linux/arch/x86/kvm/mmu/paging_tmpl.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * MMU support
   9 *
  10 * Copyright (C) 2006 Qumranet, Inc.
  11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  12 *
  13 * Authors:
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Avi Kivity   <avi@qumranet.com>
  16 */
  17
  18/*
  19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  20 * so the code in this file is compiled twice, once per pte size.
  21 */
  22
  23#if PTTYPE == 64
  24        #define pt_element_t u64
  25        #define guest_walker guest_walker64
  26        #define FNAME(name) paging##64_##name
  27        #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
  28        #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  29        #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  30        #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31        #define PT_LEVEL_BITS PT64_LEVEL_BITS
  32        #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  33        #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  34        #define PT_HAVE_ACCESSED_DIRTY(mmu) true
  35        #ifdef CONFIG_X86_64
  36        #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
  37        #define CMPXCHG cmpxchg
  38        #else
  39        #define CMPXCHG cmpxchg64
  40        #define PT_MAX_FULL_LEVELS 2
  41        #endif
  42#elif PTTYPE == 32
  43        #define pt_element_t u32
  44        #define guest_walker guest_walker32
  45        #define FNAME(name) paging##32_##name
  46        #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  47        #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  48        #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  49        #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  50        #define PT_LEVEL_BITS PT32_LEVEL_BITS
  51        #define PT_MAX_FULL_LEVELS 2
  52        #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  53        #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  54        #define PT_HAVE_ACCESSED_DIRTY(mmu) true
  55        #define CMPXCHG cmpxchg
  56#elif PTTYPE == PTTYPE_EPT
  57        #define pt_element_t u64
  58        #define guest_walker guest_walkerEPT
  59        #define FNAME(name) ept_##name
  60        #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
  61        #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  62        #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  63        #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  64        #define PT_LEVEL_BITS PT64_LEVEL_BITS
  65        #define PT_GUEST_DIRTY_SHIFT 9
  66        #define PT_GUEST_ACCESSED_SHIFT 8
  67        #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
  68        #define CMPXCHG cmpxchg64
  69        #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
  70#else
  71        #error Invalid PTTYPE value
  72#endif
  73
  74#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
  75#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
  76
  77#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  78#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
  79
  80/*
  81 * The guest_walker structure emulates the behavior of the hardware page
  82 * table walker.
  83 */
  84struct guest_walker {
  85        int level;
  86        unsigned max_level;
  87        gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  88        pt_element_t ptes[PT_MAX_FULL_LEVELS];
  89        pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  90        gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  91        pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  92        bool pte_writable[PT_MAX_FULL_LEVELS];
  93        unsigned int pt_access[PT_MAX_FULL_LEVELS];
  94        unsigned int pte_access;
  95        gfn_t gfn;
  96        struct x86_exception fault;
  97};
  98
  99static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
 100{
 101        return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
 102}
 103
 104static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
 105                                             unsigned gpte)
 106{
 107        unsigned mask;
 108
 109        /* dirty bit is not supported, so no need to track it */
 110        if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 111                return;
 112
 113        BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
 114
 115        mask = (unsigned)~ACC_WRITE_MASK;
 116        /* Allow write access to dirty gptes */
 117        mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
 118                PT_WRITABLE_MASK;
 119        *access &= mask;
 120}
 121
 122static inline int FNAME(is_present_gpte)(unsigned long pte)
 123{
 124#if PTTYPE != PTTYPE_EPT
 125        return pte & PT_PRESENT_MASK;
 126#else
 127        return pte & 7;
 128#endif
 129}
 130
 131static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
 132{
 133#if PTTYPE != PTTYPE_EPT
 134        return false;
 135#else
 136        return __is_bad_mt_xwr(rsvd_check, gpte);
 137#endif
 138}
 139
 140static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
 141{
 142        return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
 143               FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
 144}
 145
 146static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 147                               pt_element_t __user *ptep_user, unsigned index,
 148                               pt_element_t orig_pte, pt_element_t new_pte)
 149{
 150        int npages;
 151        pt_element_t ret;
 152        pt_element_t *table;
 153        struct page *page;
 154
 155        npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
 156        if (likely(npages == 1)) {
 157                table = kmap_atomic(page);
 158                ret = CMPXCHG(&table[index], orig_pte, new_pte);
 159                kunmap_atomic(table);
 160
 161                kvm_release_page_dirty(page);
 162        } else {
 163                struct vm_area_struct *vma;
 164                unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
 165                unsigned long pfn;
 166                unsigned long paddr;
 167
 168                mmap_read_lock(current->mm);
 169                vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
 170                if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
 171                        mmap_read_unlock(current->mm);
 172                        return -EFAULT;
 173                }
 174                pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 175                paddr = pfn << PAGE_SHIFT;
 176                table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
 177                if (!table) {
 178                        mmap_read_unlock(current->mm);
 179                        return -EFAULT;
 180                }
 181                ret = CMPXCHG(&table[index], orig_pte, new_pte);
 182                memunmap(table);
 183                mmap_read_unlock(current->mm);
 184        }
 185
 186        return (ret != orig_pte);
 187}
 188
 189static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
 190                                  struct kvm_mmu_page *sp, u64 *spte,
 191                                  u64 gpte)
 192{
 193        if (!FNAME(is_present_gpte)(gpte))
 194                goto no_present;
 195
 196        /* if accessed bit is not supported prefetch non accessed gpte */
 197        if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
 198            !(gpte & PT_GUEST_ACCESSED_MASK))
 199                goto no_present;
 200
 201        if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
 202                goto no_present;
 203
 204        return false;
 205
 206no_present:
 207        drop_spte(vcpu->kvm, spte);
 208        return true;
 209}
 210
 211/*
 212 * For PTTYPE_EPT, a page table can be executable but not readable
 213 * on supported processors. Therefore, set_spte does not automatically
 214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 215 * to signify readability since it isn't used in the EPT case
 216 */
 217static inline unsigned FNAME(gpte_access)(u64 gpte)
 218{
 219        unsigned access;
 220#if PTTYPE == PTTYPE_EPT
 221        access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
 222                ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
 223                ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
 224#else
 225        BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
 226        BUILD_BUG_ON(ACC_EXEC_MASK != 1);
 227        access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
 228        /* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
 229        access ^= (gpte >> PT64_NX_SHIFT);
 230#endif
 231
 232        return access;
 233}
 234
 235static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
 236                                             struct kvm_mmu *mmu,
 237                                             struct guest_walker *walker,
 238                                             gpa_t addr, int write_fault)
 239{
 240        unsigned level, index;
 241        pt_element_t pte, orig_pte;
 242        pt_element_t __user *ptep_user;
 243        gfn_t table_gfn;
 244        int ret;
 245
 246        /* dirty/accessed bits are not supported, so no need to update them */
 247        if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 248                return 0;
 249
 250        for (level = walker->max_level; level >= walker->level; --level) {
 251                pte = orig_pte = walker->ptes[level - 1];
 252                table_gfn = walker->table_gfn[level - 1];
 253                ptep_user = walker->ptep_user[level - 1];
 254                index = offset_in_page(ptep_user) / sizeof(pt_element_t);
 255                if (!(pte & PT_GUEST_ACCESSED_MASK)) {
 256                        trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
 257                        pte |= PT_GUEST_ACCESSED_MASK;
 258                }
 259                if (level == walker->level && write_fault &&
 260                                !(pte & PT_GUEST_DIRTY_MASK)) {
 261                        trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
 262#if PTTYPE == PTTYPE_EPT
 263                        if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
 264                                return -EINVAL;
 265#endif
 266                        pte |= PT_GUEST_DIRTY_MASK;
 267                }
 268                if (pte == orig_pte)
 269                        continue;
 270
 271                /*
 272                 * If the slot is read-only, simply do not process the accessed
 273                 * and dirty bits.  This is the correct thing to do if the slot
 274                 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
 275                 * are only supported if the accessed and dirty bits are already
 276                 * set in the ROM (so that MMIO writes are never needed).
 277                 *
 278                 * Note that NPT does not allow this at all and faults, since
 279                 * it always wants nested page table entries for the guest
 280                 * page tables to be writable.  And EPT works but will simply
 281                 * overwrite the read-only memory to set the accessed and dirty
 282                 * bits.
 283                 */
 284                if (unlikely(!walker->pte_writable[level - 1]))
 285                        continue;
 286
 287                ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
 288                if (ret)
 289                        return ret;
 290
 291                kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
 292                walker->ptes[level - 1] = pte;
 293        }
 294        return 0;
 295}
 296
 297static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
 298{
 299        unsigned pkeys = 0;
 300#if PTTYPE == 64
 301        pte_t pte = {.pte = gpte};
 302
 303        pkeys = pte_flags_pkey(pte_flags(pte));
 304#endif
 305        return pkeys;
 306}
 307
 308static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
 309                                       unsigned int level, unsigned int gpte)
 310{
 311        /*
 312         * For EPT and PAE paging (both variants), bit 7 is either reserved at
 313         * all level or indicates a huge page (ignoring CR3/EPTP).  In either
 314         * case, bit 7 being set terminates the walk.
 315         */
 316#if PTTYPE == 32
 317        /*
 318         * 32-bit paging requires special handling because bit 7 is ignored if
 319         * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
 320         * greater than the last level for which bit 7 is the PAGE_SIZE bit.
 321         *
 322         * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
 323         * is not reserved and does not indicate a large page at this level,
 324         * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
 325         */
 326        gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse);
 327#endif
 328        /*
 329         * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
 330         * iff level <= PG_LEVEL_4K, which for our purpose means
 331         * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
 332         */
 333        gpte |= level - PG_LEVEL_4K - 1;
 334
 335        return gpte & PT_PAGE_SIZE_MASK;
 336}
 337/*
 338 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
 339 */
 340static int FNAME(walk_addr_generic)(struct guest_walker *walker,
 341                                    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 342                                    gpa_t addr, u32 access)
 343{
 344        int ret;
 345        pt_element_t pte;
 346        pt_element_t __user *ptep_user;
 347        gfn_t table_gfn;
 348        u64 pt_access, pte_access;
 349        unsigned index, accessed_dirty, pte_pkey;
 350        unsigned nested_access;
 351        gpa_t pte_gpa;
 352        bool have_ad;
 353        int offset;
 354        u64 walk_nx_mask = 0;
 355        const int write_fault = access & PFERR_WRITE_MASK;
 356        const int user_fault  = access & PFERR_USER_MASK;
 357        const int fetch_fault = access & PFERR_FETCH_MASK;
 358        u16 errcode = 0;
 359        gpa_t real_gpa;
 360        gfn_t gfn;
 361
 362        trace_kvm_mmu_pagetable_walk(addr, access);
 363retry_walk:
 364        walker->level = mmu->root_level;
 365        pte           = mmu->get_guest_pgd(vcpu);
 366        have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
 367
 368#if PTTYPE == 64
 369        walk_nx_mask = 1ULL << PT64_NX_SHIFT;
 370        if (walker->level == PT32E_ROOT_LEVEL) {
 371                pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
 372                trace_kvm_mmu_paging_element(pte, walker->level);
 373                if (!FNAME(is_present_gpte)(pte))
 374                        goto error;
 375                --walker->level;
 376        }
 377#endif
 378        walker->max_level = walker->level;
 379        ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
 380
 381        /*
 382         * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
 383         * by the MOV to CR instruction are treated as reads and do not cause the
 384         * processor to set the dirty flag in any EPT paging-structure entry.
 385         */
 386        nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
 387
 388        pte_access = ~0;
 389        ++walker->level;
 390
 391        do {
 392                unsigned long host_addr;
 393
 394                pt_access = pte_access;
 395                --walker->level;
 396
 397                index = PT_INDEX(addr, walker->level);
 398                table_gfn = gpte_to_gfn(pte);
 399                offset    = index * sizeof(pt_element_t);
 400                pte_gpa   = gfn_to_gpa(table_gfn) + offset;
 401
 402                BUG_ON(walker->level < 1);
 403                walker->table_gfn[walker->level - 1] = table_gfn;
 404                walker->pte_gpa[walker->level - 1] = pte_gpa;
 405
 406                real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
 407                                             nested_access, &walker->fault);
 408
 409                /*
 410                 * FIXME: This can happen if emulation (for of an INS/OUTS
 411                 * instruction) triggers a nested page fault.  The exit
 412                 * qualification / exit info field will incorrectly have
 413                 * "guest page access" as the nested page fault's cause,
 414                 * instead of "guest page structure access".  To fix this,
 415                 * the x86_exception struct should be augmented with enough
 416                 * information to fix the exit_qualification or exit_info_1
 417                 * fields.
 418                 */
 419                if (unlikely(real_gpa == UNMAPPED_GVA))
 420                        return 0;
 421
 422                host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
 423                                            &walker->pte_writable[walker->level - 1]);
 424                if (unlikely(kvm_is_error_hva(host_addr)))
 425                        goto error;
 426
 427                ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
 428                if (unlikely(__get_user(pte, ptep_user)))
 429                        goto error;
 430                walker->ptep_user[walker->level - 1] = ptep_user;
 431
 432                trace_kvm_mmu_paging_element(pte, walker->level);
 433
 434                /*
 435                 * Inverting the NX it lets us AND it like other
 436                 * permission bits.
 437                 */
 438                pte_access = pt_access & (pte ^ walk_nx_mask);
 439
 440                if (unlikely(!FNAME(is_present_gpte)(pte)))
 441                        goto error;
 442
 443                if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
 444                        errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
 445                        goto error;
 446                }
 447
 448                walker->ptes[walker->level - 1] = pte;
 449
 450                /* Convert to ACC_*_MASK flags for struct guest_walker.  */
 451                walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
 452        } while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
 453
 454        pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
 455        accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
 456
 457        /* Convert to ACC_*_MASK flags for struct guest_walker.  */
 458        walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
 459        errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
 460        if (unlikely(errcode))
 461                goto error;
 462
 463        gfn = gpte_to_gfn_lvl(pte, walker->level);
 464        gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
 465
 466        if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
 467                gfn += pse36_gfn_delta(pte);
 468
 469        real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
 470        if (real_gpa == UNMAPPED_GVA)
 471                return 0;
 472
 473        walker->gfn = real_gpa >> PAGE_SHIFT;
 474
 475        if (!write_fault)
 476                FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
 477        else
 478                /*
 479                 * On a write fault, fold the dirty bit into accessed_dirty.
 480                 * For modes without A/D bits support accessed_dirty will be
 481                 * always clear.
 482                 */
 483                accessed_dirty &= pte >>
 484                        (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
 485
 486        if (unlikely(!accessed_dirty)) {
 487                ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
 488                                                        addr, write_fault);
 489                if (unlikely(ret < 0))
 490                        goto error;
 491                else if (ret)
 492                        goto retry_walk;
 493        }
 494
 495        pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
 496                 __func__, (u64)pte, walker->pte_access,
 497                 walker->pt_access[walker->level - 1]);
 498        return 1;
 499
 500error:
 501        errcode |= write_fault | user_fault;
 502        if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
 503                errcode |= PFERR_FETCH_MASK;
 504
 505        walker->fault.vector = PF_VECTOR;
 506        walker->fault.error_code_valid = true;
 507        walker->fault.error_code = errcode;
 508
 509#if PTTYPE == PTTYPE_EPT
 510        /*
 511         * Use PFERR_RSVD_MASK in error_code to to tell if EPT
 512         * misconfiguration requires to be injected. The detection is
 513         * done by is_rsvd_bits_set() above.
 514         *
 515         * We set up the value of exit_qualification to inject:
 516         * [2:0] - Derive from the access bits. The exit_qualification might be
 517         *         out of date if it is serving an EPT misconfiguration.
 518         * [5:3] - Calculated by the page walk of the guest EPT page tables
 519         * [7:8] - Derived from [7:8] of real exit_qualification
 520         *
 521         * The other bits are set to 0.
 522         */
 523        if (!(errcode & PFERR_RSVD_MASK)) {
 524                vcpu->arch.exit_qualification &= 0x180;
 525                if (write_fault)
 526                        vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
 527                if (user_fault)
 528                        vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
 529                if (fetch_fault)
 530                        vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
 531                vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
 532        }
 533#endif
 534        walker->fault.address = addr;
 535        walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
 536        walker->fault.async_page_fault = false;
 537
 538        trace_kvm_mmu_walker_error(walker->fault.error_code);
 539        return 0;
 540}
 541
 542static int FNAME(walk_addr)(struct guest_walker *walker,
 543                            struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
 544{
 545        return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
 546                                        access);
 547}
 548
 549static bool
 550FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 551                     u64 *spte, pt_element_t gpte, bool no_dirty_log)
 552{
 553        struct kvm_memory_slot *slot;
 554        unsigned pte_access;
 555        gfn_t gfn;
 556        kvm_pfn_t pfn;
 557
 558        if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
 559                return false;
 560
 561        pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
 562
 563        gfn = gpte_to_gfn(gpte);
 564        pte_access = sp->role.access & FNAME(gpte_access)(gpte);
 565        FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
 566
 567        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
 568                        no_dirty_log && (pte_access & ACC_WRITE_MASK));
 569        if (!slot)
 570                return false;
 571
 572        pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
 573        if (is_error_pfn(pfn))
 574                return false;
 575
 576        mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
 577        kvm_release_pfn_clean(pfn);
 578        return true;
 579}
 580
 581static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
 582                                struct guest_walker *gw, int level)
 583{
 584        pt_element_t curr_pte;
 585        gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
 586        u64 mask;
 587        int r, index;
 588
 589        if (level == PG_LEVEL_4K) {
 590                mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
 591                base_gpa = pte_gpa & ~mask;
 592                index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
 593
 594                r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
 595                                gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
 596                curr_pte = gw->prefetch_ptes[index];
 597        } else
 598                r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
 599                                  &curr_pte, sizeof(curr_pte));
 600
 601        return r || curr_pte != gw->ptes[level - 1];
 602}
 603
 604static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
 605                                u64 *sptep)
 606{
 607        struct kvm_mmu_page *sp;
 608        pt_element_t *gptep = gw->prefetch_ptes;
 609        u64 *spte;
 610        int i;
 611
 612        sp = sptep_to_sp(sptep);
 613
 614        if (sp->role.level > PG_LEVEL_4K)
 615                return;
 616
 617        /*
 618         * If addresses are being invalidated, skip prefetching to avoid
 619         * accidentally prefetching those addresses.
 620         */
 621        if (unlikely(vcpu->kvm->mmu_notifier_count))
 622                return;
 623
 624        if (sp->role.direct)
 625                return __direct_pte_prefetch(vcpu, sp, sptep);
 626
 627        i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 628        spte = sp->spt + i;
 629
 630        for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 631                if (spte == sptep)
 632                        continue;
 633
 634                if (is_shadow_present_pte(*spte))
 635                        continue;
 636
 637                if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
 638                        break;
 639        }
 640}
 641
 642/*
 643 * Fetch a shadow pte for a specific level in the paging hierarchy.
 644 * If the guest tries to write a write-protected page, we need to
 645 * emulate this operation, return 1 to indicate this case.
 646 */
 647static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
 648                         struct guest_walker *gw)
 649{
 650        struct kvm_mmu_page *sp = NULL;
 651        struct kvm_shadow_walk_iterator it;
 652        unsigned int direct_access, access;
 653        int top_level, ret;
 654        gfn_t base_gfn = fault->gfn;
 655
 656        WARN_ON_ONCE(gw->gfn != base_gfn);
 657        direct_access = gw->pte_access;
 658
 659        top_level = vcpu->arch.mmu->root_level;
 660        if (top_level == PT32E_ROOT_LEVEL)
 661                top_level = PT32_ROOT_LEVEL;
 662        /*
 663         * Verify that the top-level gpte is still there.  Since the page
 664         * is a root page, it is either write protected (and cannot be
 665         * changed from now on) or it is invalid (in which case, we don't
 666         * really care if it changes underneath us after this point).
 667         */
 668        if (FNAME(gpte_changed)(vcpu, gw, top_level))
 669                goto out_gpte_changed;
 670
 671        if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
 672                goto out_gpte_changed;
 673
 674        for (shadow_walk_init(&it, vcpu, fault->addr);
 675             shadow_walk_okay(&it) && it.level > gw->level;
 676             shadow_walk_next(&it)) {
 677                gfn_t table_gfn;
 678
 679                clear_sp_write_flooding_count(it.sptep);
 680                drop_large_spte(vcpu, it.sptep);
 681
 682                sp = NULL;
 683                if (!is_shadow_present_pte(*it.sptep)) {
 684                        table_gfn = gw->table_gfn[it.level - 2];
 685                        access = gw->pt_access[it.level - 2];
 686                        sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr,
 687                                              it.level-1, false, access);
 688                        /*
 689                         * We must synchronize the pagetable before linking it
 690                         * because the guest doesn't need to flush tlb when
 691                         * the gpte is changed from non-present to present.
 692                         * Otherwise, the guest may use the wrong mapping.
 693                         *
 694                         * For PG_LEVEL_4K, kvm_mmu_get_page() has already
 695                         * synchronized it transiently via kvm_sync_page().
 696                         *
 697                         * For higher level pagetable, we synchronize it via
 698                         * the slower mmu_sync_children().  If it needs to
 699                         * break, some progress has been made; return
 700                         * RET_PF_RETRY and retry on the next #PF.
 701                         * KVM_REQ_MMU_SYNC is not necessary but it
 702                         * expedites the process.
 703                         */
 704                        if (sp->unsync_children &&
 705                            mmu_sync_children(vcpu, sp, false))
 706                                return RET_PF_RETRY;
 707                }
 708
 709                /*
 710                 * Verify that the gpte in the page we've just write
 711                 * protected is still there.
 712                 */
 713                if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
 714                        goto out_gpte_changed;
 715
 716                if (sp)
 717                        link_shadow_page(vcpu, it.sptep, sp);
 718        }
 719
 720        kvm_mmu_hugepage_adjust(vcpu, fault);
 721
 722        trace_kvm_mmu_spte_requested(fault);
 723
 724        for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
 725                clear_sp_write_flooding_count(it.sptep);
 726
 727                /*
 728                 * We cannot overwrite existing page tables with an NX
 729                 * large page, as the leaf could be executable.
 730                 */
 731                if (fault->nx_huge_page_workaround_enabled)
 732                        disallowed_hugepage_adjust(fault, *it.sptep, it.level);
 733
 734                base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
 735                if (it.level == fault->goal_level)
 736                        break;
 737
 738                validate_direct_spte(vcpu, it.sptep, direct_access);
 739
 740                drop_large_spte(vcpu, it.sptep);
 741
 742                if (!is_shadow_present_pte(*it.sptep)) {
 743                        sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr,
 744                                              it.level - 1, true, direct_access);
 745                        link_shadow_page(vcpu, it.sptep, sp);
 746                        if (fault->huge_page_disallowed &&
 747                            fault->req_level >= it.level)
 748                                account_huge_nx_page(vcpu->kvm, sp);
 749                }
 750        }
 751
 752        if (WARN_ON_ONCE(it.level != fault->goal_level))
 753                return -EFAULT;
 754
 755        ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
 756                           base_gfn, fault->pfn, fault);
 757        if (ret == RET_PF_SPURIOUS)
 758                return ret;
 759
 760        FNAME(pte_prefetch)(vcpu, gw, it.sptep);
 761        ++vcpu->stat.pf_fixed;
 762        return ret;
 763
 764out_gpte_changed:
 765        return RET_PF_RETRY;
 766}
 767
 768 /*
 769 * To see whether the mapped gfn can write its page table in the current
 770 * mapping.
 771 *
 772 * It is the helper function of FNAME(page_fault). When guest uses large page
 773 * size to map the writable gfn which is used as current page table, we should
 774 * force kvm to use small page size to map it because new shadow page will be
 775 * created when kvm establishes shadow page table that stop kvm using large
 776 * page size. Do it early can avoid unnecessary #PF and emulation.
 777 *
 778 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 779 * currently used as its page table.
 780 *
 781 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 782 * since the PDPT is always shadowed, that means, we can not use large page
 783 * size to map the gfn which is used as PDPT.
 784 */
 785static bool
 786FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
 787                              struct guest_walker *walker, bool user_fault,
 788                              bool *write_fault_to_shadow_pgtable)
 789{
 790        int level;
 791        gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
 792        bool self_changed = false;
 793
 794        if (!(walker->pte_access & ACC_WRITE_MASK ||
 795            (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
 796                return false;
 797
 798        for (level = walker->level; level <= walker->max_level; level++) {
 799                gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
 800
 801                self_changed |= !(gfn & mask);
 802                *write_fault_to_shadow_pgtable |= !gfn;
 803        }
 804
 805        return self_changed;
 806}
 807
 808/*
 809 * Page fault handler.  There are several causes for a page fault:
 810 *   - there is no shadow pte for the guest pte
 811 *   - write access through a shadow pte marked read only so that we can set
 812 *     the dirty bit
 813 *   - write access to a shadow pte marked read only so we can update the page
 814 *     dirty bitmap, when userspace requests it
 815 *   - mmio access; in this case we will never install a present shadow pte
 816 *   - normal guest page fault due to the guest pte marked not present, not
 817 *     writable, or not executable
 818 *
 819 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 820 *           a negative value on error.
 821 */
 822static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 823{
 824        struct guest_walker walker;
 825        int r;
 826        unsigned long mmu_seq;
 827        bool is_self_change_mapping;
 828
 829        pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
 830        WARN_ON_ONCE(fault->is_tdp);
 831
 832        /*
 833         * Look up the guest pte for the faulting address.
 834         * If PFEC.RSVD is set, this is a shadow page fault.
 835         * The bit needs to be cleared before walking guest page tables.
 836         */
 837        r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
 838                             fault->error_code & ~PFERR_RSVD_MASK);
 839
 840        /*
 841         * The page is not mapped by the guest.  Let the guest handle it.
 842         */
 843        if (!r) {
 844                pgprintk("%s: guest page fault\n", __func__);
 845                if (!fault->prefetch)
 846                        kvm_inject_emulated_page_fault(vcpu, &walker.fault);
 847
 848                return RET_PF_RETRY;
 849        }
 850
 851        fault->gfn = walker.gfn;
 852        fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
 853
 854        if (page_fault_handle_page_track(vcpu, fault)) {
 855                shadow_page_table_clear_flood(vcpu, fault->addr);
 856                return RET_PF_EMULATE;
 857        }
 858
 859        r = mmu_topup_memory_caches(vcpu, true);
 860        if (r)
 861                return r;
 862
 863        vcpu->arch.write_fault_to_shadow_pgtable = false;
 864
 865        is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
 866              &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
 867
 868        if (is_self_change_mapping)
 869                fault->max_level = PG_LEVEL_4K;
 870        else
 871                fault->max_level = walker.level;
 872
 873        mmu_seq = vcpu->kvm->mmu_notifier_seq;
 874        smp_rmb();
 875
 876        if (kvm_faultin_pfn(vcpu, fault, &r))
 877                return r;
 878
 879        if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r))
 880                return r;
 881
 882        /*
 883         * Do not change pte_access if the pfn is a mmio page, otherwise
 884         * we will cache the incorrect access into mmio spte.
 885         */
 886        if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
 887            !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
 888                walker.pte_access |= ACC_WRITE_MASK;
 889                walker.pte_access &= ~ACC_USER_MASK;
 890
 891                /*
 892                 * If we converted a user page to a kernel page,
 893                 * so that the kernel can write to it when cr0.wp=0,
 894                 * then we should prevent the kernel from executing it
 895                 * if SMEP is enabled.
 896                 */
 897                if (is_cr4_smep(vcpu->arch.mmu))
 898                        walker.pte_access &= ~ACC_EXEC_MASK;
 899        }
 900
 901        r = RET_PF_RETRY;
 902        write_lock(&vcpu->kvm->mmu_lock);
 903
 904        if (is_page_fault_stale(vcpu, fault, mmu_seq))
 905                goto out_unlock;
 906
 907        kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
 908        r = make_mmu_pages_available(vcpu);
 909        if (r)
 910                goto out_unlock;
 911        r = FNAME(fetch)(vcpu, fault, &walker);
 912        kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
 913
 914out_unlock:
 915        write_unlock(&vcpu->kvm->mmu_lock);
 916        kvm_release_pfn_clean(fault->pfn);
 917        return r;
 918}
 919
 920static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
 921{
 922        int offset = 0;
 923
 924        WARN_ON(sp->role.level != PG_LEVEL_4K);
 925
 926        if (PTTYPE == 32)
 927                offset = sp->role.quadrant << PT64_LEVEL_BITS;
 928
 929        return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
 930}
 931
 932static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
 933{
 934        struct kvm_shadow_walk_iterator iterator;
 935        struct kvm_mmu_page *sp;
 936        u64 old_spte;
 937        int level;
 938        u64 *sptep;
 939
 940        vcpu_clear_mmio_info(vcpu, gva);
 941
 942        /*
 943         * No need to check return value here, rmap_can_add() can
 944         * help us to skip pte prefetch later.
 945         */
 946        mmu_topup_memory_caches(vcpu, true);
 947
 948        if (!VALID_PAGE(root_hpa)) {
 949                WARN_ON(1);
 950                return;
 951        }
 952
 953        write_lock(&vcpu->kvm->mmu_lock);
 954        for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
 955                level = iterator.level;
 956                sptep = iterator.sptep;
 957
 958                sp = sptep_to_sp(sptep);
 959                old_spte = *sptep;
 960                if (is_last_spte(old_spte, level)) {
 961                        pt_element_t gpte;
 962                        gpa_t pte_gpa;
 963
 964                        if (!sp->unsync)
 965                                break;
 966
 967                        pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 968                        pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
 969
 970                        mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
 971                        if (is_shadow_present_pte(old_spte))
 972                                kvm_flush_remote_tlbs_with_address(vcpu->kvm,
 973                                        sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
 974
 975                        if (!rmap_can_add(vcpu))
 976                                break;
 977
 978                        if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 979                                                       sizeof(pt_element_t)))
 980                                break;
 981
 982                        FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
 983                }
 984
 985                if (!sp->unsync_children)
 986                        break;
 987        }
 988        write_unlock(&vcpu->kvm->mmu_lock);
 989}
 990
 991/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
 992static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 993                               gpa_t addr, u32 access,
 994                               struct x86_exception *exception)
 995{
 996        struct guest_walker walker;
 997        gpa_t gpa = UNMAPPED_GVA;
 998        int r;
 999
1000#ifndef CONFIG_X86_64
1001        /* A 64-bit GVA should be impossible on 32-bit KVM. */
1002        WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
1003#endif
1004
1005        r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
1006
1007        if (r) {
1008                gpa = gfn_to_gpa(walker.gfn);
1009                gpa |= addr & ~PAGE_MASK;
1010        } else if (exception)
1011                *exception = walker.fault;
1012
1013        return gpa;
1014}
1015
1016/*
1017 * Using the cached information from sp->gfns is safe because:
1018 * - The spte has a reference to the struct page, so the pfn for a given gfn
1019 *   can't change unless all sptes pointing to it are nuked first.
1020 *
1021 * Returns
1022 * < 0: the sp should be zapped
1023 *   0: the sp is synced and no tlb flushing is required
1024 * > 0: the sp is synced and tlb flushing is required
1025 */
1026static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1027{
1028        union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base;
1029        int i;
1030        bool host_writable;
1031        gpa_t first_pte_gpa;
1032        bool flush = false;
1033
1034        /*
1035         * Ignore various flags when verifying that it's safe to sync a shadow
1036         * page using the current MMU context.
1037         *
1038         *  - level: not part of the overall MMU role and will never match as the MMU's
1039         *           level tracks the root level
1040         *  - access: updated based on the new guest PTE
1041         *  - quadrant: not part of the overall MMU role (similar to level)
1042         */
1043        const union kvm_mmu_page_role sync_role_ign = {
1044                .level = 0xf,
1045                .access = 0x7,
1046                .quadrant = 0x3,
1047        };
1048
1049        /*
1050         * Direct pages can never be unsync, and KVM should never attempt to
1051         * sync a shadow page for a different MMU context, e.g. if the role
1052         * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1053         * reserved bits checks will be wrong, etc...
1054         */
1055        if (WARN_ON_ONCE(sp->role.direct ||
1056                         (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word))
1057                return -1;
1058
1059        first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1060
1061        for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1062                u64 *sptep, spte;
1063                struct kvm_memory_slot *slot;
1064                unsigned pte_access;
1065                pt_element_t gpte;
1066                gpa_t pte_gpa;
1067                gfn_t gfn;
1068
1069                if (!sp->spt[i])
1070                        continue;
1071
1072                pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1073
1074                if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1075                                               sizeof(pt_element_t)))
1076                        return -1;
1077
1078                if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1079                        flush = true;
1080                        continue;
1081                }
1082
1083                gfn = gpte_to_gfn(gpte);
1084                pte_access = sp->role.access;
1085                pte_access &= FNAME(gpte_access)(gpte);
1086                FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1087
1088                if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1089                        continue;
1090
1091                if (gfn != sp->gfns[i]) {
1092                        drop_spte(vcpu->kvm, &sp->spt[i]);
1093                        flush = true;
1094                        continue;
1095                }
1096
1097                sptep = &sp->spt[i];
1098                spte = *sptep;
1099                host_writable = spte & shadow_host_writable_mask;
1100                slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1101                make_spte(vcpu, sp, slot, pte_access, gfn,
1102                          spte_to_pfn(spte), spte, true, false,
1103                          host_writable, &spte);
1104
1105                flush |= mmu_spte_update(sptep, spte);
1106        }
1107
1108        return flush;
1109}
1110
1111#undef pt_element_t
1112#undef guest_walker
1113#undef FNAME
1114#undef PT_BASE_ADDR_MASK
1115#undef PT_INDEX
1116#undef PT_LVL_ADDR_MASK
1117#undef PT_LVL_OFFSET_MASK
1118#undef PT_LEVEL_BITS
1119#undef PT_MAX_FULL_LEVELS
1120#undef gpte_to_gfn
1121#undef gpte_to_gfn_lvl
1122#undef CMPXCHG
1123#undef PT_GUEST_ACCESSED_MASK
1124#undef PT_GUEST_DIRTY_MASK
1125#undef PT_GUEST_DIRTY_SHIFT
1126#undef PT_GUEST_ACCESSED_SHIFT
1127#undef PT_HAVE_ACCESSED_DIRTY
1128