linux/arch/x86/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/export.h>
  21#include <linux/init.h>
  22#include <linux/kdebug.h>
  23#include <linux/sched/mm.h>
  24#include <linux/sched/clock.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <linux/cpu.h>
  28#include <linux/bitops.h>
  29#include <linux/device.h>
  30#include <linux/nospec.h>
  31#include <linux/static_call.h>
  32
  33#include <asm/apic.h>
  34#include <asm/stacktrace.h>
  35#include <asm/nmi.h>
  36#include <asm/smp.h>
  37#include <asm/alternative.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/timer.h>
  41#include <asm/desc.h>
  42#include <asm/ldt.h>
  43#include <asm/unwind.h>
  44
  45#include "perf_event.h"
  46
  47struct x86_pmu x86_pmu __read_mostly;
  48static struct pmu pmu;
  49
  50DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  51        .enabled = 1,
  52        .pmu = &pmu,
  53};
  54
  55DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
  56DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
  57DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
  58
  59/*
  60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
  61 * from just a typename, as opposed to an actual function.
  62 */
  63DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
  64DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
  65DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
  66DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
  67DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
  68
  69DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
  70
  71DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
  72DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
  73DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
  74
  75DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
  76DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
  77DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
  78
  79DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
  80DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
  81DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
  82
  83DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
  84DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
  85
  86DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
  87DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
  88
  89/*
  90 * This one is magic, it will get called even when PMU init fails (because
  91 * there is no PMU), in which case it should simply return NULL.
  92 */
  93DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
  94
  95u64 __read_mostly hw_cache_event_ids
  96                                [PERF_COUNT_HW_CACHE_MAX]
  97                                [PERF_COUNT_HW_CACHE_OP_MAX]
  98                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  99u64 __read_mostly hw_cache_extra_regs
 100                                [PERF_COUNT_HW_CACHE_MAX]
 101                                [PERF_COUNT_HW_CACHE_OP_MAX]
 102                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
 103
 104/*
 105 * Propagate event elapsed time into the generic event.
 106 * Can only be executed on the CPU where the event is active.
 107 * Returns the delta events processed.
 108 */
 109u64 x86_perf_event_update(struct perf_event *event)
 110{
 111        struct hw_perf_event *hwc = &event->hw;
 112        int shift = 64 - x86_pmu.cntval_bits;
 113        u64 prev_raw_count, new_raw_count;
 114        u64 delta;
 115
 116        if (unlikely(!hwc->event_base))
 117                return 0;
 118
 119        if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
 120                return x86_pmu.update_topdown_event(event);
 121
 122        /*
 123         * Careful: an NMI might modify the previous event value.
 124         *
 125         * Our tactic to handle this is to first atomically read and
 126         * exchange a new raw count - then add that new-prev delta
 127         * count to the generic event atomically:
 128         */
 129again:
 130        prev_raw_count = local64_read(&hwc->prev_count);
 131        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
 132
 133        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 134                                        new_raw_count) != prev_raw_count)
 135                goto again;
 136
 137        /*
 138         * Now we have the new raw value and have updated the prev
 139         * timestamp already. We can now calculate the elapsed delta
 140         * (event-)time and add that to the generic event.
 141         *
 142         * Careful, not all hw sign-extends above the physical width
 143         * of the count.
 144         */
 145        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 146        delta >>= shift;
 147
 148        local64_add(delta, &event->count);
 149        local64_sub(delta, &hwc->period_left);
 150
 151        return new_raw_count;
 152}
 153
 154/*
 155 * Find and validate any extra registers to set up.
 156 */
 157static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 158{
 159        struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
 160        struct hw_perf_event_extra *reg;
 161        struct extra_reg *er;
 162
 163        reg = &event->hw.extra_reg;
 164
 165        if (!extra_regs)
 166                return 0;
 167
 168        for (er = extra_regs; er->msr; er++) {
 169                if (er->event != (config & er->config_mask))
 170                        continue;
 171                if (event->attr.config1 & ~er->valid_mask)
 172                        return -EINVAL;
 173                /* Check if the extra msrs can be safely accessed*/
 174                if (!er->extra_msr_access)
 175                        return -ENXIO;
 176
 177                reg->idx = er->idx;
 178                reg->config = event->attr.config1;
 179                reg->reg = er->msr;
 180                break;
 181        }
 182        return 0;
 183}
 184
 185static atomic_t active_events;
 186static atomic_t pmc_refcount;
 187static DEFINE_MUTEX(pmc_reserve_mutex);
 188
 189#ifdef CONFIG_X86_LOCAL_APIC
 190
 191static inline int get_possible_num_counters(void)
 192{
 193        int i, num_counters = x86_pmu.num_counters;
 194
 195        if (!is_hybrid())
 196                return num_counters;
 197
 198        for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
 199                num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
 200
 201        return num_counters;
 202}
 203
 204static bool reserve_pmc_hardware(void)
 205{
 206        int i, num_counters = get_possible_num_counters();
 207
 208        for (i = 0; i < num_counters; i++) {
 209                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 210                        goto perfctr_fail;
 211        }
 212
 213        for (i = 0; i < num_counters; i++) {
 214                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 215                        goto eventsel_fail;
 216        }
 217
 218        return true;
 219
 220eventsel_fail:
 221        for (i--; i >= 0; i--)
 222                release_evntsel_nmi(x86_pmu_config_addr(i));
 223
 224        i = num_counters;
 225
 226perfctr_fail:
 227        for (i--; i >= 0; i--)
 228                release_perfctr_nmi(x86_pmu_event_addr(i));
 229
 230        return false;
 231}
 232
 233static void release_pmc_hardware(void)
 234{
 235        int i, num_counters = get_possible_num_counters();
 236
 237        for (i = 0; i < num_counters; i++) {
 238                release_perfctr_nmi(x86_pmu_event_addr(i));
 239                release_evntsel_nmi(x86_pmu_config_addr(i));
 240        }
 241}
 242
 243#else
 244
 245static bool reserve_pmc_hardware(void) { return true; }
 246static void release_pmc_hardware(void) {}
 247
 248#endif
 249
 250bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
 251{
 252        u64 val, val_fail = -1, val_new= ~0;
 253        int i, reg, reg_fail = -1, ret = 0;
 254        int bios_fail = 0;
 255        int reg_safe = -1;
 256
 257        /*
 258         * Check to see if the BIOS enabled any of the counters, if so
 259         * complain and bail.
 260         */
 261        for (i = 0; i < num_counters; i++) {
 262                reg = x86_pmu_config_addr(i);
 263                ret = rdmsrl_safe(reg, &val);
 264                if (ret)
 265                        goto msr_fail;
 266                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 267                        bios_fail = 1;
 268                        val_fail = val;
 269                        reg_fail = reg;
 270                } else {
 271                        reg_safe = i;
 272                }
 273        }
 274
 275        if (num_counters_fixed) {
 276                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 277                ret = rdmsrl_safe(reg, &val);
 278                if (ret)
 279                        goto msr_fail;
 280                for (i = 0; i < num_counters_fixed; i++) {
 281                        if (fixed_counter_disabled(i, pmu))
 282                                continue;
 283                        if (val & (0x03ULL << i*4)) {
 284                                bios_fail = 1;
 285                                val_fail = val;
 286                                reg_fail = reg;
 287                        }
 288                }
 289        }
 290
 291        /*
 292         * If all the counters are enabled, the below test will always
 293         * fail.  The tools will also become useless in this scenario.
 294         * Just fail and disable the hardware counters.
 295         */
 296
 297        if (reg_safe == -1) {
 298                reg = reg_safe;
 299                goto msr_fail;
 300        }
 301
 302        /*
 303         * Read the current value, change it and read it back to see if it
 304         * matches, this is needed to detect certain hardware emulators
 305         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 306         */
 307        reg = x86_pmu_event_addr(reg_safe);
 308        if (rdmsrl_safe(reg, &val))
 309                goto msr_fail;
 310        val ^= 0xffffUL;
 311        ret = wrmsrl_safe(reg, val);
 312        ret |= rdmsrl_safe(reg, &val_new);
 313        if (ret || val != val_new)
 314                goto msr_fail;
 315
 316        /*
 317         * We still allow the PMU driver to operate:
 318         */
 319        if (bios_fail) {
 320                pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
 321                pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
 322                              reg_fail, val_fail);
 323        }
 324
 325        return true;
 326
 327msr_fail:
 328        if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 329                pr_cont("PMU not available due to virtualization, using software events only.\n");
 330        } else {
 331                pr_cont("Broken PMU hardware detected, using software events only.\n");
 332                pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
 333                       reg, val_new);
 334        }
 335
 336        return false;
 337}
 338
 339static void hw_perf_event_destroy(struct perf_event *event)
 340{
 341        x86_release_hardware();
 342        atomic_dec(&active_events);
 343}
 344
 345void hw_perf_lbr_event_destroy(struct perf_event *event)
 346{
 347        hw_perf_event_destroy(event);
 348
 349        /* undo the lbr/bts event accounting */
 350        x86_del_exclusive(x86_lbr_exclusive_lbr);
 351}
 352
 353static inline int x86_pmu_initialized(void)
 354{
 355        return x86_pmu.handle_irq != NULL;
 356}
 357
 358static inline int
 359set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 360{
 361        struct perf_event_attr *attr = &event->attr;
 362        unsigned int cache_type, cache_op, cache_result;
 363        u64 config, val;
 364
 365        config = attr->config;
 366
 367        cache_type = (config >> 0) & 0xff;
 368        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 369                return -EINVAL;
 370        cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
 371
 372        cache_op = (config >>  8) & 0xff;
 373        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 374                return -EINVAL;
 375        cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
 376
 377        cache_result = (config >> 16) & 0xff;
 378        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 379                return -EINVAL;
 380        cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
 381
 382        val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
 383        if (val == 0)
 384                return -ENOENT;
 385
 386        if (val == -1)
 387                return -EINVAL;
 388
 389        hwc->config |= val;
 390        attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
 391        return x86_pmu_extra_regs(val, event);
 392}
 393
 394int x86_reserve_hardware(void)
 395{
 396        int err = 0;
 397
 398        if (!atomic_inc_not_zero(&pmc_refcount)) {
 399                mutex_lock(&pmc_reserve_mutex);
 400                if (atomic_read(&pmc_refcount) == 0) {
 401                        if (!reserve_pmc_hardware()) {
 402                                err = -EBUSY;
 403                        } else {
 404                                reserve_ds_buffers();
 405                                reserve_lbr_buffers();
 406                        }
 407                }
 408                if (!err)
 409                        atomic_inc(&pmc_refcount);
 410                mutex_unlock(&pmc_reserve_mutex);
 411        }
 412
 413        return err;
 414}
 415
 416void x86_release_hardware(void)
 417{
 418        if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
 419                release_pmc_hardware();
 420                release_ds_buffers();
 421                release_lbr_buffers();
 422                mutex_unlock(&pmc_reserve_mutex);
 423        }
 424}
 425
 426/*
 427 * Check if we can create event of a certain type (that no conflicting events
 428 * are present).
 429 */
 430int x86_add_exclusive(unsigned int what)
 431{
 432        int i;
 433
 434        /*
 435         * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
 436         * LBR and BTS are still mutually exclusive.
 437         */
 438        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 439                goto out;
 440
 441        if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
 442                mutex_lock(&pmc_reserve_mutex);
 443                for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
 444                        if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
 445                                goto fail_unlock;
 446                }
 447                atomic_inc(&x86_pmu.lbr_exclusive[what]);
 448                mutex_unlock(&pmc_reserve_mutex);
 449        }
 450
 451out:
 452        atomic_inc(&active_events);
 453        return 0;
 454
 455fail_unlock:
 456        mutex_unlock(&pmc_reserve_mutex);
 457        return -EBUSY;
 458}
 459
 460void x86_del_exclusive(unsigned int what)
 461{
 462        atomic_dec(&active_events);
 463
 464        /*
 465         * See the comment in x86_add_exclusive().
 466         */
 467        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 468                return;
 469
 470        atomic_dec(&x86_pmu.lbr_exclusive[what]);
 471}
 472
 473int x86_setup_perfctr(struct perf_event *event)
 474{
 475        struct perf_event_attr *attr = &event->attr;
 476        struct hw_perf_event *hwc = &event->hw;
 477        u64 config;
 478
 479        if (!is_sampling_event(event)) {
 480                hwc->sample_period = x86_pmu.max_period;
 481                hwc->last_period = hwc->sample_period;
 482                local64_set(&hwc->period_left, hwc->sample_period);
 483        }
 484
 485        if (attr->type == event->pmu->type)
 486                return x86_pmu_extra_regs(event->attr.config, event);
 487
 488        if (attr->type == PERF_TYPE_HW_CACHE)
 489                return set_ext_hw_attr(hwc, event);
 490
 491        if (attr->config >= x86_pmu.max_events)
 492                return -EINVAL;
 493
 494        attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
 495
 496        /*
 497         * The generic map:
 498         */
 499        config = x86_pmu.event_map(attr->config);
 500
 501        if (config == 0)
 502                return -ENOENT;
 503
 504        if (config == -1LL)
 505                return -EINVAL;
 506
 507        hwc->config |= config;
 508
 509        return 0;
 510}
 511
 512/*
 513 * check that branch_sample_type is compatible with
 514 * settings needed for precise_ip > 1 which implies
 515 * using the LBR to capture ALL taken branches at the
 516 * priv levels of the measurement
 517 */
 518static inline int precise_br_compat(struct perf_event *event)
 519{
 520        u64 m = event->attr.branch_sample_type;
 521        u64 b = 0;
 522
 523        /* must capture all branches */
 524        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 525                return 0;
 526
 527        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 528
 529        if (!event->attr.exclude_user)
 530                b |= PERF_SAMPLE_BRANCH_USER;
 531
 532        if (!event->attr.exclude_kernel)
 533                b |= PERF_SAMPLE_BRANCH_KERNEL;
 534
 535        /*
 536         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 537         */
 538
 539        return m == b;
 540}
 541
 542int x86_pmu_max_precise(void)
 543{
 544        int precise = 0;
 545
 546        /* Support for constant skid */
 547        if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 548                precise++;
 549
 550                /* Support for IP fixup */
 551                if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 552                        precise++;
 553
 554                if (x86_pmu.pebs_prec_dist)
 555                        precise++;
 556        }
 557        return precise;
 558}
 559
 560int x86_pmu_hw_config(struct perf_event *event)
 561{
 562        if (event->attr.precise_ip) {
 563                int precise = x86_pmu_max_precise();
 564
 565                if (event->attr.precise_ip > precise)
 566                        return -EOPNOTSUPP;
 567
 568                /* There's no sense in having PEBS for non sampling events: */
 569                if (!is_sampling_event(event))
 570                        return -EINVAL;
 571        }
 572        /*
 573         * check that PEBS LBR correction does not conflict with
 574         * whatever the user is asking with attr->branch_sample_type
 575         */
 576        if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
 577                u64 *br_type = &event->attr.branch_sample_type;
 578
 579                if (has_branch_stack(event)) {
 580                        if (!precise_br_compat(event))
 581                                return -EOPNOTSUPP;
 582
 583                        /* branch_sample_type is compatible */
 584
 585                } else {
 586                        /*
 587                         * user did not specify  branch_sample_type
 588                         *
 589                         * For PEBS fixups, we capture all
 590                         * the branches at the priv level of the
 591                         * event.
 592                         */
 593                        *br_type = PERF_SAMPLE_BRANCH_ANY;
 594
 595                        if (!event->attr.exclude_user)
 596                                *br_type |= PERF_SAMPLE_BRANCH_USER;
 597
 598                        if (!event->attr.exclude_kernel)
 599                                *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 600                }
 601        }
 602
 603        if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
 604                event->attach_state |= PERF_ATTACH_TASK_DATA;
 605
 606        /*
 607         * Generate PMC IRQs:
 608         * (keep 'enabled' bit clear for now)
 609         */
 610        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 611
 612        /*
 613         * Count user and OS events unless requested not to
 614         */
 615        if (!event->attr.exclude_user)
 616                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 617        if (!event->attr.exclude_kernel)
 618                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 619
 620        if (event->attr.type == event->pmu->type)
 621                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 622
 623        if (event->attr.sample_period && x86_pmu.limit_period) {
 624                if (x86_pmu.limit_period(event, event->attr.sample_period) >
 625                                event->attr.sample_period)
 626                        return -EINVAL;
 627        }
 628
 629        /* sample_regs_user never support XMM registers */
 630        if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
 631                return -EINVAL;
 632        /*
 633         * Besides the general purpose registers, XMM registers may
 634         * be collected in PEBS on some platforms, e.g. Icelake
 635         */
 636        if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
 637                if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
 638                        return -EINVAL;
 639
 640                if (!event->attr.precise_ip)
 641                        return -EINVAL;
 642        }
 643
 644        return x86_setup_perfctr(event);
 645}
 646
 647/*
 648 * Setup the hardware configuration for a given attr_type
 649 */
 650static int __x86_pmu_event_init(struct perf_event *event)
 651{
 652        int err;
 653
 654        if (!x86_pmu_initialized())
 655                return -ENODEV;
 656
 657        err = x86_reserve_hardware();
 658        if (err)
 659                return err;
 660
 661        atomic_inc(&active_events);
 662        event->destroy = hw_perf_event_destroy;
 663
 664        event->hw.idx = -1;
 665        event->hw.last_cpu = -1;
 666        event->hw.last_tag = ~0ULL;
 667
 668        /* mark unused */
 669        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 670        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 671
 672        return x86_pmu.hw_config(event);
 673}
 674
 675void x86_pmu_disable_all(void)
 676{
 677        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 678        int idx;
 679
 680        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 681                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 682                u64 val;
 683
 684                if (!test_bit(idx, cpuc->active_mask))
 685                        continue;
 686                rdmsrl(x86_pmu_config_addr(idx), val);
 687                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 688                        continue;
 689                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 690                wrmsrl(x86_pmu_config_addr(idx), val);
 691                if (is_counter_pair(hwc))
 692                        wrmsrl(x86_pmu_config_addr(idx + 1), 0);
 693        }
 694}
 695
 696struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
 697{
 698        return static_call(x86_pmu_guest_get_msrs)(nr);
 699}
 700EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
 701
 702/*
 703 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 704 * after disable_all.
 705 *
 706 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 707 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 708 * handling the NMI, disable_all will be called, which will not change the
 709 * state either. If PMI hits after disable_all, the PMU is already disabled
 710 * before entering NMI handler. The NMI handler will not change the state
 711 * either.
 712 *
 713 * So either situation is harmless.
 714 */
 715static void x86_pmu_disable(struct pmu *pmu)
 716{
 717        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 718
 719        if (!x86_pmu_initialized())
 720                return;
 721
 722        if (!cpuc->enabled)
 723                return;
 724
 725        cpuc->n_added = 0;
 726        cpuc->enabled = 0;
 727        barrier();
 728
 729        static_call(x86_pmu_disable_all)();
 730}
 731
 732void x86_pmu_enable_all(int added)
 733{
 734        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 735        int idx;
 736
 737        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 738                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 739
 740                if (!test_bit(idx, cpuc->active_mask))
 741                        continue;
 742
 743                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 744        }
 745}
 746
 747static inline int is_x86_event(struct perf_event *event)
 748{
 749        int i;
 750
 751        if (!is_hybrid())
 752                return event->pmu == &pmu;
 753
 754        for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
 755                if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
 756                        return true;
 757        }
 758
 759        return false;
 760}
 761
 762struct pmu *x86_get_pmu(unsigned int cpu)
 763{
 764        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
 765
 766        /*
 767         * All CPUs of the hybrid type have been offline.
 768         * The x86_get_pmu() should not be invoked.
 769         */
 770        if (WARN_ON_ONCE(!cpuc->pmu))
 771                return &pmu;
 772
 773        return cpuc->pmu;
 774}
 775/*
 776 * Event scheduler state:
 777 *
 778 * Assign events iterating over all events and counters, beginning
 779 * with events with least weights first. Keep the current iterator
 780 * state in struct sched_state.
 781 */
 782struct sched_state {
 783        int     weight;
 784        int     event;          /* event index */
 785        int     counter;        /* counter index */
 786        int     unassigned;     /* number of events to be assigned left */
 787        int     nr_gp;          /* number of GP counters used */
 788        u64     used;
 789};
 790
 791/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 792#define SCHED_STATES_MAX        2
 793
 794struct perf_sched {
 795        int                     max_weight;
 796        int                     max_events;
 797        int                     max_gp;
 798        int                     saved_states;
 799        struct event_constraint **constraints;
 800        struct sched_state      state;
 801        struct sched_state      saved[SCHED_STATES_MAX];
 802};
 803
 804/*
 805 * Initialize iterator that runs through all events and counters.
 806 */
 807static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
 808                            int num, int wmin, int wmax, int gpmax)
 809{
 810        int idx;
 811
 812        memset(sched, 0, sizeof(*sched));
 813        sched->max_events       = num;
 814        sched->max_weight       = wmax;
 815        sched->max_gp           = gpmax;
 816        sched->constraints      = constraints;
 817
 818        for (idx = 0; idx < num; idx++) {
 819                if (constraints[idx]->weight == wmin)
 820                        break;
 821        }
 822
 823        sched->state.event      = idx;          /* start with min weight */
 824        sched->state.weight     = wmin;
 825        sched->state.unassigned = num;
 826}
 827
 828static void perf_sched_save_state(struct perf_sched *sched)
 829{
 830        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 831                return;
 832
 833        sched->saved[sched->saved_states] = sched->state;
 834        sched->saved_states++;
 835}
 836
 837static bool perf_sched_restore_state(struct perf_sched *sched)
 838{
 839        if (!sched->saved_states)
 840                return false;
 841
 842        sched->saved_states--;
 843        sched->state = sched->saved[sched->saved_states];
 844
 845        /* this assignment didn't work out */
 846        /* XXX broken vs EVENT_PAIR */
 847        sched->state.used &= ~BIT_ULL(sched->state.counter);
 848
 849        /* try the next one */
 850        sched->state.counter++;
 851
 852        return true;
 853}
 854
 855/*
 856 * Select a counter for the current event to schedule. Return true on
 857 * success.
 858 */
 859static bool __perf_sched_find_counter(struct perf_sched *sched)
 860{
 861        struct event_constraint *c;
 862        int idx;
 863
 864        if (!sched->state.unassigned)
 865                return false;
 866
 867        if (sched->state.event >= sched->max_events)
 868                return false;
 869
 870        c = sched->constraints[sched->state.event];
 871        /* Prefer fixed purpose counters */
 872        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 873                idx = INTEL_PMC_IDX_FIXED;
 874                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 875                        u64 mask = BIT_ULL(idx);
 876
 877                        if (sched->state.used & mask)
 878                                continue;
 879
 880                        sched->state.used |= mask;
 881                        goto done;
 882                }
 883        }
 884
 885        /* Grab the first unused counter starting with idx */
 886        idx = sched->state.counter;
 887        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 888                u64 mask = BIT_ULL(idx);
 889
 890                if (c->flags & PERF_X86_EVENT_PAIR)
 891                        mask |= mask << 1;
 892
 893                if (sched->state.used & mask)
 894                        continue;
 895
 896                if (sched->state.nr_gp++ >= sched->max_gp)
 897                        return false;
 898
 899                sched->state.used |= mask;
 900                goto done;
 901        }
 902
 903        return false;
 904
 905done:
 906        sched->state.counter = idx;
 907
 908        if (c->overlap)
 909                perf_sched_save_state(sched);
 910
 911        return true;
 912}
 913
 914static bool perf_sched_find_counter(struct perf_sched *sched)
 915{
 916        while (!__perf_sched_find_counter(sched)) {
 917                if (!perf_sched_restore_state(sched))
 918                        return false;
 919        }
 920
 921        return true;
 922}
 923
 924/*
 925 * Go through all unassigned events and find the next one to schedule.
 926 * Take events with the least weight first. Return true on success.
 927 */
 928static bool perf_sched_next_event(struct perf_sched *sched)
 929{
 930        struct event_constraint *c;
 931
 932        if (!sched->state.unassigned || !--sched->state.unassigned)
 933                return false;
 934
 935        do {
 936                /* next event */
 937                sched->state.event++;
 938                if (sched->state.event >= sched->max_events) {
 939                        /* next weight */
 940                        sched->state.event = 0;
 941                        sched->state.weight++;
 942                        if (sched->state.weight > sched->max_weight)
 943                                return false;
 944                }
 945                c = sched->constraints[sched->state.event];
 946        } while (c->weight != sched->state.weight);
 947
 948        sched->state.counter = 0;       /* start with first counter */
 949
 950        return true;
 951}
 952
 953/*
 954 * Assign a counter for each event.
 955 */
 956int perf_assign_events(struct event_constraint **constraints, int n,
 957                        int wmin, int wmax, int gpmax, int *assign)
 958{
 959        struct perf_sched sched;
 960
 961        perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
 962
 963        do {
 964                if (!perf_sched_find_counter(&sched))
 965                        break;  /* failed */
 966                if (assign)
 967                        assign[sched.state.event] = sched.state.counter;
 968        } while (perf_sched_next_event(&sched));
 969
 970        return sched.state.unassigned;
 971}
 972EXPORT_SYMBOL_GPL(perf_assign_events);
 973
 974int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 975{
 976        int num_counters = hybrid(cpuc->pmu, num_counters);
 977        struct event_constraint *c;
 978        struct perf_event *e;
 979        int n0, i, wmin, wmax, unsched = 0;
 980        struct hw_perf_event *hwc;
 981        u64 used_mask = 0;
 982
 983        /*
 984         * Compute the number of events already present; see x86_pmu_add(),
 985         * validate_group() and x86_pmu_commit_txn(). For the former two
 986         * cpuc->n_events hasn't been updated yet, while for the latter
 987         * cpuc->n_txn contains the number of events added in the current
 988         * transaction.
 989         */
 990        n0 = cpuc->n_events;
 991        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
 992                n0 -= cpuc->n_txn;
 993
 994        static_call_cond(x86_pmu_start_scheduling)(cpuc);
 995
 996        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 997                c = cpuc->event_constraint[i];
 998
 999                /*
1000                 * Previously scheduled events should have a cached constraint,
1001                 * while new events should not have one.
1002                 */
1003                WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004
1005                /*
1006                 * Request constraints for new events; or for those events that
1007                 * have a dynamic constraint -- for those the constraint can
1008                 * change due to external factors (sibling state, allow_tfa).
1009                 */
1010                if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1011                        c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1012                        cpuc->event_constraint[i] = c;
1013                }
1014
1015                wmin = min(wmin, c->weight);
1016                wmax = max(wmax, c->weight);
1017        }
1018
1019        /*
1020         * fastpath, try to reuse previous register
1021         */
1022        for (i = 0; i < n; i++) {
1023                u64 mask;
1024
1025                hwc = &cpuc->event_list[i]->hw;
1026                c = cpuc->event_constraint[i];
1027
1028                /* never assigned */
1029                if (hwc->idx == -1)
1030                        break;
1031
1032                /* constraint still honored */
1033                if (!test_bit(hwc->idx, c->idxmsk))
1034                        break;
1035
1036                mask = BIT_ULL(hwc->idx);
1037                if (is_counter_pair(hwc))
1038                        mask |= mask << 1;
1039
1040                /* not already used */
1041                if (used_mask & mask)
1042                        break;
1043
1044                used_mask |= mask;
1045
1046                if (assign)
1047                        assign[i] = hwc->idx;
1048        }
1049
1050        /* slow path */
1051        if (i != n) {
1052                int gpmax = num_counters;
1053
1054                /*
1055                 * Do not allow scheduling of more than half the available
1056                 * generic counters.
1057                 *
1058                 * This helps avoid counter starvation of sibling thread by
1059                 * ensuring at most half the counters cannot be in exclusive
1060                 * mode. There is no designated counters for the limits. Any
1061                 * N/2 counters can be used. This helps with events with
1062                 * specific counter constraints.
1063                 */
1064                if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065                    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066                        gpmax /= 2;
1067
1068                /*
1069                 * Reduce the amount of available counters to allow fitting
1070                 * the extra Merge events needed by large increment events.
1071                 */
1072                if (x86_pmu.flags & PMU_FL_PAIR) {
1073                        gpmax = num_counters - cpuc->n_pair;
1074                        WARN_ON(gpmax <= 0);
1075                }
1076
1077                unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1078                                             wmax, gpmax, assign);
1079        }
1080
1081        /*
1082         * In case of success (unsched = 0), mark events as committed,
1083         * so we do not put_constraint() in case new events are added
1084         * and fail to be scheduled
1085         *
1086         * We invoke the lower level commit callback to lock the resource
1087         *
1088         * We do not need to do all of this in case we are called to
1089         * validate an event group (assign == NULL)
1090         */
1091        if (!unsched && assign) {
1092                for (i = 0; i < n; i++)
1093                        static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1094        } else {
1095                for (i = n0; i < n; i++) {
1096                        e = cpuc->event_list[i];
1097
1098                        /*
1099                         * release events that failed scheduling
1100                         */
1101                        static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102
1103                        cpuc->event_constraint[i] = NULL;
1104                }
1105        }
1106
1107        static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108
1109        return unsched ? -EINVAL : 0;
1110}
1111
1112static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113                               struct perf_event *event)
1114{
1115        if (is_metric_event(event)) {
1116                if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117                        return -EINVAL;
1118                cpuc->n_metric++;
1119                cpuc->n_txn_metric++;
1120        }
1121
1122        return 0;
1123}
1124
1125static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126                                struct perf_event *event)
1127{
1128        if (is_metric_event(event))
1129                cpuc->n_metric--;
1130}
1131
1132static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133                         int max_count, int n)
1134{
1135        union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136
1137        if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138                return -EINVAL;
1139
1140        if (n >= max_count + cpuc->n_metric)
1141                return -EINVAL;
1142
1143        cpuc->event_list[n] = event;
1144        if (is_counter_pair(&event->hw)) {
1145                cpuc->n_pair++;
1146                cpuc->n_txn_pair++;
1147        }
1148
1149        return 0;
1150}
1151
1152/*
1153 * dogrp: true if must collect siblings events (group)
1154 * returns total number of events and error code
1155 */
1156static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157{
1158        int num_counters = hybrid(cpuc->pmu, num_counters);
1159        int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160        struct perf_event *event;
1161        int n, max_count;
1162
1163        max_count = num_counters + num_counters_fixed;
1164
1165        /* current number of events already accepted */
1166        n = cpuc->n_events;
1167        if (!cpuc->n_events)
1168                cpuc->pebs_output = 0;
1169
1170        if (!cpuc->is_fake && leader->attr.precise_ip) {
1171                /*
1172                 * For PEBS->PT, if !aux_event, the group leader (PT) went
1173                 * away, the group was broken down and this singleton event
1174                 * can't schedule any more.
1175                 */
1176                if (is_pebs_pt(leader) && !leader->aux_event)
1177                        return -EINVAL;
1178
1179                /*
1180                 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181                 */
1182                if (cpuc->pebs_output &&
1183                    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184                        return -EINVAL;
1185
1186                cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187        }
1188
1189        if (is_x86_event(leader)) {
1190                if (collect_event(cpuc, leader, max_count, n))
1191                        return -EINVAL;
1192                n++;
1193        }
1194
1195        if (!dogrp)
1196                return n;
1197
1198        for_each_sibling_event(event, leader) {
1199                if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200                        continue;
1201
1202                if (collect_event(cpuc, event, max_count, n))
1203                        return -EINVAL;
1204
1205                n++;
1206        }
1207        return n;
1208}
1209
1210static inline void x86_assign_hw_event(struct perf_event *event,
1211                                struct cpu_hw_events *cpuc, int i)
1212{
1213        struct hw_perf_event *hwc = &event->hw;
1214        int idx;
1215
1216        idx = hwc->idx = cpuc->assign[i];
1217        hwc->last_cpu = smp_processor_id();
1218        hwc->last_tag = ++cpuc->tags[i];
1219
1220        static_call_cond(x86_pmu_assign)(event, idx);
1221
1222        switch (hwc->idx) {
1223        case INTEL_PMC_IDX_FIXED_BTS:
1224        case INTEL_PMC_IDX_FIXED_VLBR:
1225                hwc->config_base = 0;
1226                hwc->event_base = 0;
1227                break;
1228
1229        case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230                /* All the metric events are mapped onto the fixed counter 3. */
1231                idx = INTEL_PMC_IDX_FIXED_SLOTS;
1232                fallthrough;
1233        case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1234                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1235                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236                                (idx - INTEL_PMC_IDX_FIXED);
1237                hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238                                        INTEL_PMC_FIXED_RDPMC_BASE;
1239                break;
1240
1241        default:
1242                hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1244                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1245                break;
1246        }
1247}
1248
1249/**
1250 * x86_perf_rdpmc_index - Return PMC counter used for event
1251 * @event: the perf_event to which the PMC counter was assigned
1252 *
1253 * The counter assigned to this performance event may change if interrupts
1254 * are enabled. This counter should thus never be used while interrupts are
1255 * enabled. Before this function is used to obtain the assigned counter the
1256 * event should be checked for validity using, for example,
1257 * perf_event_read_local(), within the same interrupt disabled section in
1258 * which this counter is planned to be used.
1259 *
1260 * Return: The index of the performance monitoring counter assigned to
1261 * @perf_event.
1262 */
1263int x86_perf_rdpmc_index(struct perf_event *event)
1264{
1265        lockdep_assert_irqs_disabled();
1266
1267        return event->hw.event_base_rdpmc;
1268}
1269
1270static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271                                        struct cpu_hw_events *cpuc,
1272                                        int i)
1273{
1274        return hwc->idx == cpuc->assign[i] &&
1275                hwc->last_cpu == smp_processor_id() &&
1276                hwc->last_tag == cpuc->tags[i];
1277}
1278
1279static void x86_pmu_start(struct perf_event *event, int flags);
1280
1281static void x86_pmu_enable(struct pmu *pmu)
1282{
1283        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1284        struct perf_event *event;
1285        struct hw_perf_event *hwc;
1286        int i, added = cpuc->n_added;
1287
1288        if (!x86_pmu_initialized())
1289                return;
1290
1291        if (cpuc->enabled)
1292                return;
1293
1294        if (cpuc->n_added) {
1295                int n_running = cpuc->n_events - cpuc->n_added;
1296                /*
1297                 * apply assignment obtained either from
1298                 * hw_perf_group_sched_in() or x86_pmu_enable()
1299                 *
1300                 * step1: save events moving to new counters
1301                 */
1302                for (i = 0; i < n_running; i++) {
1303                        event = cpuc->event_list[i];
1304                        hwc = &event->hw;
1305
1306                        /*
1307                         * we can avoid reprogramming counter if:
1308                         * - assigned same counter as last time
1309                         * - running on same CPU as last time
1310                         * - no other event has used the counter since
1311                         */
1312                        if (hwc->idx == -1 ||
1313                            match_prev_assignment(hwc, cpuc, i))
1314                                continue;
1315
1316                        /*
1317                         * Ensure we don't accidentally enable a stopped
1318                         * counter simply because we rescheduled.
1319                         */
1320                        if (hwc->state & PERF_HES_STOPPED)
1321                                hwc->state |= PERF_HES_ARCH;
1322
1323                        x86_pmu_stop(event, PERF_EF_UPDATE);
1324                }
1325
1326                /*
1327                 * step2: reprogram moved events into new counters
1328                 */
1329                for (i = 0; i < cpuc->n_events; i++) {
1330                        event = cpuc->event_list[i];
1331                        hwc = &event->hw;
1332
1333                        if (!match_prev_assignment(hwc, cpuc, i))
1334                                x86_assign_hw_event(event, cpuc, i);
1335                        else if (i < n_running)
1336                                continue;
1337
1338                        if (hwc->state & PERF_HES_ARCH)
1339                                continue;
1340
1341                        x86_pmu_start(event, PERF_EF_RELOAD);
1342                }
1343                cpuc->n_added = 0;
1344                perf_events_lapic_init();
1345        }
1346
1347        cpuc->enabled = 1;
1348        barrier();
1349
1350        static_call(x86_pmu_enable_all)(added);
1351}
1352
1353static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1354
1355/*
1356 * Set the next IRQ period, based on the hwc->period_left value.
1357 * To be called with the event disabled in hw:
1358 */
1359int x86_perf_event_set_period(struct perf_event *event)
1360{
1361        struct hw_perf_event *hwc = &event->hw;
1362        s64 left = local64_read(&hwc->period_left);
1363        s64 period = hwc->sample_period;
1364        int ret = 0, idx = hwc->idx;
1365
1366        if (unlikely(!hwc->event_base))
1367                return 0;
1368
1369        if (unlikely(is_topdown_count(event)) &&
1370            x86_pmu.set_topdown_event_period)
1371                return x86_pmu.set_topdown_event_period(event);
1372
1373        /*
1374         * If we are way outside a reasonable range then just skip forward:
1375         */
1376        if (unlikely(left <= -period)) {
1377                left = period;
1378                local64_set(&hwc->period_left, left);
1379                hwc->last_period = period;
1380                ret = 1;
1381        }
1382
1383        if (unlikely(left <= 0)) {
1384                left += period;
1385                local64_set(&hwc->period_left, left);
1386                hwc->last_period = period;
1387                ret = 1;
1388        }
1389        /*
1390         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1391         */
1392        if (unlikely(left < 2))
1393                left = 2;
1394
1395        if (left > x86_pmu.max_period)
1396                left = x86_pmu.max_period;
1397
1398        if (x86_pmu.limit_period)
1399                left = x86_pmu.limit_period(event, left);
1400
1401        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1402
1403        /*
1404         * The hw event starts counting from this event offset,
1405         * mark it to be able to extra future deltas:
1406         */
1407        local64_set(&hwc->prev_count, (u64)-left);
1408
1409        wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1410
1411        /*
1412         * Sign extend the Merge event counter's upper 16 bits since
1413         * we currently declare a 48-bit counter width
1414         */
1415        if (is_counter_pair(hwc))
1416                wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1417
1418        /*
1419         * Due to erratum on certan cpu we need
1420         * a second write to be sure the register
1421         * is updated properly
1422         */
1423        if (x86_pmu.perfctr_second_write) {
1424                wrmsrl(hwc->event_base,
1425                        (u64)(-left) & x86_pmu.cntval_mask);
1426        }
1427
1428        perf_event_update_userpage(event);
1429
1430        return ret;
1431}
1432
1433void x86_pmu_enable_event(struct perf_event *event)
1434{
1435        if (__this_cpu_read(cpu_hw_events.enabled))
1436                __x86_pmu_enable_event(&event->hw,
1437                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1438}
1439
1440/*
1441 * Add a single event to the PMU.
1442 *
1443 * The event is added to the group of enabled events
1444 * but only if it can be scheduled with existing events.
1445 */
1446static int x86_pmu_add(struct perf_event *event, int flags)
1447{
1448        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1449        struct hw_perf_event *hwc;
1450        int assign[X86_PMC_IDX_MAX];
1451        int n, n0, ret;
1452
1453        hwc = &event->hw;
1454
1455        n0 = cpuc->n_events;
1456        ret = n = collect_events(cpuc, event, false);
1457        if (ret < 0)
1458                goto out;
1459
1460        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1461        if (!(flags & PERF_EF_START))
1462                hwc->state |= PERF_HES_ARCH;
1463
1464        /*
1465         * If group events scheduling transaction was started,
1466         * skip the schedulability test here, it will be performed
1467         * at commit time (->commit_txn) as a whole.
1468         *
1469         * If commit fails, we'll call ->del() on all events
1470         * for which ->add() was called.
1471         */
1472        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1473                goto done_collect;
1474
1475        ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1476        if (ret)
1477                goto out;
1478        /*
1479         * copy new assignment, now we know it is possible
1480         * will be used by hw_perf_enable()
1481         */
1482        memcpy(cpuc->assign, assign, n*sizeof(int));
1483
1484done_collect:
1485        /*
1486         * Commit the collect_events() state. See x86_pmu_del() and
1487         * x86_pmu_*_txn().
1488         */
1489        cpuc->n_events = n;
1490        cpuc->n_added += n - n0;
1491        cpuc->n_txn += n - n0;
1492
1493        /*
1494         * This is before x86_pmu_enable() will call x86_pmu_start(),
1495         * so we enable LBRs before an event needs them etc..
1496         */
1497        static_call_cond(x86_pmu_add)(event);
1498
1499        ret = 0;
1500out:
1501        return ret;
1502}
1503
1504static void x86_pmu_start(struct perf_event *event, int flags)
1505{
1506        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1507        int idx = event->hw.idx;
1508
1509        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1510                return;
1511
1512        if (WARN_ON_ONCE(idx == -1))
1513                return;
1514
1515        if (flags & PERF_EF_RELOAD) {
1516                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1517                x86_perf_event_set_period(event);
1518        }
1519
1520        event->hw.state = 0;
1521
1522        cpuc->events[idx] = event;
1523        __set_bit(idx, cpuc->active_mask);
1524        static_call(x86_pmu_enable)(event);
1525        perf_event_update_userpage(event);
1526}
1527
1528void perf_event_print_debug(void)
1529{
1530        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1531        u64 pebs, debugctl;
1532        int cpu = smp_processor_id();
1533        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1534        int num_counters = hybrid(cpuc->pmu, num_counters);
1535        int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1536        struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1537        unsigned long flags;
1538        int idx;
1539
1540        if (!num_counters)
1541                return;
1542
1543        local_irq_save(flags);
1544
1545        if (x86_pmu.version >= 2) {
1546                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1547                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1548                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1549                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1550
1551                pr_info("\n");
1552                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1553                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1554                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1555                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1556                if (pebs_constraints) {
1557                        rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1558                        pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1559                }
1560                if (x86_pmu.lbr_nr) {
1561                        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1562                        pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1563                }
1564        }
1565        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1566
1567        for (idx = 0; idx < num_counters; idx++) {
1568                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1569                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1570
1571                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1572
1573                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1574                        cpu, idx, pmc_ctrl);
1575                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1576                        cpu, idx, pmc_count);
1577                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1578                        cpu, idx, prev_left);
1579        }
1580        for (idx = 0; idx < num_counters_fixed; idx++) {
1581                if (fixed_counter_disabled(idx, cpuc->pmu))
1582                        continue;
1583                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1584
1585                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1586                        cpu, idx, pmc_count);
1587        }
1588        local_irq_restore(flags);
1589}
1590
1591void x86_pmu_stop(struct perf_event *event, int flags)
1592{
1593        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1594        struct hw_perf_event *hwc = &event->hw;
1595
1596        if (test_bit(hwc->idx, cpuc->active_mask)) {
1597                static_call(x86_pmu_disable)(event);
1598                __clear_bit(hwc->idx, cpuc->active_mask);
1599                cpuc->events[hwc->idx] = NULL;
1600                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1601                hwc->state |= PERF_HES_STOPPED;
1602        }
1603
1604        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1605                /*
1606                 * Drain the remaining delta count out of a event
1607                 * that we are disabling:
1608                 */
1609                x86_perf_event_update(event);
1610                hwc->state |= PERF_HES_UPTODATE;
1611        }
1612}
1613
1614static void x86_pmu_del(struct perf_event *event, int flags)
1615{
1616        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1617        union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1618        int i;
1619
1620        /*
1621         * If we're called during a txn, we only need to undo x86_pmu.add.
1622         * The events never got scheduled and ->cancel_txn will truncate
1623         * the event_list.
1624         *
1625         * XXX assumes any ->del() called during a TXN will only be on
1626         * an event added during that same TXN.
1627         */
1628        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1629                goto do_del;
1630
1631        __set_bit(event->hw.idx, cpuc->dirty);
1632
1633        /*
1634         * Not a TXN, therefore cleanup properly.
1635         */
1636        x86_pmu_stop(event, PERF_EF_UPDATE);
1637
1638        for (i = 0; i < cpuc->n_events; i++) {
1639                if (event == cpuc->event_list[i])
1640                        break;
1641        }
1642
1643        if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1644                return;
1645
1646        /* If we have a newly added event; make sure to decrease n_added. */
1647        if (i >= cpuc->n_events - cpuc->n_added)
1648                --cpuc->n_added;
1649
1650        static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1651
1652        /* Delete the array entry. */
1653        while (++i < cpuc->n_events) {
1654                cpuc->event_list[i-1] = cpuc->event_list[i];
1655                cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1656        }
1657        cpuc->event_constraint[i-1] = NULL;
1658        --cpuc->n_events;
1659        if (intel_cap.perf_metrics)
1660                del_nr_metric_event(cpuc, event);
1661
1662        perf_event_update_userpage(event);
1663
1664do_del:
1665
1666        /*
1667         * This is after x86_pmu_stop(); so we disable LBRs after any
1668         * event can need them etc..
1669         */
1670        static_call_cond(x86_pmu_del)(event);
1671}
1672
1673int x86_pmu_handle_irq(struct pt_regs *regs)
1674{
1675        struct perf_sample_data data;
1676        struct cpu_hw_events *cpuc;
1677        struct perf_event *event;
1678        int idx, handled = 0;
1679        u64 val;
1680
1681        cpuc = this_cpu_ptr(&cpu_hw_events);
1682
1683        /*
1684         * Some chipsets need to unmask the LVTPC in a particular spot
1685         * inside the nmi handler.  As a result, the unmasking was pushed
1686         * into all the nmi handlers.
1687         *
1688         * This generic handler doesn't seem to have any issues where the
1689         * unmasking occurs so it was left at the top.
1690         */
1691        apic_write(APIC_LVTPC, APIC_DM_NMI);
1692
1693        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1694                if (!test_bit(idx, cpuc->active_mask))
1695                        continue;
1696
1697                event = cpuc->events[idx];
1698
1699                val = x86_perf_event_update(event);
1700                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1701                        continue;
1702
1703                /*
1704                 * event overflow
1705                 */
1706                handled++;
1707                perf_sample_data_init(&data, 0, event->hw.last_period);
1708
1709                if (!x86_perf_event_set_period(event))
1710                        continue;
1711
1712                if (perf_event_overflow(event, &data, regs))
1713                        x86_pmu_stop(event, 0);
1714        }
1715
1716        if (handled)
1717                inc_irq_stat(apic_perf_irqs);
1718
1719        return handled;
1720}
1721
1722void perf_events_lapic_init(void)
1723{
1724        if (!x86_pmu.apic || !x86_pmu_initialized())
1725                return;
1726
1727        /*
1728         * Always use NMI for PMU
1729         */
1730        apic_write(APIC_LVTPC, APIC_DM_NMI);
1731}
1732
1733static int
1734perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1735{
1736        u64 start_clock;
1737        u64 finish_clock;
1738        int ret;
1739
1740        /*
1741         * All PMUs/events that share this PMI handler should make sure to
1742         * increment active_events for their events.
1743         */
1744        if (!atomic_read(&active_events))
1745                return NMI_DONE;
1746
1747        start_clock = sched_clock();
1748        ret = static_call(x86_pmu_handle_irq)(regs);
1749        finish_clock = sched_clock();
1750
1751        perf_sample_event_took(finish_clock - start_clock);
1752
1753        return ret;
1754}
1755NOKPROBE_SYMBOL(perf_event_nmi_handler);
1756
1757struct event_constraint emptyconstraint;
1758struct event_constraint unconstrained;
1759
1760static int x86_pmu_prepare_cpu(unsigned int cpu)
1761{
1762        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1763        int i;
1764
1765        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1766                cpuc->kfree_on_online[i] = NULL;
1767        if (x86_pmu.cpu_prepare)
1768                return x86_pmu.cpu_prepare(cpu);
1769        return 0;
1770}
1771
1772static int x86_pmu_dead_cpu(unsigned int cpu)
1773{
1774        if (x86_pmu.cpu_dead)
1775                x86_pmu.cpu_dead(cpu);
1776        return 0;
1777}
1778
1779static int x86_pmu_online_cpu(unsigned int cpu)
1780{
1781        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1782        int i;
1783
1784        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1785                kfree(cpuc->kfree_on_online[i]);
1786                cpuc->kfree_on_online[i] = NULL;
1787        }
1788        return 0;
1789}
1790
1791static int x86_pmu_starting_cpu(unsigned int cpu)
1792{
1793        if (x86_pmu.cpu_starting)
1794                x86_pmu.cpu_starting(cpu);
1795        return 0;
1796}
1797
1798static int x86_pmu_dying_cpu(unsigned int cpu)
1799{
1800        if (x86_pmu.cpu_dying)
1801                x86_pmu.cpu_dying(cpu);
1802        return 0;
1803}
1804
1805static void __init pmu_check_apic(void)
1806{
1807        if (boot_cpu_has(X86_FEATURE_APIC))
1808                return;
1809
1810        x86_pmu.apic = 0;
1811        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1812        pr_info("no hardware sampling interrupt available.\n");
1813
1814        /*
1815         * If we have a PMU initialized but no APIC
1816         * interrupts, we cannot sample hardware
1817         * events (user-space has to fall back and
1818         * sample via a hrtimer based software event):
1819         */
1820        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1821
1822}
1823
1824static struct attribute_group x86_pmu_format_group __ro_after_init = {
1825        .name = "format",
1826        .attrs = NULL,
1827};
1828
1829ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1830{
1831        struct perf_pmu_events_attr *pmu_attr =
1832                container_of(attr, struct perf_pmu_events_attr, attr);
1833        u64 config = 0;
1834
1835        if (pmu_attr->id < x86_pmu.max_events)
1836                config = x86_pmu.event_map(pmu_attr->id);
1837
1838        /* string trumps id */
1839        if (pmu_attr->event_str)
1840                return sprintf(page, "%s", pmu_attr->event_str);
1841
1842        return x86_pmu.events_sysfs_show(page, config);
1843}
1844EXPORT_SYMBOL_GPL(events_sysfs_show);
1845
1846ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1847                          char *page)
1848{
1849        struct perf_pmu_events_ht_attr *pmu_attr =
1850                container_of(attr, struct perf_pmu_events_ht_attr, attr);
1851
1852        /*
1853         * Report conditional events depending on Hyper-Threading.
1854         *
1855         * This is overly conservative as usually the HT special
1856         * handling is not needed if the other CPU thread is idle.
1857         *
1858         * Note this does not (and cannot) handle the case when thread
1859         * siblings are invisible, for example with virtualization
1860         * if they are owned by some other guest.  The user tool
1861         * has to re-read when a thread sibling gets onlined later.
1862         */
1863        return sprintf(page, "%s",
1864                        topology_max_smt_threads() > 1 ?
1865                        pmu_attr->event_str_ht :
1866                        pmu_attr->event_str_noht);
1867}
1868
1869ssize_t events_hybrid_sysfs_show(struct device *dev,
1870                                 struct device_attribute *attr,
1871                                 char *page)
1872{
1873        struct perf_pmu_events_hybrid_attr *pmu_attr =
1874                container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1875        struct x86_hybrid_pmu *pmu;
1876        const char *str, *next_str;
1877        int i;
1878
1879        if (hweight64(pmu_attr->pmu_type) == 1)
1880                return sprintf(page, "%s", pmu_attr->event_str);
1881
1882        /*
1883         * Hybrid PMUs may support the same event name, but with different
1884         * event encoding, e.g., the mem-loads event on an Atom PMU has
1885         * different event encoding from a Core PMU.
1886         *
1887         * The event_str includes all event encodings. Each event encoding
1888         * is divided by ";". The order of the event encodings must follow
1889         * the order of the hybrid PMU index.
1890         */
1891        pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1892
1893        str = pmu_attr->event_str;
1894        for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1895                if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1896                        continue;
1897                if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1898                        next_str = strchr(str, ';');
1899                        if (next_str)
1900                                return snprintf(page, next_str - str + 1, "%s", str);
1901                        else
1902                                return sprintf(page, "%s", str);
1903                }
1904                str = strchr(str, ';');
1905                str++;
1906        }
1907
1908        return 0;
1909}
1910EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1911
1912EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1913EVENT_ATTR(instructions,                INSTRUCTIONS            );
1914EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1915EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1916EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1917EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1918EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1919EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1920EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1921EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1922
1923static struct attribute *empty_attrs;
1924
1925static struct attribute *events_attr[] = {
1926        EVENT_PTR(CPU_CYCLES),
1927        EVENT_PTR(INSTRUCTIONS),
1928        EVENT_PTR(CACHE_REFERENCES),
1929        EVENT_PTR(CACHE_MISSES),
1930        EVENT_PTR(BRANCH_INSTRUCTIONS),
1931        EVENT_PTR(BRANCH_MISSES),
1932        EVENT_PTR(BUS_CYCLES),
1933        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1934        EVENT_PTR(STALLED_CYCLES_BACKEND),
1935        EVENT_PTR(REF_CPU_CYCLES),
1936        NULL,
1937};
1938
1939/*
1940 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1941 * out of events_attr attributes.
1942 */
1943static umode_t
1944is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1945{
1946        struct perf_pmu_events_attr *pmu_attr;
1947
1948        if (idx >= x86_pmu.max_events)
1949                return 0;
1950
1951        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1952        /* str trumps id */
1953        return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1954}
1955
1956static struct attribute_group x86_pmu_events_group __ro_after_init = {
1957        .name = "events",
1958        .attrs = events_attr,
1959        .is_visible = is_visible,
1960};
1961
1962ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1963{
1964        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1965        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1966        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1967        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1968        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1969        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1970        ssize_t ret;
1971
1972        /*
1973        * We have whole page size to spend and just little data
1974        * to write, so we can safely use sprintf.
1975        */
1976        ret = sprintf(page, "event=0x%02llx", event);
1977
1978        if (umask)
1979                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1980
1981        if (edge)
1982                ret += sprintf(page + ret, ",edge");
1983
1984        if (pc)
1985                ret += sprintf(page + ret, ",pc");
1986
1987        if (any)
1988                ret += sprintf(page + ret, ",any");
1989
1990        if (inv)
1991                ret += sprintf(page + ret, ",inv");
1992
1993        if (cmask)
1994                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1995
1996        ret += sprintf(page + ret, "\n");
1997
1998        return ret;
1999}
2000
2001static struct attribute_group x86_pmu_attr_group;
2002static struct attribute_group x86_pmu_caps_group;
2003
2004static void x86_pmu_static_call_update(void)
2005{
2006        static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2007        static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2008        static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2009        static_call_update(x86_pmu_enable, x86_pmu.enable);
2010        static_call_update(x86_pmu_disable, x86_pmu.disable);
2011
2012        static_call_update(x86_pmu_assign, x86_pmu.assign);
2013
2014        static_call_update(x86_pmu_add, x86_pmu.add);
2015        static_call_update(x86_pmu_del, x86_pmu.del);
2016        static_call_update(x86_pmu_read, x86_pmu.read);
2017
2018        static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2019        static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2020        static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2021
2022        static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2023        static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2024        static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2025
2026        static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2027        static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2028
2029        static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2030        static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2031
2032        static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2033}
2034
2035static void _x86_pmu_read(struct perf_event *event)
2036{
2037        x86_perf_event_update(event);
2038}
2039
2040void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2041                          u64 intel_ctrl)
2042{
2043        pr_info("... version:                %d\n",     x86_pmu.version);
2044        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2045        pr_info("... generic registers:      %d\n",     num_counters);
2046        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2047        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2048        pr_info("... fixed-purpose events:   %lu\n",
2049                        hweight64((((1ULL << num_counters_fixed) - 1)
2050                                        << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2051        pr_info("... event mask:             %016Lx\n", intel_ctrl);
2052}
2053
2054/*
2055 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2056 * of the first registered PMU is unconditionally assigned to
2057 * each possible cpuctx->ctx.pmu.
2058 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2059 */
2060void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2061{
2062        struct perf_cpu_context *cpuctx;
2063
2064        if (!pmu->pmu_cpu_context)
2065                return;
2066
2067        cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2068        cpuctx->ctx.pmu = pmu;
2069}
2070
2071static int __init init_hw_perf_events(void)
2072{
2073        struct x86_pmu_quirk *quirk;
2074        int err;
2075
2076        pr_info("Performance Events: ");
2077
2078        switch (boot_cpu_data.x86_vendor) {
2079        case X86_VENDOR_INTEL:
2080                err = intel_pmu_init();
2081                break;
2082        case X86_VENDOR_AMD:
2083                err = amd_pmu_init();
2084                break;
2085        case X86_VENDOR_HYGON:
2086                err = amd_pmu_init();
2087                x86_pmu.name = "HYGON";
2088                break;
2089        case X86_VENDOR_ZHAOXIN:
2090        case X86_VENDOR_CENTAUR:
2091                err = zhaoxin_pmu_init();
2092                break;
2093        default:
2094                err = -ENOTSUPP;
2095        }
2096        if (err != 0) {
2097                pr_cont("no PMU driver, software events only.\n");
2098                return 0;
2099        }
2100
2101        pmu_check_apic();
2102
2103        /* sanity check that the hardware exists or is emulated */
2104        if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2105                return 0;
2106
2107        pr_cont("%s PMU driver.\n", x86_pmu.name);
2108
2109        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2110
2111        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2112                quirk->func();
2113
2114        if (!x86_pmu.intel_ctrl)
2115                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2116
2117        perf_events_lapic_init();
2118        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2119
2120        unconstrained = (struct event_constraint)
2121                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2122                                   0, x86_pmu.num_counters, 0, 0);
2123
2124        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2125
2126        if (!x86_pmu.events_sysfs_show)
2127                x86_pmu_events_group.attrs = &empty_attrs;
2128
2129        pmu.attr_update = x86_pmu.attr_update;
2130
2131        if (!is_hybrid()) {
2132                x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2133                                     x86_pmu.num_counters_fixed,
2134                                     x86_pmu.intel_ctrl);
2135        }
2136
2137        if (!x86_pmu.read)
2138                x86_pmu.read = _x86_pmu_read;
2139
2140        if (!x86_pmu.guest_get_msrs)
2141                x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2142
2143        x86_pmu_static_call_update();
2144
2145        /*
2146         * Install callbacks. Core will call them for each online
2147         * cpu.
2148         */
2149        err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2150                                x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2151        if (err)
2152                return err;
2153
2154        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2155                                "perf/x86:starting", x86_pmu_starting_cpu,
2156                                x86_pmu_dying_cpu);
2157        if (err)
2158                goto out;
2159
2160        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2161                                x86_pmu_online_cpu, NULL);
2162        if (err)
2163                goto out1;
2164
2165        if (!is_hybrid()) {
2166                err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2167                if (err)
2168                        goto out2;
2169        } else {
2170                u8 cpu_type = get_this_hybrid_cpu_type();
2171                struct x86_hybrid_pmu *hybrid_pmu;
2172                int i, j;
2173
2174                if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2175                        cpu_type = x86_pmu.get_hybrid_cpu_type();
2176
2177                for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2178                        hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2179
2180                        hybrid_pmu->pmu = pmu;
2181                        hybrid_pmu->pmu.type = -1;
2182                        hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2183                        hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2184                        hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2185
2186                        err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2187                                                (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2188                        if (err)
2189                                break;
2190
2191                        if (cpu_type == hybrid_pmu->cpu_type)
2192                                x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2193                }
2194
2195                if (i < x86_pmu.num_hybrid_pmus) {
2196                        for (j = 0; j < i; j++)
2197                                perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2198                        pr_warn("Failed to register hybrid PMUs\n");
2199                        kfree(x86_pmu.hybrid_pmu);
2200                        x86_pmu.hybrid_pmu = NULL;
2201                        x86_pmu.num_hybrid_pmus = 0;
2202                        goto out2;
2203                }
2204        }
2205
2206        return 0;
2207
2208out2:
2209        cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2210out1:
2211        cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2212out:
2213        cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2214        return err;
2215}
2216early_initcall(init_hw_perf_events);
2217
2218static void x86_pmu_read(struct perf_event *event)
2219{
2220        static_call(x86_pmu_read)(event);
2221}
2222
2223/*
2224 * Start group events scheduling transaction
2225 * Set the flag to make pmu::enable() not perform the
2226 * schedulability test, it will be performed at commit time
2227 *
2228 * We only support PERF_PMU_TXN_ADD transactions. Save the
2229 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2230 * transactions.
2231 */
2232static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2233{
2234        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235
2236        WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2237
2238        cpuc->txn_flags = txn_flags;
2239        if (txn_flags & ~PERF_PMU_TXN_ADD)
2240                return;
2241
2242        perf_pmu_disable(pmu);
2243        __this_cpu_write(cpu_hw_events.n_txn, 0);
2244        __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2245        __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2246}
2247
2248/*
2249 * Stop group events scheduling transaction
2250 * Clear the flag and pmu::enable() will perform the
2251 * schedulability test.
2252 */
2253static void x86_pmu_cancel_txn(struct pmu *pmu)
2254{
2255        unsigned int txn_flags;
2256        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2257
2258        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2259
2260        txn_flags = cpuc->txn_flags;
2261        cpuc->txn_flags = 0;
2262        if (txn_flags & ~PERF_PMU_TXN_ADD)
2263                return;
2264
2265        /*
2266         * Truncate collected array by the number of events added in this
2267         * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2268         */
2269        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2270        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2271        __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2272        __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2273        perf_pmu_enable(pmu);
2274}
2275
2276/*
2277 * Commit group events scheduling transaction
2278 * Perform the group schedulability test as a whole
2279 * Return 0 if success
2280 *
2281 * Does not cancel the transaction on failure; expects the caller to do this.
2282 */
2283static int x86_pmu_commit_txn(struct pmu *pmu)
2284{
2285        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2286        int assign[X86_PMC_IDX_MAX];
2287        int n, ret;
2288
2289        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2290
2291        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2292                cpuc->txn_flags = 0;
2293                return 0;
2294        }
2295
2296        n = cpuc->n_events;
2297
2298        if (!x86_pmu_initialized())
2299                return -EAGAIN;
2300
2301        ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2302        if (ret)
2303                return ret;
2304
2305        /*
2306         * copy new assignment, now we know it is possible
2307         * will be used by hw_perf_enable()
2308         */
2309        memcpy(cpuc->assign, assign, n*sizeof(int));
2310
2311        cpuc->txn_flags = 0;
2312        perf_pmu_enable(pmu);
2313        return 0;
2314}
2315/*
2316 * a fake_cpuc is used to validate event groups. Due to
2317 * the extra reg logic, we need to also allocate a fake
2318 * per_core and per_cpu structure. Otherwise, group events
2319 * using extra reg may conflict without the kernel being
2320 * able to catch this when the last event gets added to
2321 * the group.
2322 */
2323static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2324{
2325        intel_cpuc_finish(cpuc);
2326        kfree(cpuc);
2327}
2328
2329static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2330{
2331        struct cpu_hw_events *cpuc;
2332        int cpu;
2333
2334        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2335        if (!cpuc)
2336                return ERR_PTR(-ENOMEM);
2337        cpuc->is_fake = 1;
2338
2339        if (is_hybrid()) {
2340                struct x86_hybrid_pmu *h_pmu;
2341
2342                h_pmu = hybrid_pmu(event_pmu);
2343                if (cpumask_empty(&h_pmu->supported_cpus))
2344                        goto error;
2345                cpu = cpumask_first(&h_pmu->supported_cpus);
2346        } else
2347                cpu = raw_smp_processor_id();
2348        cpuc->pmu = event_pmu;
2349
2350        if (intel_cpuc_prepare(cpuc, cpu))
2351                goto error;
2352
2353        return cpuc;
2354error:
2355        free_fake_cpuc(cpuc);
2356        return ERR_PTR(-ENOMEM);
2357}
2358
2359/*
2360 * validate that we can schedule this event
2361 */
2362static int validate_event(struct perf_event *event)
2363{
2364        struct cpu_hw_events *fake_cpuc;
2365        struct event_constraint *c;
2366        int ret = 0;
2367
2368        fake_cpuc = allocate_fake_cpuc(event->pmu);
2369        if (IS_ERR(fake_cpuc))
2370                return PTR_ERR(fake_cpuc);
2371
2372        c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2373
2374        if (!c || !c->weight)
2375                ret = -EINVAL;
2376
2377        if (x86_pmu.put_event_constraints)
2378                x86_pmu.put_event_constraints(fake_cpuc, event);
2379
2380        free_fake_cpuc(fake_cpuc);
2381
2382        return ret;
2383}
2384
2385/*
2386 * validate a single event group
2387 *
2388 * validation include:
2389 *      - check events are compatible which each other
2390 *      - events do not compete for the same counter
2391 *      - number of events <= number of counters
2392 *
2393 * validation ensures the group can be loaded onto the
2394 * PMU if it was the only group available.
2395 */
2396static int validate_group(struct perf_event *event)
2397{
2398        struct perf_event *leader = event->group_leader;
2399        struct cpu_hw_events *fake_cpuc;
2400        int ret = -EINVAL, n;
2401
2402        /*
2403         * Reject events from different hybrid PMUs.
2404         */
2405        if (is_hybrid()) {
2406                struct perf_event *sibling;
2407                struct pmu *pmu = NULL;
2408
2409                if (is_x86_event(leader))
2410                        pmu = leader->pmu;
2411
2412                for_each_sibling_event(sibling, leader) {
2413                        if (!is_x86_event(sibling))
2414                                continue;
2415                        if (!pmu)
2416                                pmu = sibling->pmu;
2417                        else if (pmu != sibling->pmu)
2418                                return ret;
2419                }
2420        }
2421
2422        fake_cpuc = allocate_fake_cpuc(event->pmu);
2423        if (IS_ERR(fake_cpuc))
2424                return PTR_ERR(fake_cpuc);
2425        /*
2426         * the event is not yet connected with its
2427         * siblings therefore we must first collect
2428         * existing siblings, then add the new event
2429         * before we can simulate the scheduling
2430         */
2431        n = collect_events(fake_cpuc, leader, true);
2432        if (n < 0)
2433                goto out;
2434
2435        fake_cpuc->n_events = n;
2436        n = collect_events(fake_cpuc, event, false);
2437        if (n < 0)
2438                goto out;
2439
2440        fake_cpuc->n_events = 0;
2441        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2442
2443out:
2444        free_fake_cpuc(fake_cpuc);
2445        return ret;
2446}
2447
2448static int x86_pmu_event_init(struct perf_event *event)
2449{
2450        struct x86_hybrid_pmu *pmu = NULL;
2451        int err;
2452
2453        if ((event->attr.type != event->pmu->type) &&
2454            (event->attr.type != PERF_TYPE_HARDWARE) &&
2455            (event->attr.type != PERF_TYPE_HW_CACHE))
2456                return -ENOENT;
2457
2458        if (is_hybrid() && (event->cpu != -1)) {
2459                pmu = hybrid_pmu(event->pmu);
2460                if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2461                        return -ENOENT;
2462        }
2463
2464        err = __x86_pmu_event_init(event);
2465        if (!err) {
2466                if (event->group_leader != event)
2467                        err = validate_group(event);
2468                else
2469                        err = validate_event(event);
2470        }
2471        if (err) {
2472                if (event->destroy)
2473                        event->destroy(event);
2474                event->destroy = NULL;
2475        }
2476
2477        if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2478            !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2479                event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2480
2481        return err;
2482}
2483
2484void perf_clear_dirty_counters(void)
2485{
2486        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2487        int i;
2488
2489         /* Don't need to clear the assigned counter. */
2490        for (i = 0; i < cpuc->n_events; i++)
2491                __clear_bit(cpuc->assign[i], cpuc->dirty);
2492
2493        if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2494                return;
2495
2496        for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2497                if (i >= INTEL_PMC_IDX_FIXED) {
2498                        /* Metrics and fake events don't have corresponding HW counters. */
2499                        if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2500                                continue;
2501
2502                        wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2503                } else {
2504                        wrmsrl(x86_pmu_event_addr(i), 0);
2505                }
2506        }
2507
2508        bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2509}
2510
2511static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2512{
2513        if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2514                return;
2515
2516        /*
2517         * This function relies on not being called concurrently in two
2518         * tasks in the same mm.  Otherwise one task could observe
2519         * perf_rdpmc_allowed > 1 and return all the way back to
2520         * userspace with CR4.PCE clear while another task is still
2521         * doing on_each_cpu_mask() to propagate CR4.PCE.
2522         *
2523         * For now, this can't happen because all callers hold mmap_lock
2524         * for write.  If this changes, we'll need a different solution.
2525         */
2526        mmap_assert_write_locked(mm);
2527
2528        if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2529                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2530}
2531
2532static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2533{
2534        if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2535                return;
2536
2537        if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2538                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2539}
2540
2541static int x86_pmu_event_idx(struct perf_event *event)
2542{
2543        struct hw_perf_event *hwc = &event->hw;
2544
2545        if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2546                return 0;
2547
2548        if (is_metric_idx(hwc->idx))
2549                return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2550        else
2551                return hwc->event_base_rdpmc + 1;
2552}
2553
2554static ssize_t get_attr_rdpmc(struct device *cdev,
2555                              struct device_attribute *attr,
2556                              char *buf)
2557{
2558        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2559}
2560
2561static ssize_t set_attr_rdpmc(struct device *cdev,
2562                              struct device_attribute *attr,
2563                              const char *buf, size_t count)
2564{
2565        unsigned long val;
2566        ssize_t ret;
2567
2568        ret = kstrtoul(buf, 0, &val);
2569        if (ret)
2570                return ret;
2571
2572        if (val > 2)
2573                return -EINVAL;
2574
2575        if (x86_pmu.attr_rdpmc_broken)
2576                return -ENOTSUPP;
2577
2578        if (val != x86_pmu.attr_rdpmc) {
2579                /*
2580                 * Changing into or out of never available or always available,
2581                 * aka perf-event-bypassing mode. This path is extremely slow,
2582                 * but only root can trigger it, so it's okay.
2583                 */
2584                if (val == 0)
2585                        static_branch_inc(&rdpmc_never_available_key);
2586                else if (x86_pmu.attr_rdpmc == 0)
2587                        static_branch_dec(&rdpmc_never_available_key);
2588
2589                if (val == 2)
2590                        static_branch_inc(&rdpmc_always_available_key);
2591                else if (x86_pmu.attr_rdpmc == 2)
2592                        static_branch_dec(&rdpmc_always_available_key);
2593
2594                on_each_cpu(cr4_update_pce, NULL, 1);
2595                x86_pmu.attr_rdpmc = val;
2596        }
2597
2598        return count;
2599}
2600
2601static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2602
2603static struct attribute *x86_pmu_attrs[] = {
2604        &dev_attr_rdpmc.attr,
2605        NULL,
2606};
2607
2608static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2609        .attrs = x86_pmu_attrs,
2610};
2611
2612static ssize_t max_precise_show(struct device *cdev,
2613                                  struct device_attribute *attr,
2614                                  char *buf)
2615{
2616        return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2617}
2618
2619static DEVICE_ATTR_RO(max_precise);
2620
2621static struct attribute *x86_pmu_caps_attrs[] = {
2622        &dev_attr_max_precise.attr,
2623        NULL
2624};
2625
2626static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2627        .name = "caps",
2628        .attrs = x86_pmu_caps_attrs,
2629};
2630
2631static const struct attribute_group *x86_pmu_attr_groups[] = {
2632        &x86_pmu_attr_group,
2633        &x86_pmu_format_group,
2634        &x86_pmu_events_group,
2635        &x86_pmu_caps_group,
2636        NULL,
2637};
2638
2639static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2640{
2641        static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2642}
2643
2644static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2645                                  struct perf_event_context *next)
2646{
2647        static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2648}
2649
2650void perf_check_microcode(void)
2651{
2652        if (x86_pmu.check_microcode)
2653                x86_pmu.check_microcode();
2654}
2655
2656static int x86_pmu_check_period(struct perf_event *event, u64 value)
2657{
2658        if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2659                return -EINVAL;
2660
2661        if (value && x86_pmu.limit_period) {
2662                if (x86_pmu.limit_period(event, value) > value)
2663                        return -EINVAL;
2664        }
2665
2666        return 0;
2667}
2668
2669static int x86_pmu_aux_output_match(struct perf_event *event)
2670{
2671        if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2672                return 0;
2673
2674        if (x86_pmu.aux_output_match)
2675                return x86_pmu.aux_output_match(event);
2676
2677        return 0;
2678}
2679
2680static int x86_pmu_filter_match(struct perf_event *event)
2681{
2682        if (x86_pmu.filter_match)
2683                return x86_pmu.filter_match(event);
2684
2685        return 1;
2686}
2687
2688static struct pmu pmu = {
2689        .pmu_enable             = x86_pmu_enable,
2690        .pmu_disable            = x86_pmu_disable,
2691
2692        .attr_groups            = x86_pmu_attr_groups,
2693
2694        .event_init             = x86_pmu_event_init,
2695
2696        .event_mapped           = x86_pmu_event_mapped,
2697        .event_unmapped         = x86_pmu_event_unmapped,
2698
2699        .add                    = x86_pmu_add,
2700        .del                    = x86_pmu_del,
2701        .start                  = x86_pmu_start,
2702        .stop                   = x86_pmu_stop,
2703        .read                   = x86_pmu_read,
2704
2705        .start_txn              = x86_pmu_start_txn,
2706        .cancel_txn             = x86_pmu_cancel_txn,
2707        .commit_txn             = x86_pmu_commit_txn,
2708
2709        .event_idx              = x86_pmu_event_idx,
2710        .sched_task             = x86_pmu_sched_task,
2711        .swap_task_ctx          = x86_pmu_swap_task_ctx,
2712        .check_period           = x86_pmu_check_period,
2713
2714        .aux_output_match       = x86_pmu_aux_output_match,
2715
2716        .filter_match           = x86_pmu_filter_match,
2717};
2718
2719void arch_perf_update_userpage(struct perf_event *event,
2720                               struct perf_event_mmap_page *userpg, u64 now)
2721{
2722        struct cyc2ns_data data;
2723        u64 offset;
2724
2725        userpg->cap_user_time = 0;
2726        userpg->cap_user_time_zero = 0;
2727        userpg->cap_user_rdpmc =
2728                !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2729        userpg->pmc_width = x86_pmu.cntval_bits;
2730
2731        if (!using_native_sched_clock() || !sched_clock_stable())
2732                return;
2733
2734        cyc2ns_read_begin(&data);
2735
2736        offset = data.cyc2ns_offset + __sched_clock_offset;
2737
2738        /*
2739         * Internal timekeeping for enabled/running/stopped times
2740         * is always in the local_clock domain.
2741         */
2742        userpg->cap_user_time = 1;
2743        userpg->time_mult = data.cyc2ns_mul;
2744        userpg->time_shift = data.cyc2ns_shift;
2745        userpg->time_offset = offset - now;
2746
2747        /*
2748         * cap_user_time_zero doesn't make sense when we're using a different
2749         * time base for the records.
2750         */
2751        if (!event->attr.use_clockid) {
2752                userpg->cap_user_time_zero = 1;
2753                userpg->time_zero = offset;
2754        }
2755
2756        cyc2ns_read_end();
2757}
2758
2759/*
2760 * Determine whether the regs were taken from an irq/exception handler rather
2761 * than from perf_arch_fetch_caller_regs().
2762 */
2763static bool perf_hw_regs(struct pt_regs *regs)
2764{
2765        return regs->flags & X86_EFLAGS_FIXED;
2766}
2767
2768void
2769perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2770{
2771        struct unwind_state state;
2772        unsigned long addr;
2773
2774        if (perf_guest_state()) {
2775                /* TODO: We don't support guest os callchain now */
2776                return;
2777        }
2778
2779        if (perf_callchain_store(entry, regs->ip))
2780                return;
2781
2782        if (perf_hw_regs(regs))
2783                unwind_start(&state, current, regs, NULL);
2784        else
2785                unwind_start(&state, current, NULL, (void *)regs->sp);
2786
2787        for (; !unwind_done(&state); unwind_next_frame(&state)) {
2788                addr = unwind_get_return_address(&state);
2789                if (!addr || perf_callchain_store(entry, addr))
2790                        return;
2791        }
2792}
2793
2794static inline int
2795valid_user_frame(const void __user *fp, unsigned long size)
2796{
2797        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2798}
2799
2800static unsigned long get_segment_base(unsigned int segment)
2801{
2802        struct desc_struct *desc;
2803        unsigned int idx = segment >> 3;
2804
2805        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2806#ifdef CONFIG_MODIFY_LDT_SYSCALL
2807                struct ldt_struct *ldt;
2808
2809                /* IRQs are off, so this synchronizes with smp_store_release */
2810                ldt = READ_ONCE(current->active_mm->context.ldt);
2811                if (!ldt || idx >= ldt->nr_entries)
2812                        return 0;
2813
2814                desc = &ldt->entries[idx];
2815#else
2816                return 0;
2817#endif
2818        } else {
2819                if (idx >= GDT_ENTRIES)
2820                        return 0;
2821
2822                desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2823        }
2824
2825        return get_desc_base(desc);
2826}
2827
2828#ifdef CONFIG_IA32_EMULATION
2829
2830#include <linux/compat.h>
2831
2832static inline int
2833perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2834{
2835        /* 32-bit process in 64-bit kernel. */
2836        unsigned long ss_base, cs_base;
2837        struct stack_frame_ia32 frame;
2838        const struct stack_frame_ia32 __user *fp;
2839
2840        if (user_64bit_mode(regs))
2841                return 0;
2842
2843        cs_base = get_segment_base(regs->cs);
2844        ss_base = get_segment_base(regs->ss);
2845
2846        fp = compat_ptr(ss_base + regs->bp);
2847        pagefault_disable();
2848        while (entry->nr < entry->max_stack) {
2849                if (!valid_user_frame(fp, sizeof(frame)))
2850                        break;
2851
2852                if (__get_user(frame.next_frame, &fp->next_frame))
2853                        break;
2854                if (__get_user(frame.return_address, &fp->return_address))
2855                        break;
2856
2857                perf_callchain_store(entry, cs_base + frame.return_address);
2858                fp = compat_ptr(ss_base + frame.next_frame);
2859        }
2860        pagefault_enable();
2861        return 1;
2862}
2863#else
2864static inline int
2865perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2866{
2867    return 0;
2868}
2869#endif
2870
2871void
2872perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2873{
2874        struct stack_frame frame;
2875        const struct stack_frame __user *fp;
2876
2877        if (perf_guest_state()) {
2878                /* TODO: We don't support guest os callchain now */
2879                return;
2880        }
2881
2882        /*
2883         * We don't know what to do with VM86 stacks.. ignore them for now.
2884         */
2885        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2886                return;
2887
2888        fp = (void __user *)regs->bp;
2889
2890        perf_callchain_store(entry, regs->ip);
2891
2892        if (!nmi_uaccess_okay())
2893                return;
2894
2895        if (perf_callchain_user32(regs, entry))
2896                return;
2897
2898        pagefault_disable();
2899        while (entry->nr < entry->max_stack) {
2900                if (!valid_user_frame(fp, sizeof(frame)))
2901                        break;
2902
2903                if (__get_user(frame.next_frame, &fp->next_frame))
2904                        break;
2905                if (__get_user(frame.return_address, &fp->return_address))
2906                        break;
2907
2908                perf_callchain_store(entry, frame.return_address);
2909                fp = (void __user *)frame.next_frame;
2910        }
2911        pagefault_enable();
2912}
2913
2914/*
2915 * Deal with code segment offsets for the various execution modes:
2916 *
2917 *   VM86 - the good olde 16 bit days, where the linear address is
2918 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2919 *
2920 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2921 *          to figure out what the 32bit base address is.
2922 *
2923 *    X32 - has TIF_X32 set, but is running in x86_64
2924 *
2925 * X86_64 - CS,DS,SS,ES are all zero based.
2926 */
2927static unsigned long code_segment_base(struct pt_regs *regs)
2928{
2929        /*
2930         * For IA32 we look at the GDT/LDT segment base to convert the
2931         * effective IP to a linear address.
2932         */
2933
2934#ifdef CONFIG_X86_32
2935        /*
2936         * If we are in VM86 mode, add the segment offset to convert to a
2937         * linear address.
2938         */
2939        if (regs->flags & X86_VM_MASK)
2940                return 0x10 * regs->cs;
2941
2942        if (user_mode(regs) && regs->cs != __USER_CS)
2943                return get_segment_base(regs->cs);
2944#else
2945        if (user_mode(regs) && !user_64bit_mode(regs) &&
2946            regs->cs != __USER32_CS)
2947                return get_segment_base(regs->cs);
2948#endif
2949        return 0;
2950}
2951
2952unsigned long perf_instruction_pointer(struct pt_regs *regs)
2953{
2954        if (perf_guest_state())
2955                return perf_guest_get_ip();
2956
2957        return regs->ip + code_segment_base(regs);
2958}
2959
2960unsigned long perf_misc_flags(struct pt_regs *regs)
2961{
2962        unsigned int guest_state = perf_guest_state();
2963        int misc = 0;
2964
2965        if (guest_state) {
2966                if (guest_state & PERF_GUEST_USER)
2967                        misc |= PERF_RECORD_MISC_GUEST_USER;
2968                else
2969                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2970        } else {
2971                if (user_mode(regs))
2972                        misc |= PERF_RECORD_MISC_USER;
2973                else
2974                        misc |= PERF_RECORD_MISC_KERNEL;
2975        }
2976
2977        if (regs->flags & PERF_EFLAGS_EXACT)
2978                misc |= PERF_RECORD_MISC_EXACT_IP;
2979
2980        return misc;
2981}
2982
2983void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2984{
2985        cap->version            = x86_pmu.version;
2986        /*
2987         * KVM doesn't support the hybrid PMU yet.
2988         * Return the common value in global x86_pmu,
2989         * which available for all cores.
2990         */
2991        cap->num_counters_gp    = x86_pmu.num_counters;
2992        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2993        cap->bit_width_gp       = x86_pmu.cntval_bits;
2994        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2995        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2996        cap->events_mask_len    = x86_pmu.events_mask_len;
2997}
2998EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2999