 156
 157static int poweron_open(struct inode *inode, struct file *file)
 158{
 159        return single_open(file, ppc_rtas_poweron_show, NULL);
 160}
 161
 162static const struct proc_ops ppc_rtas_poweron_proc_ops = {
 163        .proc_open      = poweron_open,
 164        .proc_read      = seq_read,
 165        .proc_lseek     = seq_lseek,
 166        .proc_write     = ppc_rtas_poweron_write,
 167        .proc_release   = single_release,
 168};
 169
 170static int progress_open(struct inode *inode, struct file *file)
 171{
 172        return single_open(file, ppc_rtas_progress_show, NULL);
 173}
 174
 175static const struct proc_ops ppc_rtas_progress_proc_ops = {
 176        .proc_open      = progress_open,
 177        .proc_read      = seq_read,
 178        .proc_lseek     = seq_lseek,
 179        .proc_write     = ppc_rtas_progress_write,
 180        .proc_release   = single_release,
 181};
 182
 183static int clock_open(struct inode *inode, struct file *file)
 184{
 185        return single_open(file, ppc_rtas_clock_show, NULL);
 186}
 187
 188static const struct proc_ops ppc_rtas_clock_proc_ops = {
 189        .proc_open      = clock_open,
 190        .proc_read      = seq_read,
 191        .proc_lseek     = seq_lseek,
 192        .proc_write     = ppc_rtas_clock_write,
 193        .proc_release   = single_release,
 194};
 195
 196static int tone_freq_open(struct inode *inode, struct file *file)
 197{
 198        return single_open(file, ppc_rtas_tone_freq_show, NULL);
 199}
 200
 201static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
 202        .proc_open      = tone_freq_open,
 203        .proc_read      = seq_read,
 204        .proc_lseek     = seq_lseek,
 205        .proc_write     = ppc_rtas_tone_freq_write,
 206        .proc_release   = single_release,
 207};
 208
 209static int tone_volume_open(struct inode *inode, struct file *file)
 210{
 211        return single_open(file, ppc_rtas_tone_volume_show, NULL);
 212}
 213
 214static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
 215        .proc_open      = tone_volume_open,
 216        .proc_read      = seq_read,
 217        .proc_lseek     = seq_lseek,
 218        .proc_write     = ppc_rtas_tone_volume_write,
 219        .proc_release   = single_release,
 220};
 221
 222static int ppc_rtas_find_all_sensors(void);
 223static void ppc_rtas_process_sensor(struct seq_file *m,
 224        struct individual_sensor *s, int state, int error, const char *loc);
 225static char *ppc_rtas_process_error(int error);
 226static void get_location_code(struct seq_file *m,
 227        struct individual_sensor *s, const char *loc);
 228static void check_location_string(struct seq_file *m, const char *c);
 229static void check_location(struct seq_file *m, const char *c);
 230
 231static int __init proc_rtas_init(void)
 232{
 233        if (!machine_is(pseries))
 234                return -ENODEV;
 235
 236        rtas_node = of_find_node_by_name(NULL, "rtas");
 237        if (rtas_node == NULL)
 238                return -ENODEV;
 239
 240        proc_create("powerpc/rtas/progress", 0644, NULL,
 241                    &ppc_rtas_progress_proc_ops);
 242        proc_create("powerpc/rtas/clock", 0644, NULL,
 243                    &ppc_rtas_clock_proc_ops);
 244        proc_create("powerpc/rtas/poweron", 0644, NULL,
 245                    &ppc_rtas_poweron_proc_ops);
 246        proc_create_single("powerpc/rtas/sensors", 0444, NULL,
 247                        ppc_rtas_sensors_show);
 248        proc_create("powerpc/rtas/frequency", 0644, NULL,
 249                    &ppc_rtas_tone_freq_proc_ops);
 250        proc_create("powerpc/rtas/volume", 0644, NULL,
 251                    &ppc_rtas_tone_volume_proc_ops);
 252        proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
 253                        ppc_rtas_rmo_buf_show);
 254        return 0;
 255}
 256
 257__initcall(proc_rtas_init);
 258
 259static int parse_number(const char __user *p, size_t count, u64 *val)
 260{
 261        char buf[40];
 262        char *end;
 263
 264        if (count > 39)
 265                return -EINVAL;
 266
 267        if (copy_from_user(buf, p, count))
 268                return -EFAULT;
 269
 270        buf[count] = 0;
 271
 272        *val = simple_strtoull(buf, &end, 10);
 273        if (*end && *end != '\n')
 274                return -EINVAL;
 275
 276        return 0;
 277}
 278
 279/* ****************************************************************** */
 280/* POWER-ON-TIME                                                      */
 281/* ****************************************************************** */
 282static ssize_t ppc_rtas_poweron_write(struct file *file,
 283                const char __user *buf, size_t count, loff_t *ppos)
 284{
 285        struct rtc_time tm;
 286        time64_t nowtime;
 287        int error = parse_number(buf, count, &nowtime);
 288        if (error)
 289                return error;
 290
 291        power_on_time = nowtime; /* save the time */
 292
 293        rtc_time64_to_tm(nowtime, &tm);
 294
 295        error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
 296                        tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
 297                        tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
 298        if (error)
 299                printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
 300                                ppc_rtas_process_error(error));
 301        return count;
 302}
 303/* ****************************************************************** */
 304static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
 305{
 306        if (power_on_time == 0)
 307                seq_printf(m, "Power on time not set\n");
 308        else
 309                seq_printf(m, "%lu\n",power_on_time);
 310        return 0;
 311}
 312
 313/* ****************************************************************** */
 314/* PROGRESS                                                           */
 315/* ****************************************************************** */
 316static ssize_t ppc_rtas_progress_write(struct file *file,
 317                const char __user *buf, size_t count, loff_t *ppos)
 318{
 319        unsigned long hex;
 320
 321        if (count >= MAX_LINELENGTH)
 322                count = MAX_LINELENGTH -1;
 323        if (copy_from_user(progress_led, buf, count)) { /* save the string */
 324                return -EFAULT;
 325        }
 326        progress_led[count] = 0;
 327
 328        /* Lets see if the user passed hexdigits */
 329        hex = simple_strtoul(progress_led, NULL, 10);
 330
 331        rtas_progress ((char *)progress_led, hex);
 332        return count;
 333
 334        /* clear the line */
 335        /* rtas_progress("                   ", 0xffff);*/
 336}
 337/* ****************************************************************** */
 338static int ppc_rtas_progress_show(struct seq_file *m, void *v)
 339{
 340        if (progress_led[0])
 341                seq_printf(m, "%s\n", progress_led);
 342        return 0;
 343}
 344
 345/* ****************************************************************** */
 346/* CLOCK                                                              */
 347/* ****************************************************************** */
 348static ssize_t ppc_rtas_clock_write(struct file *file,
 349                const char __user *buf, size_t count, loff_t *ppos)
 350{
 351        struct rtc_time tm;
 352        time64_t nowtime;
 353        int error = parse_number(buf, count, &nowtime);
 354        if (error)
 355                return error;
 356
 357        rtc_time64_to_tm(nowtime, &tm);
 358        error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
 359                        tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
 360                        tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
 361        if (error)
 362                printk(KERN_WARNING "error: setting the clock returned: %s\n", 
 363                                ppc_rtas_process_error(error));
 364        return count;
 365}
 366/* ****************************************************************** */
 367static int ppc_rtas_clock_show(struct seq_file *m, void *v)
 368{
 369        int ret[8];
 370        int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
 371
 372        if (error) {
 373                printk(KERN_WARNING "error: reading the clock returned: %s\n", 
 374                                ppc_rtas_process_error(error));
 375                seq_printf(m, "0");
 376        } else { 
 377                unsigned int year, mon, day, hour, min, sec;
 378                year = ret[0]; mon  = ret[1]; day  = ret[2];
 379                hour = ret[3]; min  = ret[4]; sec  = ret[5];
 380                seq_printf(m, "%lld\n",
 381                                mktime64(year, mon, day, hour, min, sec));
 382        }
 383        return 0;
 384}
 385
 386/* ****************************************************************** */
 387/* SENSOR STUFF                                                       */
 388/* ****************************************************************** */
 389static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
 390{
 391        int i,j;
 392        int state, error;
 393        int get_sensor_state = rtas_token("get-sensor-state");
 394
 395        seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
 396        seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
 397        seq_printf(m, "********************************************************\n");
 398
 399        if (ppc_rtas_find_all_sensors() != 0) {
 400                seq_printf(m, "\nNo sensors are available\n");
 401                return 0;
 402        }
 403
 404        for (i=0; i<sensors.quant; i++) {
 405                struct individual_sensor *p = &sensors.sensor[i];
 406                char rstr[64];
 407                const char *loc;
 408                int llen, offs;
 409
 410                sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
 411                loc = of_get_property(rtas_node, rstr, &llen);
 412
 413                /* A sensor may have multiple instances */
 414                for (j = 0, offs = 0; j <= p->quant; j++) {
 415                        error = rtas_call(get_sensor_state, 2, 2, &state, 
 416                                          p->token, j);
 417
 418                        ppc_rtas_process_sensor(m, p, state, error, loc);
 419                        seq_putc(m, '\n');
 420                        if (loc) {
 421                                offs += strlen(loc) + 1;
 422                                loc += strlen(loc) + 1;
 423                                if (offs >= llen)
 424                                        loc = NULL;
 425                        }
 426                }
 427        }
 428        return 0;
 429}
 430
 431/* ****************************************************************** */
 432
 433static int ppc_rtas_find_all_sensors(void)
 434{
 435        const unsigned int *utmp;
 436        int len, i;
 437
 438        utmp = of_get_property(rtas_node, "rtas-sensors", &len);
 439        if (utmp == NULL) {
 440                printk (KERN_ERR "error: could not get rtas-sensors\n");
 441                return 1;
 442        }
 443
 444        sensors.quant = len / 8;      /* int + int */
 445
 446        for (i=0; i<sensors.quant; i++) {
 447                sensors.sensor[i].token = *utmp++;
 448                sensors.sensor[i].quant = *utmp++;
 449        }
 450        return 0;
 451}
 452
 453/* ****************************************************************** */
 454/*
 455 * Builds a string of what rtas returned
 456 */
 457static char *ppc_rtas_process_error(int error)
 458{
 459        switch (error) {
 460                case SENSOR_CRITICAL_HIGH:
 461                        return "(critical high)";
 462                case SENSOR_WARNING_HIGH:
 463                        return "(warning high)";
 464                case SENSOR_NORMAL:
 465                        return "(normal)";
 466                case SENSOR_WARNING_LOW:
 467                        return "(warning low)";
 468                case SENSOR_CRITICAL_LOW:
 469                        return "(critical low)";
 470                case SENSOR_SUCCESS:
 471                        return "(read ok)";
 472                case SENSOR_HW_ERROR:
 473                        return "(hardware error)";
 474                case SENSOR_BUSY:
 475                        return "(busy)";
 476                case SENSOR_NOT_EXIST:
 477                        return "(non existent)";
 478                case SENSOR_DR_ENTITY:
 479                        return "(dr entity removed)";
 480                default:
 481                        return "(UNKNOWN)";
 482        }
 483}
 484
 485/* ****************************************************************** */
 486/*
 487 * Builds a string out of what the sensor said
 488 */
 489
 490static void ppc_rtas_process_sensor(struct seq_file *m,
 491        struct individual_sensor *s, int state, int error, const char *loc)
 492{
 493        /* Defined return vales */
 494        const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
 495                                                "Maintenance" };
 496        const char * enclosure_switch[]  = { "Closed", "Open" };
 497        const char * lid_status[]        = { " ", "Open", "Closed" };
 498        const char * power_source[]      = { "AC\t", "Battery", 
 499                                                "AC & Battery" };
 500        const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
 501        const char * epow_sensor[]       = { 
 502                "EPOW Reset", "Cooling warning", "Power warning",
 503                "System shutdown", "System halt", "EPOW main enclosure",
 504                "EPOW power off" };
 505        const char * battery_cyclestate[]  = { "None", "In progress", 
 506                                                "Requested" };
 507        const char * battery_charging[]    = { "Charging", "Discharging",
 508                                                "No current flow" };
 509        const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
 510                                                "Exchange" };
 511
 512        int have_strings = 0;
 513        int num_states = 0;
 514        int temperature = 0;
 515        int unknown = 0;
 516
 517        /* What kind of sensor do we have here? */
 518        
 519        switch (s->token) {
 520                case KEY_SWITCH:
 521                        seq_printf(m, "Key switch:\t");
 522                        num_states = sizeof(key_switch) / sizeof(char *);
 523                        if (state < num_states) {
 524                                seq_printf(m, "%s\t", key_switch[state]);
 525                                have_strings = 1;
 526                        }
 527                        break;
 528                case ENCLOSURE_SWITCH:
 529                        seq_printf(m, "Enclosure switch:\t");
 530                        num_states = sizeof(enclosure_switch) / sizeof(char *);
 531                        if (state < num_states) {
 532                                seq_printf(m, "%s\t", 
 533                                                enclosure_switch[state]);
 534                                have_strings = 1;
 535                        }
 536                        break;
 537                case THERMAL_SENSOR:
 538                        seq_printf(m, "Temp. (C/F):\t");
 539                        temperature = 1;
 540                        break;
 541                case LID_STATUS:
 542                        seq_printf(m, "Lid status:\t");
 543                        num_states = sizeof(lid_status) / sizeof(char *);
 544                        if (state < num_states) {
 545                                seq_printf(m, "%s\t", lid_status[state]);
 546                                have_strings = 1;
 547                        }
 548                        break;
 549                case POWER_SOURCE:
 550                        seq_printf(m, "Power source:\t");
 551                        num_states = sizeof(power_source) / sizeof(char *);
 552                        if (state < num_states) {
 553                                seq_printf(m, "%s\t", 
 554                                                power_source[state]);
 555                                have_strings = 1;
 556                        }
 557                        break;
 558                case BATTERY_VOLTAGE:
 559                        seq_printf(m, "Battery voltage:\t");
 560                        break;
 561                case BATTERY_REMAINING:
 562                        seq_printf(m, "Battery remaining:\t");
 563                        num_states = sizeof(battery_remaining) / sizeof(char *);
 564                        if (state < num_states)
 565                        {
 566                                seq_printf(m, "%s\t", 
 567                                                battery_remaining[state]);
 568                                have_strings = 1;
 569                        }
 570                        break;
 571                case BATTERY_PERCENTAGE:
 572                        seq_printf(m, "Battery percentage:\t");
 573                        break;
 574                case EPOW_SENSOR:
 575                        seq_printf(m, "EPOW Sensor:\t");
 576                        num_states = sizeof(epow_sensor) / sizeof(char *);
 577                        if (state < num_states) {
 578                                seq_printf(m, "%s\t", epow_sensor[state]);
 579                                have_strings = 1;
 580                        }
 581                        break;
 582                case BATTERY_CYCLESTATE:
 583                        seq_printf(m, "Battery cyclestate:\t");
 584                        num_states = sizeof(battery_cyclestate) / 
 585                                        sizeof(char *);
 586                        if (state < num_states) {
 587                                seq_printf(m, "%s\t", 
 588                                                battery_cyclestate[state]);
 589                                have_strings = 1;
 590                        }
 591                        break;
 592                case BATTERY_CHARGING:
 593                        seq_printf(m, "Battery Charging:\t");
 594                        num_states = sizeof(battery_charging) / sizeof(char *);
 595                        if (state < num_states) {
 596                                seq_printf(m, "%s\t", 
 597                                                battery_charging[state]);
 598                                have_strings = 1;
 599                        }
 600                        break;
 601                case IBM_SURVEILLANCE:
 602                        seq_printf(m, "Surveillance:\t");
 603                        break;
 604                case IBM_FANRPM:
 605                        seq_printf(m, "Fan (rpm):\t");
 606                        break;
 607                case IBM_VOLTAGE:
 608                        seq_printf(m, "Voltage (mv):\t");
 609                        break;
 610                case IBM_DRCONNECTOR:
 611                        seq_printf(m, "DR connector:\t");
 612                        num_states = sizeof(ibm_drconnector) / sizeof(char *);
 613                        if (state < num_states) {
 614                                seq_printf(m, "%s\t", 
 615                                                ibm_drconnector[state]);
 616                                have_strings = 1;
 617                        }
 618                        break;
 619                case IBM_POWERSUPPLY:
 620                        seq_printf(m, "Powersupply:\t");
 621                        break;
 622                default:
 623                        seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
 624                                        s->token);
 625                        unknown = 1;
 626                        have_strings = 1;
 627                        break;
 628        }
 629        if (have_strings == 0) {
 630                if (temperature) {
 631                        seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
 632                } else
 633                        seq_printf(m, "%10d\t", state);
 634        }
 635        if (unknown == 0) {
 636                seq_printf(m, "%s\t", ppc_rtas_process_error(error));
 637                get_location_code(m, s, loc);
 638        }
 639}
 640
 641/* ****************************************************************** */
 642
 643static void check_location(struct seq_file *m, const char *c)
 644{
 645        switch (c[0]) {
 646                case LOC_PLANAR:
 647                        seq_printf(m, "Planar #%c", c[1]);
 648                        break;
 649                case LOC_CPU:
 650                        seq_printf(m, "CPU #%c", c[1]);
 651                        break;
 652                case LOC_FAN:
 653                        seq_printf(m, "Fan #%c", c[1]);
 654                        break;
 655                case LOC_RACKMOUNTED:
 656                        seq_printf(m, "Rack #%c", c[1]);
 657                        break;
 658                case LOC_VOLTAGE:
 659                        seq_printf(m, "Voltage #%c", c[1]);
 660                        break;
 661                case LOC_LCD:
 662                        seq_printf(m, "LCD #%c", c[1]);
 663                        break;
 664                case '.':
 665                        seq_printf(m, "- %c", c[1]);
 666                        break;
 667                default:
 668                        seq_printf(m, "Unknown location");
 669                        break;
 670        }
 671}
 672
 673
 674/* ****************************************************************** */
 675/* 
 676 * Format: 
 677 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
 678 * the '.' may be an abbreviation
 679 */
 680static void check_location_string(struct seq_file *m, const char *c)
 681{
 682        while (*c) {
 683                if (isalpha(*c) || *c == '.')
 684                        check_location(m, c);
 685                else if (*c == '/' || *c == '-')
 686                        seq_printf(m, " at ");
 687                c++;
 688        }
 689}
 690
 691
 692/* ****************************************************************** */
 693
 694static void get_location_code(struct seq_file *m, struct individual_sensor *s,
 695                const char *loc)
 696{
 697        if (!loc || !*loc) {
 698                seq_printf(m, "---");/* does not have a location */
 699        } else {
 700                check_location_string(m, loc);
 701        }
 702        seq_putc(m, ' ');
 703}
 704/* ****************************************************************** */
 705/* INDICATORS - Tone Frequency                                        */
 706/* ****************************************************************** */
 707static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 708                const char __user *buf, size_t count, loff_t *ppos)
 709{
 710        u64 freq;
 711        int error = parse_number(buf, count, &freq);
 712        if (error)
 713                return error;
 714
 715        rtas_tone_frequency = freq; /* save it for later */
 716        error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 717                        TONE_FREQUENCY, 0, freq);
 718        if (error)
 719                printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
 720                                ppc_rtas_process_error(error));
 721        return count;
 722}
 723/* ****************************************************************** */
 724static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
 725{
 726        seq_printf(m, "%lu\n", rtas_tone_frequency);
 727        return 0;
 728}
 729/* ****************************************************************** */
 730/* INDICATORS - Tone Volume                                           */
 731/* ****************************************************************** */
 732static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 733                const char __user *buf, size_t count, loff_t *ppos)
 734{
 735        u64 volume;
 736        int error = parse_number(buf, count, &volume);
 737        if (error)
 738                return error;
 739
 740        if (volume > 100)
 741                volume = 100;
 742        
 743        rtas_tone_volume = volume; /* save it for later */
 744        error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 745                        TONE_VOLUME, 0, volume);
 746        if (error)
 747                printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
 748                                ppc_rtas_process_error(error));
 749        return count;
 750}
 751/* ****************************************************************** */
 752static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
 753{
 754        seq_printf(m, "%lu\n", rtas_tone_volume);
 755        return 0;
 756}
 757
 758/**
 759 * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space.
 760 *
 761 * Base + size description of a range of RTAS-addressable memory set
 762 * aside for user space to use as work area(s) for certain RTAS
 763 * functions. User space accesses this region via /dev/mem. Apart from
 764 * security policies, the kernel does not arbitrate or serialize
 765 * access to this region, and user space must ensure that concurrent
 766 * users do not interfere with each other.
 767 */
 768static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
 769{
 770        seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE);
 771        return 0;
 772}
 773