linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
   7 */
   8#include <linux/acpi.h>
   9#include <linux/console.h>
  10#include <linux/crash_dump.h>
  11#include <linux/dma-map-ops.h>
  12#include <linux/dmi.h>
  13#include <linux/efi.h>
  14#include <linux/init_ohci1394_dma.h>
  15#include <linux/initrd.h>
  16#include <linux/iscsi_ibft.h>
  17#include <linux/memblock.h>
  18#include <linux/panic_notifier.h>
  19#include <linux/pci.h>
  20#include <linux/root_dev.h>
  21#include <linux/hugetlb.h>
  22#include <linux/tboot.h>
  23#include <linux/usb/xhci-dbgp.h>
  24#include <linux/static_call.h>
  25#include <linux/swiotlb.h>
  26
  27#include <uapi/linux/mount.h>
  28
  29#include <xen/xen.h>
  30
  31#include <asm/apic.h>
  32#include <asm/numa.h>
  33#include <asm/bios_ebda.h>
  34#include <asm/bugs.h>
  35#include <asm/cpu.h>
  36#include <asm/efi.h>
  37#include <asm/gart.h>
  38#include <asm/hypervisor.h>
  39#include <asm/io_apic.h>
  40#include <asm/kasan.h>
  41#include <asm/kaslr.h>
  42#include <asm/mce.h>
  43#include <asm/memtype.h>
  44#include <asm/mtrr.h>
  45#include <asm/realmode.h>
  46#include <asm/olpc_ofw.h>
  47#include <asm/pci-direct.h>
  48#include <asm/prom.h>
  49#include <asm/proto.h>
  50#include <asm/thermal.h>
  51#include <asm/unwind.h>
  52#include <asm/vsyscall.h>
  53#include <linux/vmalloc.h>
  54
  55/*
  56 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  57 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  58 *
  59 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  60 * represented by pfn_mapped[].
  61 */
  62unsigned long max_low_pfn_mapped;
  63unsigned long max_pfn_mapped;
  64
  65#ifdef CONFIG_DMI
  66RESERVE_BRK(dmi_alloc, 65536);
  67#endif
  68
  69
  70/*
  71 * Range of the BSS area. The size of the BSS area is determined
  72 * at link time, with RESERVE_BRK() facility reserving additional
  73 * chunks.
  74 */
  75unsigned long _brk_start = (unsigned long)__brk_base;
  76unsigned long _brk_end   = (unsigned long)__brk_base;
  77
  78struct boot_params boot_params;
  79
  80/*
  81 * These are the four main kernel memory regions, we put them into
  82 * the resource tree so that kdump tools and other debugging tools
  83 * recover it:
  84 */
  85
  86static struct resource rodata_resource = {
  87        .name   = "Kernel rodata",
  88        .start  = 0,
  89        .end    = 0,
  90        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  91};
  92
  93static struct resource data_resource = {
  94        .name   = "Kernel data",
  95        .start  = 0,
  96        .end    = 0,
  97        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  98};
  99
 100static struct resource code_resource = {
 101        .name   = "Kernel code",
 102        .start  = 0,
 103        .end    = 0,
 104        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 105};
 106
 107static struct resource bss_resource = {
 108        .name   = "Kernel bss",
 109        .start  = 0,
 110        .end    = 0,
 111        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 112};
 113
 114
 115#ifdef CONFIG_X86_32
 116/* CPU data as detected by the assembly code in head_32.S */
 117struct cpuinfo_x86 new_cpu_data;
 118
 119/* Common CPU data for all CPUs */
 120struct cpuinfo_x86 boot_cpu_data __read_mostly;
 121EXPORT_SYMBOL(boot_cpu_data);
 122
 123unsigned int def_to_bigsmp;
 124
 125struct apm_info apm_info;
 126EXPORT_SYMBOL(apm_info);
 127
 128#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 129        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 130struct ist_info ist_info;
 131EXPORT_SYMBOL(ist_info);
 132#else
 133struct ist_info ist_info;
 134#endif
 135
 136#else
 137struct cpuinfo_x86 boot_cpu_data __read_mostly;
 138EXPORT_SYMBOL(boot_cpu_data);
 139#endif
 140
 141
 142#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 143__visible unsigned long mmu_cr4_features __ro_after_init;
 144#else
 145__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 146#endif
 147
 148/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 149int bootloader_type, bootloader_version;
 150
 151/*
 152 * Setup options
 153 */
 154struct screen_info screen_info;
 155EXPORT_SYMBOL(screen_info);
 156struct edid_info edid_info;
 157EXPORT_SYMBOL_GPL(edid_info);
 158
 159extern int root_mountflags;
 160
 161unsigned long saved_video_mode;
 162
 163#define RAMDISK_IMAGE_START_MASK        0x07FF
 164#define RAMDISK_PROMPT_FLAG             0x8000
 165#define RAMDISK_LOAD_FLAG               0x4000
 166
 167static char __initdata command_line[COMMAND_LINE_SIZE];
 168#ifdef CONFIG_CMDLINE_BOOL
 169static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 170#endif
 171
 172#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 173struct edd edd;
 174#ifdef CONFIG_EDD_MODULE
 175EXPORT_SYMBOL(edd);
 176#endif
 177/**
 178 * copy_edd() - Copy the BIOS EDD information
 179 *              from boot_params into a safe place.
 180 *
 181 */
 182static inline void __init copy_edd(void)
 183{
 184     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 185            sizeof(edd.mbr_signature));
 186     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 187     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 188     edd.edd_info_nr = boot_params.eddbuf_entries;
 189}
 190#else
 191static inline void __init copy_edd(void)
 192{
 193}
 194#endif
 195
 196void * __init extend_brk(size_t size, size_t align)
 197{
 198        size_t mask = align - 1;
 199        void *ret;
 200
 201        BUG_ON(_brk_start == 0);
 202        BUG_ON(align & mask);
 203
 204        _brk_end = (_brk_end + mask) & ~mask;
 205        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 206
 207        ret = (void *)_brk_end;
 208        _brk_end += size;
 209
 210        memset(ret, 0, size);
 211
 212        return ret;
 213}
 214
 215#ifdef CONFIG_X86_32
 216static void __init cleanup_highmap(void)
 217{
 218}
 219#endif
 220
 221static void __init reserve_brk(void)
 222{
 223        if (_brk_end > _brk_start)
 224                memblock_reserve(__pa_symbol(_brk_start),
 225                                 _brk_end - _brk_start);
 226
 227        /* Mark brk area as locked down and no longer taking any
 228           new allocations */
 229        _brk_start = 0;
 230}
 231
 232u64 relocated_ramdisk;
 233
 234#ifdef CONFIG_BLK_DEV_INITRD
 235
 236static u64 __init get_ramdisk_image(void)
 237{
 238        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 239
 240        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 241
 242        if (ramdisk_image == 0)
 243                ramdisk_image = phys_initrd_start;
 244
 245        return ramdisk_image;
 246}
 247static u64 __init get_ramdisk_size(void)
 248{
 249        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 250
 251        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 252
 253        if (ramdisk_size == 0)
 254                ramdisk_size = phys_initrd_size;
 255
 256        return ramdisk_size;
 257}
 258
 259static void __init relocate_initrd(void)
 260{
 261        /* Assume only end is not page aligned */
 262        u64 ramdisk_image = get_ramdisk_image();
 263        u64 ramdisk_size  = get_ramdisk_size();
 264        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 265
 266        /* We need to move the initrd down into directly mapped mem */
 267        relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 268                                                      PFN_PHYS(max_pfn_mapped));
 269        if (!relocated_ramdisk)
 270                panic("Cannot find place for new RAMDISK of size %lld\n",
 271                      ramdisk_size);
 272
 273        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 274        initrd_end   = initrd_start + ramdisk_size;
 275        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 276               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 277
 278        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 279
 280        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 281                " [mem %#010llx-%#010llx]\n",
 282                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 283                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 284}
 285
 286static void __init early_reserve_initrd(void)
 287{
 288        /* Assume only end is not page aligned */
 289        u64 ramdisk_image = get_ramdisk_image();
 290        u64 ramdisk_size  = get_ramdisk_size();
 291        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 292
 293        if (!boot_params.hdr.type_of_loader ||
 294            !ramdisk_image || !ramdisk_size)
 295                return;         /* No initrd provided by bootloader */
 296
 297        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 298}
 299
 300static void __init reserve_initrd(void)
 301{
 302        /* Assume only end is not page aligned */
 303        u64 ramdisk_image = get_ramdisk_image();
 304        u64 ramdisk_size  = get_ramdisk_size();
 305        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 306
 307        if (!boot_params.hdr.type_of_loader ||
 308            !ramdisk_image || !ramdisk_size)
 309                return;         /* No initrd provided by bootloader */
 310
 311        initrd_start = 0;
 312
 313        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 314                        ramdisk_end - 1);
 315
 316        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 317                                PFN_DOWN(ramdisk_end))) {
 318                /* All are mapped, easy case */
 319                initrd_start = ramdisk_image + PAGE_OFFSET;
 320                initrd_end = initrd_start + ramdisk_size;
 321                return;
 322        }
 323
 324        relocate_initrd();
 325
 326        memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
 327}
 328
 329#else
 330static void __init early_reserve_initrd(void)
 331{
 332}
 333static void __init reserve_initrd(void)
 334{
 335}
 336#endif /* CONFIG_BLK_DEV_INITRD */
 337
 338static void __init parse_setup_data(void)
 339{
 340        struct setup_data *data;
 341        u64 pa_data, pa_next;
 342
 343        pa_data = boot_params.hdr.setup_data;
 344        while (pa_data) {
 345                u32 data_len, data_type;
 346
 347                data = early_memremap(pa_data, sizeof(*data));
 348                data_len = data->len + sizeof(struct setup_data);
 349                data_type = data->type;
 350                pa_next = data->next;
 351                early_memunmap(data, sizeof(*data));
 352
 353                switch (data_type) {
 354                case SETUP_E820_EXT:
 355                        e820__memory_setup_extended(pa_data, data_len);
 356                        break;
 357                case SETUP_DTB:
 358                        add_dtb(pa_data);
 359                        break;
 360                case SETUP_EFI:
 361                        parse_efi_setup(pa_data, data_len);
 362                        break;
 363                default:
 364                        break;
 365                }
 366                pa_data = pa_next;
 367        }
 368}
 369
 370static void __init memblock_x86_reserve_range_setup_data(void)
 371{
 372        struct setup_indirect *indirect;
 373        struct setup_data *data;
 374        u64 pa_data, pa_next;
 375        u32 len;
 376
 377        pa_data = boot_params.hdr.setup_data;
 378        while (pa_data) {
 379                data = early_memremap(pa_data, sizeof(*data));
 380                if (!data) {
 381                        pr_warn("setup: failed to memremap setup_data entry\n");
 382                        return;
 383                }
 384
 385                len = sizeof(*data);
 386                pa_next = data->next;
 387
 388                memblock_reserve(pa_data, sizeof(*data) + data->len);
 389
 390                if (data->type == SETUP_INDIRECT) {
 391                        len += data->len;
 392                        early_memunmap(data, sizeof(*data));
 393                        data = early_memremap(pa_data, len);
 394                        if (!data) {
 395                                pr_warn("setup: failed to memremap indirect setup_data\n");
 396                                return;
 397                        }
 398
 399                        indirect = (struct setup_indirect *)data->data;
 400
 401                        if (indirect->type != SETUP_INDIRECT)
 402                                memblock_reserve(indirect->addr, indirect->len);
 403                }
 404
 405                pa_data = pa_next;
 406                early_memunmap(data, len);
 407        }
 408}
 409
 410/*
 411 * --------- Crashkernel reservation ------------------------------
 412 */
 413
 414#ifdef CONFIG_KEXEC_CORE
 415
 416/* 16M alignment for crash kernel regions */
 417#define CRASH_ALIGN             SZ_16M
 418
 419/*
 420 * Keep the crash kernel below this limit.
 421 *
 422 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 423 * due to mapping restrictions.
 424 *
 425 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 426 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 427 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 428 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 429 * no good way to detect the paging mode of the target kernel which will be
 430 * loaded for dumping.
 431 */
 432#ifdef CONFIG_X86_32
 433# define CRASH_ADDR_LOW_MAX     SZ_512M
 434# define CRASH_ADDR_HIGH_MAX    SZ_512M
 435#else
 436# define CRASH_ADDR_LOW_MAX     SZ_4G
 437# define CRASH_ADDR_HIGH_MAX    SZ_64T
 438#endif
 439
 440static int __init reserve_crashkernel_low(void)
 441{
 442#ifdef CONFIG_X86_64
 443        unsigned long long base, low_base = 0, low_size = 0;
 444        unsigned long low_mem_limit;
 445        int ret;
 446
 447        low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 448
 449        /* crashkernel=Y,low */
 450        ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 451        if (ret) {
 452                /*
 453                 * two parts from kernel/dma/swiotlb.c:
 454                 * -swiotlb size: user-specified with swiotlb= or default.
 455                 *
 456                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 457                 * to 8M for other buffers that may need to stay low too. Also
 458                 * make sure we allocate enough extra low memory so that we
 459                 * don't run out of DMA buffers for 32-bit devices.
 460                 */
 461                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 462        } else {
 463                /* passed with crashkernel=0,low ? */
 464                if (!low_size)
 465                        return 0;
 466        }
 467
 468        low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 469        if (!low_base) {
 470                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 471                       (unsigned long)(low_size >> 20));
 472                return -ENOMEM;
 473        }
 474
 475        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 476                (unsigned long)(low_size >> 20),
 477                (unsigned long)(low_base >> 20),
 478                (unsigned long)(low_mem_limit >> 20));
 479
 480        crashk_low_res.start = low_base;
 481        crashk_low_res.end   = low_base + low_size - 1;
 482        insert_resource(&iomem_resource, &crashk_low_res);
 483#endif
 484        return 0;
 485}
 486
 487static void __init reserve_crashkernel(void)
 488{
 489        unsigned long long crash_size, crash_base, total_mem;
 490        bool high = false;
 491        int ret;
 492
 493        total_mem = memblock_phys_mem_size();
 494
 495        /* crashkernel=XM */
 496        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 497        if (ret != 0 || crash_size <= 0) {
 498                /* crashkernel=X,high */
 499                ret = parse_crashkernel_high(boot_command_line, total_mem,
 500                                             &crash_size, &crash_base);
 501                if (ret != 0 || crash_size <= 0)
 502                        return;
 503                high = true;
 504        }
 505
 506        if (xen_pv_domain()) {
 507                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 508                return;
 509        }
 510
 511        /* 0 means: find the address automatically */
 512        if (!crash_base) {
 513                /*
 514                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 515                 * crashkernel=x,high reserves memory over 4G, also allocates
 516                 * 256M extra low memory for DMA buffers and swiotlb.
 517                 * But the extra memory is not required for all machines.
 518                 * So try low memory first and fall back to high memory
 519                 * unless "crashkernel=size[KMG],high" is specified.
 520                 */
 521                if (!high)
 522                        crash_base = memblock_phys_alloc_range(crash_size,
 523                                                CRASH_ALIGN, CRASH_ALIGN,
 524                                                CRASH_ADDR_LOW_MAX);
 525                if (!crash_base)
 526                        crash_base = memblock_phys_alloc_range(crash_size,
 527                                                CRASH_ALIGN, CRASH_ALIGN,
 528                                                CRASH_ADDR_HIGH_MAX);
 529                if (!crash_base) {
 530                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 531                        return;
 532                }
 533        } else {
 534                unsigned long long start;
 535
 536                start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 537                                                  crash_base + crash_size);
 538                if (start != crash_base) {
 539                        pr_info("crashkernel reservation failed - memory is in use.\n");
 540                        return;
 541                }
 542        }
 543
 544        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 545                memblock_phys_free(crash_base, crash_size);
 546                return;
 547        }
 548
 549        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 550                (unsigned long)(crash_size >> 20),
 551                (unsigned long)(crash_base >> 20),
 552                (unsigned long)(total_mem >> 20));
 553
 554        crashk_res.start = crash_base;
 555        crashk_res.end   = crash_base + crash_size - 1;
 556        insert_resource(&iomem_resource, &crashk_res);
 557}
 558#else
 559static void __init reserve_crashkernel(void)
 560{
 561}
 562#endif
 563
 564static struct resource standard_io_resources[] = {
 565        { .name = "dma1", .start = 0x00, .end = 0x1f,
 566                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 567        { .name = "pic1", .start = 0x20, .end = 0x21,
 568                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 569        { .name = "timer0", .start = 0x40, .end = 0x43,
 570                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 571        { .name = "timer1", .start = 0x50, .end = 0x53,
 572                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 573        { .name = "keyboard", .start = 0x60, .end = 0x60,
 574                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 575        { .name = "keyboard", .start = 0x64, .end = 0x64,
 576                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 577        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 578                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 579        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 580                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 581        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 582                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 583        { .name = "fpu", .start = 0xf0, .end = 0xff,
 584                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 585};
 586
 587void __init reserve_standard_io_resources(void)
 588{
 589        int i;
 590
 591        /* request I/O space for devices used on all i[345]86 PCs */
 592        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 593                request_resource(&ioport_resource, &standard_io_resources[i]);
 594
 595}
 596
 597static bool __init snb_gfx_workaround_needed(void)
 598{
 599#ifdef CONFIG_PCI
 600        int i;
 601        u16 vendor, devid;
 602        static const __initconst u16 snb_ids[] = {
 603                0x0102,
 604                0x0112,
 605                0x0122,
 606                0x0106,
 607                0x0116,
 608                0x0126,
 609                0x010a,
 610        };
 611
 612        /* Assume no if something weird is going on with PCI */
 613        if (!early_pci_allowed())
 614                return false;
 615
 616        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 617        if (vendor != 0x8086)
 618                return false;
 619
 620        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 621        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 622                if (devid == snb_ids[i])
 623                        return true;
 624#endif
 625
 626        return false;
 627}
 628
 629/*
 630 * Sandy Bridge graphics has trouble with certain ranges, exclude
 631 * them from allocation.
 632 */
 633static void __init trim_snb_memory(void)
 634{
 635        static const __initconst unsigned long bad_pages[] = {
 636                0x20050000,
 637                0x20110000,
 638                0x20130000,
 639                0x20138000,
 640                0x40004000,
 641        };
 642        int i;
 643
 644        if (!snb_gfx_workaround_needed())
 645                return;
 646
 647        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 648
 649        /*
 650         * SandyBridge integrated graphics devices have a bug that prevents
 651         * them from accessing certain memory ranges, namely anything below
 652         * 1M and in the pages listed in bad_pages[] above.
 653         *
 654         * To avoid these pages being ever accessed by SNB gfx devices reserve
 655         * bad_pages that have not already been reserved at boot time.
 656         * All memory below the 1 MB mark is anyway reserved later during
 657         * setup_arch(), so there is no need to reserve it here.
 658         */
 659
 660        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 661                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 662                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 663                               bad_pages[i]);
 664        }
 665}
 666
 667static void __init trim_bios_range(void)
 668{
 669        /*
 670         * A special case is the first 4Kb of memory;
 671         * This is a BIOS owned area, not kernel ram, but generally
 672         * not listed as such in the E820 table.
 673         *
 674         * This typically reserves additional memory (64KiB by default)
 675         * since some BIOSes are known to corrupt low memory.  See the
 676         * Kconfig help text for X86_RESERVE_LOW.
 677         */
 678        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 679
 680        /*
 681         * special case: Some BIOSes report the PC BIOS
 682         * area (640Kb -> 1Mb) as RAM even though it is not.
 683         * take them out.
 684         */
 685        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 686
 687        e820__update_table(e820_table);
 688}
 689
 690/* called before trim_bios_range() to spare extra sanitize */
 691static void __init e820_add_kernel_range(void)
 692{
 693        u64 start = __pa_symbol(_text);
 694        u64 size = __pa_symbol(_end) - start;
 695
 696        /*
 697         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 698         * attempt to fix it by adding the range. We may have a confused BIOS,
 699         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 700         * exclude kernel range. If we really are running on top non-RAM,
 701         * we will crash later anyways.
 702         */
 703        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 704                return;
 705
 706        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 707        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 708        e820__range_add(start, size, E820_TYPE_RAM);
 709}
 710
 711static void __init early_reserve_memory(void)
 712{
 713        /*
 714         * Reserve the memory occupied by the kernel between _text and
 715         * __end_of_kernel_reserve symbols. Any kernel sections after the
 716         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 717         * separate memblock_reserve() or they will be discarded.
 718         */
 719        memblock_reserve(__pa_symbol(_text),
 720                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 721
 722        /*
 723         * The first 4Kb of memory is a BIOS owned area, but generally it is
 724         * not listed as such in the E820 table.
 725         *
 726         * Reserve the first 64K of memory since some BIOSes are known to
 727         * corrupt low memory. After the real mode trampoline is allocated the
 728         * rest of the memory below 640k is reserved.
 729         *
 730         * In addition, make sure page 0 is always reserved because on
 731         * systems with L1TF its contents can be leaked to user processes.
 732         */
 733        memblock_reserve(0, SZ_64K);
 734
 735        early_reserve_initrd();
 736
 737        memblock_x86_reserve_range_setup_data();
 738
 739        reserve_ibft_region();
 740        reserve_bios_regions();
 741        trim_snb_memory();
 742}
 743
 744/*
 745 * Dump out kernel offset information on panic.
 746 */
 747static int
 748dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 749{
 750        if (kaslr_enabled()) {
 751                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 752                         kaslr_offset(),
 753                         __START_KERNEL,
 754                         __START_KERNEL_map,
 755                         MODULES_VADDR-1);
 756        } else {
 757                pr_emerg("Kernel Offset: disabled\n");
 758        }
 759
 760        return 0;
 761}
 762
 763/*
 764 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 765 * passed the efi memmap, systab, etc., so we should use these data structures
 766 * for initialization.  Note, the efi init code path is determined by the
 767 * global efi_enabled. This allows the same kernel image to be used on existing
 768 * systems (with a traditional BIOS) as well as on EFI systems.
 769 */
 770/*
 771 * setup_arch - architecture-specific boot-time initializations
 772 *
 773 * Note: On x86_64, fixmaps are ready for use even before this is called.
 774 */
 775
 776void __init setup_arch(char **cmdline_p)
 777{
 778#ifdef CONFIG_X86_32
 779        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 780
 781        /*
 782         * copy kernel address range established so far and switch
 783         * to the proper swapper page table
 784         */
 785        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 786                        initial_page_table + KERNEL_PGD_BOUNDARY,
 787                        KERNEL_PGD_PTRS);
 788
 789        load_cr3(swapper_pg_dir);
 790        /*
 791         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 792         * a cr3 based tlb flush, so the following __flush_tlb_all()
 793         * will not flush anything because the CPU quirk which clears
 794         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 795         * load_cr3() above the TLB has been flushed already. The
 796         * quirk is invoked before subsequent calls to __flush_tlb_all()
 797         * so proper operation is guaranteed.
 798         */
 799        __flush_tlb_all();
 800#else
 801        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 802        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 803#endif
 804
 805        /*
 806         * If we have OLPC OFW, we might end up relocating the fixmap due to
 807         * reserve_top(), so do this before touching the ioremap area.
 808         */
 809        olpc_ofw_detect();
 810
 811        idt_setup_early_traps();
 812        early_cpu_init();
 813        jump_label_init();
 814        static_call_init();
 815        early_ioremap_init();
 816
 817        setup_olpc_ofw_pgd();
 818
 819        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 820        screen_info = boot_params.screen_info;
 821        edid_info = boot_params.edid_info;
 822#ifdef CONFIG_X86_32
 823        apm_info.bios = boot_params.apm_bios_info;
 824        ist_info = boot_params.ist_info;
 825#endif
 826        saved_video_mode = boot_params.hdr.vid_mode;
 827        bootloader_type = boot_params.hdr.type_of_loader;
 828        if ((bootloader_type >> 4) == 0xe) {
 829                bootloader_type &= 0xf;
 830                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 831        }
 832        bootloader_version  = bootloader_type & 0xf;
 833        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 834
 835#ifdef CONFIG_BLK_DEV_RAM
 836        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 837#endif
 838#ifdef CONFIG_EFI
 839        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 840                     EFI32_LOADER_SIGNATURE, 4)) {
 841                set_bit(EFI_BOOT, &efi.flags);
 842        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 843                     EFI64_LOADER_SIGNATURE, 4)) {
 844                set_bit(EFI_BOOT, &efi.flags);
 845                set_bit(EFI_64BIT, &efi.flags);
 846        }
 847#endif
 848
 849        x86_init.oem.arch_setup();
 850
 851        /*
 852         * Do some memory reservations *before* memory is added to memblock, so
 853         * memblock allocations won't overwrite it.
 854         *
 855         * After this point, everything still needed from the boot loader or
 856         * firmware or kernel text should be early reserved or marked not RAM in
 857         * e820. All other memory is free game.
 858         *
 859         * This call needs to happen before e820__memory_setup() which calls the
 860         * xen_memory_setup() on Xen dom0 which relies on the fact that those
 861         * early reservations have happened already.
 862         */
 863        early_reserve_memory();
 864
 865        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 866        e820__memory_setup();
 867        parse_setup_data();
 868
 869        copy_edd();
 870
 871        if (!boot_params.hdr.root_flags)
 872                root_mountflags &= ~MS_RDONLY;
 873        setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 874
 875        code_resource.start = __pa_symbol(_text);
 876        code_resource.end = __pa_symbol(_etext)-1;
 877        rodata_resource.start = __pa_symbol(__start_rodata);
 878        rodata_resource.end = __pa_symbol(__end_rodata)-1;
 879        data_resource.start = __pa_symbol(_sdata);
 880        data_resource.end = __pa_symbol(_edata)-1;
 881        bss_resource.start = __pa_symbol(__bss_start);
 882        bss_resource.end = __pa_symbol(__bss_stop)-1;
 883
 884#ifdef CONFIG_CMDLINE_BOOL
 885#ifdef CONFIG_CMDLINE_OVERRIDE
 886        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 887#else
 888        if (builtin_cmdline[0]) {
 889                /* append boot loader cmdline to builtin */
 890                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 891                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 892                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 893        }
 894#endif
 895#endif
 896
 897        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 898        *cmdline_p = command_line;
 899
 900        /*
 901         * x86_configure_nx() is called before parse_early_param() to detect
 902         * whether hardware doesn't support NX (so that the early EHCI debug
 903         * console setup can safely call set_fixmap()). It may then be called
 904         * again from within noexec_setup() during parsing early parameters
 905         * to honor the respective command line option.
 906         */
 907        x86_configure_nx();
 908
 909        parse_early_param();
 910
 911        if (efi_enabled(EFI_BOOT))
 912                efi_memblock_x86_reserve_range();
 913
 914#ifdef CONFIG_MEMORY_HOTPLUG
 915        /*
 916         * Memory used by the kernel cannot be hot-removed because Linux
 917         * cannot migrate the kernel pages. When memory hotplug is
 918         * enabled, we should prevent memblock from allocating memory
 919         * for the kernel.
 920         *
 921         * ACPI SRAT records all hotpluggable memory ranges. But before
 922         * SRAT is parsed, we don't know about it.
 923         *
 924         * The kernel image is loaded into memory at very early time. We
 925         * cannot prevent this anyway. So on NUMA system, we set any
 926         * node the kernel resides in as un-hotpluggable.
 927         *
 928         * Since on modern servers, one node could have double-digit
 929         * gigabytes memory, we can assume the memory around the kernel
 930         * image is also un-hotpluggable. So before SRAT is parsed, just
 931         * allocate memory near the kernel image to try the best to keep
 932         * the kernel away from hotpluggable memory.
 933         */
 934        if (movable_node_is_enabled())
 935                memblock_set_bottom_up(true);
 936#endif
 937
 938        x86_report_nx();
 939
 940        if (acpi_mps_check()) {
 941#ifdef CONFIG_X86_LOCAL_APIC
 942                disable_apic = 1;
 943#endif
 944                setup_clear_cpu_cap(X86_FEATURE_APIC);
 945        }
 946
 947        e820__reserve_setup_data();
 948        e820__finish_early_params();
 949
 950        if (efi_enabled(EFI_BOOT))
 951                efi_init();
 952
 953        dmi_setup();
 954
 955        /*
 956         * VMware detection requires dmi to be available, so this
 957         * needs to be done after dmi_setup(), for the boot CPU.
 958         */
 959        init_hypervisor_platform();
 960
 961        tsc_early_init();
 962        x86_init.resources.probe_roms();
 963
 964        /* after parse_early_param, so could debug it */
 965        insert_resource(&iomem_resource, &code_resource);
 966        insert_resource(&iomem_resource, &rodata_resource);
 967        insert_resource(&iomem_resource, &data_resource);
 968        insert_resource(&iomem_resource, &bss_resource);
 969
 970        e820_add_kernel_range();
 971        trim_bios_range();
 972#ifdef CONFIG_X86_32
 973        if (ppro_with_ram_bug()) {
 974                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 975                                  E820_TYPE_RESERVED);
 976                e820__update_table(e820_table);
 977                printk(KERN_INFO "fixed physical RAM map:\n");
 978                e820__print_table("bad_ppro");
 979        }
 980#else
 981        early_gart_iommu_check();
 982#endif
 983
 984        /*
 985         * partially used pages are not usable - thus
 986         * we are rounding upwards:
 987         */
 988        max_pfn = e820__end_of_ram_pfn();
 989
 990        /* update e820 for memory not covered by WB MTRRs */
 991        if (IS_ENABLED(CONFIG_MTRR))
 992                mtrr_bp_init();
 993        else
 994                pat_disable("PAT support disabled because CONFIG_MTRR is disabled in the kernel.");
 995
 996        if (mtrr_trim_uncached_memory(max_pfn))
 997                max_pfn = e820__end_of_ram_pfn();
 998
 999        max_possible_pfn = max_pfn;
1000
1001        /*
1002         * This call is required when the CPU does not support PAT. If
1003         * mtrr_bp_init() invoked it already via pat_init() the call has no
1004         * effect.
1005         */
1006        init_cache_modes();
1007
1008        /*
1009         * Define random base addresses for memory sections after max_pfn is
1010         * defined and before each memory section base is used.
1011         */
1012        kernel_randomize_memory();
1013
1014#ifdef CONFIG_X86_32
1015        /* max_low_pfn get updated here */
1016        find_low_pfn_range();
1017#else
1018        check_x2apic();
1019
1020        /* How many end-of-memory variables you have, grandma! */
1021        /* need this before calling reserve_initrd */
1022        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1023                max_low_pfn = e820__end_of_low_ram_pfn();
1024        else
1025                max_low_pfn = max_pfn;
1026
1027        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1028#endif
1029
1030        /*
1031         * Find and reserve possible boot-time SMP configuration:
1032         */
1033        find_smp_config();
1034
1035        early_alloc_pgt_buf();
1036
1037        /*
1038         * Need to conclude brk, before e820__memblock_setup()
1039         * it could use memblock_find_in_range, could overlap with
1040         * brk area.
1041         */
1042        reserve_brk();
1043
1044        cleanup_highmap();
1045
1046        memblock_set_current_limit(ISA_END_ADDRESS);
1047        e820__memblock_setup();
1048
1049        /*
1050         * Needs to run after memblock setup because it needs the physical
1051         * memory size.
1052         */
1053        sev_setup_arch();
1054
1055        efi_fake_memmap();
1056        efi_find_mirror();
1057        efi_esrt_init();
1058        efi_mokvar_table_init();
1059
1060        /*
1061         * The EFI specification says that boot service code won't be
1062         * called after ExitBootServices(). This is, in fact, a lie.
1063         */
1064        efi_reserve_boot_services();
1065
1066        /* preallocate 4k for mptable mpc */
1067        e820__memblock_alloc_reserved_mpc_new();
1068
1069#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1070        setup_bios_corruption_check();
1071#endif
1072
1073#ifdef CONFIG_X86_32
1074        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1075                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1076#endif
1077
1078        /*
1079         * Find free memory for the real mode trampoline and place it there. If
1080         * there is not enough free memory under 1M, on EFI-enabled systems
1081         * there will be additional attempt to reclaim the memory for the real
1082         * mode trampoline at efi_free_boot_services().
1083         *
1084         * Unconditionally reserve the entire first 1M of RAM because BIOSes
1085         * are known to corrupt low memory and several hundred kilobytes are not
1086         * worth complex detection what memory gets clobbered. Windows does the
1087         * same thing for very similar reasons.
1088         *
1089         * Moreover, on machines with SandyBridge graphics or in setups that use
1090         * crashkernel the entire 1M is reserved anyway.
1091         */
1092        reserve_real_mode();
1093
1094        init_mem_mapping();
1095
1096        idt_setup_early_pf();
1097
1098        /*
1099         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1100         * with the current CR4 value.  This may not be necessary, but
1101         * auditing all the early-boot CR4 manipulation would be needed to
1102         * rule it out.
1103         *
1104         * Mask off features that don't work outside long mode (just
1105         * PCIDE for now).
1106         */
1107        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1108
1109        memblock_set_current_limit(get_max_mapped());
1110
1111        /*
1112         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1113         */
1114
1115#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1116        if (init_ohci1394_dma_early)
1117                init_ohci1394_dma_on_all_controllers();
1118#endif
1119        /* Allocate bigger log buffer */
1120        setup_log_buf(1);
1121
1122        if (efi_enabled(EFI_BOOT)) {
1123                switch (boot_params.secure_boot) {
1124                case efi_secureboot_mode_disabled:
1125                        pr_info("Secure boot disabled\n");
1126                        break;
1127                case efi_secureboot_mode_enabled:
1128                        pr_info("Secure boot enabled\n");
1129                        break;
1130                default:
1131                        pr_info("Secure boot could not be determined\n");
1132                        break;
1133                }
1134        }
1135
1136        reserve_initrd();
1137
1138        acpi_table_upgrade();
1139        /* Look for ACPI tables and reserve memory occupied by them. */
1140        acpi_boot_table_init();
1141
1142        vsmp_init();
1143
1144        io_delay_init();
1145
1146        early_platform_quirks();
1147
1148        early_acpi_boot_init();
1149
1150        initmem_init();
1151        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1152
1153        if (boot_cpu_has(X86_FEATURE_GBPAGES))
1154                hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1155
1156        /*
1157         * Reserve memory for crash kernel after SRAT is parsed so that it
1158         * won't consume hotpluggable memory.
1159         */
1160        reserve_crashkernel();
1161
1162        memblock_find_dma_reserve();
1163
1164        if (!early_xdbc_setup_hardware())
1165                early_xdbc_register_console();
1166
1167        x86_init.paging.pagetable_init();
1168
1169        kasan_init();
1170
1171        /*
1172         * Sync back kernel address range.
1173         *
1174         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1175         * this call?
1176         */
1177        sync_initial_page_table();
1178
1179        tboot_probe();
1180
1181        map_vsyscall();
1182
1183        generic_apic_probe();
1184
1185        early_quirks();
1186
1187        /*
1188         * Read APIC and some other early information from ACPI tables.
1189         */
1190        acpi_boot_init();
1191        x86_dtb_init();
1192
1193        /*
1194         * get boot-time SMP configuration:
1195         */
1196        get_smp_config();
1197
1198        /*
1199         * Systems w/o ACPI and mptables might not have it mapped the local
1200         * APIC yet, but prefill_possible_map() might need to access it.
1201         */
1202        init_apic_mappings();
1203
1204        prefill_possible_map();
1205
1206        init_cpu_to_node();
1207        init_gi_nodes();
1208
1209        io_apic_init_mappings();
1210
1211        x86_init.hyper.guest_late_init();
1212
1213        e820__reserve_resources();
1214        e820__register_nosave_regions(max_pfn);
1215
1216        x86_init.resources.reserve_resources();
1217
1218        e820__setup_pci_gap();
1219
1220#ifdef CONFIG_VT
1221#if defined(CONFIG_VGA_CONSOLE)
1222        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1223                conswitchp = &vga_con;
1224#endif
1225#endif
1226        x86_init.oem.banner();
1227
1228        x86_init.timers.wallclock_init();
1229
1230        /*
1231         * This needs to run before setup_local_APIC() which soft-disables the
1232         * local APIC temporarily and that masks the thermal LVT interrupt,
1233         * leading to softlockups on machines which have configured SMI
1234         * interrupt delivery.
1235         */
1236        therm_lvt_init();
1237
1238        mcheck_init();
1239
1240        register_refined_jiffies(CLOCK_TICK_RATE);
1241
1242#ifdef CONFIG_EFI
1243        if (efi_enabled(EFI_BOOT))
1244                efi_apply_memmap_quirks();
1245#endif
1246
1247        unwind_init();
1248}
1249
1250#ifdef CONFIG_X86_32
1251
1252static struct resource video_ram_resource = {
1253        .name   = "Video RAM area",
1254        .start  = 0xa0000,
1255        .end    = 0xbffff,
1256        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1257};
1258
1259void __init i386_reserve_resources(void)
1260{
1261        request_resource(&iomem_resource, &video_ram_resource);
1262        reserve_standard_io_resources();
1263}
1264
1265#endif /* CONFIG_X86_32 */
1266
1267static struct notifier_block kernel_offset_notifier = {
1268        .notifier_call = dump_kernel_offset
1269};
1270
1271static int __init register_kernel_offset_dumper(void)
1272{
1273        atomic_notifier_chain_register(&panic_notifier_list,
1274                                        &kernel_offset_notifier);
1275        return 0;
1276}
1277__initcall(register_kernel_offset_dumper);
1278