linux/arch/x86/hyperv/hv_init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * X86 specific Hyper-V initialization code.
   4 *
   5 * Copyright (C) 2016, Microsoft, Inc.
   6 *
   7 * Author : K. Y. Srinivasan <kys@microsoft.com>
   8 */
   9
  10#include <linux/efi.h>
  11#include <linux/types.h>
  12#include <linux/bitfield.h>
  13#include <linux/io.h>
  14#include <asm/apic.h>
  15#include <asm/desc.h>
  16#include <asm/hypervisor.h>
  17#include <asm/hyperv-tlfs.h>
  18#include <asm/mshyperv.h>
  19#include <asm/idtentry.h>
  20#include <linux/kexec.h>
  21#include <linux/version.h>
  22#include <linux/vmalloc.h>
  23#include <linux/mm.h>
  24#include <linux/hyperv.h>
  25#include <linux/slab.h>
  26#include <linux/kernel.h>
  27#include <linux/cpuhotplug.h>
  28#include <linux/syscore_ops.h>
  29#include <clocksource/hyperv_timer.h>
  30#include <linux/highmem.h>
  31#include <linux/swiotlb.h>
  32
  33int hyperv_init_cpuhp;
  34u64 hv_current_partition_id = ~0ull;
  35EXPORT_SYMBOL_GPL(hv_current_partition_id);
  36
  37void *hv_hypercall_pg;
  38EXPORT_SYMBOL_GPL(hv_hypercall_pg);
  39
  40union hv_ghcb * __percpu *hv_ghcb_pg;
  41
  42/* Storage to save the hypercall page temporarily for hibernation */
  43static void *hv_hypercall_pg_saved;
  44
  45struct hv_vp_assist_page **hv_vp_assist_page;
  46EXPORT_SYMBOL_GPL(hv_vp_assist_page);
  47
  48static int hyperv_init_ghcb(void)
  49{
  50        u64 ghcb_gpa;
  51        void *ghcb_va;
  52        void **ghcb_base;
  53
  54        if (!hv_isolation_type_snp())
  55                return 0;
  56
  57        if (!hv_ghcb_pg)
  58                return -EINVAL;
  59
  60        /*
  61         * GHCB page is allocated by paravisor. The address
  62         * returned by MSR_AMD64_SEV_ES_GHCB is above shared
  63         * memory boundary and map it here.
  64         */
  65        rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
  66        ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
  67        if (!ghcb_va)
  68                return -ENOMEM;
  69
  70        ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
  71        *ghcb_base = ghcb_va;
  72
  73        return 0;
  74}
  75
  76static int hv_cpu_init(unsigned int cpu)
  77{
  78        union hv_vp_assist_msr_contents msr = { 0 };
  79        struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
  80        int ret;
  81
  82        ret = hv_common_cpu_init(cpu);
  83        if (ret)
  84                return ret;
  85
  86        if (!hv_vp_assist_page)
  87                return 0;
  88
  89        if (!*hvp) {
  90                if (hv_root_partition) {
  91                        /*
  92                         * For root partition we get the hypervisor provided VP assist
  93                         * page, instead of allocating a new page.
  94                         */
  95                        rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
  96                        *hvp = memremap(msr.pfn <<
  97                                        HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
  98                                        PAGE_SIZE, MEMREMAP_WB);
  99                } else {
 100                        /*
 101                         * The VP assist page is an "overlay" page (see Hyper-V TLFS's
 102                         * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
 103                         * out to make sure we always write the EOI MSR in
 104                         * hv_apic_eoi_write() *after* the EOI optimization is disabled
 105                         * in hv_cpu_die(), otherwise a CPU may not be stopped in the
 106                         * case of CPU offlining and the VM will hang.
 107                         */
 108                        *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
 109                        if (*hvp)
 110                                msr.pfn = vmalloc_to_pfn(*hvp);
 111                }
 112                WARN_ON(!(*hvp));
 113                if (*hvp) {
 114                        msr.enable = 1;
 115                        wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 116                }
 117        }
 118
 119        return hyperv_init_ghcb();
 120}
 121
 122static void (*hv_reenlightenment_cb)(void);
 123
 124static void hv_reenlightenment_notify(struct work_struct *dummy)
 125{
 126        struct hv_tsc_emulation_status emu_status;
 127
 128        rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
 129
 130        /* Don't issue the callback if TSC accesses are not emulated */
 131        if (hv_reenlightenment_cb && emu_status.inprogress)
 132                hv_reenlightenment_cb();
 133}
 134static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
 135
 136void hyperv_stop_tsc_emulation(void)
 137{
 138        u64 freq;
 139        struct hv_tsc_emulation_status emu_status;
 140
 141        rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
 142        emu_status.inprogress = 0;
 143        wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
 144
 145        rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
 146        tsc_khz = div64_u64(freq, 1000);
 147}
 148EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
 149
 150static inline bool hv_reenlightenment_available(void)
 151{
 152        /*
 153         * Check for required features and privileges to make TSC frequency
 154         * change notifications work.
 155         */
 156        return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
 157                ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
 158                ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
 159}
 160
 161DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
 162{
 163        ack_APIC_irq();
 164        inc_irq_stat(irq_hv_reenlightenment_count);
 165        schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
 166}
 167
 168void set_hv_tscchange_cb(void (*cb)(void))
 169{
 170        struct hv_reenlightenment_control re_ctrl = {
 171                .vector = HYPERV_REENLIGHTENMENT_VECTOR,
 172                .enabled = 1,
 173        };
 174        struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
 175
 176        if (!hv_reenlightenment_available()) {
 177                pr_warn("Hyper-V: reenlightenment support is unavailable\n");
 178                return;
 179        }
 180
 181        if (!hv_vp_index)
 182                return;
 183
 184        hv_reenlightenment_cb = cb;
 185
 186        /* Make sure callback is registered before we write to MSRs */
 187        wmb();
 188
 189        re_ctrl.target_vp = hv_vp_index[get_cpu()];
 190
 191        wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
 192        wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
 193
 194        put_cpu();
 195}
 196EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
 197
 198void clear_hv_tscchange_cb(void)
 199{
 200        struct hv_reenlightenment_control re_ctrl;
 201
 202        if (!hv_reenlightenment_available())
 203                return;
 204
 205        rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
 206        re_ctrl.enabled = 0;
 207        wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
 208
 209        hv_reenlightenment_cb = NULL;
 210}
 211EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
 212
 213static int hv_cpu_die(unsigned int cpu)
 214{
 215        struct hv_reenlightenment_control re_ctrl;
 216        unsigned int new_cpu;
 217        void **ghcb_va;
 218
 219        if (hv_ghcb_pg) {
 220                ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
 221                if (*ghcb_va)
 222                        memunmap(*ghcb_va);
 223                *ghcb_va = NULL;
 224        }
 225
 226        hv_common_cpu_die(cpu);
 227
 228        if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
 229                union hv_vp_assist_msr_contents msr = { 0 };
 230                if (hv_root_partition) {
 231                        /*
 232                         * For root partition the VP assist page is mapped to
 233                         * hypervisor provided page, and thus we unmap the
 234                         * page here and nullify it, so that in future we have
 235                         * correct page address mapped in hv_cpu_init.
 236                         */
 237                        memunmap(hv_vp_assist_page[cpu]);
 238                        hv_vp_assist_page[cpu] = NULL;
 239                        rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 240                        msr.enable = 0;
 241                }
 242                wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 243        }
 244
 245        if (hv_reenlightenment_cb == NULL)
 246                return 0;
 247
 248        rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
 249        if (re_ctrl.target_vp == hv_vp_index[cpu]) {
 250                /*
 251                 * Reassign reenlightenment notifications to some other online
 252                 * CPU or just disable the feature if there are no online CPUs
 253                 * left (happens on hibernation).
 254                 */
 255                new_cpu = cpumask_any_but(cpu_online_mask, cpu);
 256
 257                if (new_cpu < nr_cpu_ids)
 258                        re_ctrl.target_vp = hv_vp_index[new_cpu];
 259                else
 260                        re_ctrl.enabled = 0;
 261
 262                wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
 263        }
 264
 265        return 0;
 266}
 267
 268static int __init hv_pci_init(void)
 269{
 270        int gen2vm = efi_enabled(EFI_BOOT);
 271
 272        /*
 273         * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
 274         * The purpose is to suppress the harmless warning:
 275         * "PCI: Fatal: No config space access function found"
 276         */
 277        if (gen2vm)
 278                return 0;
 279
 280        /* For Generation-1 VM, we'll proceed in pci_arch_init().  */
 281        return 1;
 282}
 283
 284static int hv_suspend(void)
 285{
 286        union hv_x64_msr_hypercall_contents hypercall_msr;
 287        int ret;
 288
 289        if (hv_root_partition)
 290                return -EPERM;
 291
 292        /*
 293         * Reset the hypercall page as it is going to be invalidated
 294         * across hibernation. Setting hv_hypercall_pg to NULL ensures
 295         * that any subsequent hypercall operation fails safely instead of
 296         * crashing due to an access of an invalid page. The hypercall page
 297         * pointer is restored on resume.
 298         */
 299        hv_hypercall_pg_saved = hv_hypercall_pg;
 300        hv_hypercall_pg = NULL;
 301
 302        /* Disable the hypercall page in the hypervisor */
 303        rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 304        hypercall_msr.enable = 0;
 305        wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 306
 307        ret = hv_cpu_die(0);
 308        return ret;
 309}
 310
 311static void hv_resume(void)
 312{
 313        union hv_x64_msr_hypercall_contents hypercall_msr;
 314        int ret;
 315
 316        ret = hv_cpu_init(0);
 317        WARN_ON(ret);
 318
 319        /* Re-enable the hypercall page */
 320        rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 321        hypercall_msr.enable = 1;
 322        hypercall_msr.guest_physical_address =
 323                vmalloc_to_pfn(hv_hypercall_pg_saved);
 324        wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 325
 326        hv_hypercall_pg = hv_hypercall_pg_saved;
 327        hv_hypercall_pg_saved = NULL;
 328
 329        /*
 330         * Reenlightenment notifications are disabled by hv_cpu_die(0),
 331         * reenable them here if hv_reenlightenment_cb was previously set.
 332         */
 333        if (hv_reenlightenment_cb)
 334                set_hv_tscchange_cb(hv_reenlightenment_cb);
 335}
 336
 337/* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
 338static struct syscore_ops hv_syscore_ops = {
 339        .suspend        = hv_suspend,
 340        .resume         = hv_resume,
 341};
 342
 343static void (* __initdata old_setup_percpu_clockev)(void);
 344
 345static void __init hv_stimer_setup_percpu_clockev(void)
 346{
 347        /*
 348         * Ignore any errors in setting up stimer clockevents
 349         * as we can run with the LAPIC timer as a fallback.
 350         */
 351        (void)hv_stimer_alloc(false);
 352
 353        /*
 354         * Still register the LAPIC timer, because the direct-mode STIMER is
 355         * not supported by old versions of Hyper-V. This also allows users
 356         * to switch to LAPIC timer via /sys, if they want to.
 357         */
 358        if (old_setup_percpu_clockev)
 359                old_setup_percpu_clockev();
 360}
 361
 362static void __init hv_get_partition_id(void)
 363{
 364        struct hv_get_partition_id *output_page;
 365        u64 status;
 366        unsigned long flags;
 367
 368        local_irq_save(flags);
 369        output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
 370        status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
 371        if (!hv_result_success(status)) {
 372                /* No point in proceeding if this failed */
 373                pr_err("Failed to get partition ID: %lld\n", status);
 374                BUG();
 375        }
 376        hv_current_partition_id = output_page->partition_id;
 377        local_irq_restore(flags);
 378}
 379
 380/*
 381 * This function is to be invoked early in the boot sequence after the
 382 * hypervisor has been detected.
 383 *
 384 * 1. Setup the hypercall page.
 385 * 2. Register Hyper-V specific clocksource.
 386 * 3. Setup Hyper-V specific APIC entry points.
 387 */
 388void __init hyperv_init(void)
 389{
 390        u64 guest_id;
 391        union hv_x64_msr_hypercall_contents hypercall_msr;
 392        int cpuhp;
 393
 394        if (x86_hyper_type != X86_HYPER_MS_HYPERV)
 395                return;
 396
 397        if (hv_common_init())
 398                return;
 399
 400        hv_vp_assist_page = kcalloc(num_possible_cpus(),
 401                                    sizeof(*hv_vp_assist_page), GFP_KERNEL);
 402        if (!hv_vp_assist_page) {
 403                ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
 404                goto common_free;
 405        }
 406
 407        if (hv_isolation_type_snp()) {
 408                hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
 409                if (!hv_ghcb_pg)
 410                        goto free_vp_assist_page;
 411        }
 412
 413        cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
 414                                  hv_cpu_init, hv_cpu_die);
 415        if (cpuhp < 0)
 416                goto free_ghcb_page;
 417
 418        /*
 419         * Setup the hypercall page and enable hypercalls.
 420         * 1. Register the guest ID
 421         * 2. Enable the hypercall and register the hypercall page
 422         */
 423        guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
 424        wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
 425
 426        /* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
 427        hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
 428
 429        hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
 430                        VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
 431                        VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
 432                        __builtin_return_address(0));
 433        if (hv_hypercall_pg == NULL)
 434                goto clean_guest_os_id;
 435
 436        rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 437        hypercall_msr.enable = 1;
 438
 439        if (hv_root_partition) {
 440                struct page *pg;
 441                void *src, *dst;
 442
 443                /*
 444                 * For the root partition, the hypervisor will set up its
 445                 * hypercall page. The hypervisor guarantees it will not show
 446                 * up in the root's address space. The root can't change the
 447                 * location of the hypercall page.
 448                 *
 449                 * Order is important here. We must enable the hypercall page
 450                 * so it is populated with code, then copy the code to an
 451                 * executable page.
 452                 */
 453                wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 454
 455                pg = vmalloc_to_page(hv_hypercall_pg);
 456                dst = kmap(pg);
 457                src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
 458                                MEMREMAP_WB);
 459                BUG_ON(!(src && dst));
 460                memcpy(dst, src, HV_HYP_PAGE_SIZE);
 461                memunmap(src);
 462                kunmap(pg);
 463        } else {
 464                hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
 465                wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 466        }
 467
 468        /*
 469         * hyperv_init() is called before LAPIC is initialized: see
 470         * apic_intr_mode_init() -> x86_platform.apic_post_init() and
 471         * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
 472         * depends on LAPIC, so hv_stimer_alloc() should be called from
 473         * x86_init.timers.setup_percpu_clockev.
 474         */
 475        old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
 476        x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
 477
 478        hv_apic_init();
 479
 480        x86_init.pci.arch_init = hv_pci_init;
 481
 482        register_syscore_ops(&hv_syscore_ops);
 483
 484        hyperv_init_cpuhp = cpuhp;
 485
 486        if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
 487                hv_get_partition_id();
 488
 489        BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
 490
 491#ifdef CONFIG_PCI_MSI
 492        /*
 493         * If we're running as root, we want to create our own PCI MSI domain.
 494         * We can't set this in hv_pci_init because that would be too late.
 495         */
 496        if (hv_root_partition)
 497                x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
 498#endif
 499
 500        /* Query the VMs extended capability once, so that it can be cached. */
 501        hv_query_ext_cap(0);
 502
 503#ifdef CONFIG_SWIOTLB
 504        /*
 505         * Swiotlb bounce buffer needs to be mapped in extra address
 506         * space. Map function doesn't work in the early place and so
 507         * call swiotlb_update_mem_attributes() here.
 508         */
 509        if (hv_is_isolation_supported())
 510                swiotlb_update_mem_attributes();
 511#endif
 512
 513        return;
 514
 515clean_guest_os_id:
 516        wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
 517        hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
 518        cpuhp_remove_state(cpuhp);
 519free_ghcb_page:
 520        free_percpu(hv_ghcb_pg);
 521free_vp_assist_page:
 522        kfree(hv_vp_assist_page);
 523        hv_vp_assist_page = NULL;
 524common_free:
 525        hv_common_free();
 526}
 527
 528/*
 529 * This routine is called before kexec/kdump, it does the required cleanup.
 530 */
 531void hyperv_cleanup(void)
 532{
 533        union hv_x64_msr_hypercall_contents hypercall_msr;
 534
 535        unregister_syscore_ops(&hv_syscore_ops);
 536
 537        /* Reset our OS id */
 538        wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
 539        hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
 540
 541        /*
 542         * Reset hypercall page reference before reset the page,
 543         * let hypercall operations fail safely rather than
 544         * panic the kernel for using invalid hypercall page
 545         */
 546        hv_hypercall_pg = NULL;
 547
 548        /* Reset the hypercall page */
 549        hypercall_msr.as_uint64 = 0;
 550        wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 551
 552        /* Reset the TSC page */
 553        hypercall_msr.as_uint64 = 0;
 554        wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
 555}
 556
 557void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
 558{
 559        static bool panic_reported;
 560        u64 guest_id;
 561
 562        if (in_die && !panic_on_oops)
 563                return;
 564
 565        /*
 566         * We prefer to report panic on 'die' chain as we have proper
 567         * registers to report, but if we miss it (e.g. on BUG()) we need
 568         * to report it on 'panic'.
 569         */
 570        if (panic_reported)
 571                return;
 572        panic_reported = true;
 573
 574        rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
 575
 576        wrmsrl(HV_X64_MSR_CRASH_P0, err);
 577        wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
 578        wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
 579        wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
 580        wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
 581
 582        /*
 583         * Let Hyper-V know there is crash data available
 584         */
 585        wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
 586}
 587EXPORT_SYMBOL_GPL(hyperv_report_panic);
 588
 589bool hv_is_hyperv_initialized(void)
 590{
 591        union hv_x64_msr_hypercall_contents hypercall_msr;
 592
 593        /*
 594         * Ensure that we're really on Hyper-V, and not a KVM or Xen
 595         * emulation of Hyper-V
 596         */
 597        if (x86_hyper_type != X86_HYPER_MS_HYPERV)
 598                return false;
 599
 600        /*
 601         * Verify that earlier initialization succeeded by checking
 602         * that the hypercall page is setup
 603         */
 604        hypercall_msr.as_uint64 = 0;
 605        rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 606
 607        return hypercall_msr.enable;
 608}
 609EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
 610