linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * derived from drivers/kvm/kvm_main.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Avi Kivity   <avi@qumranet.com>
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Amit Shah    <amit.shah@qumranet.com>
  16 *   Ben-Ami Yassour <benami@il.ibm.com>
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include "irq.h"
  21#include "ioapic.h"
  22#include "mmu.h"
  23#include "i8254.h"
  24#include "tss.h"
  25#include "kvm_cache_regs.h"
  26#include "kvm_emulate.h"
  27#include "x86.h"
  28#include "cpuid.h"
  29#include "pmu.h"
  30#include "hyperv.h"
  31#include "lapic.h"
  32#include "xen.h"
  33
  34#include <linux/clocksource.h>
  35#include <linux/interrupt.h>
  36#include <linux/kvm.h>
  37#include <linux/fs.h>
  38#include <linux/vmalloc.h>
  39#include <linux/export.h>
  40#include <linux/moduleparam.h>
  41#include <linux/mman.h>
  42#include <linux/highmem.h>
  43#include <linux/iommu.h>
  44#include <linux/intel-iommu.h>
  45#include <linux/cpufreq.h>
  46#include <linux/user-return-notifier.h>
  47#include <linux/srcu.h>
  48#include <linux/slab.h>
  49#include <linux/perf_event.h>
  50#include <linux/uaccess.h>
  51#include <linux/hash.h>
  52#include <linux/pci.h>
  53#include <linux/timekeeper_internal.h>
  54#include <linux/pvclock_gtod.h>
  55#include <linux/kvm_irqfd.h>
  56#include <linux/irqbypass.h>
  57#include <linux/sched/stat.h>
  58#include <linux/sched/isolation.h>
  59#include <linux/mem_encrypt.h>
  60#include <linux/entry-kvm.h>
  61#include <linux/suspend.h>
  62
  63#include <trace/events/kvm.h>
  64
  65#include <asm/debugreg.h>
  66#include <asm/msr.h>
  67#include <asm/desc.h>
  68#include <asm/mce.h>
  69#include <asm/pkru.h>
  70#include <linux/kernel_stat.h>
  71#include <asm/fpu/api.h>
  72#include <asm/fpu/xcr.h>
  73#include <asm/fpu/xstate.h>
  74#include <asm/pvclock.h>
  75#include <asm/div64.h>
  76#include <asm/irq_remapping.h>
  77#include <asm/mshyperv.h>
  78#include <asm/hypervisor.h>
  79#include <asm/tlbflush.h>
  80#include <asm/intel_pt.h>
  81#include <asm/emulate_prefix.h>
  82#include <asm/sgx.h>
  83#include <clocksource/hyperv_timer.h>
  84
  85#define CREATE_TRACE_POINTS
  86#include "trace.h"
  87
  88#define MAX_IO_MSRS 256
  89#define KVM_MAX_MCE_BANKS 32
  90u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  91EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  92
  93#define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
  94
  95#define emul_to_vcpu(ctxt) \
  96        ((struct kvm_vcpu *)(ctxt)->vcpu)
  97
  98/* EFER defaults:
  99 * - enable syscall per default because its emulated by KVM
 100 * - enable LME and LMA per default on 64 bit KVM
 101 */
 102#ifdef CONFIG_X86_64
 103static
 104u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
 105#else
 106static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
 107#endif
 108
 109static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
 110
 111#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
 112
 113#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 114                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 115
 116static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 117static void process_nmi(struct kvm_vcpu *vcpu);
 118static void process_smi(struct kvm_vcpu *vcpu);
 119static void enter_smm(struct kvm_vcpu *vcpu);
 120static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 121static void store_regs(struct kvm_vcpu *vcpu);
 122static int sync_regs(struct kvm_vcpu *vcpu);
 123static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
 124
 125static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 126static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 127
 128struct kvm_x86_ops kvm_x86_ops __read_mostly;
 129EXPORT_SYMBOL_GPL(kvm_x86_ops);
 130
 131#define KVM_X86_OP(func)                                             \
 132        DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
 133                                *(((struct kvm_x86_ops *)0)->func));
 134#define KVM_X86_OP_NULL KVM_X86_OP
 135#include <asm/kvm-x86-ops.h>
 136EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
 137EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
 138EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
 139
 140static bool __read_mostly ignore_msrs = 0;
 141module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 142
 143bool __read_mostly report_ignored_msrs = true;
 144module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 145EXPORT_SYMBOL_GPL(report_ignored_msrs);
 146
 147unsigned int min_timer_period_us = 200;
 148module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 149
 150static bool __read_mostly kvmclock_periodic_sync = true;
 151module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 152
 153bool __read_mostly kvm_has_tsc_control;
 154EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 155u32  __read_mostly kvm_max_guest_tsc_khz;
 156EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 157u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 158EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 159u64  __read_mostly kvm_max_tsc_scaling_ratio;
 160EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 161u64 __read_mostly kvm_default_tsc_scaling_ratio;
 162EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 163bool __read_mostly kvm_has_bus_lock_exit;
 164EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
 165
 166/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 167static u32 __read_mostly tsc_tolerance_ppm = 250;
 168module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 169
 170/*
 171 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 172 * adaptive tuning starting from default advancement of 1000ns.  '0' disables
 173 * advancement entirely.  Any other value is used as-is and disables adaptive
 174 * tuning, i.e. allows privileged userspace to set an exact advancement time.
 175 */
 176static int __read_mostly lapic_timer_advance_ns = -1;
 177module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 178
 179static bool __read_mostly vector_hashing = true;
 180module_param(vector_hashing, bool, S_IRUGO);
 181
 182bool __read_mostly enable_vmware_backdoor = false;
 183module_param(enable_vmware_backdoor, bool, S_IRUGO);
 184EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 185
 186static bool __read_mostly force_emulation_prefix = false;
 187module_param(force_emulation_prefix, bool, S_IRUGO);
 188
 189int __read_mostly pi_inject_timer = -1;
 190module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 191
 192/* Enable/disable PMU virtualization */
 193bool __read_mostly enable_pmu = true;
 194EXPORT_SYMBOL_GPL(enable_pmu);
 195module_param(enable_pmu, bool, 0444);
 196
 197/*
 198 * Restoring the host value for MSRs that are only consumed when running in
 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
 200 * returns to userspace, i.e. the kernel can run with the guest's value.
 201 */
 202#define KVM_MAX_NR_USER_RETURN_MSRS 16
 203
 204struct kvm_user_return_msrs {
 205        struct user_return_notifier urn;
 206        bool registered;
 207        struct kvm_user_return_msr_values {
 208                u64 host;
 209                u64 curr;
 210        } values[KVM_MAX_NR_USER_RETURN_MSRS];
 211};
 212
 213u32 __read_mostly kvm_nr_uret_msrs;
 214EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
 215static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
 216static struct kvm_user_return_msrs __percpu *user_return_msrs;
 217
 218#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
 219                                | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
 220                                | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
 221                                | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
 222
 223u64 __read_mostly host_efer;
 224EXPORT_SYMBOL_GPL(host_efer);
 225
 226bool __read_mostly allow_smaller_maxphyaddr = 0;
 227EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
 228
 229bool __read_mostly enable_apicv = true;
 230EXPORT_SYMBOL_GPL(enable_apicv);
 231
 232u64 __read_mostly host_xss;
 233EXPORT_SYMBOL_GPL(host_xss);
 234u64 __read_mostly supported_xss;
 235EXPORT_SYMBOL_GPL(supported_xss);
 236
 237const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 238        KVM_GENERIC_VM_STATS(),
 239        STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
 240        STATS_DESC_COUNTER(VM, mmu_pte_write),
 241        STATS_DESC_COUNTER(VM, mmu_pde_zapped),
 242        STATS_DESC_COUNTER(VM, mmu_flooded),
 243        STATS_DESC_COUNTER(VM, mmu_recycled),
 244        STATS_DESC_COUNTER(VM, mmu_cache_miss),
 245        STATS_DESC_ICOUNTER(VM, mmu_unsync),
 246        STATS_DESC_ICOUNTER(VM, pages_4k),
 247        STATS_DESC_ICOUNTER(VM, pages_2m),
 248        STATS_DESC_ICOUNTER(VM, pages_1g),
 249        STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
 250        STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
 251        STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
 252};
 253
 254const struct kvm_stats_header kvm_vm_stats_header = {
 255        .name_size = KVM_STATS_NAME_SIZE,
 256        .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 257        .id_offset = sizeof(struct kvm_stats_header),
 258        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 259        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 260                       sizeof(kvm_vm_stats_desc),
 261};
 262
 263const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 264        KVM_GENERIC_VCPU_STATS(),
 265        STATS_DESC_COUNTER(VCPU, pf_fixed),
 266        STATS_DESC_COUNTER(VCPU, pf_guest),
 267        STATS_DESC_COUNTER(VCPU, tlb_flush),
 268        STATS_DESC_COUNTER(VCPU, invlpg),
 269        STATS_DESC_COUNTER(VCPU, exits),
 270        STATS_DESC_COUNTER(VCPU, io_exits),
 271        STATS_DESC_COUNTER(VCPU, mmio_exits),
 272        STATS_DESC_COUNTER(VCPU, signal_exits),
 273        STATS_DESC_COUNTER(VCPU, irq_window_exits),
 274        STATS_DESC_COUNTER(VCPU, nmi_window_exits),
 275        STATS_DESC_COUNTER(VCPU, l1d_flush),
 276        STATS_DESC_COUNTER(VCPU, halt_exits),
 277        STATS_DESC_COUNTER(VCPU, request_irq_exits),
 278        STATS_DESC_COUNTER(VCPU, irq_exits),
 279        STATS_DESC_COUNTER(VCPU, host_state_reload),
 280        STATS_DESC_COUNTER(VCPU, fpu_reload),
 281        STATS_DESC_COUNTER(VCPU, insn_emulation),
 282        STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
 283        STATS_DESC_COUNTER(VCPU, hypercalls),
 284        STATS_DESC_COUNTER(VCPU, irq_injections),
 285        STATS_DESC_COUNTER(VCPU, nmi_injections),
 286        STATS_DESC_COUNTER(VCPU, req_event),
 287        STATS_DESC_COUNTER(VCPU, nested_run),
 288        STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
 289        STATS_DESC_COUNTER(VCPU, directed_yield_successful),
 290        STATS_DESC_ICOUNTER(VCPU, guest_mode)
 291};
 292
 293const struct kvm_stats_header kvm_vcpu_stats_header = {
 294        .name_size = KVM_STATS_NAME_SIZE,
 295        .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 296        .id_offset = sizeof(struct kvm_stats_header),
 297        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 298        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 299                       sizeof(kvm_vcpu_stats_desc),
 300};
 301
 302u64 __read_mostly host_xcr0;
 303u64 __read_mostly supported_xcr0;
 304EXPORT_SYMBOL_GPL(supported_xcr0);
 305
 306static struct kmem_cache *x86_emulator_cache;
 307
 308/*
 309 * When called, it means the previous get/set msr reached an invalid msr.
 310 * Return true if we want to ignore/silent this failed msr access.
 311 */
 312static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
 313{
 314        const char *op = write ? "wrmsr" : "rdmsr";
 315
 316        if (ignore_msrs) {
 317                if (report_ignored_msrs)
 318                        kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
 319                                      op, msr, data);
 320                /* Mask the error */
 321                return true;
 322        } else {
 323                kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
 324                                      op, msr, data);
 325                return false;
 326        }
 327}
 328
 329static struct kmem_cache *kvm_alloc_emulator_cache(void)
 330{
 331        unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
 332        unsigned int size = sizeof(struct x86_emulate_ctxt);
 333
 334        return kmem_cache_create_usercopy("x86_emulator", size,
 335                                          __alignof__(struct x86_emulate_ctxt),
 336                                          SLAB_ACCOUNT, useroffset,
 337                                          size - useroffset, NULL);
 338}
 339
 340static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 341
 342static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 343{
 344        int i;
 345        for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
 346                vcpu->arch.apf.gfns[i] = ~0;
 347}
 348
 349static void kvm_on_user_return(struct user_return_notifier *urn)
 350{
 351        unsigned slot;
 352        struct kvm_user_return_msrs *msrs
 353                = container_of(urn, struct kvm_user_return_msrs, urn);
 354        struct kvm_user_return_msr_values *values;
 355        unsigned long flags;
 356
 357        /*
 358         * Disabling irqs at this point since the following code could be
 359         * interrupted and executed through kvm_arch_hardware_disable()
 360         */
 361        local_irq_save(flags);
 362        if (msrs->registered) {
 363                msrs->registered = false;
 364                user_return_notifier_unregister(urn);
 365        }
 366        local_irq_restore(flags);
 367        for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
 368                values = &msrs->values[slot];
 369                if (values->host != values->curr) {
 370                        wrmsrl(kvm_uret_msrs_list[slot], values->host);
 371                        values->curr = values->host;
 372                }
 373        }
 374}
 375
 376static int kvm_probe_user_return_msr(u32 msr)
 377{
 378        u64 val;
 379        int ret;
 380
 381        preempt_disable();
 382        ret = rdmsrl_safe(msr, &val);
 383        if (ret)
 384                goto out;
 385        ret = wrmsrl_safe(msr, val);
 386out:
 387        preempt_enable();
 388        return ret;
 389}
 390
 391int kvm_add_user_return_msr(u32 msr)
 392{
 393        BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
 394
 395        if (kvm_probe_user_return_msr(msr))
 396                return -1;
 397
 398        kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
 399        return kvm_nr_uret_msrs++;
 400}
 401EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
 402
 403int kvm_find_user_return_msr(u32 msr)
 404{
 405        int i;
 406
 407        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 408                if (kvm_uret_msrs_list[i] == msr)
 409                        return i;
 410        }
 411        return -1;
 412}
 413EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
 414
 415static void kvm_user_return_msr_cpu_online(void)
 416{
 417        unsigned int cpu = smp_processor_id();
 418        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 419        u64 value;
 420        int i;
 421
 422        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 423                rdmsrl_safe(kvm_uret_msrs_list[i], &value);
 424                msrs->values[i].host = value;
 425                msrs->values[i].curr = value;
 426        }
 427}
 428
 429int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
 430{
 431        unsigned int cpu = smp_processor_id();
 432        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 433        int err;
 434
 435        value = (value & mask) | (msrs->values[slot].host & ~mask);
 436        if (value == msrs->values[slot].curr)
 437                return 0;
 438        err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
 439        if (err)
 440                return 1;
 441
 442        msrs->values[slot].curr = value;
 443        if (!msrs->registered) {
 444                msrs->urn.on_user_return = kvm_on_user_return;
 445                user_return_notifier_register(&msrs->urn);
 446                msrs->registered = true;
 447        }
 448        return 0;
 449}
 450EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
 451
 452static void drop_user_return_notifiers(void)
 453{
 454        unsigned int cpu = smp_processor_id();
 455        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 456
 457        if (msrs->registered)
 458                kvm_on_user_return(&msrs->urn);
 459}
 460
 461u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 462{
 463        return vcpu->arch.apic_base;
 464}
 465EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 466
 467enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 468{
 469        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 470}
 471EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 472
 473int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 474{
 475        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 476        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 477        u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
 478                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 479
 480        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 481                return 1;
 482        if (!msr_info->host_initiated) {
 483                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 484                        return 1;
 485                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 486                        return 1;
 487        }
 488
 489        kvm_lapic_set_base(vcpu, msr_info->data);
 490        kvm_recalculate_apic_map(vcpu->kvm);
 491        return 0;
 492}
 493EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 494
 495/*
 496 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
 497 *
 498 * Hardware virtualization extension instructions may fault if a reboot turns
 499 * off virtualization while processes are running.  Usually after catching the
 500 * fault we just panic; during reboot instead the instruction is ignored.
 501 */
 502noinstr void kvm_spurious_fault(void)
 503{
 504        /* Fault while not rebooting.  We want the trace. */
 505        BUG_ON(!kvm_rebooting);
 506}
 507EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 508
 509#define EXCPT_BENIGN            0
 510#define EXCPT_CONTRIBUTORY      1
 511#define EXCPT_PF                2
 512
 513static int exception_class(int vector)
 514{
 515        switch (vector) {
 516        case PF_VECTOR:
 517                return EXCPT_PF;
 518        case DE_VECTOR:
 519        case TS_VECTOR:
 520        case NP_VECTOR:
 521        case SS_VECTOR:
 522        case GP_VECTOR:
 523                return EXCPT_CONTRIBUTORY;
 524        default:
 525                break;
 526        }
 527        return EXCPT_BENIGN;
 528}
 529
 530#define EXCPT_FAULT             0
 531#define EXCPT_TRAP              1
 532#define EXCPT_ABORT             2
 533#define EXCPT_INTERRUPT         3
 534
 535static int exception_type(int vector)
 536{
 537        unsigned int mask;
 538
 539        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 540                return EXCPT_INTERRUPT;
 541
 542        mask = 1 << vector;
 543
 544        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 545        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 546                return EXCPT_TRAP;
 547
 548        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 549                return EXCPT_ABORT;
 550
 551        /* Reserved exceptions will result in fault */
 552        return EXCPT_FAULT;
 553}
 554
 555void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 556{
 557        unsigned nr = vcpu->arch.exception.nr;
 558        bool has_payload = vcpu->arch.exception.has_payload;
 559        unsigned long payload = vcpu->arch.exception.payload;
 560
 561        if (!has_payload)
 562                return;
 563
 564        switch (nr) {
 565        case DB_VECTOR:
 566                /*
 567                 * "Certain debug exceptions may clear bit 0-3.  The
 568                 * remaining contents of the DR6 register are never
 569                 * cleared by the processor".
 570                 */
 571                vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 572                /*
 573                 * In order to reflect the #DB exception payload in guest
 574                 * dr6, three components need to be considered: active low
 575                 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
 576                 * DR6_BS and DR6_BT)
 577                 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
 578                 * In the target guest dr6:
 579                 * FIXED_1 bits should always be set.
 580                 * Active low bits should be cleared if 1-setting in payload.
 581                 * Active high bits should be set if 1-setting in payload.
 582                 *
 583                 * Note, the payload is compatible with the pending debug
 584                 * exceptions/exit qualification under VMX, that active_low bits
 585                 * are active high in payload.
 586                 * So they need to be flipped for DR6.
 587                 */
 588                vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
 589                vcpu->arch.dr6 |= payload;
 590                vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
 591
 592                /*
 593                 * The #DB payload is defined as compatible with the 'pending
 594                 * debug exceptions' field under VMX, not DR6. While bit 12 is
 595                 * defined in the 'pending debug exceptions' field (enabled
 596                 * breakpoint), it is reserved and must be zero in DR6.
 597                 */
 598                vcpu->arch.dr6 &= ~BIT(12);
 599                break;
 600        case PF_VECTOR:
 601                vcpu->arch.cr2 = payload;
 602                break;
 603        }
 604
 605        vcpu->arch.exception.has_payload = false;
 606        vcpu->arch.exception.payload = 0;
 607}
 608EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 609
 610static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 611                unsigned nr, bool has_error, u32 error_code,
 612                bool has_payload, unsigned long payload, bool reinject)
 613{
 614        u32 prev_nr;
 615        int class1, class2;
 616
 617        kvm_make_request(KVM_REQ_EVENT, vcpu);
 618
 619        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 620        queue:
 621                if (reinject) {
 622                        /*
 623                         * On vmentry, vcpu->arch.exception.pending is only
 624                         * true if an event injection was blocked by
 625                         * nested_run_pending.  In that case, however,
 626                         * vcpu_enter_guest requests an immediate exit,
 627                         * and the guest shouldn't proceed far enough to
 628                         * need reinjection.
 629                         */
 630                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 631                        vcpu->arch.exception.injected = true;
 632                        if (WARN_ON_ONCE(has_payload)) {
 633                                /*
 634                                 * A reinjected event has already
 635                                 * delivered its payload.
 636                                 */
 637                                has_payload = false;
 638                                payload = 0;
 639                        }
 640                } else {
 641                        vcpu->arch.exception.pending = true;
 642                        vcpu->arch.exception.injected = false;
 643                }
 644                vcpu->arch.exception.has_error_code = has_error;
 645                vcpu->arch.exception.nr = nr;
 646                vcpu->arch.exception.error_code = error_code;
 647                vcpu->arch.exception.has_payload = has_payload;
 648                vcpu->arch.exception.payload = payload;
 649                if (!is_guest_mode(vcpu))
 650                        kvm_deliver_exception_payload(vcpu);
 651                return;
 652        }
 653
 654        /* to check exception */
 655        prev_nr = vcpu->arch.exception.nr;
 656        if (prev_nr == DF_VECTOR) {
 657                /* triple fault -> shutdown */
 658                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 659                return;
 660        }
 661        class1 = exception_class(prev_nr);
 662        class2 = exception_class(nr);
 663        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 664                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 665                /*
 666                 * Generate double fault per SDM Table 5-5.  Set
 667                 * exception.pending = true so that the double fault
 668                 * can trigger a nested vmexit.
 669                 */
 670                vcpu->arch.exception.pending = true;
 671                vcpu->arch.exception.injected = false;
 672                vcpu->arch.exception.has_error_code = true;
 673                vcpu->arch.exception.nr = DF_VECTOR;
 674                vcpu->arch.exception.error_code = 0;
 675                vcpu->arch.exception.has_payload = false;
 676                vcpu->arch.exception.payload = 0;
 677        } else
 678                /* replace previous exception with a new one in a hope
 679                   that instruction re-execution will regenerate lost
 680                   exception */
 681                goto queue;
 682}
 683
 684void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 685{
 686        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 687}
 688EXPORT_SYMBOL_GPL(kvm_queue_exception);
 689
 690void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 691{
 692        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 693}
 694EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 695
 696void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 697                           unsigned long payload)
 698{
 699        kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 700}
 701EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
 702
 703static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 704                                    u32 error_code, unsigned long payload)
 705{
 706        kvm_multiple_exception(vcpu, nr, true, error_code,
 707                               true, payload, false);
 708}
 709
 710int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 711{
 712        if (err)
 713                kvm_inject_gp(vcpu, 0);
 714        else
 715                return kvm_skip_emulated_instruction(vcpu);
 716
 717        return 1;
 718}
 719EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 720
 721static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
 722{
 723        if (err) {
 724                kvm_inject_gp(vcpu, 0);
 725                return 1;
 726        }
 727
 728        return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
 729                                       EMULTYPE_COMPLETE_USER_EXIT);
 730}
 731
 732void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 733{
 734        ++vcpu->stat.pf_guest;
 735        vcpu->arch.exception.nested_apf =
 736                is_guest_mode(vcpu) && fault->async_page_fault;
 737        if (vcpu->arch.exception.nested_apf) {
 738                vcpu->arch.apf.nested_apf_token = fault->address;
 739                kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 740        } else {
 741                kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 742                                        fault->address);
 743        }
 744}
 745EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 746
 747bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
 748                                    struct x86_exception *fault)
 749{
 750        struct kvm_mmu *fault_mmu;
 751        WARN_ON_ONCE(fault->vector != PF_VECTOR);
 752
 753        fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
 754                                               vcpu->arch.walk_mmu;
 755
 756        /*
 757         * Invalidate the TLB entry for the faulting address, if it exists,
 758         * else the access will fault indefinitely (and to emulate hardware).
 759         */
 760        if ((fault->error_code & PFERR_PRESENT_MASK) &&
 761            !(fault->error_code & PFERR_RSVD_MASK))
 762                kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
 763                                       fault_mmu->root_hpa);
 764
 765        fault_mmu->inject_page_fault(vcpu, fault);
 766        return fault->nested_page_fault;
 767}
 768EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
 769
 770void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 771{
 772        atomic_inc(&vcpu->arch.nmi_queued);
 773        kvm_make_request(KVM_REQ_NMI, vcpu);
 774}
 775EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 776
 777void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 778{
 779        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 780}
 781EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 782
 783void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 784{
 785        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 786}
 787EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 788
 789/*
 790 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 791 * a #GP and return false.
 792 */
 793bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 794{
 795        if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
 796                return true;
 797        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 798        return false;
 799}
 800EXPORT_SYMBOL_GPL(kvm_require_cpl);
 801
 802bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 803{
 804        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 805                return true;
 806
 807        kvm_queue_exception(vcpu, UD_VECTOR);
 808        return false;
 809}
 810EXPORT_SYMBOL_GPL(kvm_require_dr);
 811
 812static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 813{
 814        return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
 815}
 816
 817/*
 818 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 819 */
 820int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
 821{
 822        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 823        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 824        gpa_t real_gpa;
 825        int i;
 826        int ret;
 827        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 828
 829        /*
 830         * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
 831         * to an L1 GPA.
 832         */
 833        real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
 834                                     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
 835        if (real_gpa == UNMAPPED_GVA)
 836                return 0;
 837
 838        /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
 839        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
 840                                       cr3 & GENMASK(11, 5), sizeof(pdpte));
 841        if (ret < 0)
 842                return 0;
 843
 844        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 845                if ((pdpte[i] & PT_PRESENT_MASK) &&
 846                    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 847                        return 0;
 848                }
 849        }
 850
 851        /*
 852         * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
 853         * Shadow page roots need to be reconstructed instead.
 854         */
 855        if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
 856                kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
 857
 858        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 859        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 860        kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
 861        vcpu->arch.pdptrs_from_userspace = false;
 862
 863        return 1;
 864}
 865EXPORT_SYMBOL_GPL(load_pdptrs);
 866
 867void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
 868{
 869        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 870                kvm_clear_async_pf_completion_queue(vcpu);
 871                kvm_async_pf_hash_reset(vcpu);
 872        }
 873
 874        if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
 875                kvm_mmu_reset_context(vcpu);
 876
 877        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 878            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 879            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 880                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 881}
 882EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
 883
 884int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 885{
 886        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 887
 888        cr0 |= X86_CR0_ET;
 889
 890#ifdef CONFIG_X86_64
 891        if (cr0 & 0xffffffff00000000UL)
 892                return 1;
 893#endif
 894
 895        cr0 &= ~CR0_RESERVED_BITS;
 896
 897        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 898                return 1;
 899
 900        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 901                return 1;
 902
 903#ifdef CONFIG_X86_64
 904        if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
 905            (cr0 & X86_CR0_PG)) {
 906                int cs_db, cs_l;
 907
 908                if (!is_pae(vcpu))
 909                        return 1;
 910                static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
 911                if (cs_l)
 912                        return 1;
 913        }
 914#endif
 915        if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
 916            is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
 917            !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
 918                return 1;
 919
 920        if (!(cr0 & X86_CR0_PG) &&
 921            (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
 922                return 1;
 923
 924        static_call(kvm_x86_set_cr0)(vcpu, cr0);
 925
 926        kvm_post_set_cr0(vcpu, old_cr0, cr0);
 927
 928        return 0;
 929}
 930EXPORT_SYMBOL_GPL(kvm_set_cr0);
 931
 932void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 933{
 934        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 935}
 936EXPORT_SYMBOL_GPL(kvm_lmsw);
 937
 938void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 939{
 940        if (vcpu->arch.guest_state_protected)
 941                return;
 942
 943        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 944
 945                if (vcpu->arch.xcr0 != host_xcr0)
 946                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 947
 948                if (vcpu->arch.xsaves_enabled &&
 949                    vcpu->arch.ia32_xss != host_xss)
 950                        wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 951        }
 952
 953        if (static_cpu_has(X86_FEATURE_PKU) &&
 954            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 955             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
 956            vcpu->arch.pkru != vcpu->arch.host_pkru)
 957                write_pkru(vcpu->arch.pkru);
 958}
 959EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 960
 961void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 962{
 963        if (vcpu->arch.guest_state_protected)
 964                return;
 965
 966        if (static_cpu_has(X86_FEATURE_PKU) &&
 967            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 968             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
 969                vcpu->arch.pkru = rdpkru();
 970                if (vcpu->arch.pkru != vcpu->arch.host_pkru)
 971                        write_pkru(vcpu->arch.host_pkru);
 972        }
 973
 974        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 975
 976                if (vcpu->arch.xcr0 != host_xcr0)
 977                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 978
 979                if (vcpu->arch.xsaves_enabled &&
 980                    vcpu->arch.ia32_xss != host_xss)
 981                        wrmsrl(MSR_IA32_XSS, host_xss);
 982        }
 983
 984}
 985EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 986
 987static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
 988{
 989        return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
 990}
 991
 992#ifdef CONFIG_X86_64
 993static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
 994{
 995        return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
 996}
 997#endif
 998
 999static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1000{
1001        u64 xcr0 = xcr;
1002        u64 old_xcr0 = vcpu->arch.xcr0;
1003        u64 valid_bits;
1004
1005        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1006        if (index != XCR_XFEATURE_ENABLED_MASK)
1007                return 1;
1008        if (!(xcr0 & XFEATURE_MASK_FP))
1009                return 1;
1010        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1011                return 1;
1012
1013        /*
1014         * Do not allow the guest to set bits that we do not support
1015         * saving.  However, xcr0 bit 0 is always set, even if the
1016         * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1017         */
1018        valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1019        if (xcr0 & ~valid_bits)
1020                return 1;
1021
1022        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1023            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1024                return 1;
1025
1026        if (xcr0 & XFEATURE_MASK_AVX512) {
1027                if (!(xcr0 & XFEATURE_MASK_YMM))
1028                        return 1;
1029                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1030                        return 1;
1031        }
1032
1033        if ((xcr0 & XFEATURE_MASK_XTILE) &&
1034            ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1035                return 1;
1036
1037        vcpu->arch.xcr0 = xcr0;
1038
1039        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1040                kvm_update_cpuid_runtime(vcpu);
1041        return 0;
1042}
1043
1044int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1045{
1046        if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1047            __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1048                kvm_inject_gp(vcpu, 0);
1049                return 1;
1050        }
1051
1052        return kvm_skip_emulated_instruction(vcpu);
1053}
1054EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1055
1056bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1057{
1058        if (cr4 & cr4_reserved_bits)
1059                return false;
1060
1061        if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1062                return false;
1063
1064        return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1065}
1066EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1067
1068void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1069{
1070        /*
1071         * If any role bit is changed, the MMU needs to be reset.
1072         *
1073         * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1074         * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1075         * according to the SDM; however, stale prev_roots could be reused
1076         * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1077         * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1078         * is slow, but changing CR4.PCIDE is a rare case.
1079         *
1080         * If CR4.PGE is changed, the guest TLB must be flushed.
1081         *
1082         * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1083         * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1084         * the usage of "else if".
1085         */
1086        if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1087                kvm_mmu_reset_context(vcpu);
1088        else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1089                kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1090        else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1091                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1092}
1093EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1094
1095int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096{
1097        unsigned long old_cr4 = kvm_read_cr4(vcpu);
1098
1099        if (!kvm_is_valid_cr4(vcpu, cr4))
1100                return 1;
1101
1102        if (is_long_mode(vcpu)) {
1103                if (!(cr4 & X86_CR4_PAE))
1104                        return 1;
1105                if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1106                        return 1;
1107        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1108                   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1109                   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1110                return 1;
1111
1112        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1113                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1114                        return 1;
1115
1116                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1117                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1118                        return 1;
1119        }
1120
1121        static_call(kvm_x86_set_cr4)(vcpu, cr4);
1122
1123        kvm_post_set_cr4(vcpu, old_cr4, cr4);
1124
1125        return 0;
1126}
1127EXPORT_SYMBOL_GPL(kvm_set_cr4);
1128
1129static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1130{
1131        struct kvm_mmu *mmu = vcpu->arch.mmu;
1132        unsigned long roots_to_free = 0;
1133        int i;
1134
1135        /*
1136         * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1137         * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1138         * also via the emulator.  KVM's TDP page tables are not in the scope of
1139         * the invalidation, but the guest's TLB entries need to be flushed as
1140         * the CPU may have cached entries in its TLB for the target PCID.
1141         */
1142        if (unlikely(tdp_enabled)) {
1143                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1144                return;
1145        }
1146
1147        /*
1148         * If neither the current CR3 nor any of the prev_roots use the given
1149         * PCID, then nothing needs to be done here because a resync will
1150         * happen anyway before switching to any other CR3.
1151         */
1152        if (kvm_get_active_pcid(vcpu) == pcid) {
1153                kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1154                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1155        }
1156
1157        /*
1158         * If PCID is disabled, there is no need to free prev_roots even if the
1159         * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1160         * with PCIDE=0.
1161         */
1162        if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1163                return;
1164
1165        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1166                if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1167                        roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1168
1169        kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1170}
1171
1172int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1173{
1174        bool skip_tlb_flush = false;
1175        unsigned long pcid = 0;
1176#ifdef CONFIG_X86_64
1177        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1178
1179        if (pcid_enabled) {
1180                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1181                cr3 &= ~X86_CR3_PCID_NOFLUSH;
1182                pcid = cr3 & X86_CR3_PCID_MASK;
1183        }
1184#endif
1185
1186        /* PDPTRs are always reloaded for PAE paging. */
1187        if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1188                goto handle_tlb_flush;
1189
1190        /*
1191         * Do not condition the GPA check on long mode, this helper is used to
1192         * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1193         * the current vCPU mode is accurate.
1194         */
1195        if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1196                return 1;
1197
1198        if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1199                return 1;
1200
1201        if (cr3 != kvm_read_cr3(vcpu))
1202                kvm_mmu_new_pgd(vcpu, cr3);
1203
1204        vcpu->arch.cr3 = cr3;
1205        kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1206        /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1207
1208handle_tlb_flush:
1209        /*
1210         * A load of CR3 that flushes the TLB flushes only the current PCID,
1211         * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1212         * moot point in the end because _disabling_ PCID will flush all PCIDs,
1213         * and it's impossible to use a non-zero PCID when PCID is disabled,
1214         * i.e. only PCID=0 can be relevant.
1215         */
1216        if (!skip_tlb_flush)
1217                kvm_invalidate_pcid(vcpu, pcid);
1218
1219        return 0;
1220}
1221EXPORT_SYMBOL_GPL(kvm_set_cr3);
1222
1223int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1224{
1225        if (cr8 & CR8_RESERVED_BITS)
1226                return 1;
1227        if (lapic_in_kernel(vcpu))
1228                kvm_lapic_set_tpr(vcpu, cr8);
1229        else
1230                vcpu->arch.cr8 = cr8;
1231        return 0;
1232}
1233EXPORT_SYMBOL_GPL(kvm_set_cr8);
1234
1235unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1236{
1237        if (lapic_in_kernel(vcpu))
1238                return kvm_lapic_get_cr8(vcpu);
1239        else
1240                return vcpu->arch.cr8;
1241}
1242EXPORT_SYMBOL_GPL(kvm_get_cr8);
1243
1244static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1245{
1246        int i;
1247
1248        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1249                for (i = 0; i < KVM_NR_DB_REGS; i++)
1250                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1251        }
1252}
1253
1254void kvm_update_dr7(struct kvm_vcpu *vcpu)
1255{
1256        unsigned long dr7;
1257
1258        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1259                dr7 = vcpu->arch.guest_debug_dr7;
1260        else
1261                dr7 = vcpu->arch.dr7;
1262        static_call(kvm_x86_set_dr7)(vcpu, dr7);
1263        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1264        if (dr7 & DR7_BP_EN_MASK)
1265                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1266}
1267EXPORT_SYMBOL_GPL(kvm_update_dr7);
1268
1269static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1270{
1271        u64 fixed = DR6_FIXED_1;
1272
1273        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1274                fixed |= DR6_RTM;
1275
1276        if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1277                fixed |= DR6_BUS_LOCK;
1278        return fixed;
1279}
1280
1281int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1282{
1283        size_t size = ARRAY_SIZE(vcpu->arch.db);
1284
1285        switch (dr) {
1286        case 0 ... 3:
1287                vcpu->arch.db[array_index_nospec(dr, size)] = val;
1288                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1289                        vcpu->arch.eff_db[dr] = val;
1290                break;
1291        case 4:
1292        case 6:
1293                if (!kvm_dr6_valid(val))
1294                        return 1; /* #GP */
1295                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1296                break;
1297        case 5:
1298        default: /* 7 */
1299                if (!kvm_dr7_valid(val))
1300                        return 1; /* #GP */
1301                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1302                kvm_update_dr7(vcpu);
1303                break;
1304        }
1305
1306        return 0;
1307}
1308EXPORT_SYMBOL_GPL(kvm_set_dr);
1309
1310void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1311{
1312        size_t size = ARRAY_SIZE(vcpu->arch.db);
1313
1314        switch (dr) {
1315        case 0 ... 3:
1316                *val = vcpu->arch.db[array_index_nospec(dr, size)];
1317                break;
1318        case 4:
1319        case 6:
1320                *val = vcpu->arch.dr6;
1321                break;
1322        case 5:
1323        default: /* 7 */
1324                *val = vcpu->arch.dr7;
1325                break;
1326        }
1327}
1328EXPORT_SYMBOL_GPL(kvm_get_dr);
1329
1330int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1331{
1332        u32 ecx = kvm_rcx_read(vcpu);
1333        u64 data;
1334
1335        if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1336                kvm_inject_gp(vcpu, 0);
1337                return 1;
1338        }
1339
1340        kvm_rax_write(vcpu, (u32)data);
1341        kvm_rdx_write(vcpu, data >> 32);
1342        return kvm_skip_emulated_instruction(vcpu);
1343}
1344EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1345
1346/*
1347 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1348 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1349 *
1350 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1351 * extract the supported MSRs from the related const lists.
1352 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1353 * capabilities of the host cpu. This capabilities test skips MSRs that are
1354 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1355 * may depend on host virtualization features rather than host cpu features.
1356 */
1357
1358static const u32 msrs_to_save_all[] = {
1359        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1360        MSR_STAR,
1361#ifdef CONFIG_X86_64
1362        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1363#endif
1364        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1365        MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1366        MSR_IA32_SPEC_CTRL,
1367        MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1368        MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1369        MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1370        MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1371        MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1372        MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1373        MSR_IA32_UMWAIT_CONTROL,
1374
1375        MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1376        MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1377        MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1378        MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1379        MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1380        MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1381        MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1382        MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1383        MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1384        MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1385        MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1386        MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1387        MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1388        MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1389        MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1390        MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1391        MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1392        MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1393        MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1394        MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1395        MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1396        MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1397
1398        MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1399        MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1400        MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1401        MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1402        MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1403        MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1404        MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1405};
1406
1407static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1408static unsigned num_msrs_to_save;
1409
1410static const u32 emulated_msrs_all[] = {
1411        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1412        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1413        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1414        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1415        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1416        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1417        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1418        HV_X64_MSR_RESET,
1419        HV_X64_MSR_VP_INDEX,
1420        HV_X64_MSR_VP_RUNTIME,
1421        HV_X64_MSR_SCONTROL,
1422        HV_X64_MSR_STIMER0_CONFIG,
1423        HV_X64_MSR_VP_ASSIST_PAGE,
1424        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1425        HV_X64_MSR_TSC_EMULATION_STATUS,
1426        HV_X64_MSR_SYNDBG_OPTIONS,
1427        HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1428        HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1429        HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1430
1431        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1432        MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1433
1434        MSR_IA32_TSC_ADJUST,
1435        MSR_IA32_TSC_DEADLINE,
1436        MSR_IA32_ARCH_CAPABILITIES,
1437        MSR_IA32_PERF_CAPABILITIES,
1438        MSR_IA32_MISC_ENABLE,
1439        MSR_IA32_MCG_STATUS,
1440        MSR_IA32_MCG_CTL,
1441        MSR_IA32_MCG_EXT_CTL,
1442        MSR_IA32_SMBASE,
1443        MSR_SMI_COUNT,
1444        MSR_PLATFORM_INFO,
1445        MSR_MISC_FEATURES_ENABLES,
1446        MSR_AMD64_VIRT_SPEC_CTRL,
1447        MSR_AMD64_TSC_RATIO,
1448        MSR_IA32_POWER_CTL,
1449        MSR_IA32_UCODE_REV,
1450
1451        /*
1452         * The following list leaves out MSRs whose values are determined
1453         * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1454         * We always support the "true" VMX control MSRs, even if the host
1455         * processor does not, so I am putting these registers here rather
1456         * than in msrs_to_save_all.
1457         */
1458        MSR_IA32_VMX_BASIC,
1459        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1460        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1461        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1462        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1463        MSR_IA32_VMX_MISC,
1464        MSR_IA32_VMX_CR0_FIXED0,
1465        MSR_IA32_VMX_CR4_FIXED0,
1466        MSR_IA32_VMX_VMCS_ENUM,
1467        MSR_IA32_VMX_PROCBASED_CTLS2,
1468        MSR_IA32_VMX_EPT_VPID_CAP,
1469        MSR_IA32_VMX_VMFUNC,
1470
1471        MSR_K7_HWCR,
1472        MSR_KVM_POLL_CONTROL,
1473};
1474
1475static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1476static unsigned num_emulated_msrs;
1477
1478/*
1479 * List of msr numbers which are used to expose MSR-based features that
1480 * can be used by a hypervisor to validate requested CPU features.
1481 */
1482static const u32 msr_based_features_all[] = {
1483        MSR_IA32_VMX_BASIC,
1484        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1485        MSR_IA32_VMX_PINBASED_CTLS,
1486        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487        MSR_IA32_VMX_PROCBASED_CTLS,
1488        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1489        MSR_IA32_VMX_EXIT_CTLS,
1490        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1491        MSR_IA32_VMX_ENTRY_CTLS,
1492        MSR_IA32_VMX_MISC,
1493        MSR_IA32_VMX_CR0_FIXED0,
1494        MSR_IA32_VMX_CR0_FIXED1,
1495        MSR_IA32_VMX_CR4_FIXED0,
1496        MSR_IA32_VMX_CR4_FIXED1,
1497        MSR_IA32_VMX_VMCS_ENUM,
1498        MSR_IA32_VMX_PROCBASED_CTLS2,
1499        MSR_IA32_VMX_EPT_VPID_CAP,
1500        MSR_IA32_VMX_VMFUNC,
1501
1502        MSR_F10H_DECFG,
1503        MSR_IA32_UCODE_REV,
1504        MSR_IA32_ARCH_CAPABILITIES,
1505        MSR_IA32_PERF_CAPABILITIES,
1506};
1507
1508static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1509static unsigned int num_msr_based_features;
1510
1511static u64 kvm_get_arch_capabilities(void)
1512{
1513        u64 data = 0;
1514
1515        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1516                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1517
1518        /*
1519         * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1520         * the nested hypervisor runs with NX huge pages.  If it is not,
1521         * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1522         * L1 guests, so it need not worry about its own (L2) guests.
1523         */
1524        data |= ARCH_CAP_PSCHANGE_MC_NO;
1525
1526        /*
1527         * If we're doing cache flushes (either "always" or "cond")
1528         * we will do one whenever the guest does a vmlaunch/vmresume.
1529         * If an outer hypervisor is doing the cache flush for us
1530         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1531         * capability to the guest too, and if EPT is disabled we're not
1532         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1533         * require a nested hypervisor to do a flush of its own.
1534         */
1535        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1536                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1537
1538        if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1539                data |= ARCH_CAP_RDCL_NO;
1540        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1541                data |= ARCH_CAP_SSB_NO;
1542        if (!boot_cpu_has_bug(X86_BUG_MDS))
1543                data |= ARCH_CAP_MDS_NO;
1544
1545        if (!boot_cpu_has(X86_FEATURE_RTM)) {
1546                /*
1547                 * If RTM=0 because the kernel has disabled TSX, the host might
1548                 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1549                 * and therefore knows that there cannot be TAA) but keep
1550                 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1551                 * and we want to allow migrating those guests to tsx=off hosts.
1552                 */
1553                data &= ~ARCH_CAP_TAA_NO;
1554        } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1555                data |= ARCH_CAP_TAA_NO;
1556        } else {
1557                /*
1558                 * Nothing to do here; we emulate TSX_CTRL if present on the
1559                 * host so the guest can choose between disabling TSX or
1560                 * using VERW to clear CPU buffers.
1561                 */
1562        }
1563
1564        return data;
1565}
1566
1567static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1568{
1569        switch (msr->index) {
1570        case MSR_IA32_ARCH_CAPABILITIES:
1571                msr->data = kvm_get_arch_capabilities();
1572                break;
1573        case MSR_IA32_UCODE_REV:
1574                rdmsrl_safe(msr->index, &msr->data);
1575                break;
1576        default:
1577                return static_call(kvm_x86_get_msr_feature)(msr);
1578        }
1579        return 0;
1580}
1581
1582static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1583{
1584        struct kvm_msr_entry msr;
1585        int r;
1586
1587        msr.index = index;
1588        r = kvm_get_msr_feature(&msr);
1589
1590        if (r == KVM_MSR_RET_INVALID) {
1591                /* Unconditionally clear the output for simplicity */
1592                *data = 0;
1593                if (kvm_msr_ignored_check(index, 0, false))
1594                        r = 0;
1595        }
1596
1597        if (r)
1598                return r;
1599
1600        *data = msr.data;
1601
1602        return 0;
1603}
1604
1605static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1606{
1607        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1608                return false;
1609
1610        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1611                return false;
1612
1613        if (efer & (EFER_LME | EFER_LMA) &&
1614            !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1615                return false;
1616
1617        if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1618                return false;
1619
1620        return true;
1621
1622}
1623bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1624{
1625        if (efer & efer_reserved_bits)
1626                return false;
1627
1628        return __kvm_valid_efer(vcpu, efer);
1629}
1630EXPORT_SYMBOL_GPL(kvm_valid_efer);
1631
1632static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1633{
1634        u64 old_efer = vcpu->arch.efer;
1635        u64 efer = msr_info->data;
1636        int r;
1637
1638        if (efer & efer_reserved_bits)
1639                return 1;
1640
1641        if (!msr_info->host_initiated) {
1642                if (!__kvm_valid_efer(vcpu, efer))
1643                        return 1;
1644
1645                if (is_paging(vcpu) &&
1646                    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1647                        return 1;
1648        }
1649
1650        efer &= ~EFER_LMA;
1651        efer |= vcpu->arch.efer & EFER_LMA;
1652
1653        r = static_call(kvm_x86_set_efer)(vcpu, efer);
1654        if (r) {
1655                WARN_ON(r > 0);
1656                return r;
1657        }
1658
1659        /* Update reserved bits */
1660        if ((efer ^ old_efer) & EFER_NX)
1661                kvm_mmu_reset_context(vcpu);
1662
1663        return 0;
1664}
1665
1666void kvm_enable_efer_bits(u64 mask)
1667{
1668       efer_reserved_bits &= ~mask;
1669}
1670EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1671
1672bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1673{
1674        struct kvm_x86_msr_filter *msr_filter;
1675        struct msr_bitmap_range *ranges;
1676        struct kvm *kvm = vcpu->kvm;
1677        bool allowed;
1678        int idx;
1679        u32 i;
1680
1681        /* x2APIC MSRs do not support filtering. */
1682        if (index >= 0x800 && index <= 0x8ff)
1683                return true;
1684
1685        idx = srcu_read_lock(&kvm->srcu);
1686
1687        msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1688        if (!msr_filter) {
1689                allowed = true;
1690                goto out;
1691        }
1692
1693        allowed = msr_filter->default_allow;
1694        ranges = msr_filter->ranges;
1695
1696        for (i = 0; i < msr_filter->count; i++) {
1697                u32 start = ranges[i].base;
1698                u32 end = start + ranges[i].nmsrs;
1699                u32 flags = ranges[i].flags;
1700                unsigned long *bitmap = ranges[i].bitmap;
1701
1702                if ((index >= start) && (index < end) && (flags & type)) {
1703                        allowed = !!test_bit(index - start, bitmap);
1704                        break;
1705                }
1706        }
1707
1708out:
1709        srcu_read_unlock(&kvm->srcu, idx);
1710
1711        return allowed;
1712}
1713EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1714
1715/*
1716 * Write @data into the MSR specified by @index.  Select MSR specific fault
1717 * checks are bypassed if @host_initiated is %true.
1718 * Returns 0 on success, non-0 otherwise.
1719 * Assumes vcpu_load() was already called.
1720 */
1721static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1722                         bool host_initiated)
1723{
1724        struct msr_data msr;
1725
1726        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1727                return KVM_MSR_RET_FILTERED;
1728
1729        switch (index) {
1730        case MSR_FS_BASE:
1731        case MSR_GS_BASE:
1732        case MSR_KERNEL_GS_BASE:
1733        case MSR_CSTAR:
1734        case MSR_LSTAR:
1735                if (is_noncanonical_address(data, vcpu))
1736                        return 1;
1737                break;
1738        case MSR_IA32_SYSENTER_EIP:
1739        case MSR_IA32_SYSENTER_ESP:
1740                /*
1741                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1742                 * non-canonical address is written on Intel but not on
1743                 * AMD (which ignores the top 32-bits, because it does
1744                 * not implement 64-bit SYSENTER).
1745                 *
1746                 * 64-bit code should hence be able to write a non-canonical
1747                 * value on AMD.  Making the address canonical ensures that
1748                 * vmentry does not fail on Intel after writing a non-canonical
1749                 * value, and that something deterministic happens if the guest
1750                 * invokes 64-bit SYSENTER.
1751                 */
1752                data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1753                break;
1754        case MSR_TSC_AUX:
1755                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1756                        return 1;
1757
1758                if (!host_initiated &&
1759                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1760                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1761                        return 1;
1762
1763                /*
1764                 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1765                 * incomplete and conflicting architectural behavior.  Current
1766                 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1767                 * reserved and always read as zeros.  Enforce Intel's reserved
1768                 * bits check if and only if the guest CPU is Intel, and clear
1769                 * the bits in all other cases.  This ensures cross-vendor
1770                 * migration will provide consistent behavior for the guest.
1771                 */
1772                if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1773                        return 1;
1774
1775                data = (u32)data;
1776                break;
1777        }
1778
1779        msr.data = data;
1780        msr.index = index;
1781        msr.host_initiated = host_initiated;
1782
1783        return static_call(kvm_x86_set_msr)(vcpu, &msr);
1784}
1785
1786static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1787                                     u32 index, u64 data, bool host_initiated)
1788{
1789        int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1790
1791        if (ret == KVM_MSR_RET_INVALID)
1792                if (kvm_msr_ignored_check(index, data, true))
1793                        ret = 0;
1794
1795        return ret;
1796}
1797
1798/*
1799 * Read the MSR specified by @index into @data.  Select MSR specific fault
1800 * checks are bypassed if @host_initiated is %true.
1801 * Returns 0 on success, non-0 otherwise.
1802 * Assumes vcpu_load() was already called.
1803 */
1804int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1805                  bool host_initiated)
1806{
1807        struct msr_data msr;
1808        int ret;
1809
1810        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1811                return KVM_MSR_RET_FILTERED;
1812
1813        switch (index) {
1814        case MSR_TSC_AUX:
1815                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1816                        return 1;
1817
1818                if (!host_initiated &&
1819                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1820                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1821                        return 1;
1822                break;
1823        }
1824
1825        msr.index = index;
1826        msr.host_initiated = host_initiated;
1827
1828        ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1829        if (!ret)
1830                *data = msr.data;
1831        return ret;
1832}
1833
1834static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1835                                     u32 index, u64 *data, bool host_initiated)
1836{
1837        int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1838
1839        if (ret == KVM_MSR_RET_INVALID) {
1840                /* Unconditionally clear *data for simplicity */
1841                *data = 0;
1842                if (kvm_msr_ignored_check(index, 0, false))
1843                        ret = 0;
1844        }
1845
1846        return ret;
1847}
1848
1849int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1850{
1851        return kvm_get_msr_ignored_check(vcpu, index, data, false);
1852}
1853EXPORT_SYMBOL_GPL(kvm_get_msr);
1854
1855int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1856{
1857        return kvm_set_msr_ignored_check(vcpu, index, data, false);
1858}
1859EXPORT_SYMBOL_GPL(kvm_set_msr);
1860
1861static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1862{
1863        if (!vcpu->run->msr.error) {
1864                kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1865                kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1866        }
1867}
1868
1869static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1870{
1871        return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1872}
1873
1874static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1875{
1876        complete_userspace_rdmsr(vcpu);
1877        return complete_emulated_msr_access(vcpu);
1878}
1879
1880static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1881{
1882        return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1883}
1884
1885static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1886{
1887        complete_userspace_rdmsr(vcpu);
1888        return complete_fast_msr_access(vcpu);
1889}
1890
1891static u64 kvm_msr_reason(int r)
1892{
1893        switch (r) {
1894        case KVM_MSR_RET_INVALID:
1895                return KVM_MSR_EXIT_REASON_UNKNOWN;
1896        case KVM_MSR_RET_FILTERED:
1897                return KVM_MSR_EXIT_REASON_FILTER;
1898        default:
1899                return KVM_MSR_EXIT_REASON_INVAL;
1900        }
1901}
1902
1903static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1904                              u32 exit_reason, u64 data,
1905                              int (*completion)(struct kvm_vcpu *vcpu),
1906                              int r)
1907{
1908        u64 msr_reason = kvm_msr_reason(r);
1909
1910        /* Check if the user wanted to know about this MSR fault */
1911        if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1912                return 0;
1913
1914        vcpu->run->exit_reason = exit_reason;
1915        vcpu->run->msr.error = 0;
1916        memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1917        vcpu->run->msr.reason = msr_reason;
1918        vcpu->run->msr.index = index;
1919        vcpu->run->msr.data = data;
1920        vcpu->arch.complete_userspace_io = completion;
1921
1922        return 1;
1923}
1924
1925int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1926{
1927        u32 ecx = kvm_rcx_read(vcpu);
1928        u64 data;
1929        int r;
1930
1931        r = kvm_get_msr(vcpu, ecx, &data);
1932
1933        if (!r) {
1934                trace_kvm_msr_read(ecx, data);
1935
1936                kvm_rax_write(vcpu, data & -1u);
1937                kvm_rdx_write(vcpu, (data >> 32) & -1u);
1938        } else {
1939                /* MSR read failed? See if we should ask user space */
1940                if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1941                                       complete_fast_rdmsr, r))
1942                        return 0;
1943                trace_kvm_msr_read_ex(ecx);
1944        }
1945
1946        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1947}
1948EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1949
1950int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1951{
1952        u32 ecx = kvm_rcx_read(vcpu);
1953        u64 data = kvm_read_edx_eax(vcpu);
1954        int r;
1955
1956        r = kvm_set_msr(vcpu, ecx, data);
1957
1958        if (!r) {
1959                trace_kvm_msr_write(ecx, data);
1960        } else {
1961                /* MSR write failed? See if we should ask user space */
1962                if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1963                                       complete_fast_msr_access, r))
1964                        return 0;
1965                /* Signal all other negative errors to userspace */
1966                if (r < 0)
1967                        return r;
1968                trace_kvm_msr_write_ex(ecx, data);
1969        }
1970
1971        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1972}
1973EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1974
1975int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1976{
1977        return kvm_skip_emulated_instruction(vcpu);
1978}
1979EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1980
1981int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1982{
1983        /* Treat an INVD instruction as a NOP and just skip it. */
1984        return kvm_emulate_as_nop(vcpu);
1985}
1986EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1987
1988int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1989{
1990        pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1991        return kvm_emulate_as_nop(vcpu);
1992}
1993EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1994
1995int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1996{
1997        kvm_queue_exception(vcpu, UD_VECTOR);
1998        return 1;
1999}
2000EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2001
2002int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2003{
2004        pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2005        return kvm_emulate_as_nop(vcpu);
2006}
2007EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2008
2009static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2010{
2011        xfer_to_guest_mode_prepare();
2012        return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2013                xfer_to_guest_mode_work_pending();
2014}
2015
2016/*
2017 * The fast path for frequent and performance sensitive wrmsr emulation,
2018 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2019 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2020 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2021 * other cases which must be called after interrupts are enabled on the host.
2022 */
2023static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2024{
2025        if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2026                return 1;
2027
2028        if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2029                ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2030                ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2031                ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2032
2033                data &= ~(1 << 12);
2034                kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2035                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2036                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2037                trace_kvm_apic_write(APIC_ICR, (u32)data);
2038                return 0;
2039        }
2040
2041        return 1;
2042}
2043
2044static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2045{
2046        if (!kvm_can_use_hv_timer(vcpu))
2047                return 1;
2048
2049        kvm_set_lapic_tscdeadline_msr(vcpu, data);
2050        return 0;
2051}
2052
2053fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2054{
2055        u32 msr = kvm_rcx_read(vcpu);
2056        u64 data;
2057        fastpath_t ret = EXIT_FASTPATH_NONE;
2058
2059        switch (msr) {
2060        case APIC_BASE_MSR + (APIC_ICR >> 4):
2061                data = kvm_read_edx_eax(vcpu);
2062                if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2063                        kvm_skip_emulated_instruction(vcpu);
2064                        ret = EXIT_FASTPATH_EXIT_HANDLED;
2065                }
2066                break;
2067        case MSR_IA32_TSC_DEADLINE:
2068                data = kvm_read_edx_eax(vcpu);
2069                if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2070                        kvm_skip_emulated_instruction(vcpu);
2071                        ret = EXIT_FASTPATH_REENTER_GUEST;
2072                }
2073                break;
2074        default:
2075                break;
2076        }
2077
2078        if (ret != EXIT_FASTPATH_NONE)
2079                trace_kvm_msr_write(msr, data);
2080
2081        return ret;
2082}
2083EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2084
2085/*
2086 * Adapt set_msr() to msr_io()'s calling convention
2087 */
2088static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2089{
2090        return kvm_get_msr_ignored_check(vcpu, index, data, true);
2091}
2092
2093static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2094{
2095        return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2096}
2097
2098#ifdef CONFIG_X86_64
2099struct pvclock_clock {
2100        int vclock_mode;
2101        u64 cycle_last;
2102        u64 mask;
2103        u32 mult;
2104        u32 shift;
2105        u64 base_cycles;
2106        u64 offset;
2107};
2108
2109struct pvclock_gtod_data {
2110        seqcount_t      seq;
2111
2112        struct pvclock_clock clock; /* extract of a clocksource struct */
2113        struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2114
2115        ktime_t         offs_boot;
2116        u64             wall_time_sec;
2117};
2118
2119static struct pvclock_gtod_data pvclock_gtod_data;
2120
2121static void update_pvclock_gtod(struct timekeeper *tk)
2122{
2123        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2124
2125        write_seqcount_begin(&vdata->seq);
2126
2127        /* copy pvclock gtod data */
2128        vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2129        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2130        vdata->clock.mask               = tk->tkr_mono.mask;
2131        vdata->clock.mult               = tk->tkr_mono.mult;
2132        vdata->clock.shift              = tk->tkr_mono.shift;
2133        vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2134        vdata->clock.offset             = tk->tkr_mono.base;
2135
2136        vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2137        vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2138        vdata->raw_clock.mask           = tk->tkr_raw.mask;
2139        vdata->raw_clock.mult           = tk->tkr_raw.mult;
2140        vdata->raw_clock.shift          = tk->tkr_raw.shift;
2141        vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2142        vdata->raw_clock.offset         = tk->tkr_raw.base;
2143
2144        vdata->wall_time_sec            = tk->xtime_sec;
2145
2146        vdata->offs_boot                = tk->offs_boot;
2147
2148        write_seqcount_end(&vdata->seq);
2149}
2150
2151static s64 get_kvmclock_base_ns(void)
2152{
2153        /* Count up from boot time, but with the frequency of the raw clock.  */
2154        return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2155}
2156#else
2157static s64 get_kvmclock_base_ns(void)
2158{
2159        /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2160        return ktime_get_boottime_ns();
2161}
2162#endif
2163
2164static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2165{
2166        int version;
2167        int r;
2168        struct pvclock_wall_clock wc;
2169        u32 wc_sec_hi;
2170        u64 wall_nsec;
2171
2172        if (!wall_clock)
2173                return;
2174
2175        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2176        if (r)
2177                return;
2178
2179        if (version & 1)
2180                ++version;  /* first time write, random junk */
2181
2182        ++version;
2183
2184        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2185                return;
2186
2187        /*
2188         * The guest calculates current wall clock time by adding
2189         * system time (updated by kvm_guest_time_update below) to the
2190         * wall clock specified here.  We do the reverse here.
2191         */
2192        wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2193
2194        wc.nsec = do_div(wall_nsec, 1000000000);
2195        wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2196        wc.version = version;
2197
2198        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2199
2200        if (sec_hi_ofs) {
2201                wc_sec_hi = wall_nsec >> 32;
2202                kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2203                                &wc_sec_hi, sizeof(wc_sec_hi));
2204        }
2205
2206        version++;
2207        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2208}
2209
2210static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2211                                  bool old_msr, bool host_initiated)
2212{
2213        struct kvm_arch *ka = &vcpu->kvm->arch;
2214
2215        if (vcpu->vcpu_id == 0 && !host_initiated) {
2216                if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2217                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2218
2219                ka->boot_vcpu_runs_old_kvmclock = old_msr;
2220        }
2221
2222        vcpu->arch.time = system_time;
2223        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2224
2225        /* we verify if the enable bit is set... */
2226        vcpu->arch.pv_time_enabled = false;
2227        if (!(system_time & 1))
2228                return;
2229
2230        if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231                                       &vcpu->arch.pv_time, system_time & ~1ULL,
2232                                       sizeof(struct pvclock_vcpu_time_info)))
2233                vcpu->arch.pv_time_enabled = true;
2234
2235        return;
2236}
2237
2238static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2239{
2240        do_shl32_div32(dividend, divisor);
2241        return dividend;
2242}
2243
2244static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2245                               s8 *pshift, u32 *pmultiplier)
2246{
2247        uint64_t scaled64;
2248        int32_t  shift = 0;
2249        uint64_t tps64;
2250        uint32_t tps32;
2251
2252        tps64 = base_hz;
2253        scaled64 = scaled_hz;
2254        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2255                tps64 >>= 1;
2256                shift--;
2257        }
2258
2259        tps32 = (uint32_t)tps64;
2260        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2261                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2262                        scaled64 >>= 1;
2263                else
2264                        tps32 <<= 1;
2265                shift++;
2266        }
2267
2268        *pshift = shift;
2269        *pmultiplier = div_frac(scaled64, tps32);
2270}
2271
2272#ifdef CONFIG_X86_64
2273static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2274#endif
2275
2276static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2277static unsigned long max_tsc_khz;
2278
2279static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2280{
2281        u64 v = (u64)khz * (1000000 + ppm);
2282        do_div(v, 1000000);
2283        return v;
2284}
2285
2286static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2287
2288static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2289{
2290        u64 ratio;
2291
2292        /* Guest TSC same frequency as host TSC? */
2293        if (!scale) {
2294                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2295                return 0;
2296        }
2297
2298        /* TSC scaling supported? */
2299        if (!kvm_has_tsc_control) {
2300                if (user_tsc_khz > tsc_khz) {
2301                        vcpu->arch.tsc_catchup = 1;
2302                        vcpu->arch.tsc_always_catchup = 1;
2303                        return 0;
2304                } else {
2305                        pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2306                        return -1;
2307                }
2308        }
2309
2310        /* TSC scaling required  - calculate ratio */
2311        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2312                                user_tsc_khz, tsc_khz);
2313
2314        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2315                pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2316                                    user_tsc_khz);
2317                return -1;
2318        }
2319
2320        kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2321        return 0;
2322}
2323
2324static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2325{
2326        u32 thresh_lo, thresh_hi;
2327        int use_scaling = 0;
2328
2329        /* tsc_khz can be zero if TSC calibration fails */
2330        if (user_tsc_khz == 0) {
2331                /* set tsc_scaling_ratio to a safe value */
2332                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2333                return -1;
2334        }
2335
2336        /* Compute a scale to convert nanoseconds in TSC cycles */
2337        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2338                           &vcpu->arch.virtual_tsc_shift,
2339                           &vcpu->arch.virtual_tsc_mult);
2340        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2341
2342        /*
2343         * Compute the variation in TSC rate which is acceptable
2344         * within the range of tolerance and decide if the
2345         * rate being applied is within that bounds of the hardware
2346         * rate.  If so, no scaling or compensation need be done.
2347         */
2348        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2349        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2350        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2351                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2352                use_scaling = 1;
2353        }
2354        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2355}
2356
2357static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2358{
2359        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2360                                      vcpu->arch.virtual_tsc_mult,
2361                                      vcpu->arch.virtual_tsc_shift);
2362        tsc += vcpu->arch.this_tsc_write;
2363        return tsc;
2364}
2365
2366#ifdef CONFIG_X86_64
2367static inline int gtod_is_based_on_tsc(int mode)
2368{
2369        return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2370}
2371#endif
2372
2373static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2374{
2375#ifdef CONFIG_X86_64
2376        bool vcpus_matched;
2377        struct kvm_arch *ka = &vcpu->kvm->arch;
2378        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2379
2380        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2381                         atomic_read(&vcpu->kvm->online_vcpus));
2382
2383        /*
2384         * Once the masterclock is enabled, always perform request in
2385         * order to update it.
2386         *
2387         * In order to enable masterclock, the host clocksource must be TSC
2388         * and the vcpus need to have matched TSCs.  When that happens,
2389         * perform request to enable masterclock.
2390         */
2391        if (ka->use_master_clock ||
2392            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2393                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2394
2395        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2396                            atomic_read(&vcpu->kvm->online_vcpus),
2397                            ka->use_master_clock, gtod->clock.vclock_mode);
2398#endif
2399}
2400
2401/*
2402 * Multiply tsc by a fixed point number represented by ratio.
2403 *
2404 * The most significant 64-N bits (mult) of ratio represent the
2405 * integral part of the fixed point number; the remaining N bits
2406 * (frac) represent the fractional part, ie. ratio represents a fixed
2407 * point number (mult + frac * 2^(-N)).
2408 *
2409 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2410 */
2411static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2412{
2413        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2414}
2415
2416u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2417{
2418        u64 _tsc = tsc;
2419
2420        if (ratio != kvm_default_tsc_scaling_ratio)
2421                _tsc = __scale_tsc(ratio, tsc);
2422
2423        return _tsc;
2424}
2425EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2426
2427static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2428{
2429        u64 tsc;
2430
2431        tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2432
2433        return target_tsc - tsc;
2434}
2435
2436u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2437{
2438        return vcpu->arch.l1_tsc_offset +
2439                kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2440}
2441EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2442
2443u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2444{
2445        u64 nested_offset;
2446
2447        if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2448                nested_offset = l1_offset;
2449        else
2450                nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2451                                                kvm_tsc_scaling_ratio_frac_bits);
2452
2453        nested_offset += l2_offset;
2454        return nested_offset;
2455}
2456EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2457
2458u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2459{
2460        if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2461                return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2462                                       kvm_tsc_scaling_ratio_frac_bits);
2463
2464        return l1_multiplier;
2465}
2466EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2467
2468static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2469{
2470        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2471                                   vcpu->arch.l1_tsc_offset,
2472                                   l1_offset);
2473
2474        vcpu->arch.l1_tsc_offset = l1_offset;
2475
2476        /*
2477         * If we are here because L1 chose not to trap WRMSR to TSC then
2478         * according to the spec this should set L1's TSC (as opposed to
2479         * setting L1's offset for L2).
2480         */
2481        if (is_guest_mode(vcpu))
2482                vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2483                        l1_offset,
2484                        static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2485                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2486        else
2487                vcpu->arch.tsc_offset = l1_offset;
2488
2489        static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2490}
2491
2492static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2493{
2494        vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2495
2496        /* Userspace is changing the multiplier while L2 is active */
2497        if (is_guest_mode(vcpu))
2498                vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2499                        l1_multiplier,
2500                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2501        else
2502                vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2503
2504        if (kvm_has_tsc_control)
2505                static_call(kvm_x86_write_tsc_multiplier)(
2506                        vcpu, vcpu->arch.tsc_scaling_ratio);
2507}
2508
2509static inline bool kvm_check_tsc_unstable(void)
2510{
2511#ifdef CONFIG_X86_64
2512        /*
2513         * TSC is marked unstable when we're running on Hyper-V,
2514         * 'TSC page' clocksource is good.
2515         */
2516        if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2517                return false;
2518#endif
2519        return check_tsc_unstable();
2520}
2521
2522/*
2523 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2524 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2525 * participates in.
2526 */
2527static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2528                                  u64 ns, bool matched)
2529{
2530        struct kvm *kvm = vcpu->kvm;
2531
2532        lockdep_assert_held(&kvm->arch.tsc_write_lock);
2533
2534        /*
2535         * We also track th most recent recorded KHZ, write and time to
2536         * allow the matching interval to be extended at each write.
2537         */
2538        kvm->arch.last_tsc_nsec = ns;
2539        kvm->arch.last_tsc_write = tsc;
2540        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2541        kvm->arch.last_tsc_offset = offset;
2542
2543        vcpu->arch.last_guest_tsc = tsc;
2544
2545        kvm_vcpu_write_tsc_offset(vcpu, offset);
2546
2547        if (!matched) {
2548                /*
2549                 * We split periods of matched TSC writes into generations.
2550                 * For each generation, we track the original measured
2551                 * nanosecond time, offset, and write, so if TSCs are in
2552                 * sync, we can match exact offset, and if not, we can match
2553                 * exact software computation in compute_guest_tsc()
2554                 *
2555                 * These values are tracked in kvm->arch.cur_xxx variables.
2556                 */
2557                kvm->arch.cur_tsc_generation++;
2558                kvm->arch.cur_tsc_nsec = ns;
2559                kvm->arch.cur_tsc_write = tsc;
2560                kvm->arch.cur_tsc_offset = offset;
2561                kvm->arch.nr_vcpus_matched_tsc = 0;
2562        } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2563                kvm->arch.nr_vcpus_matched_tsc++;
2564        }
2565
2566        /* Keep track of which generation this VCPU has synchronized to */
2567        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2568        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2569        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2570
2571        kvm_track_tsc_matching(vcpu);
2572}
2573
2574static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2575{
2576        struct kvm *kvm = vcpu->kvm;
2577        u64 offset, ns, elapsed;
2578        unsigned long flags;
2579        bool matched = false;
2580        bool synchronizing = false;
2581
2582        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2583        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2584        ns = get_kvmclock_base_ns();
2585        elapsed = ns - kvm->arch.last_tsc_nsec;
2586
2587        if (vcpu->arch.virtual_tsc_khz) {
2588                if (data == 0) {
2589                        /*
2590                         * detection of vcpu initialization -- need to sync
2591                         * with other vCPUs. This particularly helps to keep
2592                         * kvm_clock stable after CPU hotplug
2593                         */
2594                        synchronizing = true;
2595                } else {
2596                        u64 tsc_exp = kvm->arch.last_tsc_write +
2597                                                nsec_to_cycles(vcpu, elapsed);
2598                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2599                        /*
2600                         * Special case: TSC write with a small delta (1 second)
2601                         * of virtual cycle time against real time is
2602                         * interpreted as an attempt to synchronize the CPU.
2603                         */
2604                        synchronizing = data < tsc_exp + tsc_hz &&
2605                                        data + tsc_hz > tsc_exp;
2606                }
2607        }
2608
2609        /*
2610         * For a reliable TSC, we can match TSC offsets, and for an unstable
2611         * TSC, we add elapsed time in this computation.  We could let the
2612         * compensation code attempt to catch up if we fall behind, but
2613         * it's better to try to match offsets from the beginning.
2614         */
2615        if (synchronizing &&
2616            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2617                if (!kvm_check_tsc_unstable()) {
2618                        offset = kvm->arch.cur_tsc_offset;
2619                } else {
2620                        u64 delta = nsec_to_cycles(vcpu, elapsed);
2621                        data += delta;
2622                        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2623                }
2624                matched = true;
2625        }
2626
2627        __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2628        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2629}
2630
2631static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2632                                           s64 adjustment)
2633{
2634        u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2635        kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2636}
2637
2638static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2639{
2640        if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2641                WARN_ON(adjustment < 0);
2642        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2643                                   vcpu->arch.l1_tsc_scaling_ratio);
2644        adjust_tsc_offset_guest(vcpu, adjustment);
2645}
2646
2647#ifdef CONFIG_X86_64
2648
2649static u64 read_tsc(void)
2650{
2651        u64 ret = (u64)rdtsc_ordered();
2652        u64 last = pvclock_gtod_data.clock.cycle_last;
2653
2654        if (likely(ret >= last))
2655                return ret;
2656
2657        /*
2658         * GCC likes to generate cmov here, but this branch is extremely
2659         * predictable (it's just a function of time and the likely is
2660         * very likely) and there's a data dependence, so force GCC
2661         * to generate a branch instead.  I don't barrier() because
2662         * we don't actually need a barrier, and if this function
2663         * ever gets inlined it will generate worse code.
2664         */
2665        asm volatile ("");
2666        return last;
2667}
2668
2669static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2670                          int *mode)
2671{
2672        long v;
2673        u64 tsc_pg_val;
2674
2675        switch (clock->vclock_mode) {
2676        case VDSO_CLOCKMODE_HVCLOCK:
2677                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2678                                                  tsc_timestamp);
2679                if (tsc_pg_val != U64_MAX) {
2680                        /* TSC page valid */
2681                        *mode = VDSO_CLOCKMODE_HVCLOCK;
2682                        v = (tsc_pg_val - clock->cycle_last) &
2683                                clock->mask;
2684                } else {
2685                        /* TSC page invalid */
2686                        *mode = VDSO_CLOCKMODE_NONE;
2687                }
2688                break;
2689        case VDSO_CLOCKMODE_TSC:
2690                *mode = VDSO_CLOCKMODE_TSC;
2691                *tsc_timestamp = read_tsc();
2692                v = (*tsc_timestamp - clock->cycle_last) &
2693                        clock->mask;
2694                break;
2695        default:
2696                *mode = VDSO_CLOCKMODE_NONE;
2697        }
2698
2699        if (*mode == VDSO_CLOCKMODE_NONE)
2700                *tsc_timestamp = v = 0;
2701
2702        return v * clock->mult;
2703}
2704
2705static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2706{
2707        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2708        unsigned long seq;
2709        int mode;
2710        u64 ns;
2711
2712        do {
2713                seq = read_seqcount_begin(&gtod->seq);
2714                ns = gtod->raw_clock.base_cycles;
2715                ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2716                ns >>= gtod->raw_clock.shift;
2717                ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2718        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2719        *t = ns;
2720
2721        return mode;
2722}
2723
2724static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2725{
2726        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2727        unsigned long seq;
2728        int mode;
2729        u64 ns;
2730
2731        do {
2732                seq = read_seqcount_begin(&gtod->seq);
2733                ts->tv_sec = gtod->wall_time_sec;
2734                ns = gtod->clock.base_cycles;
2735                ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2736                ns >>= gtod->clock.shift;
2737        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2738
2739        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2740        ts->tv_nsec = ns;
2741
2742        return mode;
2743}
2744
2745/* returns true if host is using TSC based clocksource */
2746static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2747{
2748        /* checked again under seqlock below */
2749        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2750                return false;
2751
2752        return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2753                                                      tsc_timestamp));
2754}
2755
2756/* returns true if host is using TSC based clocksource */
2757static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2758                                           u64 *tsc_timestamp)
2759{
2760        /* checked again under seqlock below */
2761        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2762                return false;
2763
2764        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2765}
2766#endif
2767
2768/*
2769 *
2770 * Assuming a stable TSC across physical CPUS, and a stable TSC
2771 * across virtual CPUs, the following condition is possible.
2772 * Each numbered line represents an event visible to both
2773 * CPUs at the next numbered event.
2774 *
2775 * "timespecX" represents host monotonic time. "tscX" represents
2776 * RDTSC value.
2777 *
2778 *              VCPU0 on CPU0           |       VCPU1 on CPU1
2779 *
2780 * 1.  read timespec0,tsc0
2781 * 2.                                   | timespec1 = timespec0 + N
2782 *                                      | tsc1 = tsc0 + M
2783 * 3. transition to guest               | transition to guest
2784 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2785 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2786 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2787 *
2788 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2789 *
2790 *      - ret0 < ret1
2791 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2792 *              ...
2793 *      - 0 < N - M => M < N
2794 *
2795 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2796 * always the case (the difference between two distinct xtime instances
2797 * might be smaller then the difference between corresponding TSC reads,
2798 * when updating guest vcpus pvclock areas).
2799 *
2800 * To avoid that problem, do not allow visibility of distinct
2801 * system_timestamp/tsc_timestamp values simultaneously: use a master
2802 * copy of host monotonic time values. Update that master copy
2803 * in lockstep.
2804 *
2805 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2806 *
2807 */
2808
2809static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2810{
2811#ifdef CONFIG_X86_64
2812        struct kvm_arch *ka = &kvm->arch;
2813        int vclock_mode;
2814        bool host_tsc_clocksource, vcpus_matched;
2815
2816        lockdep_assert_held(&kvm->arch.tsc_write_lock);
2817        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2818                        atomic_read(&kvm->online_vcpus));
2819
2820        /*
2821         * If the host uses TSC clock, then passthrough TSC as stable
2822         * to the guest.
2823         */
2824        host_tsc_clocksource = kvm_get_time_and_clockread(
2825                                        &ka->master_kernel_ns,
2826                                        &ka->master_cycle_now);
2827
2828        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2829                                && !ka->backwards_tsc_observed
2830                                && !ka->boot_vcpu_runs_old_kvmclock;
2831
2832        if (ka->use_master_clock)
2833                atomic_set(&kvm_guest_has_master_clock, 1);
2834
2835        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2836        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2837                                        vcpus_matched);
2838#endif
2839}
2840
2841static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2842{
2843        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2844}
2845
2846static void __kvm_start_pvclock_update(struct kvm *kvm)
2847{
2848        raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2849        write_seqcount_begin(&kvm->arch.pvclock_sc);
2850}
2851
2852static void kvm_start_pvclock_update(struct kvm *kvm)
2853{
2854        kvm_make_mclock_inprogress_request(kvm);
2855
2856        /* no guest entries from this point */
2857        __kvm_start_pvclock_update(kvm);
2858}
2859
2860static void kvm_end_pvclock_update(struct kvm *kvm)
2861{
2862        struct kvm_arch *ka = &kvm->arch;
2863        struct kvm_vcpu *vcpu;
2864        unsigned long i;
2865
2866        write_seqcount_end(&ka->pvclock_sc);
2867        raw_spin_unlock_irq(&ka->tsc_write_lock);
2868        kvm_for_each_vcpu(i, vcpu, kvm)
2869                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2870
2871        /* guest entries allowed */
2872        kvm_for_each_vcpu(i, vcpu, kvm)
2873                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2874}
2875
2876static void kvm_update_masterclock(struct kvm *kvm)
2877{
2878        kvm_hv_invalidate_tsc_page(kvm);
2879        kvm_start_pvclock_update(kvm);
2880        pvclock_update_vm_gtod_copy(kvm);
2881        kvm_end_pvclock_update(kvm);
2882}
2883
2884/* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2885static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2886{
2887        struct kvm_arch *ka = &kvm->arch;
2888        struct pvclock_vcpu_time_info hv_clock;
2889
2890        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2891        get_cpu();
2892
2893        data->flags = 0;
2894        if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2895#ifdef CONFIG_X86_64
2896                struct timespec64 ts;
2897
2898                if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2899                        data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2900                        data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2901                } else
2902#endif
2903                data->host_tsc = rdtsc();
2904
2905                data->flags |= KVM_CLOCK_TSC_STABLE;
2906                hv_clock.tsc_timestamp = ka->master_cycle_now;
2907                hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2908                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2909                                   &hv_clock.tsc_shift,
2910                                   &hv_clock.tsc_to_system_mul);
2911                data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2912        } else {
2913                data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2914        }
2915
2916        put_cpu();
2917}
2918
2919static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2920{
2921        struct kvm_arch *ka = &kvm->arch;
2922        unsigned seq;
2923
2924        do {
2925                seq = read_seqcount_begin(&ka->pvclock_sc);
2926                __get_kvmclock(kvm, data);
2927        } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2928}
2929
2930u64 get_kvmclock_ns(struct kvm *kvm)
2931{
2932        struct kvm_clock_data data;
2933
2934        get_kvmclock(kvm, &data);
2935        return data.clock;
2936}
2937
2938static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2939                                   struct gfn_to_hva_cache *cache,
2940                                   unsigned int offset)
2941{
2942        struct kvm_vcpu_arch *vcpu = &v->arch;
2943        struct pvclock_vcpu_time_info guest_hv_clock;
2944
2945        if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2946                &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2947                return;
2948
2949        /* This VCPU is paused, but it's legal for a guest to read another
2950         * VCPU's kvmclock, so we really have to follow the specification where
2951         * it says that version is odd if data is being modified, and even after
2952         * it is consistent.
2953         *
2954         * Version field updates must be kept separate.  This is because
2955         * kvm_write_guest_cached might use a "rep movs" instruction, and
2956         * writes within a string instruction are weakly ordered.  So there
2957         * are three writes overall.
2958         *
2959         * As a small optimization, only write the version field in the first
2960         * and third write.  The vcpu->pv_time cache is still valid, because the
2961         * version field is the first in the struct.
2962         */
2963        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2964
2965        if (guest_hv_clock.version & 1)
2966                ++guest_hv_clock.version;  /* first time write, random junk */
2967
2968        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2969        kvm_write_guest_offset_cached(v->kvm, cache,
2970                                      &vcpu->hv_clock, offset,
2971                                      sizeof(vcpu->hv_clock.version));
2972
2973        smp_wmb();
2974
2975        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2976        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2977
2978        if (vcpu->pvclock_set_guest_stopped_request) {
2979                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2980                vcpu->pvclock_set_guest_stopped_request = false;
2981        }
2982
2983        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2984
2985        kvm_write_guest_offset_cached(v->kvm, cache,
2986                                      &vcpu->hv_clock, offset,
2987                                      sizeof(vcpu->hv_clock));
2988
2989        smp_wmb();
2990
2991        vcpu->hv_clock.version++;
2992        kvm_write_guest_offset_cached(v->kvm, cache,
2993                                     &vcpu->hv_clock, offset,
2994                                     sizeof(vcpu->hv_clock.version));
2995}
2996
2997static int kvm_guest_time_update(struct kvm_vcpu *v)
2998{
2999        unsigned long flags, tgt_tsc_khz;
3000        unsigned seq;
3001        struct kvm_vcpu_arch *vcpu = &v->arch;
3002        struct kvm_arch *ka = &v->kvm->arch;
3003        s64 kernel_ns;
3004        u64 tsc_timestamp, host_tsc;
3005        u8 pvclock_flags;
3006        bool use_master_clock;
3007
3008        kernel_ns = 0;
3009        host_tsc = 0;
3010
3011        /*
3012         * If the host uses TSC clock, then passthrough TSC as stable
3013         * to the guest.
3014         */
3015        do {
3016                seq = read_seqcount_begin(&ka->pvclock_sc);
3017                use_master_clock = ka->use_master_clock;
3018                if (use_master_clock) {
3019                        host_tsc = ka->master_cycle_now;
3020                        kernel_ns = ka->master_kernel_ns;
3021                }
3022        } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3023
3024        /* Keep irq disabled to prevent changes to the clock */
3025        local_irq_save(flags);
3026        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3027        if (unlikely(tgt_tsc_khz == 0)) {
3028                local_irq_restore(flags);
3029                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3030                return 1;
3031        }
3032        if (!use_master_clock) {
3033                host_tsc = rdtsc();
3034                kernel_ns = get_kvmclock_base_ns();
3035        }
3036
3037        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3038
3039        /*
3040         * We may have to catch up the TSC to match elapsed wall clock
3041         * time for two reasons, even if kvmclock is used.
3042         *   1) CPU could have been running below the maximum TSC rate
3043         *   2) Broken TSC compensation resets the base at each VCPU
3044         *      entry to avoid unknown leaps of TSC even when running
3045         *      again on the same CPU.  This may cause apparent elapsed
3046         *      time to disappear, and the guest to stand still or run
3047         *      very slowly.
3048         */
3049        if (vcpu->tsc_catchup) {
3050                u64 tsc = compute_guest_tsc(v, kernel_ns);
3051                if (tsc > tsc_timestamp) {
3052                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3053                        tsc_timestamp = tsc;
3054                }
3055        }
3056
3057        local_irq_restore(flags);
3058
3059        /* With all the info we got, fill in the values */
3060
3061        if (kvm_has_tsc_control)
3062                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3063                                            v->arch.l1_tsc_scaling_ratio);
3064
3065        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3066                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3067                                   &vcpu->hv_clock.tsc_shift,
3068                                   &vcpu->hv_clock.tsc_to_system_mul);
3069                vcpu->hw_tsc_khz = tgt_tsc_khz;
3070        }
3071
3072        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3073        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3074        vcpu->last_guest_tsc = tsc_timestamp;
3075
3076        /* If the host uses TSC clocksource, then it is stable */
3077        pvclock_flags = 0;
3078        if (use_master_clock)
3079                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3080
3081        vcpu->hv_clock.flags = pvclock_flags;
3082
3083        if (vcpu->pv_time_enabled)
3084                kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3085        if (vcpu->xen.vcpu_info_set)
3086                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3087                                       offsetof(struct compat_vcpu_info, time));
3088        if (vcpu->xen.vcpu_time_info_set)
3089                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3090        if (!v->vcpu_idx)
3091                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3092        return 0;
3093}
3094
3095/*
3096 * kvmclock updates which are isolated to a given vcpu, such as
3097 * vcpu->cpu migration, should not allow system_timestamp from
3098 * the rest of the vcpus to remain static. Otherwise ntp frequency
3099 * correction applies to one vcpu's system_timestamp but not
3100 * the others.
3101 *
3102 * So in those cases, request a kvmclock update for all vcpus.
3103 * We need to rate-limit these requests though, as they can
3104 * considerably slow guests that have a large number of vcpus.
3105 * The time for a remote vcpu to update its kvmclock is bound
3106 * by the delay we use to rate-limit the updates.
3107 */
3108
3109#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3110
3111static void kvmclock_update_fn(struct work_struct *work)
3112{
3113        unsigned long i;
3114        struct delayed_work *dwork = to_delayed_work(work);
3115        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3116                                           kvmclock_update_work);
3117        struct kvm *kvm = container_of(ka, struct kvm, arch);
3118        struct kvm_vcpu *vcpu;
3119
3120        kvm_for_each_vcpu(i, vcpu, kvm) {
3121                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3122                kvm_vcpu_kick(vcpu);
3123        }
3124}
3125
3126static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3127{
3128        struct kvm *kvm = v->kvm;
3129
3130        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3131        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3132                                        KVMCLOCK_UPDATE_DELAY);
3133}
3134
3135#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3136
3137static void kvmclock_sync_fn(struct work_struct *work)
3138{
3139        struct delayed_work *dwork = to_delayed_work(work);
3140        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3141                                           kvmclock_sync_work);
3142        struct kvm *kvm = container_of(ka, struct kvm, arch);
3143
3144        if (!kvmclock_periodic_sync)
3145                return;
3146
3147        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3148        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3149                                        KVMCLOCK_SYNC_PERIOD);
3150}
3151
3152/*
3153 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3154 */
3155static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3156{
3157        /* McStatusWrEn enabled? */
3158        if (guest_cpuid_is_amd_or_hygon(vcpu))
3159                return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3160
3161        return false;
3162}
3163
3164static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3165{
3166        u64 mcg_cap = vcpu->arch.mcg_cap;
3167        unsigned bank_num = mcg_cap & 0xff;
3168        u32 msr = msr_info->index;
3169        u64 data = msr_info->data;
3170
3171        switch (msr) {
3172        case MSR_IA32_MCG_STATUS:
3173                vcpu->arch.mcg_status = data;
3174                break;
3175        case MSR_IA32_MCG_CTL:
3176                if (!(mcg_cap & MCG_CTL_P) &&
3177                    (data || !msr_info->host_initiated))
3178                        return 1;
3179                if (data != 0 && data != ~(u64)0)
3180                        return 1;
3181                vcpu->arch.mcg_ctl = data;
3182                break;
3183        default:
3184                if (msr >= MSR_IA32_MC0_CTL &&
3185                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3186                        u32 offset = array_index_nospec(
3187                                msr - MSR_IA32_MC0_CTL,
3188                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3189
3190                        /* only 0 or all 1s can be written to IA32_MCi_CTL
3191                         * some Linux kernels though clear bit 10 in bank 4 to
3192                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3193                         * this to avoid an uncatched #GP in the guest
3194                         */
3195                        if ((offset & 0x3) == 0 &&
3196                            data != 0 && (data | (1 << 10)) != ~(u64)0)
3197                                return -1;
3198
3199                        /* MCi_STATUS */
3200                        if (!msr_info->host_initiated &&
3201                            (offset & 0x3) == 1 && data != 0) {
3202                                if (!can_set_mci_status(vcpu))
3203                                        return -1;
3204                        }
3205
3206                        vcpu->arch.mce_banks[offset] = data;
3207                        break;
3208                }
3209                return 1;
3210        }
3211        return 0;
3212}
3213
3214static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3215{
3216        u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3217
3218        return (vcpu->arch.apf.msr_en_val & mask) == mask;
3219}
3220
3221static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3222{
3223        gpa_t gpa = data & ~0x3f;
3224
3225        /* Bits 4:5 are reserved, Should be zero */
3226        if (data & 0x30)
3227                return 1;
3228
3229        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3230            (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3231                return 1;
3232
3233        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3234            (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3235                return 1;
3236
3237        if (!lapic_in_kernel(vcpu))
3238                return data ? 1 : 0;
3239
3240        vcpu->arch.apf.msr_en_val = data;
3241
3242        if (!kvm_pv_async_pf_enabled(vcpu)) {
3243                kvm_clear_async_pf_completion_queue(vcpu);
3244                kvm_async_pf_hash_reset(vcpu);
3245                return 0;
3246        }
3247
3248        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3249                                        sizeof(u64)))
3250                return 1;
3251
3252        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3253        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3254
3255        kvm_async_pf_wakeup_all(vcpu);
3256
3257        return 0;
3258}
3259
3260static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3261{
3262        /* Bits 8-63 are reserved */
3263        if (data >> 8)
3264                return 1;
3265
3266        if (!lapic_in_kernel(vcpu))
3267                return 1;
3268
3269        vcpu->arch.apf.msr_int_val = data;
3270
3271        vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3272
3273        return 0;
3274}
3275
3276static void kvmclock_reset(struct kvm_vcpu *vcpu)
3277{
3278        vcpu->arch.pv_time_enabled = false;
3279        vcpu->arch.time = 0;
3280}
3281
3282static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3283{
3284        ++vcpu->stat.tlb_flush;
3285        static_call(kvm_x86_tlb_flush_all)(vcpu);
3286}
3287
3288static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3289{
3290        ++vcpu->stat.tlb_flush;
3291
3292        if (!tdp_enabled) {
3293                /*
3294                 * A TLB flush on behalf of the guest is equivalent to
3295                 * INVPCID(all), toggling CR4.PGE, etc., which requires
3296                 * a forced sync of the shadow page tables.  Ensure all the
3297                 * roots are synced and the guest TLB in hardware is clean.
3298                 */
3299                kvm_mmu_sync_roots(vcpu);
3300                kvm_mmu_sync_prev_roots(vcpu);
3301        }
3302
3303        static_call(kvm_x86_tlb_flush_guest)(vcpu);
3304}
3305
3306
3307static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3308{
3309        ++vcpu->stat.tlb_flush;
3310        static_call(kvm_x86_tlb_flush_current)(vcpu);
3311}
3312
3313/*
3314 * Service "local" TLB flush requests, which are specific to the current MMU
3315 * context.  In addition to the generic event handling in vcpu_enter_guest(),
3316 * TLB flushes that are targeted at an MMU context also need to be serviced
3317 * prior before nested VM-Enter/VM-Exit.
3318 */
3319void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3320{
3321        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3322                kvm_vcpu_flush_tlb_current(vcpu);
3323
3324        if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3325                kvm_vcpu_flush_tlb_guest(vcpu);
3326}
3327EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3328
3329static void record_steal_time(struct kvm_vcpu *vcpu)
3330{
3331        struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3332        struct kvm_steal_time __user *st;
3333        struct kvm_memslots *slots;
3334        u64 steal;
3335        u32 version;
3336
3337        if (kvm_xen_msr_enabled(vcpu->kvm)) {
3338                kvm_xen_runstate_set_running(vcpu);
3339                return;
3340        }
3341
3342        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3343                return;
3344
3345        if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3346                return;
3347
3348        slots = kvm_memslots(vcpu->kvm);
3349
3350        if (unlikely(slots->generation != ghc->generation ||
3351                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3352                gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3353
3354                /* We rely on the fact that it fits in a single page. */
3355                BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3356
3357                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3358                    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3359                        return;
3360        }
3361
3362        st = (struct kvm_steal_time __user *)ghc->hva;
3363        /*
3364         * Doing a TLB flush here, on the guest's behalf, can avoid
3365         * expensive IPIs.
3366         */
3367        if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3368                u8 st_preempted = 0;
3369                int err = -EFAULT;
3370
3371                if (!user_access_begin(st, sizeof(*st)))
3372                        return;
3373
3374                asm volatile("1: xchgb %0, %2\n"
3375                             "xor %1, %1\n"
3376                             "2:\n"
3377                             _ASM_EXTABLE_UA(1b, 2b)
3378                             : "+q" (st_preempted),
3379                               "+&r" (err),
3380                               "+m" (st->preempted));
3381                if (err)
3382                        goto out;
3383
3384                user_access_end();
3385
3386                vcpu->arch.st.preempted = 0;
3387
3388                trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3389                                       st_preempted & KVM_VCPU_FLUSH_TLB);
3390                if (st_preempted & KVM_VCPU_FLUSH_TLB)
3391                        kvm_vcpu_flush_tlb_guest(vcpu);
3392
3393                if (!user_access_begin(st, sizeof(*st)))
3394                        goto dirty;
3395        } else {
3396                if (!user_access_begin(st, sizeof(*st)))
3397                        return;
3398
3399                unsafe_put_user(0, &st->preempted, out);
3400                vcpu->arch.st.preempted = 0;
3401        }
3402
3403        unsafe_get_user(version, &st->version, out);
3404        if (version & 1)
3405                version += 1;  /* first time write, random junk */
3406
3407        version += 1;
3408        unsafe_put_user(version, &st->version, out);
3409
3410        smp_wmb();
3411
3412        unsafe_get_user(steal, &st->steal, out);
3413        steal += current->sched_info.run_delay -
3414                vcpu->arch.st.last_steal;
3415        vcpu->arch.st.last_steal = current->sched_info.run_delay;
3416        unsafe_put_user(steal, &st->steal, out);
3417
3418        version += 1;
3419        unsafe_put_user(version, &st->version, out);
3420
3421 out:
3422        user_access_end();
3423 dirty:
3424        mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3425}
3426
3427int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3428{
3429        bool pr = false;
3430        u32 msr = msr_info->index;
3431        u64 data = msr_info->data;
3432
3433        if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3434                return kvm_xen_write_hypercall_page(vcpu, data);
3435
3436        switch (msr) {
3437        case MSR_AMD64_NB_CFG:
3438        case MSR_IA32_UCODE_WRITE:
3439        case MSR_VM_HSAVE_PA:
3440        case MSR_AMD64_PATCH_LOADER:
3441        case MSR_AMD64_BU_CFG2:
3442        case MSR_AMD64_DC_CFG:
3443        case MSR_F15H_EX_CFG:
3444                break;
3445
3446        case MSR_IA32_UCODE_REV:
3447                if (msr_info->host_initiated)
3448                        vcpu->arch.microcode_version = data;
3449                break;
3450        case MSR_IA32_ARCH_CAPABILITIES:
3451                if (!msr_info->host_initiated)
3452                        return 1;
3453                vcpu->arch.arch_capabilities = data;
3454                break;
3455        case MSR_IA32_PERF_CAPABILITIES: {
3456                struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3457
3458                if (!msr_info->host_initiated)
3459                        return 1;
3460                if (kvm_get_msr_feature(&msr_ent))
3461                        return 1;
3462                if (data & ~msr_ent.data)
3463                        return 1;
3464
3465                vcpu->arch.perf_capabilities = data;
3466
3467                return 0;
3468                }
3469        case MSR_EFER:
3470                return set_efer(vcpu, msr_info);
3471        case MSR_K7_HWCR:
3472                data &= ~(u64)0x40;     /* ignore flush filter disable */
3473                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3474                data &= ~(u64)0x8;      /* ignore TLB cache disable */
3475
3476                /* Handle McStatusWrEn */
3477                if (data == BIT_ULL(18)) {
3478                        vcpu->arch.msr_hwcr = data;
3479                } else if (data != 0) {
3480                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3481                                    data);
3482                        return 1;
3483                }
3484                break;
3485        case MSR_FAM10H_MMIO_CONF_BASE:
3486                if (data != 0) {
3487                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3488                                    "0x%llx\n", data);
3489                        return 1;
3490                }
3491                break;
3492        case 0x200 ... 0x2ff:
3493                return kvm_mtrr_set_msr(vcpu, msr, data);
3494        case MSR_IA32_APICBASE:
3495                return kvm_set_apic_base(vcpu, msr_info);
3496        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3497                return kvm_x2apic_msr_write(vcpu, msr, data);
3498        case MSR_IA32_TSC_DEADLINE:
3499                kvm_set_lapic_tscdeadline_msr(vcpu, data);
3500                break;
3501        case MSR_IA32_TSC_ADJUST:
3502                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3503                        if (!msr_info->host_initiated) {
3504                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3505                                adjust_tsc_offset_guest(vcpu, adj);
3506                                /* Before back to guest, tsc_timestamp must be adjusted
3507                                 * as well, otherwise guest's percpu pvclock time could jump.
3508                                 */
3509                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3510                        }
3511                        vcpu->arch.ia32_tsc_adjust_msr = data;
3512                }
3513                break;
3514        case MSR_IA32_MISC_ENABLE:
3515                if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3516                    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3517                        if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3518                                return 1;
3519                        vcpu->arch.ia32_misc_enable_msr = data;
3520                        kvm_update_cpuid_runtime(vcpu);
3521                } else {
3522                        vcpu->arch.ia32_misc_enable_msr = data;
3523                }
3524                break;
3525        case MSR_IA32_SMBASE:
3526                if (!msr_info->host_initiated)
3527                        return 1;
3528                vcpu->arch.smbase = data;
3529                break;
3530        case MSR_IA32_POWER_CTL:
3531                vcpu->arch.msr_ia32_power_ctl = data;
3532                break;
3533        case MSR_IA32_TSC:
3534                if (msr_info->host_initiated) {
3535                        kvm_synchronize_tsc(vcpu, data);
3536                } else {
3537                        u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3538                        adjust_tsc_offset_guest(vcpu, adj);
3539                        vcpu->arch.ia32_tsc_adjust_msr += adj;
3540                }
3541                break;
3542        case MSR_IA32_XSS:
3543                if (!msr_info->host_initiated &&
3544                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3545                        return 1;
3546                /*
3547                 * KVM supports exposing PT to the guest, but does not support
3548                 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3549                 * XSAVES/XRSTORS to save/restore PT MSRs.
3550                 */
3551                if (data & ~supported_xss)
3552                        return 1;
3553                vcpu->arch.ia32_xss = data;
3554                kvm_update_cpuid_runtime(vcpu);
3555                break;
3556        case MSR_SMI_COUNT:
3557                if (!msr_info->host_initiated)
3558                        return 1;
3559                vcpu->arch.smi_count = data;
3560                break;
3561        case MSR_KVM_WALL_CLOCK_NEW:
3562                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3563                        return 1;
3564
3565                vcpu->kvm->arch.wall_clock = data;
3566                kvm_write_wall_clock(vcpu->kvm, data, 0);
3567                break;
3568        case MSR_KVM_WALL_CLOCK:
3569                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3570                        return 1;
3571
3572                vcpu->kvm->arch.wall_clock = data;
3573                kvm_write_wall_clock(vcpu->kvm, data, 0);
3574                break;
3575        case MSR_KVM_SYSTEM_TIME_NEW:
3576                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3577                        return 1;
3578
3579                kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3580                break;
3581        case MSR_KVM_SYSTEM_TIME:
3582                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3583                        return 1;
3584
3585                kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3586                break;
3587        case MSR_KVM_ASYNC_PF_EN:
3588                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3589                        return 1;
3590
3591                if (kvm_pv_enable_async_pf(vcpu, data))
3592                        return 1;
3593                break;
3594        case MSR_KVM_ASYNC_PF_INT:
3595                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3596                        return 1;
3597
3598                if (kvm_pv_enable_async_pf_int(vcpu, data))
3599                        return 1;
3600                break;
3601        case MSR_KVM_ASYNC_PF_ACK:
3602                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3603                        return 1;
3604                if (data & 0x1) {
3605                        vcpu->arch.apf.pageready_pending = false;
3606                        kvm_check_async_pf_completion(vcpu);
3607                }
3608                break;
3609        case MSR_KVM_STEAL_TIME:
3610                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3611                        return 1;
3612
3613                if (unlikely(!sched_info_on()))
3614                        return 1;
3615
3616                if (data & KVM_STEAL_RESERVED_MASK)
3617                        return 1;
3618
3619                vcpu->arch.st.msr_val = data;
3620
3621                if (!(data & KVM_MSR_ENABLED))
3622                        break;
3623
3624                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3625
3626                break;
3627        case MSR_KVM_PV_EOI_EN:
3628                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3629                        return 1;
3630
3631                if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3632                        return 1;
3633                break;
3634
3635        case MSR_KVM_POLL_CONTROL:
3636                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3637                        return 1;
3638
3639                /* only enable bit supported */
3640                if (data & (-1ULL << 1))
3641                        return 1;
3642
3643                vcpu->arch.msr_kvm_poll_control = data;
3644                break;
3645
3646        case MSR_IA32_MCG_CTL:
3647        case MSR_IA32_MCG_STATUS:
3648        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3649                return set_msr_mce(vcpu, msr_info);
3650
3651        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3652        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3653                pr = true;
3654                fallthrough;
3655        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3656        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3657                if (kvm_pmu_is_valid_msr(vcpu, msr))
3658                        return kvm_pmu_set_msr(vcpu, msr_info);
3659
3660                if (pr || data != 0)
3661                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3662                                    "0x%x data 0x%llx\n", msr, data);
3663                break;
3664        case MSR_K7_CLK_CTL:
3665                /*
3666                 * Ignore all writes to this no longer documented MSR.
3667                 * Writes are only relevant for old K7 processors,
3668                 * all pre-dating SVM, but a recommended workaround from
3669                 * AMD for these chips. It is possible to specify the
3670                 * affected processor models on the command line, hence
3671                 * the need to ignore the workaround.
3672                 */
3673                break;
3674        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3675        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3676        case HV_X64_MSR_SYNDBG_OPTIONS:
3677        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3678        case HV_X64_MSR_CRASH_CTL:
3679        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3680        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3681        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3682        case HV_X64_MSR_TSC_EMULATION_STATUS:
3683                return kvm_hv_set_msr_common(vcpu, msr, data,
3684                                             msr_info->host_initiated);
3685        case MSR_IA32_BBL_CR_CTL3:
3686                /* Drop writes to this legacy MSR -- see rdmsr
3687                 * counterpart for further detail.
3688                 */
3689                if (report_ignored_msrs)
3690                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3691                                msr, data);
3692                break;
3693        case MSR_AMD64_OSVW_ID_LENGTH:
3694                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3695                        return 1;
3696                vcpu->arch.osvw.length = data;
3697                break;
3698        case MSR_AMD64_OSVW_STATUS:
3699                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3700                        return 1;
3701                vcpu->arch.osvw.status = data;
3702                break;
3703        case MSR_PLATFORM_INFO:
3704                if (!msr_info->host_initiated ||
3705                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3706                     cpuid_fault_enabled(vcpu)))
3707                        return 1;
3708                vcpu->arch.msr_platform_info = data;
3709                break;
3710        case MSR_MISC_FEATURES_ENABLES:
3711                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3712                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3713                     !supports_cpuid_fault(vcpu)))
3714                        return 1;
3715                vcpu->arch.msr_misc_features_enables = data;
3716                break;
3717#ifdef CONFIG_X86_64
3718        case MSR_IA32_XFD:
3719                if (!msr_info->host_initiated &&
3720                    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3721                        return 1;
3722
3723                if (data & ~kvm_guest_supported_xfd(vcpu))
3724                        return 1;
3725
3726                fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3727                break;
3728        case MSR_IA32_XFD_ERR:
3729                if (!msr_info->host_initiated &&
3730                    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3731                        return 1;
3732
3733                if (data & ~kvm_guest_supported_xfd(vcpu))
3734                        return 1;
3735
3736                vcpu->arch.guest_fpu.xfd_err = data;
3737                break;
3738#endif
3739        default:
3740                if (kvm_pmu_is_valid_msr(vcpu, msr))
3741                        return kvm_pmu_set_msr(vcpu, msr_info);
3742                return KVM_MSR_RET_INVALID;
3743        }
3744        return 0;
3745}
3746EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3747
3748static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3749{
3750        u64 data;
3751        u64 mcg_cap = vcpu->arch.mcg_cap;
3752        unsigned bank_num = mcg_cap & 0xff;
3753
3754        switch (msr) {
3755        case MSR_IA32_P5_MC_ADDR:
3756        case MSR_IA32_P5_MC_TYPE:
3757                data = 0;
3758                break;
3759        case MSR_IA32_MCG_CAP:
3760                data = vcpu->arch.mcg_cap;
3761                break;
3762        case MSR_IA32_MCG_CTL:
3763                if (!(mcg_cap & MCG_CTL_P) && !host)
3764                        return 1;
3765                data = vcpu->arch.mcg_ctl;
3766                break;
3767        case MSR_IA32_MCG_STATUS:
3768                data = vcpu->arch.mcg_status;
3769                break;
3770        default:
3771                if (msr >= MSR_IA32_MC0_CTL &&
3772                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3773                        u32 offset = array_index_nospec(
3774                                msr - MSR_IA32_MC0_CTL,
3775                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3776
3777                        data = vcpu->arch.mce_banks[offset];
3778                        break;
3779                }
3780                return 1;
3781        }
3782        *pdata = data;
3783        return 0;
3784}
3785
3786int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3787{
3788        switch (msr_info->index) {
3789        case MSR_IA32_PLATFORM_ID:
3790        case MSR_IA32_EBL_CR_POWERON:
3791        case MSR_IA32_LASTBRANCHFROMIP:
3792        case MSR_IA32_LASTBRANCHTOIP:
3793        case MSR_IA32_LASTINTFROMIP:
3794        case MSR_IA32_LASTINTTOIP:
3795        case MSR_AMD64_SYSCFG:
3796        case MSR_K8_TSEG_ADDR:
3797        case MSR_K8_TSEG_MASK:
3798        case MSR_VM_HSAVE_PA:
3799        case MSR_K8_INT_PENDING_MSG:
3800        case MSR_AMD64_NB_CFG:
3801        case MSR_FAM10H_MMIO_CONF_BASE:
3802        case MSR_AMD64_BU_CFG2:
3803        case MSR_IA32_PERF_CTL:
3804        case MSR_AMD64_DC_CFG:
3805        case MSR_F15H_EX_CFG:
3806        /*
3807         * Intel Sandy Bridge CPUs must support the RAPL (running average power
3808         * limit) MSRs. Just return 0, as we do not want to expose the host
3809         * data here. Do not conditionalize this on CPUID, as KVM does not do
3810         * so for existing CPU-specific MSRs.
3811         */
3812        case MSR_RAPL_POWER_UNIT:
3813        case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3814        case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3815        case MSR_PKG_ENERGY_STATUS:     /* Total package */
3816        case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3817                msr_info->data = 0;
3818                break;
3819        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3820                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3821                        return kvm_pmu_get_msr(vcpu, msr_info);
3822                if (!msr_info->host_initiated)
3823                        return 1;
3824                msr_info->data = 0;
3825                break;
3826        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3827        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3828        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3829        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3830                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3831                        return kvm_pmu_get_msr(vcpu, msr_info);
3832                msr_info->data = 0;
3833                break;
3834        case MSR_IA32_UCODE_REV:
3835                msr_info->data = vcpu->arch.microcode_version;
3836                break;
3837        case MSR_IA32_ARCH_CAPABILITIES:
3838                if (!msr_info->host_initiated &&
3839                    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3840                        return 1;
3841                msr_info->data = vcpu->arch.arch_capabilities;
3842                break;
3843        case MSR_IA32_PERF_CAPABILITIES:
3844                if (!msr_info->host_initiated &&
3845                    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3846                        return 1;
3847                msr_info->data = vcpu->arch.perf_capabilities;
3848                break;
3849        case MSR_IA32_POWER_CTL:
3850                msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3851                break;
3852        case MSR_IA32_TSC: {
3853                /*
3854                 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3855                 * even when not intercepted. AMD manual doesn't explicitly
3856                 * state this but appears to behave the same.
3857                 *
3858                 * On userspace reads and writes, however, we unconditionally
3859                 * return L1's TSC value to ensure backwards-compatible
3860                 * behavior for migration.
3861                 */
3862                u64 offset, ratio;
3863
3864                if (msr_info->host_initiated) {
3865                        offset = vcpu->arch.l1_tsc_offset;
3866                        ratio = vcpu->arch.l1_tsc_scaling_ratio;
3867                } else {
3868                        offset = vcpu->arch.tsc_offset;
3869                        ratio = vcpu->arch.tsc_scaling_ratio;
3870                }
3871
3872                msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3873                break;
3874        }
3875        case MSR_MTRRcap:
3876        case 0x200 ... 0x2ff:
3877                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3878        case 0xcd: /* fsb frequency */
3879                msr_info->data = 3;
3880                break;
3881                /*
3882                 * MSR_EBC_FREQUENCY_ID
3883                 * Conservative value valid for even the basic CPU models.
3884                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3885                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3886                 * and 266MHz for model 3, or 4. Set Core Clock
3887                 * Frequency to System Bus Frequency Ratio to 1 (bits
3888                 * 31:24) even though these are only valid for CPU
3889                 * models > 2, however guests may end up dividing or
3890                 * multiplying by zero otherwise.
3891                 */
3892        case MSR_EBC_FREQUENCY_ID:
3893                msr_info->data = 1 << 24;
3894                break;
3895        case MSR_IA32_APICBASE:
3896                msr_info->data = kvm_get_apic_base(vcpu);
3897                break;
3898        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3899                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3900        case MSR_IA32_TSC_DEADLINE:
3901                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3902                break;
3903        case MSR_IA32_TSC_ADJUST:
3904                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3905                break;
3906        case MSR_IA32_MISC_ENABLE:
3907                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3908                break;
3909        case MSR_IA32_SMBASE:
3910                if (!msr_info->host_initiated)
3911                        return 1;
3912                msr_info->data = vcpu->arch.smbase;
3913                break;
3914        case MSR_SMI_COUNT:
3915                msr_info->data = vcpu->arch.smi_count;
3916                break;
3917        case MSR_IA32_PERF_STATUS:
3918                /* TSC increment by tick */
3919                msr_info->data = 1000ULL;
3920                /* CPU multiplier */
3921                msr_info->data |= (((uint64_t)4ULL) << 40);
3922                break;
3923        case MSR_EFER:
3924                msr_info->data = vcpu->arch.efer;
3925                break;
3926        case MSR_KVM_WALL_CLOCK:
3927                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3928                        return 1;
3929
3930                msr_info->data = vcpu->kvm->arch.wall_clock;
3931                break;
3932        case MSR_KVM_WALL_CLOCK_NEW:
3933                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3934                        return 1;
3935
3936                msr_info->data = vcpu->kvm->arch.wall_clock;
3937                break;
3938        case MSR_KVM_SYSTEM_TIME:
3939                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3940                        return 1;
3941
3942                msr_info->data = vcpu->arch.time;
3943                break;
3944        case MSR_KVM_SYSTEM_TIME_NEW:
3945                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3946                        return 1;
3947
3948                msr_info->data = vcpu->arch.time;
3949                break;
3950        case MSR_KVM_ASYNC_PF_EN:
3951                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3952                        return 1;
3953
3954                msr_info->data = vcpu->arch.apf.msr_en_val;
3955                break;
3956        case MSR_KVM_ASYNC_PF_INT:
3957                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3958                        return 1;
3959
3960                msr_info->data = vcpu->arch.apf.msr_int_val;
3961                break;
3962        case MSR_KVM_ASYNC_PF_ACK:
3963                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3964                        return 1;
3965
3966                msr_info->data = 0;
3967                break;
3968        case MSR_KVM_STEAL_TIME:
3969                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3970                        return 1;
3971
3972                msr_info->data = vcpu->arch.st.msr_val;
3973                break;
3974        case MSR_KVM_PV_EOI_EN:
3975                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3976                        return 1;
3977
3978                msr_info->data = vcpu->arch.pv_eoi.msr_val;
3979                break;
3980        case MSR_KVM_POLL_CONTROL:
3981                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3982                        return 1;
3983
3984                msr_info->data = vcpu->arch.msr_kvm_poll_control;
3985                break;
3986        case MSR_IA32_P5_MC_ADDR:
3987        case MSR_IA32_P5_MC_TYPE:
3988        case MSR_IA32_MCG_CAP:
3989        case MSR_IA32_MCG_CTL:
3990        case MSR_IA32_MCG_STATUS:
3991        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3992                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3993                                   msr_info->host_initiated);
3994        case MSR_IA32_XSS:
3995                if (!msr_info->host_initiated &&
3996                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3997                        return 1;
3998                msr_info->data = vcpu->arch.ia32_xss;
3999                break;
4000        case MSR_K7_CLK_CTL:
4001                /*
4002                 * Provide expected ramp-up count for K7. All other
4003                 * are set to zero, indicating minimum divisors for
4004                 * every field.
4005                 *
4006                 * This prevents guest kernels on AMD host with CPU
4007                 * type 6, model 8 and higher from exploding due to
4008                 * the rdmsr failing.
4009                 */
4010                msr_info->data = 0x20000000;
4011                break;
4012        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4013        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4014        case HV_X64_MSR_SYNDBG_OPTIONS:
4015        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4016        case HV_X64_MSR_CRASH_CTL:
4017        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4018        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4019        case HV_X64_MSR_TSC_EMULATION_CONTROL:
4020        case HV_X64_MSR_TSC_EMULATION_STATUS:
4021                return kvm_hv_get_msr_common(vcpu,
4022                                             msr_info->index, &msr_info->data,
4023                                             msr_info->host_initiated);
4024        case MSR_IA32_BBL_CR_CTL3:
4025                /* This legacy MSR exists but isn't fully documented in current
4026                 * silicon.  It is however accessed by winxp in very narrow
4027                 * scenarios where it sets bit #19, itself documented as
4028                 * a "reserved" bit.  Best effort attempt to source coherent
4029                 * read data here should the balance of the register be
4030                 * interpreted by the guest:
4031                 *
4032                 * L2 cache control register 3: 64GB range, 256KB size,
4033                 * enabled, latency 0x1, configured
4034                 */
4035                msr_info->data = 0xbe702111;
4036                break;
4037        case MSR_AMD64_OSVW_ID_LENGTH:
4038                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4039                        return 1;
4040                msr_info->data = vcpu->arch.osvw.length;
4041                break;
4042        case MSR_AMD64_OSVW_STATUS:
4043                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4044                        return 1;
4045                msr_info->data = vcpu->arch.osvw.status;
4046                break;
4047        case MSR_PLATFORM_INFO:
4048                if (!msr_info->host_initiated &&
4049                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4050                        return 1;
4051                msr_info->data = vcpu->arch.msr_platform_info;
4052                break;
4053        case MSR_MISC_FEATURES_ENABLES:
4054                msr_info->data = vcpu->arch.msr_misc_features_enables;
4055                break;
4056        case MSR_K7_HWCR:
4057                msr_info->data = vcpu->arch.msr_hwcr;
4058                break;
4059#ifdef CONFIG_X86_64
4060        case MSR_IA32_XFD:
4061                if (!msr_info->host_initiated &&
4062                    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4063                        return 1;
4064
4065                msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4066                break;
4067        case MSR_IA32_XFD_ERR:
4068                if (!msr_info->host_initiated &&
4069                    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4070                        return 1;
4071
4072                msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4073                break;
4074#endif
4075        default:
4076                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4077                        return kvm_pmu_get_msr(vcpu, msr_info);
4078                return KVM_MSR_RET_INVALID;
4079        }
4080        return 0;
4081}
4082EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4083
4084/*
4085 * Read or write a bunch of msrs. All parameters are kernel addresses.
4086 *
4087 * @return number of msrs set successfully.
4088 */
4089static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4090                    struct kvm_msr_entry *entries,
4091                    int (*do_msr)(struct kvm_vcpu *vcpu,
4092                                  unsigned index, u64 *data))
4093{
4094        int i;
4095
4096        for (i = 0; i < msrs->nmsrs; ++i)
4097                if (do_msr(vcpu, entries[i].index, &entries[i].data))
4098                        break;
4099
4100        return i;
4101}
4102
4103/*
4104 * Read or write a bunch of msrs. Parameters are user addresses.
4105 *
4106 * @return number of msrs set successfully.
4107 */
4108static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4109                  int (*do_msr)(struct kvm_vcpu *vcpu,
4110                                unsigned index, u64 *data),
4111                  int writeback)
4112{
4113        struct kvm_msrs msrs;
4114        struct kvm_msr_entry *entries;
4115        int r, n;
4116        unsigned size;
4117
4118        r = -EFAULT;
4119        if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4120                goto out;
4121
4122        r = -E2BIG;
4123        if (msrs.nmsrs >= MAX_IO_MSRS)
4124                goto out;
4125
4126        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4127        entries = memdup_user(user_msrs->entries, size);
4128        if (IS_ERR(entries)) {
4129                r = PTR_ERR(entries);
4130                goto out;
4131        }
4132
4133        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4134        if (r < 0)
4135                goto out_free;
4136
4137        r = -EFAULT;
4138        if (writeback && copy_to_user(user_msrs->entries, entries, size))
4139                goto out_free;
4140
4141        r = n;
4142
4143out_free:
4144        kfree(entries);
4145out:
4146        return r;
4147}
4148
4149static inline bool kvm_can_mwait_in_guest(void)
4150{
4151        return boot_cpu_has(X86_FEATURE_MWAIT) &&
4152                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4153                boot_cpu_has(X86_FEATURE_ARAT);
4154}
4155
4156static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4157                                            struct kvm_cpuid2 __user *cpuid_arg)
4158{
4159        struct kvm_cpuid2 cpuid;
4160        int r;
4161
4162        r = -EFAULT;
4163        if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4164                return r;
4165
4166        r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4167        if (r)
4168                return r;
4169
4170        r = -EFAULT;
4171        if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4172                return r;
4173
4174        return 0;
4175}
4176
4177int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4178{
4179        int r = 0;
4180
4181        switch (ext) {
4182        case KVM_CAP_IRQCHIP:
4183        case KVM_CAP_HLT:
4184        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4185        case KVM_CAP_SET_TSS_ADDR:
4186        case KVM_CAP_EXT_CPUID:
4187        case KVM_CAP_EXT_EMUL_CPUID:
4188        case KVM_CAP_CLOCKSOURCE:
4189        case KVM_CAP_PIT:
4190        case KVM_CAP_NOP_IO_DELAY:
4191        case KVM_CAP_MP_STATE:
4192        case KVM_CAP_SYNC_MMU:
4193        case KVM_CAP_USER_NMI:
4194        case KVM_CAP_REINJECT_CONTROL:
4195        case KVM_CAP_IRQ_INJECT_STATUS:
4196        case KVM_CAP_IOEVENTFD:
4197        case KVM_CAP_IOEVENTFD_NO_LENGTH:
4198        case KVM_CAP_PIT2:
4199        case KVM_CAP_PIT_STATE2:
4200        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4201        case KVM_CAP_VCPU_EVENTS:
4202        case KVM_CAP_HYPERV:
4203        case KVM_CAP_HYPERV_VAPIC:
4204        case KVM_CAP_HYPERV_SPIN:
4205        case KVM_CAP_HYPERV_SYNIC:
4206        case KVM_CAP_HYPERV_SYNIC2:
4207        case KVM_CAP_HYPERV_VP_INDEX:
4208        case KVM_CAP_HYPERV_EVENTFD:
4209        case KVM_CAP_HYPERV_TLBFLUSH:
4210        case KVM_CAP_HYPERV_SEND_IPI:
4211        case KVM_CAP_HYPERV_CPUID:
4212        case KVM_CAP_HYPERV_ENFORCE_CPUID:
4213        case KVM_CAP_SYS_HYPERV_CPUID:
4214        case KVM_CAP_PCI_SEGMENT:
4215        case KVM_CAP_DEBUGREGS:
4216        case KVM_CAP_X86_ROBUST_SINGLESTEP:
4217        case KVM_CAP_XSAVE:
4218        case KVM_CAP_ASYNC_PF:
4219        case KVM_CAP_ASYNC_PF_INT:
4220        case KVM_CAP_GET_TSC_KHZ:
4221        case KVM_CAP_KVMCLOCK_CTRL:
4222        case KVM_CAP_READONLY_MEM:
4223        case KVM_CAP_HYPERV_TIME:
4224        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4225        case KVM_CAP_TSC_DEADLINE_TIMER:
4226        case KVM_CAP_DISABLE_QUIRKS:
4227        case KVM_CAP_SET_BOOT_CPU_ID:
4228        case KVM_CAP_SPLIT_IRQCHIP:
4229        case KVM_CAP_IMMEDIATE_EXIT:
4230        case KVM_CAP_PMU_EVENT_FILTER:
4231        case KVM_CAP_GET_MSR_FEATURES:
4232        case KVM_CAP_MSR_PLATFORM_INFO:
4233        case KVM_CAP_EXCEPTION_PAYLOAD:
4234        case KVM_CAP_SET_GUEST_DEBUG:
4235        case KVM_CAP_LAST_CPU:
4236        case KVM_CAP_X86_USER_SPACE_MSR:
4237        case KVM_CAP_X86_MSR_FILTER:
4238        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4239#ifdef CONFIG_X86_SGX_KVM
4240        case KVM_CAP_SGX_ATTRIBUTE:
4241#endif
4242        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4243        case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4244        case KVM_CAP_SREGS2:
4245        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4246        case KVM_CAP_VCPU_ATTRIBUTES:
4247        case KVM_CAP_SYS_ATTRIBUTES:
4248        case KVM_CAP_ENABLE_CAP:
4249                r = 1;
4250                break;
4251        case KVM_CAP_EXIT_HYPERCALL:
4252                r = KVM_EXIT_HYPERCALL_VALID_MASK;
4253                break;
4254        case KVM_CAP_SET_GUEST_DEBUG2:
4255                return KVM_GUESTDBG_VALID_MASK;
4256#ifdef CONFIG_KVM_XEN
4257        case KVM_CAP_XEN_HVM:
4258                r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4259                    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4260                    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4261                    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4262                if (sched_info_on())
4263                        r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4264                break;
4265#endif
4266        case KVM_CAP_SYNC_REGS:
4267                r = KVM_SYNC_X86_VALID_FIELDS;
4268                break;
4269        case KVM_CAP_ADJUST_CLOCK:
4270                r = KVM_CLOCK_VALID_FLAGS;
4271                break;
4272        case KVM_CAP_X86_DISABLE_EXITS:
4273                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4274                      KVM_X86_DISABLE_EXITS_CSTATE;
4275                if(kvm_can_mwait_in_guest())
4276                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
4277                break;
4278        case KVM_CAP_X86_SMM:
4279                /* SMBASE is usually relocated above 1M on modern chipsets,
4280                 * and SMM handlers might indeed rely on 4G segment limits,
4281                 * so do not report SMM to be available if real mode is
4282                 * emulated via vm86 mode.  Still, do not go to great lengths
4283                 * to avoid userspace's usage of the feature, because it is a
4284                 * fringe case that is not enabled except via specific settings
4285                 * of the module parameters.
4286                 */
4287                r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4288                break;
4289        case KVM_CAP_VAPIC:
4290                r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4291                break;
4292        case KVM_CAP_NR_VCPUS:
4293                r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4294                break;
4295        case KVM_CAP_MAX_VCPUS:
4296                r = KVM_MAX_VCPUS;
4297                break;
4298        case KVM_CAP_MAX_VCPU_ID:
4299                r = KVM_MAX_VCPU_IDS;
4300                break;
4301        case KVM_CAP_PV_MMU:    /* obsolete */
4302                r = 0;
4303                break;
4304        case KVM_CAP_MCE:
4305                r = KVM_MAX_MCE_BANKS;
4306                break;
4307        case KVM_CAP_XCRS:
4308                r = boot_cpu_has(X86_FEATURE_XSAVE);
4309                break;
4310        case KVM_CAP_TSC_CONTROL:
4311                r = kvm_has_tsc_control;
4312                break;
4313        case KVM_CAP_X2APIC_API:
4314                r = KVM_X2APIC_API_VALID_FLAGS;
4315                break;
4316        case KVM_CAP_NESTED_STATE:
4317                r = kvm_x86_ops.nested_ops->get_state ?
4318                        kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4319                break;
4320        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4321                r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4322                break;
4323        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4324                r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4325                break;
4326        case KVM_CAP_SMALLER_MAXPHYADDR:
4327                r = (int) allow_smaller_maxphyaddr;
4328                break;
4329        case KVM_CAP_STEAL_TIME:
4330                r = sched_info_on();
4331                break;
4332        case KVM_CAP_X86_BUS_LOCK_EXIT:
4333                if (kvm_has_bus_lock_exit)
4334                        r = KVM_BUS_LOCK_DETECTION_OFF |
4335                            KVM_BUS_LOCK_DETECTION_EXIT;
4336                else
4337                        r = 0;
4338                break;
4339        case KVM_CAP_XSAVE2: {
4340                u64 guest_perm = xstate_get_guest_group_perm();
4341
4342                r = xstate_required_size(supported_xcr0 & guest_perm, false);
4343                if (r < sizeof(struct kvm_xsave))
4344                        r = sizeof(struct kvm_xsave);
4345                break;
4346        }
4347        default:
4348                break;
4349        }
4350        return r;
4351}
4352
4353static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4354{
4355        void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4356
4357        if ((u64)(unsigned long)uaddr != attr->addr)
4358                return ERR_PTR_USR(-EFAULT);
4359        return uaddr;
4360}
4361
4362static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4363{
4364        u64 __user *uaddr = kvm_get_attr_addr(attr);
4365
4366        if (attr->group)
4367                return -ENXIO;
4368
4369        if (IS_ERR(uaddr))
4370                return PTR_ERR(uaddr);
4371
4372        switch (attr->attr) {
4373        case KVM_X86_XCOMP_GUEST_SUPP:
4374                if (put_user(supported_xcr0, uaddr))
4375                        return -EFAULT;
4376                return 0;
4377        default:
4378                return -ENXIO;
4379                break;
4380        }
4381}
4382
4383static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4384{
4385        if (attr->group)
4386                return -ENXIO;
4387
4388        switch (attr->attr) {
4389        case KVM_X86_XCOMP_GUEST_SUPP:
4390                return 0;
4391        default:
4392                return -ENXIO;
4393        }
4394}
4395
4396long kvm_arch_dev_ioctl(struct file *filp,
4397                        unsigned int ioctl, unsigned long arg)
4398{
4399        void __user *argp = (void __user *)arg;
4400        long r;
4401
4402        switch (ioctl) {
4403        case KVM_GET_MSR_INDEX_LIST: {
4404                struct kvm_msr_list __user *user_msr_list = argp;
4405                struct kvm_msr_list msr_list;
4406                unsigned n;
4407
4408                r = -EFAULT;
4409                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4410                        goto out;
4411                n = msr_list.nmsrs;
4412                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4413                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4414                        goto out;
4415                r = -E2BIG;
4416                if (n < msr_list.nmsrs)
4417                        goto out;
4418                r = -EFAULT;
4419                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4420                                 num_msrs_to_save * sizeof(u32)))
4421                        goto out;
4422                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4423                                 &emulated_msrs,
4424                                 num_emulated_msrs * sizeof(u32)))
4425                        goto out;
4426                r = 0;
4427                break;
4428        }
4429        case KVM_GET_SUPPORTED_CPUID:
4430        case KVM_GET_EMULATED_CPUID: {
4431                struct kvm_cpuid2 __user *cpuid_arg = argp;
4432                struct kvm_cpuid2 cpuid;
4433
4434                r = -EFAULT;
4435                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436                        goto out;
4437
4438                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4439                                            ioctl);
4440                if (r)
4441                        goto out;
4442
4443                r = -EFAULT;
4444                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4445                        goto out;
4446                r = 0;
4447                break;
4448        }
4449        case KVM_X86_GET_MCE_CAP_SUPPORTED:
4450                r = -EFAULT;
4451                if (copy_to_user(argp, &kvm_mce_cap_supported,
4452                                 sizeof(kvm_mce_cap_supported)))
4453                        goto out;
4454                r = 0;
4455                break;
4456        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4457                struct kvm_msr_list __user *user_msr_list = argp;
4458                struct kvm_msr_list msr_list;
4459                unsigned int n;
4460
4461                r = -EFAULT;
4462                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4463                        goto out;
4464                n = msr_list.nmsrs;
4465                msr_list.nmsrs = num_msr_based_features;
4466                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4467                        goto out;
4468                r = -E2BIG;
4469                if (n < msr_list.nmsrs)
4470                        goto out;
4471                r = -EFAULT;
4472                if (copy_to_user(user_msr_list->indices, &msr_based_features,
4473                                 num_msr_based_features * sizeof(u32)))
4474                        goto out;
4475                r = 0;
4476                break;
4477        }
4478        case KVM_GET_MSRS:
4479                r = msr_io(NULL, argp, do_get_msr_feature, 1);
4480                break;
4481        case KVM_GET_SUPPORTED_HV_CPUID:
4482                r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4483                break;
4484        case KVM_GET_DEVICE_ATTR: {
4485                struct kvm_device_attr attr;
4486                r = -EFAULT;
4487                if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4488                        break;
4489                r = kvm_x86_dev_get_attr(&attr);
4490                break;
4491        }
4492        case KVM_HAS_DEVICE_ATTR: {
4493                struct kvm_device_attr attr;
4494                r = -EFAULT;
4495                if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4496                        break;
4497                r = kvm_x86_dev_has_attr(&attr);
4498                break;
4499        }
4500        default:
4501                r = -EINVAL;
4502                break;
4503        }
4504out:
4505        return r;
4506}
4507
4508static void wbinvd_ipi(void *garbage)
4509{
4510        wbinvd();
4511}
4512
4513static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4514{
4515        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4516}
4517
4518void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4519{
4520        /* Address WBINVD may be executed by guest */
4521        if (need_emulate_wbinvd(vcpu)) {
4522                if (static_call(kvm_x86_has_wbinvd_exit)())
4523                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4524                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4525                        smp_call_function_single(vcpu->cpu,
4526                                        wbinvd_ipi, NULL, 1);
4527        }
4528
4529        static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4530
4531        /* Save host pkru register if supported */
4532        vcpu->arch.host_pkru = read_pkru();
4533
4534        /* Apply any externally detected TSC adjustments (due to suspend) */
4535        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4536                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4537                vcpu->arch.tsc_offset_adjustment = 0;
4538                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4539        }
4540
4541        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4542                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4543                                rdtsc() - vcpu->arch.last_host_tsc;
4544                if (tsc_delta < 0)
4545                        mark_tsc_unstable("KVM discovered backwards TSC");
4546
4547                if (kvm_check_tsc_unstable()) {
4548                        u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4549                                                vcpu->arch.last_guest_tsc);
4550                        kvm_vcpu_write_tsc_offset(vcpu, offset);
4551                        vcpu->arch.tsc_catchup = 1;
4552                }
4553
4554                if (kvm_lapic_hv_timer_in_use(vcpu))
4555                        kvm_lapic_restart_hv_timer(vcpu);
4556
4557                /*
4558                 * On a host with synchronized TSC, there is no need to update
4559                 * kvmclock on vcpu->cpu migration
4560                 */
4561                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4562                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4563                if (vcpu->cpu != cpu)
4564                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4565                vcpu->cpu = cpu;
4566        }
4567
4568        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4569}
4570
4571static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4572{
4573        struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4574        struct kvm_steal_time __user *st;
4575        struct kvm_memslots *slots;
4576        static const u8 preempted = KVM_VCPU_PREEMPTED;
4577
4578        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4579                return;
4580
4581        if (vcpu->arch.st.preempted)
4582                return;
4583
4584        /* This happens on process exit */
4585        if (unlikely(current->mm != vcpu->kvm->mm))
4586                return;
4587
4588        slots = kvm_memslots(vcpu->kvm);
4589
4590        if (unlikely(slots->generation != ghc->generation ||
4591                     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4592                return;
4593
4594        st = (struct kvm_steal_time __user *)ghc->hva;
4595        BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4596
4597        if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4598                vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4599
4600        mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4601}
4602
4603void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4604{
4605        int idx;
4606
4607        if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4608                vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4609
4610        /*
4611         * Take the srcu lock as memslots will be accessed to check the gfn
4612         * cache generation against the memslots generation.
4613         */
4614        idx = srcu_read_lock(&vcpu->kvm->srcu);
4615        if (kvm_xen_msr_enabled(vcpu->kvm))
4616                kvm_xen_runstate_set_preempted(vcpu);
4617        else
4618                kvm_steal_time_set_preempted(vcpu);
4619        srcu_read_unlock(&vcpu->kvm->srcu, idx);
4620
4621        static_call(kvm_x86_vcpu_put)(vcpu);
4622        vcpu->arch.last_host_tsc = rdtsc();
4623}
4624
4625static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4626                                    struct kvm_lapic_state *s)
4627{
4628        static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4629
4630        return kvm_apic_get_state(vcpu, s);
4631}
4632
4633static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4634                                    struct kvm_lapic_state *s)
4635{
4636        int r;
4637
4638        r = kvm_apic_set_state(vcpu, s);
4639        if (r)
4640                return r;
4641        update_cr8_intercept(vcpu);
4642
4643        return 0;
4644}
4645
4646static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4647{
4648        /*
4649         * We can accept userspace's request for interrupt injection
4650         * as long as we have a place to store the interrupt number.
4651         * The actual injection will happen when the CPU is able to
4652         * deliver the interrupt.
4653         */
4654        if (kvm_cpu_has_extint(vcpu))
4655                return false;
4656
4657        /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4658        return (!lapic_in_kernel(vcpu) ||
4659                kvm_apic_accept_pic_intr(vcpu));
4660}
4661
4662static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4663{
4664        /*
4665         * Do not cause an interrupt window exit if an exception
4666         * is pending or an event needs reinjection; userspace
4667         * might want to inject the interrupt manually using KVM_SET_REGS
4668         * or KVM_SET_SREGS.  For that to work, we must be at an
4669         * instruction boundary and with no events half-injected.
4670         */
4671        return (kvm_arch_interrupt_allowed(vcpu) &&
4672                kvm_cpu_accept_dm_intr(vcpu) &&
4673                !kvm_event_needs_reinjection(vcpu) &&
4674                !vcpu->arch.exception.pending);
4675}
4676
4677static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4678                                    struct kvm_interrupt *irq)
4679{
4680        if (irq->irq >= KVM_NR_INTERRUPTS)
4681                return -EINVAL;
4682
4683        if (!irqchip_in_kernel(vcpu->kvm)) {
4684                kvm_queue_interrupt(vcpu, irq->irq, false);
4685                kvm_make_request(KVM_REQ_EVENT, vcpu);
4686                return 0;
4687        }
4688
4689        /*
4690         * With in-kernel LAPIC, we only use this to inject EXTINT, so
4691         * fail for in-kernel 8259.
4692         */
4693        if (pic_in_kernel(vcpu->kvm))
4694                return -ENXIO;
4695
4696        if (vcpu->arch.pending_external_vector != -1)
4697                return -EEXIST;
4698
4699        vcpu->arch.pending_external_vector = irq->irq;
4700        kvm_make_request(KVM_REQ_EVENT, vcpu);
4701        return 0;
4702}
4703
4704static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4705{
4706        kvm_inject_nmi(vcpu);
4707
4708        return 0;
4709}
4710
4711static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4712{
4713        kvm_make_request(KVM_REQ_SMI, vcpu);
4714
4715        return 0;
4716}
4717
4718static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4719                                           struct kvm_tpr_access_ctl *tac)
4720{
4721        if (tac->flags)
4722                return -EINVAL;
4723        vcpu->arch.tpr_access_reporting = !!tac->enabled;
4724        return 0;
4725}
4726
4727static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4728                                        u64 mcg_cap)
4729{
4730        int r;
4731        unsigned bank_num = mcg_cap & 0xff, bank;
4732
4733        r = -EINVAL;
4734        if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4735                goto out;
4736        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4737                goto out;
4738        r = 0;
4739        vcpu->arch.mcg_cap = mcg_cap;
4740        /* Init IA32_MCG_CTL to all 1s */
4741        if (mcg_cap & MCG_CTL_P)
4742                vcpu->arch.mcg_ctl = ~(u64)0;
4743        /* Init IA32_MCi_CTL to all 1s */
4744        for (bank = 0; bank < bank_num; bank++)
4745                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4746
4747        static_call(kvm_x86_setup_mce)(vcpu);
4748out:
4749        return r;
4750}
4751
4752static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4753                                      struct kvm_x86_mce *mce)
4754{
4755        u64 mcg_cap = vcpu->arch.mcg_cap;
4756        unsigned bank_num = mcg_cap & 0xff;
4757        u64 *banks = vcpu->arch.mce_banks;
4758
4759        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4760                return -EINVAL;
4761        /*
4762         * if IA32_MCG_CTL is not all 1s, the uncorrected error
4763         * reporting is disabled
4764         */
4765        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4766            vcpu->arch.mcg_ctl != ~(u64)0)
4767                return 0;
4768        banks += 4 * mce->bank;
4769        /*
4770         * if IA32_MCi_CTL is not all 1s, the uncorrected error
4771         * reporting is disabled for the bank
4772         */
4773        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4774                return 0;
4775        if (mce->status & MCI_STATUS_UC) {
4776                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4777                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4778                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4779                        return 0;
4780                }
4781                if (banks[1] & MCI_STATUS_VAL)
4782                        mce->status |= MCI_STATUS_OVER;
4783                banks[2] = mce->addr;
4784                banks[3] = mce->misc;
4785                vcpu->arch.mcg_status = mce->mcg_status;
4786                banks[1] = mce->status;
4787                kvm_queue_exception(vcpu, MC_VECTOR);
4788        } else if (!(banks[1] & MCI_STATUS_VAL)
4789                   || !(banks[1] & MCI_STATUS_UC)) {
4790                if (banks[1] & MCI_STATUS_VAL)
4791                        mce->status |= MCI_STATUS_OVER;
4792                banks[2] = mce->addr;
4793                banks[3] = mce->misc;
4794                banks[1] = mce->status;
4795        } else
4796                banks[1] |= MCI_STATUS_OVER;
4797        return 0;
4798}
4799
4800static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4801                                               struct kvm_vcpu_events *events)
4802{
4803        process_nmi(vcpu);
4804
4805        if (kvm_check_request(KVM_REQ_SMI, vcpu))
4806                process_smi(vcpu);
4807
4808        /*
4809         * In guest mode, payload delivery should be deferred,
4810         * so that the L1 hypervisor can intercept #PF before
4811         * CR2 is modified (or intercept #DB before DR6 is
4812         * modified under nVMX). Unless the per-VM capability,
4813         * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4814         * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4815         * opportunistically defer the exception payload, deliver it if the
4816         * capability hasn't been requested before processing a
4817         * KVM_GET_VCPU_EVENTS.
4818         */
4819        if (!vcpu->kvm->arch.exception_payload_enabled &&
4820            vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4821                kvm_deliver_exception_payload(vcpu);
4822
4823        /*
4824         * The API doesn't provide the instruction length for software
4825         * exceptions, so don't report them. As long as the guest RIP
4826         * isn't advanced, we should expect to encounter the exception
4827         * again.
4828         */
4829        if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4830                events->exception.injected = 0;
4831                events->exception.pending = 0;
4832        } else {
4833                events->exception.injected = vcpu->arch.exception.injected;
4834                events->exception.pending = vcpu->arch.exception.pending;
4835                /*
4836                 * For ABI compatibility, deliberately conflate
4837                 * pending and injected exceptions when
4838                 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4839                 */
4840                if (!vcpu->kvm->arch.exception_payload_enabled)
4841                        events->exception.injected |=
4842                                vcpu->arch.exception.pending;
4843        }
4844        events->exception.nr = vcpu->arch.exception.nr;
4845        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4846        events->exception.error_code = vcpu->arch.exception.error_code;
4847        events->exception_has_payload = vcpu->arch.exception.has_payload;
4848        events->exception_payload = vcpu->arch.exception.payload;
4849
4850        events->interrupt.injected =
4851                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4852        events->interrupt.nr = vcpu->arch.interrupt.nr;
4853        events->interrupt.soft = 0;
4854        events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4855
4856        events->nmi.injected = vcpu->arch.nmi_injected;
4857        events->nmi.pending = vcpu->arch.nmi_pending != 0;
4858        events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4859        events->nmi.pad = 0;
4860
4861        events->sipi_vector = 0; /* never valid when reporting to user space */
4862
4863        events->smi.smm = is_smm(vcpu);
4864        events->smi.pending = vcpu->arch.smi_pending;
4865        events->smi.smm_inside_nmi =
4866                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4867        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4868
4869        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4870                         | KVM_VCPUEVENT_VALID_SHADOW
4871                         | KVM_VCPUEVENT_VALID_SMM);
4872        if (vcpu->kvm->arch.exception_payload_enabled)
4873                events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4874
4875        memset(&events->reserved, 0, sizeof(events->reserved));
4876}
4877
4878static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4879
4880static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4881                                              struct kvm_vcpu_events *events)
4882{
4883        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4884                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4885                              | KVM_VCPUEVENT_VALID_SHADOW
4886                              | KVM_VCPUEVENT_VALID_SMM
4887                              | KVM_VCPUEVENT_VALID_PAYLOAD))
4888                return -EINVAL;
4889
4890        if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4891                if (!vcpu->kvm->arch.exception_payload_enabled)
4892                        return -EINVAL;
4893                if (events->exception.pending)
4894                        events->exception.injected = 0;
4895                else
4896                        events->exception_has_payload = 0;
4897        } else {
4898                events->exception.pending = 0;
4899                events->exception_has_payload = 0;
4900        }
4901
4902        if ((events->exception.injected || events->exception.pending) &&
4903            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4904                return -EINVAL;
4905
4906        /* INITs are latched while in SMM */
4907        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4908            (events->smi.smm || events->smi.pending) &&
4909            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4910                return -EINVAL;
4911
4912        process_nmi(vcpu);
4913        vcpu->arch.exception.injected = events->exception.injected;
4914        vcpu->arch.exception.pending = events->exception.pending;
4915        vcpu->arch.exception.nr = events->exception.nr;
4916        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4917        vcpu->arch.exception.error_code = events->exception.error_code;
4918        vcpu->arch.exception.has_payload = events->exception_has_payload;
4919        vcpu->arch.exception.payload = events->exception_payload;
4920
4921        vcpu->arch.interrupt.injected = events->interrupt.injected;
4922        vcpu->arch.interrupt.nr = events->interrupt.nr;
4923        vcpu->arch.interrupt.soft = events->interrupt.soft;
4924        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4925                static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4926                                                events->interrupt.shadow);
4927
4928        vcpu->arch.nmi_injected = events->nmi.injected;
4929        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4930                vcpu->arch.nmi_pending = events->nmi.pending;
4931        static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4932
4933        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4934            lapic_in_kernel(vcpu))
4935                vcpu->arch.apic->sipi_vector = events->sipi_vector;
4936
4937        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4938                if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4939                        kvm_x86_ops.nested_ops->leave_nested(vcpu);
4940                        kvm_smm_changed(vcpu, events->smi.smm);
4941                }
4942
4943                vcpu->arch.smi_pending = events->smi.pending;
4944
4945                if (events->smi.smm) {
4946                        if (events->smi.smm_inside_nmi)
4947                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4948                        else
4949                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4950                }
4951
4952                if (lapic_in_kernel(vcpu)) {
4953                        if (events->smi.latched_init)
4954                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4955                        else
4956                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4957                }
4958        }
4959
4960        kvm_make_request(KVM_REQ_EVENT, vcpu);
4961
4962        return 0;
4963}
4964
4965static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4966                                             struct kvm_debugregs *dbgregs)
4967{
4968        unsigned long val;
4969
4970        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4971        kvm_get_dr(vcpu, 6, &val);
4972        dbgregs->dr6 = val;
4973        dbgregs->dr7 = vcpu->arch.dr7;
4974        dbgregs->flags = 0;
4975        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4976}
4977
4978static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4979                                            struct kvm_debugregs *dbgregs)
4980{
4981        if (dbgregs->flags)
4982                return -EINVAL;
4983
4984        if (!kvm_dr6_valid(dbgregs->dr6))
4985                return -EINVAL;
4986        if (!kvm_dr7_valid(dbgregs->dr7))
4987                return -EINVAL;
4988
4989        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4990        kvm_update_dr0123(vcpu);
4991        vcpu->arch.dr6 = dbgregs->dr6;
4992        vcpu->arch.dr7 = dbgregs->dr7;
4993        kvm_update_dr7(vcpu);
4994
4995        return 0;
4996}
4997
4998static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4999                                         struct kvm_xsave *guest_xsave)
5000{
5001        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5002                return;
5003
5004        fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5005                                       guest_xsave->region,
5006                                       sizeof(guest_xsave->region),
5007                                       vcpu->arch.pkru);
5008}
5009
5010static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5011                                          u8 *state, unsigned int size)
5012{
5013        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5014                return;
5015
5016        fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5017                                       state, size, vcpu->arch.pkru);
5018}
5019
5020static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5021                                        struct kvm_xsave *guest_xsave)
5022{
5023        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5024                return 0;
5025
5026        return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5027                                              guest_xsave->region,
5028                                              supported_xcr0, &vcpu->arch.pkru);
5029}
5030
5031static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5032                                        struct kvm_xcrs *guest_xcrs)
5033{
5034        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5035                guest_xcrs->nr_xcrs = 0;
5036                return;
5037        }
5038
5039        guest_xcrs->nr_xcrs = 1;
5040        guest_xcrs->flags = 0;
5041        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5042        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5043}
5044
5045static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5046                                       struct kvm_xcrs *guest_xcrs)
5047{
5048        int i, r = 0;
5049
5050        if (!boot_cpu_has(X86_FEATURE_XSAVE))
5051                return -EINVAL;
5052
5053        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5054                return -EINVAL;
5055
5056        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5057                /* Only support XCR0 currently */
5058                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5059                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5060                                guest_xcrs->xcrs[i].value);
5061                        break;
5062                }
5063        if (r)
5064                r = -EINVAL;
5065        return r;
5066}
5067
5068/*
5069 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5070 * stopped by the hypervisor.  This function will be called from the host only.
5071 * EINVAL is returned when the host attempts to set the flag for a guest that
5072 * does not support pv clocks.
5073 */
5074static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5075{
5076        if (!vcpu->arch.pv_time_enabled)
5077                return -EINVAL;
5078        vcpu->arch.pvclock_set_guest_stopped_request = true;
5079        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5080        return 0;
5081}
5082
5083static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5084                                 struct kvm_device_attr *attr)
5085{
5086        int r;
5087
5088        switch (attr->attr) {
5089        case KVM_VCPU_TSC_OFFSET:
5090                r = 0;
5091                break;
5092        default:
5093                r = -ENXIO;
5094        }
5095
5096        return r;
5097}
5098
5099static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5100                                 struct kvm_device_attr *attr)
5101{
5102        u64 __user *uaddr = kvm_get_attr_addr(attr);
5103        int r;
5104
5105        if (IS_ERR(uaddr))
5106                return PTR_ERR(uaddr);
5107
5108        switch (attr->attr) {
5109        case KVM_VCPU_TSC_OFFSET:
5110                r = -EFAULT;
5111                if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5112                        break;
5113                r = 0;
5114                break;
5115        default:
5116                r = -ENXIO;
5117        }
5118
5119        return r;
5120}
5121
5122static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5123                                 struct kvm_device_attr *attr)
5124{
5125        u64 __user *uaddr = kvm_get_attr_addr(attr);
5126        struct kvm *kvm = vcpu->kvm;
5127        int r;
5128
5129        if (IS_ERR(uaddr))
5130                return PTR_ERR(uaddr);
5131
5132        switch (attr->attr) {
5133        case KVM_VCPU_TSC_OFFSET: {
5134                u64 offset, tsc, ns;
5135                unsigned long flags;
5136                bool matched;
5137
5138                r = -EFAULT;
5139                if (get_user(offset, uaddr))
5140                        break;
5141
5142                raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5143
5144                matched = (vcpu->arch.virtual_tsc_khz &&
5145                           kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5146                           kvm->arch.last_tsc_offset == offset);
5147
5148                tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5149                ns = get_kvmclock_base_ns();
5150
5151                __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5152                raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5153
5154                r = 0;
5155                break;
5156        }
5157        default:
5158                r = -ENXIO;
5159        }
5160
5161        return r;
5162}
5163
5164static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5165                                      unsigned int ioctl,
5166                                      void __user *argp)
5167{
5168        struct kvm_device_attr attr;
5169        int r;
5170
5171        if (copy_from_user(&attr, argp, sizeof(attr)))
5172                return -EFAULT;
5173
5174        if (attr.group != KVM_VCPU_TSC_CTRL)
5175                return -ENXIO;
5176
5177        switch (ioctl) {
5178        case KVM_HAS_DEVICE_ATTR:
5179                r = kvm_arch_tsc_has_attr(vcpu, &attr);
5180                break;
5181        case KVM_GET_DEVICE_ATTR:
5182                r = kvm_arch_tsc_get_attr(vcpu, &attr);
5183                break;
5184        case KVM_SET_DEVICE_ATTR:
5185                r = kvm_arch_tsc_set_attr(vcpu, &attr);
5186                break;
5187        }
5188
5189        return r;
5190}
5191
5192static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5193                                     struct kvm_enable_cap *cap)
5194{
5195        int r;
5196        uint16_t vmcs_version;
5197        void __user *user_ptr;
5198
5199        if (cap->flags)
5200                return -EINVAL;
5201
5202        switch (cap->cap) {
5203        case KVM_CAP_HYPERV_SYNIC2:
5204                if (cap->args[0])
5205                        return -EINVAL;
5206                fallthrough;
5207
5208        case KVM_CAP_HYPERV_SYNIC:
5209                if (!irqchip_in_kernel(vcpu->kvm))
5210                        return -EINVAL;
5211                return kvm_hv_activate_synic(vcpu, cap->cap ==
5212                                             KVM_CAP_HYPERV_SYNIC2);
5213        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5214                if (!kvm_x86_ops.nested_ops->enable_evmcs)
5215                        return -ENOTTY;
5216                r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5217                if (!r) {
5218                        user_ptr = (void __user *)(uintptr_t)cap->args[0];
5219                        if (copy_to_user(user_ptr, &vmcs_version,
5220                                         sizeof(vmcs_version)))
5221                                r = -EFAULT;
5222                }
5223                return r;
5224        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5225                if (!kvm_x86_ops.enable_direct_tlbflush)
5226                        return -ENOTTY;
5227
5228                return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5229
5230        case KVM_CAP_HYPERV_ENFORCE_CPUID:
5231                return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5232
5233        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5234                vcpu->arch.pv_cpuid.enforce = cap->args[0];
5235                if (vcpu->arch.pv_cpuid.enforce)
5236                        kvm_update_pv_runtime(vcpu);
5237
5238                return 0;
5239        default:
5240                return -EINVAL;
5241        }
5242}
5243
5244long kvm_arch_vcpu_ioctl(struct file *filp,
5245                         unsigned int ioctl, unsigned long arg)
5246{
5247        struct kvm_vcpu *vcpu = filp->private_data;
5248        void __user *argp = (void __user *)arg;
5249        int r;
5250        union {
5251                struct kvm_sregs2 *sregs2;
5252                struct kvm_lapic_state *lapic;
5253                struct kvm_xsave *xsave;
5254                struct kvm_xcrs *xcrs;
5255                void *buffer;
5256        } u;
5257
5258        vcpu_load(vcpu);
5259
5260        u.buffer = NULL;
5261        switch (ioctl) {
5262        case KVM_GET_LAPIC: {
5263                r = -EINVAL;
5264                if (!lapic_in_kernel(vcpu))
5265                        goto out;
5266                u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5267                                GFP_KERNEL_ACCOUNT);
5268
5269                r = -ENOMEM;
5270                if (!u.lapic)
5271                        goto out;
5272                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5273                if (r)
5274                        goto out;
5275                r = -EFAULT;
5276                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5277                        goto out;
5278                r = 0;
5279                break;
5280        }
5281        case KVM_SET_LAPIC: {
5282                r = -EINVAL;
5283                if (!lapic_in_kernel(vcpu))
5284                        goto out;
5285                u.lapic = memdup_user(argp, sizeof(*u.lapic));
5286                if (IS_ERR(u.lapic)) {
5287                        r = PTR_ERR(u.lapic);
5288                        goto out_nofree;
5289                }
5290
5291                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5292                break;
5293        }
5294        case KVM_INTERRUPT: {
5295                struct kvm_interrupt irq;
5296
5297                r = -EFAULT;
5298                if (copy_from_user(&irq, argp, sizeof(irq)))
5299                        goto out;
5300                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5301                break;
5302        }
5303        case KVM_NMI: {
5304                r = kvm_vcpu_ioctl_nmi(vcpu);
5305                break;
5306        }
5307        case KVM_SMI: {
5308                r = kvm_vcpu_ioctl_smi(vcpu);
5309                break;
5310        }
5311        case KVM_SET_CPUID: {
5312                struct kvm_cpuid __user *cpuid_arg = argp;
5313                struct kvm_cpuid cpuid;
5314
5315                r = -EFAULT;
5316                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5317                        goto out;
5318                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5319                break;
5320        }
5321        case KVM_SET_CPUID2: {
5322                struct kvm_cpuid2 __user *cpuid_arg = argp;
5323                struct kvm_cpuid2 cpuid;
5324
5325                r = -EFAULT;
5326                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5327                        goto out;
5328                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5329                                              cpuid_arg->entries);
5330                break;
5331        }
5332        case KVM_GET_CPUID2: {
5333                struct kvm_cpuid2 __user *cpuid_arg = argp;
5334                struct kvm_cpuid2 cpuid;
5335
5336                r = -EFAULT;
5337                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5338                        goto out;
5339                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5340                                              cpuid_arg->entries);
5341                if (r)
5342                        goto out;
5343                r = -EFAULT;
5344                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5345                        goto out;
5346                r = 0;
5347                break;
5348        }
5349        case KVM_GET_MSRS: {
5350                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5351                r = msr_io(vcpu, argp, do_get_msr, 1);
5352                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5353                break;
5354        }
5355        case KVM_SET_MSRS: {
5356                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5357                r = msr_io(vcpu, argp, do_set_msr, 0);
5358                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5359                break;
5360        }
5361        case KVM_TPR_ACCESS_REPORTING: {
5362                struct kvm_tpr_access_ctl tac;
5363
5364                r = -EFAULT;
5365                if (copy_from_user(&tac, argp, sizeof(tac)))
5366                        goto out;
5367                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5368                if (r)
5369                        goto out;
5370                r = -EFAULT;
5371                if (copy_to_user(argp, &tac, sizeof(tac)))
5372                        goto out;
5373                r = 0;
5374                break;
5375        };
5376        case KVM_SET_VAPIC_ADDR: {
5377                struct kvm_vapic_addr va;
5378                int idx;
5379
5380                r = -EINVAL;
5381                if (!lapic_in_kernel(vcpu))
5382                        goto out;
5383                r = -EFAULT;
5384                if (copy_from_user(&va, argp, sizeof(va)))
5385                        goto out;
5386                idx = srcu_read_lock(&vcpu->kvm->srcu);
5387                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5388                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5389                break;
5390        }
5391        case KVM_X86_SETUP_MCE: {
5392                u64 mcg_cap;
5393
5394                r = -EFAULT;
5395                if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5396                        goto out;
5397                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5398                break;
5399        }
5400        case KVM_X86_SET_MCE: {
5401                struct kvm_x86_mce mce;
5402
5403                r = -EFAULT;
5404                if (copy_from_user(&mce, argp, sizeof(mce)))
5405                        goto out;
5406                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5407                break;
5408        }
5409        case KVM_GET_VCPU_EVENTS: {
5410                struct kvm_vcpu_events events;
5411
5412                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5413
5414                r = -EFAULT;
5415                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5416                        break;
5417                r = 0;
5418                break;
5419        }
5420        case KVM_SET_VCPU_EVENTS: {
5421                struct kvm_vcpu_events events;
5422
5423                r = -EFAULT;
5424                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5425                        break;
5426
5427                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5428                break;
5429        }
5430        case KVM_GET_DEBUGREGS: {
5431                struct kvm_debugregs dbgregs;
5432
5433                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5434
5435                r = -EFAULT;
5436                if (copy_to_user(argp, &dbgregs,
5437                                 sizeof(struct kvm_debugregs)))
5438                        break;
5439                r = 0;
5440                break;
5441        }
5442        case KVM_SET_DEBUGREGS: {
5443                struct kvm_debugregs dbgregs;
5444
5445                r = -EFAULT;
5446                if (copy_from_user(&dbgregs, argp,
5447                                   sizeof(struct kvm_debugregs)))
5448                        break;
5449
5450                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5451                break;
5452        }
5453        case KVM_GET_XSAVE: {
5454                r = -EINVAL;
5455                if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5456                        break;
5457
5458                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5459                r = -ENOMEM;
5460                if (!u.xsave)
5461                        break;
5462
5463                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5464
5465                r = -EFAULT;
5466                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5467                        break;
5468                r = 0;
5469                break;
5470        }
5471        case KVM_SET_XSAVE: {
5472                int size = vcpu->arch.guest_fpu.uabi_size;
5473
5474                u.xsave = memdup_user(argp, size);
5475                if (IS_ERR(u.xsave)) {
5476                        r = PTR_ERR(u.xsave);
5477                        goto out_nofree;
5478                }
5479
5480                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5481                break;
5482        }
5483
5484        case KVM_GET_XSAVE2: {
5485                int size = vcpu->arch.guest_fpu.uabi_size;
5486
5487                u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5488                r = -ENOMEM;
5489                if (!u.xsave)
5490                        break;
5491
5492                kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5493
5494                r = -EFAULT;
5495                if (copy_to_user(argp, u.xsave, size))
5496                        break;
5497
5498                r = 0;
5499                break;
5500        }
5501
5502        case KVM_GET_XCRS: {
5503                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5504                r = -ENOMEM;
5505                if (!u.xcrs)
5506                        break;
5507
5508                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5509
5510                r = -EFAULT;
5511                if (copy_to_user(argp, u.xcrs,
5512                                 sizeof(struct kvm_xcrs)))
5513                        break;
5514                r = 0;
5515                break;
5516        }
5517        case KVM_SET_XCRS: {
5518                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5519                if (IS_ERR(u.xcrs)) {
5520                        r = PTR_ERR(u.xcrs);
5521                        goto out_nofree;
5522                }
5523
5524                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5525                break;
5526        }
5527        case KVM_SET_TSC_KHZ: {
5528                u32 user_tsc_khz;
5529
5530                r = -EINVAL;
5531                user_tsc_khz = (u32)arg;
5532
5533                if (kvm_has_tsc_control &&
5534                    user_tsc_khz >= kvm_max_guest_tsc_khz)
5535                        goto out;
5536
5537                if (user_tsc_khz == 0)
5538                        user_tsc_khz = tsc_khz;
5539
5540                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5541                        r = 0;
5542
5543                goto out;
5544        }
5545        case KVM_GET_TSC_KHZ: {
5546                r = vcpu->arch.virtual_tsc_khz;
5547                goto out;
5548        }
5549        case KVM_KVMCLOCK_CTRL: {
5550                r = kvm_set_guest_paused(vcpu);
5551                goto out;
5552        }
5553        case KVM_ENABLE_CAP: {
5554                struct kvm_enable_cap cap;
5555
5556                r = -EFAULT;
5557                if (copy_from_user(&cap, argp, sizeof(cap)))
5558                        goto out;
5559                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5560                break;
5561        }
5562        case KVM_GET_NESTED_STATE: {
5563                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5564                u32 user_data_size;
5565
5566                r = -EINVAL;
5567                if (!kvm_x86_ops.nested_ops->get_state)
5568                        break;
5569
5570                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5571                r = -EFAULT;
5572                if (get_user(user_data_size, &user_kvm_nested_state->size))
5573                        break;
5574
5575                r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5576                                                     user_data_size);
5577                if (r < 0)
5578                        break;
5579
5580                if (r > user_data_size) {
5581                        if (put_user(r, &user_kvm_nested_state->size))
5582                                r = -EFAULT;
5583                        else
5584                                r = -E2BIG;
5585                        break;
5586                }
5587
5588                r = 0;
5589                break;
5590        }
5591        case KVM_SET_NESTED_STATE: {
5592                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5593                struct kvm_nested_state kvm_state;
5594                int idx;
5595
5596                r = -EINVAL;
5597                if (!kvm_x86_ops.nested_ops->set_state)
5598                        break;
5599
5600                r = -EFAULT;
5601                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5602                        break;
5603
5604                r = -EINVAL;
5605                if (kvm_state.size < sizeof(kvm_state))
5606                        break;
5607
5608                if (kvm_state.flags &
5609                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5610                      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5611                      | KVM_STATE_NESTED_GIF_SET))
5612                        break;
5613
5614                /* nested_run_pending implies guest_mode.  */
5615                if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5616                    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5617                        break;
5618
5619                idx = srcu_read_lock(&vcpu->kvm->srcu);
5620                r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5621                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5622                break;
5623        }
5624        case KVM_GET_SUPPORTED_HV_CPUID:
5625                r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5626                break;
5627#ifdef CONFIG_KVM_XEN
5628        case KVM_XEN_VCPU_GET_ATTR: {
5629                struct kvm_xen_vcpu_attr xva;
5630
5631                r = -EFAULT;
5632                if (copy_from_user(&xva, argp, sizeof(xva)))
5633                        goto out;
5634                r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5635                if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5636                        r = -EFAULT;
5637                break;
5638        }
5639        case KVM_XEN_VCPU_SET_ATTR: {
5640                struct kvm_xen_vcpu_attr xva;
5641
5642                r = -EFAULT;
5643                if (copy_from_user(&xva, argp, sizeof(xva)))
5644                        goto out;
5645                r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5646                break;
5647        }
5648#endif
5649        case KVM_GET_SREGS2: {
5650                u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5651                r = -ENOMEM;
5652                if (!u.sregs2)
5653                        goto out;
5654                __get_sregs2(vcpu, u.sregs2);
5655                r = -EFAULT;
5656                if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5657                        goto out;
5658                r = 0;
5659                break;
5660        }
5661        case KVM_SET_SREGS2: {
5662                u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5663                if (IS_ERR(u.sregs2)) {
5664                        r = PTR_ERR(u.sregs2);
5665                        u.sregs2 = NULL;
5666                        goto out;
5667                }
5668                r = __set_sregs2(vcpu, u.sregs2);
5669                break;
5670        }
5671        case KVM_HAS_DEVICE_ATTR:
5672        case KVM_GET_DEVICE_ATTR:
5673        case KVM_SET_DEVICE_ATTR:
5674                r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5675                break;
5676        default:
5677                r = -EINVAL;
5678        }
5679out:
5680        kfree(u.buffer);
5681out_nofree:
5682        vcpu_put(vcpu);
5683        return r;
5684}
5685
5686vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5687{
5688        return VM_FAULT_SIGBUS;
5689}
5690
5691static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5692{
5693        int ret;
5694
5695        if (addr > (unsigned int)(-3 * PAGE_SIZE))
5696                return -EINVAL;
5697        ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5698        return ret;
5699}
5700
5701static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5702                                              u64 ident_addr)
5703{
5704        return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5705}
5706
5707static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5708                                         unsigned long kvm_nr_mmu_pages)
5709{
5710        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5711                return -EINVAL;
5712
5713        mutex_lock(&kvm->slots_lock);
5714
5715        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5716        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5717
5718        mutex_unlock(&kvm->slots_lock);
5719        return 0;
5720}
5721
5722static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5723{
5724        return kvm->arch.n_max_mmu_pages;
5725}
5726
5727static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5728{
5729        struct kvm_pic *pic = kvm->arch.vpic;
5730        int r;
5731
5732        r = 0;
5733        switch (chip->chip_id) {
5734        case KVM_IRQCHIP_PIC_MASTER:
5735                memcpy(&chip->chip.pic, &pic->pics[0],
5736                        sizeof(struct kvm_pic_state));
5737                break;
5738        case KVM_IRQCHIP_PIC_SLAVE:
5739                memcpy(&chip->chip.pic, &pic->pics[1],
5740                        sizeof(struct kvm_pic_state));
5741                break;
5742        case KVM_IRQCHIP_IOAPIC:
5743                kvm_get_ioapic(kvm, &chip->chip.ioapic);
5744                break;
5745        default:
5746                r = -EINVAL;
5747                break;
5748        }
5749        return r;
5750}
5751
5752static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5753{
5754        struct kvm_pic *pic = kvm->arch.vpic;
5755        int r;
5756
5757        r = 0;
5758        switch (chip->chip_id) {
5759        case KVM_IRQCHIP_PIC_MASTER:
5760                spin_lock(&pic->lock);
5761                memcpy(&pic->pics[0], &chip->chip.pic,
5762                        sizeof(struct kvm_pic_state));
5763                spin_unlock(&pic->lock);
5764                break;
5765        case KVM_IRQCHIP_PIC_SLAVE:
5766                spin_lock(&pic->lock);
5767                memcpy(&pic->pics[1], &chip->chip.pic,
5768                        sizeof(struct kvm_pic_state));
5769                spin_unlock(&pic->lock);
5770                break;
5771        case KVM_IRQCHIP_IOAPIC:
5772                kvm_set_ioapic(kvm, &chip->chip.ioapic);
5773                break;
5774        default:
5775                r = -EINVAL;
5776                break;
5777        }
5778        kvm_pic_update_irq(pic);
5779        return r;
5780}
5781
5782static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5783{
5784        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5785
5786        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5787
5788        mutex_lock(&kps->lock);
5789        memcpy(ps, &kps->channels, sizeof(*ps));
5790        mutex_unlock(&kps->lock);
5791        return 0;
5792}
5793
5794static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5795{
5796        int i;
5797        struct kvm_pit *pit = kvm->arch.vpit;
5798
5799        mutex_lock(&pit->pit_state.lock);
5800        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5801        for (i = 0; i < 3; i++)
5802                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5803        mutex_unlock(&pit->pit_state.lock);
5804        return 0;
5805}
5806
5807static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5808{
5809        mutex_lock(&kvm->arch.vpit->pit_state.lock);
5810        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5811                sizeof(ps->channels));
5812        ps->flags = kvm->arch.vpit->pit_state.flags;
5813        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5814        memset(&ps->reserved, 0, sizeof(ps->reserved));
5815        return 0;
5816}
5817
5818static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5819{
5820        int start = 0;
5821        int i;
5822        u32 prev_legacy, cur_legacy;
5823        struct kvm_pit *pit = kvm->arch.vpit;
5824
5825        mutex_lock(&pit->pit_state.lock);
5826        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5827        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5828        if (!prev_legacy && cur_legacy)
5829                start = 1;
5830        memcpy(&pit->pit_state.channels, &ps->channels,
5831               sizeof(pit->pit_state.channels));
5832        pit->pit_state.flags = ps->flags;
5833        for (i = 0; i < 3; i++)
5834                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5835                                   start && i == 0);
5836        mutex_unlock(&pit->pit_state.lock);
5837        return 0;
5838}
5839
5840static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5841                                 struct kvm_reinject_control *control)
5842{
5843        struct kvm_pit *pit = kvm->arch.vpit;
5844
5845        /* pit->pit_state.lock was overloaded to prevent userspace from getting
5846         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5847         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5848         */
5849        mutex_lock(&pit->pit_state.lock);
5850        kvm_pit_set_reinject(pit, control->pit_reinject);
5851        mutex_unlock(&pit->pit_state.lock);
5852
5853        return 0;
5854}
5855
5856void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5857{
5858
5859        /*
5860         * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5861         * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5862         * on all VM-Exits, thus we only need to kick running vCPUs to force a
5863         * VM-Exit.
5864         */
5865        struct kvm_vcpu *vcpu;
5866        unsigned long i;
5867
5868        kvm_for_each_vcpu(i, vcpu, kvm)
5869                kvm_vcpu_kick(vcpu);
5870}
5871
5872int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5873                        bool line_status)
5874{
5875        if (!irqchip_in_kernel(kvm))
5876                return -ENXIO;
5877
5878        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5879                                        irq_event->irq, irq_event->level,
5880                                        line_status);
5881        return 0;
5882}
5883
5884int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5885                            struct kvm_enable_cap *cap)
5886{
5887        int r;
5888
5889        if (cap->flags)
5890                return -EINVAL;
5891
5892        switch (cap->cap) {
5893        case KVM_CAP_DISABLE_QUIRKS:
5894                kvm->arch.disabled_quirks = cap->args[0];
5895                r = 0;
5896                break;
5897        case KVM_CAP_SPLIT_IRQCHIP: {
5898                mutex_lock(&kvm->lock);
5899                r = -EINVAL;
5900                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5901                        goto split_irqchip_unlock;
5902                r = -EEXIST;
5903                if (irqchip_in_kernel(kvm))
5904                        goto split_irqchip_unlock;
5905                if (kvm->created_vcpus)
5906                        goto split_irqchip_unlock;
5907                r = kvm_setup_empty_irq_routing(kvm);
5908                if (r)
5909                        goto split_irqchip_unlock;
5910                /* Pairs with irqchip_in_kernel. */
5911                smp_wmb();
5912                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5913                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5914                kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5915                r = 0;
5916split_irqchip_unlock:
5917                mutex_unlock(&kvm->lock);
5918                break;
5919        }
5920        case KVM_CAP_X2APIC_API:
5921                r = -EINVAL;
5922                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5923                        break;
5924
5925                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5926                        kvm->arch.x2apic_format = true;
5927                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5928                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
5929
5930                r = 0;
5931                break;
5932        case KVM_CAP_X86_DISABLE_EXITS:
5933                r = -EINVAL;
5934                if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5935                        break;
5936
5937                if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5938                        kvm_can_mwait_in_guest())
5939                        kvm->arch.mwait_in_guest = true;
5940                if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5941                        kvm->arch.hlt_in_guest = true;
5942                if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5943                        kvm->arch.pause_in_guest = true;
5944                if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5945                        kvm->arch.cstate_in_guest = true;
5946                r = 0;
5947                break;
5948        case KVM_CAP_MSR_PLATFORM_INFO:
5949                kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5950                r = 0;
5951                break;
5952        case KVM_CAP_EXCEPTION_PAYLOAD:
5953                kvm->arch.exception_payload_enabled = cap->args[0];
5954                r = 0;
5955                break;
5956        case KVM_CAP_X86_USER_SPACE_MSR:
5957                kvm->arch.user_space_msr_mask = cap->args[0];
5958                r = 0;
5959                break;
5960        case KVM_CAP_X86_BUS_LOCK_EXIT:
5961                r = -EINVAL;
5962                if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5963                        break;
5964
5965                if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5966                    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5967                        break;
5968
5969                if (kvm_has_bus_lock_exit &&
5970                    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5971                        kvm->arch.bus_lock_detection_enabled = true;
5972                r = 0;
5973                break;
5974#ifdef CONFIG_X86_SGX_KVM
5975        case KVM_CAP_SGX_ATTRIBUTE: {
5976                unsigned long allowed_attributes = 0;
5977
5978                r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5979                if (r)
5980                        break;
5981
5982                /* KVM only supports the PROVISIONKEY privileged attribute. */
5983                if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5984                    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5985                        kvm->arch.sgx_provisioning_allowed = true;
5986                else
5987                        r = -EINVAL;
5988                break;
5989        }
5990#endif
5991        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5992                r = -EINVAL;
5993                if (kvm_x86_ops.vm_copy_enc_context_from)
5994                        r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5995                return r;
5996        case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5997                r = -EINVAL;
5998                if (kvm_x86_ops.vm_move_enc_context_from)
5999                        r = kvm_x86_ops.vm_move_enc_context_from(
6000                                kvm, cap->args[0]);
6001                return r;
6002        case KVM_CAP_EXIT_HYPERCALL:
6003                if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6004                        r = -EINVAL;
6005                        break;
6006                }
6007                kvm->arch.hypercall_exit_enabled = cap->args[0];
6008                r = 0;
6009                break;
6010        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6011                r = -EINVAL;
6012                if (cap->args[0] & ~1)
6013                        break;
6014                kvm->arch.exit_on_emulation_error = cap->args[0];
6015                r = 0;
6016                break;
6017        default:
6018                r = -EINVAL;
6019                break;
6020        }
6021        return r;
6022}
6023
6024static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6025{
6026        struct kvm_x86_msr_filter *msr_filter;
6027
6028        msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6029        if (!msr_filter)
6030                return NULL;
6031
6032        msr_filter->default_allow = default_allow;
6033        return msr_filter;
6034}
6035
6036static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6037{
6038        u32 i;
6039
6040        if (!msr_filter)
6041                return;
6042
6043        for (i = 0; i < msr_filter->count; i++)
6044                kfree(msr_filter->ranges[i].bitmap);
6045
6046        kfree(msr_filter);
6047}
6048
6049static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6050                              struct kvm_msr_filter_range *user_range)
6051{
6052        unsigned long *bitmap = NULL;
6053        size_t bitmap_size;
6054
6055        if (!user_range->nmsrs)
6056                return 0;
6057
6058        if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6059                return -EINVAL;
6060
6061        if (!user_range->flags)
6062                return -EINVAL;
6063
6064        bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6065        if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6066                return -EINVAL;
6067
6068        bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6069        if (IS_ERR(bitmap))
6070                return PTR_ERR(bitmap);
6071
6072        msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6073                .flags = user_range->flags,
6074                .base = user_range->base,
6075                .nmsrs = user_range->nmsrs,
6076                .bitmap = bitmap,
6077        };
6078
6079        msr_filter->count++;
6080        return 0;
6081}
6082
6083static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6084{
6085        struct kvm_msr_filter __user *user_msr_filter = argp;
6086        struct kvm_x86_msr_filter *new_filter, *old_filter;
6087        struct kvm_msr_filter filter;
6088        bool default_allow;
6089        bool empty = true;
6090        int r = 0;
6091        u32 i;
6092
6093        if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6094                return -EFAULT;
6095
6096        for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6097                empty &= !filter.ranges[i].nmsrs;
6098
6099        default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6100        if (empty && !default_allow)
6101                return -EINVAL;
6102
6103        new_filter = kvm_alloc_msr_filter(default_allow);
6104        if (!new_filter)
6105                return -ENOMEM;
6106
6107        for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6108                r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6109                if (r) {
6110                        kvm_free_msr_filter(new_filter);
6111                        return r;
6112                }
6113        }
6114
6115        mutex_lock(&kvm->lock);
6116
6117        /* The per-VM filter is protected by kvm->lock... */
6118        old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6119
6120        rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6121        synchronize_srcu(&kvm->srcu);
6122
6123        kvm_free_msr_filter(old_filter);
6124
6125        kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6126        mutex_unlock(&kvm->lock);
6127
6128        return 0;
6129}
6130
6131#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6132static int kvm_arch_suspend_notifier(struct kvm *kvm)
6133{
6134        struct kvm_vcpu *vcpu;
6135        unsigned long i;
6136        int ret = 0;
6137
6138        mutex_lock(&kvm->lock);
6139        kvm_for_each_vcpu(i, vcpu, kvm) {
6140                if (!vcpu->arch.pv_time_enabled)
6141                        continue;
6142
6143                ret = kvm_set_guest_paused(vcpu);
6144                if (ret) {
6145                        kvm_err("Failed to pause guest VCPU%d: %d\n",
6146                                vcpu->vcpu_id, ret);
6147                        break;
6148                }
6149        }
6150        mutex_unlock(&kvm->lock);
6151
6152        return ret ? NOTIFY_BAD : NOTIFY_DONE;
6153}
6154
6155int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6156{
6157        switch (state) {
6158        case PM_HIBERNATION_PREPARE:
6159        case PM_SUSPEND_PREPARE:
6160                return kvm_arch_suspend_notifier(kvm);
6161        }
6162
6163        return NOTIFY_DONE;
6164}
6165#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6166
6167static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6168{
6169        struct kvm_clock_data data = { 0 };
6170
6171        get_kvmclock(kvm, &data);
6172        if (copy_to_user(argp, &data, sizeof(data)))
6173                return -EFAULT;
6174
6175        return 0;
6176}
6177
6178static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6179{
6180        struct kvm_arch *ka = &kvm->arch;
6181        struct kvm_clock_data data;
6182        u64 now_raw_ns;
6183
6184        if (copy_from_user(&data, argp, sizeof(data)))
6185                return -EFAULT;
6186
6187        /*
6188         * Only KVM_CLOCK_REALTIME is used, but allow passing the
6189         * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6190         */
6191        if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6192                return -EINVAL;
6193
6194        kvm_hv_invalidate_tsc_page(kvm);
6195        kvm_start_pvclock_update(kvm);
6196        pvclock_update_vm_gtod_copy(kvm);
6197
6198        /*
6199         * This pairs with kvm_guest_time_update(): when masterclock is
6200         * in use, we use master_kernel_ns + kvmclock_offset to set
6201         * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6202         * is slightly ahead) here we risk going negative on unsigned
6203         * 'system_time' when 'data.clock' is very small.
6204         */
6205        if (data.flags & KVM_CLOCK_REALTIME) {
6206                u64 now_real_ns = ktime_get_real_ns();
6207
6208                /*
6209                 * Avoid stepping the kvmclock backwards.
6210                 */
6211                if (now_real_ns > data.realtime)
6212                        data.clock += now_real_ns - data.realtime;
6213        }
6214
6215        if (ka->use_master_clock)
6216                now_raw_ns = ka->master_kernel_ns;
6217        else
6218                now_raw_ns = get_kvmclock_base_ns();
6219        ka->kvmclock_offset = data.clock - now_raw_ns;
6220        kvm_end_pvclock_update(kvm);
6221        return 0;
6222}
6223
6224long kvm_arch_vm_ioctl(struct file *filp,
6225                       unsigned int ioctl, unsigned long arg)
6226{
6227        struct kvm *kvm = filp->private_data;
6228        void __user *argp = (void __user *)arg;
6229        int r = -ENOTTY;
6230        /*
6231         * This union makes it completely explicit to gcc-3.x
6232         * that these two variables' stack usage should be
6233         * combined, not added together.
6234         */
6235        union {
6236                struct kvm_pit_state ps;
6237                struct kvm_pit_state2 ps2;
6238                struct kvm_pit_config pit_config;
6239        } u;
6240
6241        switch (ioctl) {
6242        case KVM_SET_TSS_ADDR:
6243                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6244                break;
6245        case KVM_SET_IDENTITY_MAP_ADDR: {
6246                u64 ident_addr;
6247
6248                mutex_lock(&kvm->lock);
6249                r = -EINVAL;
6250                if (kvm->created_vcpus)
6251                        goto set_identity_unlock;
6252                r = -EFAULT;
6253                if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6254                        goto set_identity_unlock;
6255                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6256set_identity_unlock:
6257                mutex_unlock(&kvm->lock);
6258                break;
6259        }
6260        case KVM_SET_NR_MMU_PAGES:
6261                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6262                break;
6263        case KVM_GET_NR_MMU_PAGES:
6264                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6265                break;
6266        case KVM_CREATE_IRQCHIP: {
6267                mutex_lock(&kvm->lock);
6268
6269                r = -EEXIST;
6270                if (irqchip_in_kernel(kvm))
6271                        goto create_irqchip_unlock;
6272
6273                r = -EINVAL;
6274                if (kvm->created_vcpus)
6275                        goto create_irqchip_unlock;
6276
6277                r = kvm_pic_init(kvm);
6278                if (r)
6279                        goto create_irqchip_unlock;
6280
6281                r = kvm_ioapic_init(kvm);
6282                if (r) {
6283                        kvm_pic_destroy(kvm);
6284                        goto create_irqchip_unlock;
6285                }
6286
6287                r = kvm_setup_default_irq_routing(kvm);
6288                if (r) {
6289                        kvm_ioapic_destroy(kvm);
6290                        kvm_pic_destroy(kvm);
6291                        goto create_irqchip_unlock;
6292                }
6293                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6294                smp_wmb();
6295                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6296                kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6297        create_irqchip_unlock:
6298                mutex_unlock(&kvm->lock);
6299                break;
6300        }
6301        case KVM_CREATE_PIT:
6302                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6303                goto create_pit;
6304        case KVM_CREATE_PIT2:
6305                r = -EFAULT;
6306                if (copy_from_user(&u.pit_config, argp,
6307                                   sizeof(struct kvm_pit_config)))
6308                        goto out;
6309        create_pit:
6310                mutex_lock(&kvm->lock);
6311                r = -EEXIST;
6312                if (kvm->arch.vpit)
6313                        goto create_pit_unlock;
6314                r = -ENOMEM;
6315                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6316                if (kvm->arch.vpit)
6317                        r = 0;
6318        create_pit_unlock:
6319                mutex_unlock(&kvm->lock);
6320                break;
6321        case KVM_GET_IRQCHIP: {
6322                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6323                struct kvm_irqchip *chip;
6324
6325                chip = memdup_user(argp, sizeof(*chip));
6326                if (IS_ERR(chip)) {
6327                        r = PTR_ERR(chip);
6328                        goto out;
6329                }
6330
6331                r = -ENXIO;
6332                if (!irqchip_kernel(kvm))
6333                        goto get_irqchip_out;
6334                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6335                if (r)
6336                        goto get_irqchip_out;
6337                r = -EFAULT;
6338                if (copy_to_user(argp, chip, sizeof(*chip)))
6339                        goto get_irqchip_out;
6340                r = 0;
6341        get_irqchip_out:
6342                kfree(chip);
6343                break;
6344        }
6345        case KVM_SET_IRQCHIP: {
6346                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6347                struct kvm_irqchip *chip;
6348
6349                chip = memdup_user(argp, sizeof(*chip));
6350                if (IS_ERR(chip)) {
6351                        r = PTR_ERR(chip);
6352                        goto out;
6353                }
6354
6355                r = -ENXIO;
6356                if (!irqchip_kernel(kvm))
6357                        goto set_irqchip_out;
6358                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6359        set_irqchip_out:
6360                kfree(chip);
6361                break;
6362        }
6363        case KVM_GET_PIT: {
6364                r = -EFAULT;
6365                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6366                        goto out;
6367                r = -ENXIO;
6368                if (!kvm->arch.vpit)
6369                        goto out;
6370                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6371                if (r)
6372                        goto out;
6373                r = -EFAULT;
6374                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6375                        goto out;
6376                r = 0;
6377                break;
6378        }
6379        case KVM_SET_PIT: {
6380                r = -EFAULT;
6381                if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6382                        goto out;
6383                mutex_lock(&kvm->lock);
6384                r = -ENXIO;
6385                if (!kvm->arch.vpit)
6386                        goto set_pit_out;
6387                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6388set_pit_out:
6389                mutex_unlock(&kvm->lock);
6390                break;
6391        }
6392        case KVM_GET_PIT2: {
6393                r = -ENXIO;
6394                if (!kvm->arch.vpit)
6395                        goto out;
6396                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6397                if (r)
6398                        goto out;
6399                r = -EFAULT;
6400                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6401                        goto out;
6402                r = 0;
6403                break;
6404        }
6405        case KVM_SET_PIT2: {
6406                r = -EFAULT;
6407                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6408                        goto out;
6409                mutex_lock(&kvm->lock);
6410                r = -ENXIO;
6411                if (!kvm->arch.vpit)
6412                        goto set_pit2_out;
6413                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6414set_pit2_out:
6415                mutex_unlock(&kvm->lock);
6416                break;
6417        }
6418        case KVM_REINJECT_CONTROL: {
6419                struct kvm_reinject_control control;
6420                r =  -EFAULT;
6421                if (copy_from_user(&control, argp, sizeof(control)))
6422                        goto out;
6423                r = -ENXIO;
6424                if (!kvm->arch.vpit)
6425                        goto out;
6426                r = kvm_vm_ioctl_reinject(kvm, &control);
6427                break;
6428        }
6429        case KVM_SET_BOOT_CPU_ID:
6430                r = 0;
6431                mutex_lock(&kvm->lock);
6432                if (kvm->created_vcpus)
6433                        r = -EBUSY;
6434                else
6435                        kvm->arch.bsp_vcpu_id = arg;
6436                mutex_unlock(&kvm->lock);
6437                break;
6438#ifdef CONFIG_KVM_XEN
6439        case KVM_XEN_HVM_CONFIG: {
6440                struct kvm_xen_hvm_config xhc;
6441                r = -EFAULT;
6442                if (copy_from_user(&xhc, argp, sizeof(xhc)))
6443                        goto out;
6444                r = kvm_xen_hvm_config(kvm, &xhc);
6445                break;
6446        }
6447        case KVM_XEN_HVM_GET_ATTR: {
6448                struct kvm_xen_hvm_attr xha;
6449
6450                r = -EFAULT;
6451                if (copy_from_user(&xha, argp, sizeof(xha)))
6452                        goto out;
6453                r = kvm_xen_hvm_get_attr(kvm, &xha);
6454                if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6455                        r = -EFAULT;
6456                break;
6457        }
6458        case KVM_XEN_HVM_SET_ATTR: {
6459                struct kvm_xen_hvm_attr xha;
6460
6461                r = -EFAULT;
6462                if (copy_from_user(&xha, argp, sizeof(xha)))
6463                        goto out;
6464                r = kvm_xen_hvm_set_attr(kvm, &xha);
6465                break;
6466        }
6467#endif
6468        case KVM_SET_CLOCK:
6469                r = kvm_vm_ioctl_set_clock(kvm, argp);
6470                break;
6471        case KVM_GET_CLOCK:
6472                r = kvm_vm_ioctl_get_clock(kvm, argp);
6473                break;
6474        case KVM_MEMORY_ENCRYPT_OP: {
6475                r = -ENOTTY;
6476                if (kvm_x86_ops.mem_enc_op)
6477                        r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6478                break;
6479        }
6480        case KVM_MEMORY_ENCRYPT_REG_REGION: {
6481                struct kvm_enc_region region;
6482
6483                r = -EFAULT;
6484                if (copy_from_user(&region, argp, sizeof(region)))
6485                        goto out;
6486
6487                r = -ENOTTY;
6488                if (kvm_x86_ops.mem_enc_reg_region)
6489                        r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6490                break;
6491        }
6492        case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6493                struct kvm_enc_region region;
6494
6495                r = -EFAULT;
6496                if (copy_from_user(&region, argp, sizeof(region)))
6497                        goto out;
6498
6499                r = -ENOTTY;
6500                if (kvm_x86_ops.mem_enc_unreg_region)
6501                        r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6502                break;
6503        }
6504        case KVM_HYPERV_EVENTFD: {
6505                struct kvm_hyperv_eventfd hvevfd;
6506
6507                r = -EFAULT;
6508                if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6509                        goto out;
6510                r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6511                break;
6512        }
6513        case KVM_SET_PMU_EVENT_FILTER:
6514                r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6515                break;
6516        case KVM_X86_SET_MSR_FILTER:
6517                r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6518                break;
6519        default:
6520                r = -ENOTTY;
6521        }
6522out:
6523        return r;
6524}
6525
6526static void kvm_init_msr_list(void)
6527{
6528        struct x86_pmu_capability x86_pmu;
6529        u32 dummy[2];
6530        unsigned i;
6531
6532        BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6533                         "Please update the fixed PMCs in msrs_to_saved_all[]");
6534
6535        perf_get_x86_pmu_capability(&x86_pmu);
6536
6537        num_msrs_to_save = 0;
6538        num_emulated_msrs = 0;
6539        num_msr_based_features = 0;
6540
6541        for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6542                if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6543                        continue;
6544
6545                /*
6546                 * Even MSRs that are valid in the host may not be exposed
6547                 * to the guests in some cases.
6548                 */
6549                switch (msrs_to_save_all[i]) {
6550                case MSR_IA32_BNDCFGS:
6551                        if (!kvm_mpx_supported())
6552                                continue;
6553                        break;
6554                case MSR_TSC_AUX:
6555                        if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6556                            !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6557                                continue;
6558                        break;
6559                case MSR_IA32_UMWAIT_CONTROL:
6560                        if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6561                                continue;
6562                        break;
6563                case MSR_IA32_RTIT_CTL:
6564                case MSR_IA32_RTIT_STATUS:
6565                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6566                                continue;
6567                        break;
6568                case MSR_IA32_RTIT_CR3_MATCH:
6569                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6570                            !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6571                                continue;
6572                        break;
6573                case MSR_IA32_RTIT_OUTPUT_BASE:
6574                case MSR_IA32_RTIT_OUTPUT_MASK:
6575                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6576                                (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6577                                 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6578                                continue;
6579                        break;
6580                case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6581                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6582                                msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6583                                intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6584                                continue;
6585                        break;
6586                case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6587                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6588                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6589                                continue;
6590                        break;
6591                case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6592                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6593                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6594                                continue;
6595                        break;
6596                case MSR_IA32_XFD:
6597                case MSR_IA32_XFD_ERR:
6598                        if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6599                                continue;
6600                        break;
6601                default:
6602                        break;
6603                }
6604
6605                msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6606        }
6607
6608        for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6609                if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6610                        continue;
6611
6612                emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6613        }
6614
6615        for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6616                struct kvm_msr_entry msr;
6617
6618                msr.index = msr_based_features_all[i];
6619                if (kvm_get_msr_feature(&msr))
6620                        continue;
6621
6622                msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6623        }
6624}
6625
6626static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6627                           const void *v)
6628{
6629        int handled = 0;
6630        int n;
6631
6632        do {
6633                n = min(len, 8);
6634                if (!(lapic_in_kernel(vcpu) &&
6635                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6636                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6637                        break;
6638                handled += n;
6639                addr += n;
6640                len -= n;
6641                v += n;
6642        } while (len);
6643
6644        return handled;
6645}
6646
6647static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6648{
6649        int handled = 0;
6650        int n;
6651
6652        do {
6653                n = min(len, 8);
6654                if (!(lapic_in_kernel(vcpu) &&
6655                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6656                                         addr, n, v))
6657                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6658                        break;
6659                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6660                handled += n;
6661                addr += n;
6662                len -= n;
6663                v += n;
6664        } while (len);
6665
6666        return handled;
6667}
6668
6669static void kvm_set_segment(struct kvm_vcpu *vcpu,
6670                        struct kvm_segment *var, int seg)
6671{
6672        static_call(kvm_x86_set_segment)(vcpu, var, seg);
6673}
6674
6675void kvm_get_segment(struct kvm_vcpu *vcpu,
6676                     struct kvm_segment *var, int seg)
6677{
6678        static_call(kvm_x86_get_segment)(vcpu, var, seg);
6679}
6680
6681gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6682                           struct x86_exception *exception)
6683{
6684        struct kvm_mmu *mmu = vcpu->arch.mmu;
6685        gpa_t t_gpa;
6686
6687        BUG_ON(!mmu_is_nested(vcpu));
6688
6689        /* NPT walks are always user-walks */
6690        access |= PFERR_USER_MASK;
6691        t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6692
6693        return t_gpa;
6694}
6695
6696gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6697                              struct x86_exception *exception)
6698{
6699        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6700
6701        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6702        return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6703}
6704EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6705
6706 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6707                                struct x86_exception *exception)
6708{
6709        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6710
6711        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6712        access |= PFERR_FETCH_MASK;
6713        return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6714}
6715
6716gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6717                               struct x86_exception *exception)
6718{
6719        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6720
6721        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6722        access |= PFERR_WRITE_MASK;
6723        return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6724}
6725EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6726
6727/* uses this to access any guest's mapped memory without checking CPL */
6728gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6729                                struct x86_exception *exception)
6730{
6731        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6732
6733        return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6734}
6735
6736static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6737                                      struct kvm_vcpu *vcpu, u32 access,
6738                                      struct x86_exception *exception)
6739{
6740        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6741        void *data = val;
6742        int r = X86EMUL_CONTINUE;
6743
6744        while (bytes) {
6745                gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6746                unsigned offset = addr & (PAGE_SIZE-1);
6747                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6748                int ret;
6749
6750                if (gpa == UNMAPPED_GVA)
6751                        return X86EMUL_PROPAGATE_FAULT;
6752                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6753                                               offset, toread);
6754                if (ret < 0) {
6755                        r = X86EMUL_IO_NEEDED;
6756                        goto out;
6757                }
6758
6759                bytes -= toread;
6760                data += toread;
6761                addr += toread;
6762        }
6763out:
6764        return r;
6765}
6766
6767/* used for instruction fetching */
6768static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6769                                gva_t addr, void *val, unsigned int bytes,
6770                                struct x86_exception *exception)
6771{
6772        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6773        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6774        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6775        unsigned offset;
6776        int ret;
6777
6778        /* Inline kvm_read_guest_virt_helper for speed.  */
6779        gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6780                                    exception);
6781        if (unlikely(gpa == UNMAPPED_GVA))
6782                return X86EMUL_PROPAGATE_FAULT;
6783
6784        offset = addr & (PAGE_SIZE-1);
6785        if (WARN_ON(offset + bytes > PAGE_SIZE))
6786                bytes = (unsigned)PAGE_SIZE - offset;
6787        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6788                                       offset, bytes);
6789        if (unlikely(ret < 0))
6790                return X86EMUL_IO_NEEDED;
6791
6792        return X86EMUL_CONTINUE;
6793}
6794
6795int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6796                               gva_t addr, void *val, unsigned int bytes,
6797                               struct x86_exception *exception)
6798{
6799        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6800
6801        /*
6802         * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6803         * is returned, but our callers are not ready for that and they blindly
6804         * call kvm_inject_page_fault.  Ensure that they at least do not leak
6805         * uninitialized kernel stack memory into cr2 and error code.
6806         */
6807        memset(exception, 0, sizeof(*exception));
6808        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6809                                          exception);
6810}
6811EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6812
6813static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6814                             gva_t addr, void *val, unsigned int bytes,
6815                             struct x86_exception *exception, bool system)
6816{
6817        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6818        u32 access = 0;
6819
6820        if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6821                access |= PFERR_USER_MASK;
6822
6823        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6824}
6825
6826static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6827                unsigned long addr, void *val, unsigned int bytes)
6828{
6829        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6830        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6831
6832        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6833}
6834
6835static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6836                                      struct kvm_vcpu *vcpu, u32 access,
6837                                      struct x86_exception *exception)
6838{
6839        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6840        void *data = val;
6841        int r = X86EMUL_CONTINUE;
6842
6843        while (bytes) {
6844                gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6845                unsigned offset = addr & (PAGE_SIZE-1);
6846                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6847                int ret;
6848
6849                if (gpa == UNMAPPED_GVA)
6850                        return X86EMUL_PROPAGATE_FAULT;
6851                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6852                if (ret < 0) {
6853                        r = X86EMUL_IO_NEEDED;
6854                        goto out;
6855                }
6856
6857                bytes -= towrite;
6858                data += towrite;
6859                addr += towrite;
6860        }
6861out:
6862        return r;
6863}
6864
6865static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6866                              unsigned int bytes, struct x86_exception *exception,
6867                              bool system)
6868{
6869        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6870        u32 access = PFERR_WRITE_MASK;
6871
6872        if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6873                access |= PFERR_USER_MASK;
6874
6875        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6876                                           access, exception);
6877}
6878
6879int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6880                                unsigned int bytes, struct x86_exception *exception)
6881{
6882        /* kvm_write_guest_virt_system can pull in tons of pages. */
6883        vcpu->arch.l1tf_flush_l1d = true;
6884
6885        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6886                                           PFERR_WRITE_MASK, exception);
6887}
6888EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6889
6890static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6891                                void *insn, int insn_len)
6892{
6893        return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6894                                                            insn, insn_len);
6895}
6896
6897int handle_ud(struct kvm_vcpu *vcpu)
6898{
6899        static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6900        int emul_type = EMULTYPE_TRAP_UD;
6901        char sig[5]; /* ud2; .ascii "kvm" */
6902        struct x86_exception e;
6903
6904        if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6905                return 1;
6906
6907        if (force_emulation_prefix &&
6908            kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6909                                sig, sizeof(sig), &e) == 0 &&
6910            memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6911                kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6912                emul_type = EMULTYPE_TRAP_UD_FORCED;
6913        }
6914
6915        return kvm_emulate_instruction(vcpu, emul_type);
6916}
6917EXPORT_SYMBOL_GPL(handle_ud);
6918
6919static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6920                            gpa_t gpa, bool write)
6921{
6922        /* For APIC access vmexit */
6923        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6924                return 1;
6925
6926        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6927                trace_vcpu_match_mmio(gva, gpa, write, true);
6928                return 1;
6929        }
6930
6931        return 0;
6932}
6933
6934static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6935                                gpa_t *gpa, struct x86_exception *exception,
6936                                bool write)
6937{
6938        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6939        u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6940                | (write ? PFERR_WRITE_MASK : 0);
6941
6942        /*
6943         * currently PKRU is only applied to ept enabled guest so
6944         * there is no pkey in EPT page table for L1 guest or EPT
6945         * shadow page table for L2 guest.
6946         */
6947        if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6948            !permission_fault(vcpu, vcpu->arch.walk_mmu,
6949                              vcpu->arch.mmio_access, 0, access))) {
6950                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6951                                        (gva & (PAGE_SIZE - 1));
6952                trace_vcpu_match_mmio(gva, *gpa, write, false);
6953                return 1;
6954        }
6955
6956        *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6957
6958        if (*gpa == UNMAPPED_GVA)
6959                return -1;
6960
6961        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6962}
6963
6964int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6965                        const void *val, int bytes)
6966{
6967        int ret;
6968
6969        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6970        if (ret < 0)
6971                return 0;
6972        kvm_page_track_write(vcpu, gpa, val, bytes);
6973        return 1;
6974}
6975
6976struct read_write_emulator_ops {
6977        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6978                                  int bytes);
6979        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6980                                  void *val, int bytes);
6981        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6982                               int bytes, void *val);
6983        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6984                                    void *val, int bytes);
6985        bool write;
6986};
6987
6988static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6989{
6990        if (vcpu->mmio_read_completed) {
6991                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6992                               vcpu->mmio_fragments[0].gpa, val);
6993                vcpu->mmio_read_completed = 0;
6994                return 1;
6995        }
6996
6997        return 0;
6998}
6999
7000static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7001                        void *val, int bytes)
7002{
7003        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7004}
7005
7006static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7007                         void *val, int bytes)
7008{
7009        return emulator_write_phys(vcpu, gpa, val, bytes);
7010}
7011
7012static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7013{
7014        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7015        return vcpu_mmio_write(vcpu, gpa, bytes, val);
7016}
7017
7018static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7019                          void *val, int bytes)
7020{
7021        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7022        return X86EMUL_IO_NEEDED;
7023}
7024
7025static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7026                           void *val, int bytes)
7027{
7028        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7029
7030        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7031        return X86EMUL_CONTINUE;
7032}
7033
7034static const struct read_write_emulator_ops read_emultor = {
7035        .read_write_prepare = read_prepare,
7036        .read_write_emulate = read_emulate,
7037        .read_write_mmio = vcpu_mmio_read,
7038        .read_write_exit_mmio = read_exit_mmio,
7039};
7040
7041static const struct read_write_emulator_ops write_emultor = {
7042        .read_write_emulate = write_emulate,
7043        .read_write_mmio = write_mmio,
7044        .read_write_exit_mmio = write_exit_mmio,
7045        .write = true,
7046};
7047
7048static int emulator_read_write_onepage(unsigned long addr, void *val,
7049                                       unsigned int bytes,
7050                                       struct x86_exception *exception,
7051                                       struct kvm_vcpu *vcpu,
7052                                       const struct read_write_emulator_ops *ops)
7053{
7054        gpa_t gpa;
7055        int handled, ret;
7056        bool write = ops->write;
7057        struct kvm_mmio_fragment *frag;
7058        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7059
7060        /*
7061         * If the exit was due to a NPF we may already have a GPA.
7062         * If the GPA is present, use it to avoid the GVA to GPA table walk.
7063         * Note, this cannot be used on string operations since string
7064         * operation using rep will only have the initial GPA from the NPF
7065         * occurred.
7066         */
7067        if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7068            (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7069                gpa = ctxt->gpa_val;
7070                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7071        } else {
7072                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7073                if (ret < 0)
7074                        return X86EMUL_PROPAGATE_FAULT;
7075        }
7076
7077        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7078                return X86EMUL_CONTINUE;
7079
7080        /*
7081         * Is this MMIO handled locally?
7082         */
7083        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7084        if (handled == bytes)
7085                return X86EMUL_CONTINUE;
7086
7087        gpa += handled;
7088        bytes -= handled;
7089        val += handled;
7090
7091        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7092        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7093        frag->gpa = gpa;
7094        frag->data = val;
7095        frag->len = bytes;
7096        return X86EMUL_CONTINUE;
7097}
7098
7099static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7100                        unsigned long addr,
7101                        void *val, unsigned int bytes,
7102                        struct x86_exception *exception,
7103                        const struct read_write_emulator_ops *ops)
7104{
7105        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7106        gpa_t gpa;
7107        int rc;
7108
7109        if (ops->read_write_prepare &&
7110                  ops->read_write_prepare(vcpu, val, bytes))
7111                return X86EMUL_CONTINUE;
7112
7113        vcpu->mmio_nr_fragments = 0;
7114
7115        /* Crossing a page boundary? */
7116        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7117                int now;
7118
7119                now = -addr & ~PAGE_MASK;
7120                rc = emulator_read_write_onepage(addr, val, now, exception,
7121                                                 vcpu, ops);
7122
7123                if (rc != X86EMUL_CONTINUE)
7124                        return rc;
7125                addr += now;
7126                if (ctxt->mode != X86EMUL_MODE_PROT64)
7127                        addr = (u32)addr;
7128                val += now;
7129                bytes -= now;
7130        }
7131
7132        rc = emulator_read_write_onepage(addr, val, bytes, exception,
7133                                         vcpu, ops);
7134        if (rc != X86EMUL_CONTINUE)
7135                return rc;
7136
7137        if (!vcpu->mmio_nr_fragments)
7138                return rc;
7139
7140        gpa = vcpu->mmio_fragments[0].gpa;
7141
7142        vcpu->mmio_needed = 1;
7143        vcpu->mmio_cur_fragment = 0;
7144
7145        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7146        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7147        vcpu->run->exit_reason = KVM_EXIT_MMIO;
7148        vcpu->run->mmio.phys_addr = gpa;
7149
7150        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7151}
7152
7153static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7154                                  unsigned long addr,
7155                                  void *val,
7156                                  unsigned int bytes,
7157                                  struct x86_exception *exception)
7158{
7159        return emulator_read_write(ctxt, addr, val, bytes,
7160                                   exception, &read_emultor);
7161}
7162
7163static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7164                            unsigned long addr,
7165                            const void *val,
7166                            unsigned int bytes,
7167                            struct x86_exception *exception)
7168{
7169        return emulator_read_write(ctxt, addr, (void *)val, bytes,
7170                                   exception, &write_emultor);
7171}
7172
7173#define CMPXCHG_TYPE(t, ptr, old, new) \
7174        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7175
7176#ifdef CONFIG_X86_64
7177#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7178#else
7179#  define CMPXCHG64(ptr, old, new) \
7180        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7181#endif
7182
7183static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7184                                     unsigned long addr,
7185                                     const void *old,
7186                                     const void *new,
7187                                     unsigned int bytes,
7188                                     struct x86_exception *exception)
7189{
7190        struct kvm_host_map map;
7191        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7192        u64 page_line_mask;
7193        gpa_t gpa;
7194        char *kaddr;
7195        bool exchanged;
7196
7197        /* guests cmpxchg8b have to be emulated atomically */
7198        if (bytes > 8 || (bytes & (bytes - 1)))
7199                goto emul_write;
7200
7201        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7202
7203        if (gpa == UNMAPPED_GVA ||
7204            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7205                goto emul_write;
7206
7207        /*
7208         * Emulate the atomic as a straight write to avoid #AC if SLD is
7209         * enabled in the host and the access splits a cache line.
7210         */
7211        if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7212                page_line_mask = ~(cache_line_size() - 1);
7213        else
7214                page_line_mask = PAGE_MASK;
7215
7216        if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7217                goto emul_write;
7218
7219        if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7220                goto emul_write;
7221
7222        kaddr = map.hva + offset_in_page(gpa);
7223
7224        switch (bytes) {
7225        case 1:
7226                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7227                break;
7228        case 2:
7229                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7230                break;
7231        case 4:
7232                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7233                break;
7234        case 8:
7235                exchanged = CMPXCHG64(kaddr, old, new);
7236                break;
7237        default:
7238                BUG();
7239        }
7240
7241        kvm_vcpu_unmap(vcpu, &map, true);
7242
7243        if (!exchanged)
7244                return X86EMUL_CMPXCHG_FAILED;
7245
7246        kvm_page_track_write(vcpu, gpa, new, bytes);
7247
7248        return X86EMUL_CONTINUE;
7249
7250emul_write:
7251        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7252
7253        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7254}
7255
7256static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7257{
7258        int r = 0, i;
7259
7260        for (i = 0; i < vcpu->arch.pio.count; i++) {
7261                if (vcpu->arch.pio.in)
7262                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7263                                            vcpu->arch.pio.size, pd);
7264                else
7265                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7266                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
7267                                             pd);
7268                if (r)
7269                        break;
7270                pd += vcpu->arch.pio.size;
7271        }
7272        return r;
7273}
7274
7275static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7276                               unsigned short port,
7277                               unsigned int count, bool in)
7278{
7279        vcpu->arch.pio.port = port;
7280        vcpu->arch.pio.in = in;
7281        vcpu->arch.pio.count  = count;
7282        vcpu->arch.pio.size = size;
7283
7284        if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7285                return 1;
7286
7287        vcpu->run->exit_reason = KVM_EXIT_IO;
7288        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7289        vcpu->run->io.size = size;
7290        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7291        vcpu->run->io.count = count;
7292        vcpu->run->io.port = port;
7293
7294        return 0;
7295}
7296
7297static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7298                             unsigned short port, unsigned int count)
7299{
7300        WARN_ON(vcpu->arch.pio.count);
7301        memset(vcpu->arch.pio_data, 0, size * count);
7302        return emulator_pio_in_out(vcpu, size, port, count, true);
7303}
7304
7305static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7306{
7307        int size = vcpu->arch.pio.size;
7308        unsigned count = vcpu->arch.pio.count;
7309        memcpy(val, vcpu->arch.pio_data, size * count);
7310        trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7311        vcpu->arch.pio.count = 0;
7312}
7313
7314static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7315                           unsigned short port, void *val, unsigned int count)
7316{
7317        if (vcpu->arch.pio.count) {
7318                /*
7319                 * Complete a previous iteration that required userspace I/O.
7320                 * Note, @count isn't guaranteed to match pio.count as userspace
7321                 * can modify ECX before rerunning the vCPU.  Ignore any such
7322                 * shenanigans as KVM doesn't support modifying the rep count,
7323                 * and the emulator ensures @count doesn't overflow the buffer.
7324                 */
7325        } else {
7326                int r = __emulator_pio_in(vcpu, size, port, count);
7327                if (!r)
7328                        return r;
7329
7330                /* Results already available, fall through.  */
7331        }
7332
7333        complete_emulator_pio_in(vcpu, val);
7334        return 1;
7335}
7336
7337static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7338                                    int size, unsigned short port, void *val,
7339                                    unsigned int count)
7340{
7341        return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7342
7343}
7344
7345static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7346                            unsigned short port, const void *val,
7347                            unsigned int count)
7348{
7349        int ret;
7350
7351        memcpy(vcpu->arch.pio_data, val, size * count);
7352        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7353        ret = emulator_pio_in_out(vcpu, size, port, count, false);
7354        if (ret)
7355                vcpu->arch.pio.count = 0;
7356
7357        return ret;
7358}
7359
7360static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7361                                     int size, unsigned short port,
7362                                     const void *val, unsigned int count)
7363{
7364        return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7365}
7366
7367static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7368{
7369        return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7370}
7371
7372static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7373{
7374        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7375}
7376
7377static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7378{
7379        if (!need_emulate_wbinvd(vcpu))
7380                return X86EMUL_CONTINUE;
7381
7382        if (static_call(kvm_x86_has_wbinvd_exit)()) {
7383                int cpu = get_cpu();
7384
7385                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7386                on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7387                                wbinvd_ipi, NULL, 1);
7388                put_cpu();
7389                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7390        } else
7391                wbinvd();
7392        return X86EMUL_CONTINUE;
7393}
7394
7395int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7396{
7397        kvm_emulate_wbinvd_noskip(vcpu);
7398        return kvm_skip_emulated_instruction(vcpu);
7399}
7400EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7401
7402
7403
7404static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7405{
7406        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7407}
7408
7409static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7410                            unsigned long *dest)
7411{
7412        kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7413}
7414
7415static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7416                           unsigned long value)
7417{
7418
7419        return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7420}
7421
7422static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7423{
7424        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7425}
7426
7427static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7428{
7429        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7430        unsigned long value;
7431
7432        switch (cr) {
7433        case 0:
7434                value = kvm_read_cr0(vcpu);
7435                break;
7436        case 2:
7437                value = vcpu->arch.cr2;
7438                break;
7439        case 3:
7440                value = kvm_read_cr3(vcpu);
7441                break;
7442        case 4:
7443                value = kvm_read_cr4(vcpu);
7444                break;
7445        case 8:
7446                value = kvm_get_cr8(vcpu);
7447                break;
7448        default:
7449                kvm_err("%s: unexpected cr %u\n", __func__, cr);
7450                return 0;
7451        }
7452
7453        return value;
7454}
7455
7456static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7457{
7458        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7459        int res = 0;
7460
7461        switch (cr) {
7462        case 0:
7463                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7464                break;
7465        case 2:
7466                vcpu->arch.cr2 = val;
7467                break;
7468        case 3:
7469                res = kvm_set_cr3(vcpu, val);
7470                break;
7471        case 4:
7472                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7473                break;
7474        case 8:
7475                res = kvm_set_cr8(vcpu, val);
7476                break;
7477        default:
7478                kvm_err("%s: unexpected cr %u\n", __func__, cr);
7479                res = -1;
7480        }
7481
7482        return res;
7483}
7484
7485static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7486{
7487        return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7488}
7489
7490static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7491{
7492        static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7493}
7494
7495static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7496{
7497        static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7498}
7499
7500static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7501{
7502        static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7503}
7504
7505static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7506{
7507        static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7508}
7509
7510static unsigned long emulator_get_cached_segment_base(
7511        struct x86_emulate_ctxt *ctxt, int seg)
7512{
7513        return get_segment_base(emul_to_vcpu(ctxt), seg);
7514}
7515
7516static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7517                                 struct desc_struct *desc, u32 *base3,
7518                                 int seg)
7519{
7520        struct kvm_segment var;
7521
7522        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7523        *selector = var.selector;
7524
7525        if (var.unusable) {
7526                memset(desc, 0, sizeof(*desc));
7527                if (base3)
7528                        *base3 = 0;
7529                return false;
7530        }
7531
7532        if (var.g)
7533                var.limit >>= 12;
7534        set_desc_limit(desc, var.limit);
7535        set_desc_base(desc, (unsigned long)var.base);
7536#ifdef CONFIG_X86_64
7537        if (base3)
7538                *base3 = var.base >> 32;
7539#endif
7540        desc->type = var.type;
7541        desc->s = var.s;
7542        desc->dpl = var.dpl;
7543        desc->p = var.present;
7544        desc->avl = var.avl;
7545        desc->l = var.l;
7546        desc->d = var.db;
7547        desc->g = var.g;
7548
7549        return true;
7550}
7551
7552static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7553                                 struct desc_struct *desc, u32 base3,
7554                                 int seg)
7555{
7556        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7557        struct kvm_segment var;
7558
7559        var.selector = selector;
7560        var.base = get_desc_base(desc);
7561#ifdef CONFIG_X86_64
7562        var.base |= ((u64)base3) << 32;
7563#endif
7564        var.limit = get_desc_limit(desc);
7565        if (desc->g)
7566                var.limit = (var.limit << 12) | 0xfff;
7567        var.type = desc->type;
7568        var.dpl = desc->dpl;
7569        var.db = desc->d;
7570        var.s = desc->s;
7571        var.l = desc->l;
7572        var.g = desc->g;
7573        var.avl = desc->avl;
7574        var.present = desc->p;
7575        var.unusable = !var.present;
7576        var.padding = 0;
7577
7578        kvm_set_segment(vcpu, &var, seg);
7579        return;
7580}
7581
7582static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7583                            u32 msr_index, u64 *pdata)
7584{
7585        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7586        int r;
7587
7588        r = kvm_get_msr(vcpu, msr_index, pdata);
7589
7590        if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7591                                    complete_emulated_rdmsr, r)) {
7592                /* Bounce to user space */
7593                return X86EMUL_IO_NEEDED;
7594        }
7595
7596        return r;
7597}
7598
7599static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7600                            u32 msr_index, u64 data)
7601{
7602        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7603        int r;
7604
7605        r = kvm_set_msr(vcpu, msr_index, data);
7606
7607        if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7608                                    complete_emulated_msr_access, r)) {
7609                /* Bounce to user space */
7610                return X86EMUL_IO_NEEDED;
7611        }
7612
7613        return r;
7614}
7615
7616static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7617{
7618        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7619
7620        return vcpu->arch.smbase;
7621}
7622
7623static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7624{
7625        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7626
7627        vcpu->arch.smbase = smbase;
7628}
7629
7630static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7631                              u32 pmc)
7632{
7633        if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7634                return 0;
7635        return -EINVAL;
7636}
7637
7638static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7639                             u32 pmc, u64 *pdata)
7640{
7641        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7642}
7643
7644static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7645{
7646        emul_to_vcpu(ctxt)->arch.halt_request = 1;
7647}
7648
7649static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7650                              struct x86_instruction_info *info,
7651                              enum x86_intercept_stage stage)
7652{
7653        return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7654                                            &ctxt->exception);
7655}
7656
7657static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7658                              u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7659                              bool exact_only)
7660{
7661        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7662}
7663
7664static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7665{
7666        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7667}
7668
7669static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7670{
7671        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7672}
7673
7674static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7675{
7676        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7677}
7678
7679static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7680{
7681        return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7682}
7683
7684static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7685{
7686        kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7687}
7688
7689static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7690{
7691        static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7692}
7693
7694static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7695{
7696        return emul_to_vcpu(ctxt)->arch.hflags;
7697}
7698
7699static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7700{
7701        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7702
7703        kvm_smm_changed(vcpu, false);
7704}
7705
7706static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7707                                  const char *smstate)
7708{
7709        return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7710}
7711
7712static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7713{
7714        kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7715}
7716
7717static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7718{
7719        return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7720}
7721
7722static const struct x86_emulate_ops emulate_ops = {
7723        .read_gpr            = emulator_read_gpr,
7724        .write_gpr           = emulator_write_gpr,
7725        .read_std            = emulator_read_std,
7726        .write_std           = emulator_write_std,
7727        .read_phys           = kvm_read_guest_phys_system,
7728        .fetch               = kvm_fetch_guest_virt,
7729        .read_emulated       = emulator_read_emulated,
7730        .write_emulated      = emulator_write_emulated,
7731        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7732        .invlpg              = emulator_invlpg,
7733        .pio_in_emulated     = emulator_pio_in_emulated,
7734        .pio_out_emulated    = emulator_pio_out_emulated,
7735        .get_segment         = emulator_get_segment,
7736        .set_segment         = emulator_set_segment,
7737        .get_cached_segment_base = emulator_get_cached_segment_base,
7738        .get_gdt             = emulator_get_gdt,
7739        .get_idt             = emulator_get_idt,
7740        .set_gdt             = emulator_set_gdt,
7741        .set_idt             = emulator_set_idt,
7742        .get_cr              = emulator_get_cr,
7743        .set_cr              = emulator_set_cr,
7744        .cpl                 = emulator_get_cpl,
7745        .get_dr              = emulator_get_dr,
7746        .set_dr              = emulator_set_dr,
7747        .get_smbase          = emulator_get_smbase,
7748        .set_smbase          = emulator_set_smbase,
7749        .set_msr             = emulator_set_msr,
7750        .get_msr             = emulator_get_msr,
7751        .check_pmc           = emulator_check_pmc,
7752        .read_pmc            = emulator_read_pmc,
7753        .halt                = emulator_halt,
7754        .wbinvd              = emulator_wbinvd,
7755        .fix_hypercall       = emulator_fix_hypercall,
7756        .intercept           = emulator_intercept,
7757        .get_cpuid           = emulator_get_cpuid,
7758        .guest_has_long_mode = emulator_guest_has_long_mode,
7759        .guest_has_movbe     = emulator_guest_has_movbe,
7760        .guest_has_fxsr      = emulator_guest_has_fxsr,
7761        .set_nmi_mask        = emulator_set_nmi_mask,
7762        .get_hflags          = emulator_get_hflags,
7763        .exiting_smm         = emulator_exiting_smm,
7764        .leave_smm           = emulator_leave_smm,
7765        .triple_fault        = emulator_triple_fault,
7766        .set_xcr             = emulator_set_xcr,
7767};
7768
7769static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7770{
7771        u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7772        /*
7773         * an sti; sti; sequence only disable interrupts for the first
7774         * instruction. So, if the last instruction, be it emulated or
7775         * not, left the system with the INT_STI flag enabled, it
7776         * means that the last instruction is an sti. We should not
7777         * leave the flag on in this case. The same goes for mov ss
7778         */
7779        if (int_shadow & mask)
7780                mask = 0;
7781        if (unlikely(int_shadow || mask)) {
7782                static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7783                if (!mask)
7784                        kvm_make_request(KVM_REQ_EVENT, vcpu);
7785        }
7786}
7787
7788static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7789{
7790        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7791        if (ctxt->exception.vector == PF_VECTOR)
7792                return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7793
7794        if (ctxt->exception.error_code_valid)
7795                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7796                                      ctxt->exception.error_code);
7797        else
7798                kvm_queue_exception(vcpu, ctxt->exception.vector);
7799        return false;
7800}
7801
7802static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7803{
7804        struct x86_emulate_ctxt *ctxt;
7805
7806        ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7807        if (!ctxt) {
7808                pr_err("kvm: failed to allocate vcpu's emulator\n");
7809                return NULL;
7810        }
7811
7812        ctxt->vcpu = vcpu;
7813        ctxt->ops = &emulate_ops;
7814        vcpu->arch.emulate_ctxt = ctxt;
7815
7816        return ctxt;
7817}
7818
7819static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7820{
7821        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7822        int cs_db, cs_l;
7823
7824        static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7825
7826        ctxt->gpa_available = false;
7827        ctxt->eflags = kvm_get_rflags(vcpu);
7828        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7829
7830        ctxt->eip = kvm_rip_read(vcpu);
7831        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7832                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7833                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7834                     cs_db                              ? X86EMUL_MODE_PROT32 :
7835                                                          X86EMUL_MODE_PROT16;
7836        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7837        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7838        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7839
7840        ctxt->interruptibility = 0;
7841        ctxt->have_exception = false;
7842        ctxt->exception.vector = -1;
7843        ctxt->perm_ok = false;
7844
7845        init_decode_cache(ctxt);
7846        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7847}
7848
7849void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7850{
7851        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7852        int ret;
7853
7854        init_emulate_ctxt(vcpu);
7855
7856        ctxt->op_bytes = 2;
7857        ctxt->ad_bytes = 2;
7858        ctxt->_eip = ctxt->eip + inc_eip;
7859        ret = emulate_int_real(ctxt, irq);
7860
7861        if (ret != X86EMUL_CONTINUE) {
7862                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7863        } else {
7864                ctxt->eip = ctxt->_eip;
7865                kvm_rip_write(vcpu, ctxt->eip);
7866                kvm_set_rflags(vcpu, ctxt->eflags);
7867        }
7868}
7869EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7870
7871static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7872                                           u8 ndata, u8 *insn_bytes, u8 insn_size)
7873{
7874        struct kvm_run *run = vcpu->run;
7875        u64 info[5];
7876        u8 info_start;
7877
7878        /*
7879         * Zero the whole array used to retrieve the exit info, as casting to
7880         * u32 for select entries will leave some chunks uninitialized.
7881         */
7882        memset(&info, 0, sizeof(info));
7883
7884        static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7885                                           &info[2], (u32 *)&info[3],
7886                                           (u32 *)&info[4]);
7887
7888        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7889        run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7890
7891        /*
7892         * There's currently space for 13 entries, but 5 are used for the exit
7893         * reason and info.  Restrict to 4 to reduce the maintenance burden
7894         * when expanding kvm_run.emulation_failure in the future.
7895         */
7896        if (WARN_ON_ONCE(ndata > 4))
7897                ndata = 4;
7898
7899        /* Always include the flags as a 'data' entry. */
7900        info_start = 1;
7901        run->emulation_failure.flags = 0;
7902
7903        if (insn_size) {
7904                BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7905                              sizeof(run->emulation_failure.insn_bytes) != 16));
7906                info_start += 2;
7907                run->emulation_failure.flags |=
7908                        KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7909                run->emulation_failure.insn_size = insn_size;
7910                memset(run->emulation_failure.insn_bytes, 0x90,
7911                       sizeof(run->emulation_failure.insn_bytes));
7912                memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7913        }
7914
7915        memcpy(&run->internal.data[info_start], info, sizeof(info));
7916        memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7917               ndata * sizeof(data[0]));
7918
7919        run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7920}
7921
7922static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7923{
7924        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7925
7926        prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7927                                       ctxt->fetch.end - ctxt->fetch.data);
7928}
7929
7930void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7931                                          u8 ndata)
7932{
7933        prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7934}
7935EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7936
7937void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7938{
7939        __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7940}
7941EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7942
7943static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7944{
7945        struct kvm *kvm = vcpu->kvm;
7946
7947        ++vcpu->stat.insn_emulation_fail;
7948        trace_kvm_emulate_insn_failed(vcpu);
7949
7950        if (emulation_type & EMULTYPE_VMWARE_GP) {
7951                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7952                return 1;
7953        }
7954
7955        if (kvm->arch.exit_on_emulation_error ||
7956            (emulation_type & EMULTYPE_SKIP)) {
7957                prepare_emulation_ctxt_failure_exit(vcpu);
7958                return 0;
7959        }
7960
7961        kvm_queue_exception(vcpu, UD_VECTOR);
7962
7963        if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7964                prepare_emulation_ctxt_failure_exit(vcpu);
7965                return 0;
7966        }
7967
7968        return 1;
7969}
7970
7971static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7972                                  bool write_fault_to_shadow_pgtable,
7973                                  int emulation_type)
7974{
7975        gpa_t gpa = cr2_or_gpa;
7976        kvm_pfn_t pfn;
7977
7978        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7979                return false;
7980
7981        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7982            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7983                return false;
7984
7985        if (!vcpu->arch.mmu->direct_map) {
7986                /*
7987                 * Write permission should be allowed since only
7988                 * write access need to be emulated.
7989                 */
7990                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7991
7992                /*
7993                 * If the mapping is invalid in guest, let cpu retry
7994                 * it to generate fault.
7995                 */
7996                if (gpa == UNMAPPED_GVA)
7997                        return true;
7998        }
7999
8000        /*
8001         * Do not retry the unhandleable instruction if it faults on the
8002         * readonly host memory, otherwise it will goto a infinite loop:
8003         * retry instruction -> write #PF -> emulation fail -> retry
8004         * instruction -> ...
8005         */
8006        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8007
8008        /*
8009         * If the instruction failed on the error pfn, it can not be fixed,
8010         * report the error to userspace.
8011         */
8012        if (is_error_noslot_pfn(pfn))
8013                return false;
8014
8015        kvm_release_pfn_clean(pfn);
8016
8017        /* The instructions are well-emulated on direct mmu. */
8018        if (vcpu->arch.mmu->direct_map) {
8019                unsigned int indirect_shadow_pages;
8020
8021                write_lock(&vcpu->kvm->mmu_lock);
8022                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8023                write_unlock(&vcpu->kvm->mmu_lock);
8024
8025                if (indirect_shadow_pages)
8026                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8027
8028                return true;
8029        }
8030
8031        /*
8032         * if emulation was due to access to shadowed page table
8033         * and it failed try to unshadow page and re-enter the
8034         * guest to let CPU execute the instruction.
8035         */
8036        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8037
8038        /*
8039         * If the access faults on its page table, it can not
8040         * be fixed by unprotecting shadow page and it should
8041         * be reported to userspace.
8042         */
8043        return !write_fault_to_shadow_pgtable;
8044}
8045
8046static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8047                              gpa_t cr2_or_gpa,  int emulation_type)
8048{
8049        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8050        unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8051
8052        last_retry_eip = vcpu->arch.last_retry_eip;
8053        last_retry_addr = vcpu->arch.last_retry_addr;
8054
8055        /*
8056         * If the emulation is caused by #PF and it is non-page_table
8057         * writing instruction, it means the VM-EXIT is caused by shadow
8058         * page protected, we can zap the shadow page and retry this
8059         * instruction directly.
8060         *
8061         * Note: if the guest uses a non-page-table modifying instruction
8062         * on the PDE that points to the instruction, then we will unmap
8063         * the instruction and go to an infinite loop. So, we cache the
8064         * last retried eip and the last fault address, if we meet the eip
8065         * and the address again, we can break out of the potential infinite
8066         * loop.
8067         */
8068        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8069
8070        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8071                return false;
8072
8073        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8074            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8075                return false;
8076
8077        if (x86_page_table_writing_insn(ctxt))
8078                return false;
8079
8080        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8081                return false;
8082
8083        vcpu->arch.last_retry_eip = ctxt->eip;
8084        vcpu->arch.last_retry_addr = cr2_or_gpa;
8085
8086        if (!vcpu->arch.mmu->direct_map)
8087                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8088
8089        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8090
8091        return true;
8092}
8093
8094static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8095static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8096
8097static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8098{
8099        trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8100
8101        if (entering_smm) {
8102                vcpu->arch.hflags |= HF_SMM_MASK;
8103        } else {
8104                vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8105
8106                /* Process a latched INIT or SMI, if any.  */
8107                kvm_make_request(KVM_REQ_EVENT, vcpu);
8108
8109                /*
8110                 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8111                 * on SMM exit we still need to reload them from
8112                 * guest memory
8113                 */
8114                vcpu->arch.pdptrs_from_userspace = false;
8115        }
8116
8117        kvm_mmu_reset_context(vcpu);
8118}
8119
8120static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8121                                unsigned long *db)
8122{
8123        u32 dr6 = 0;
8124        int i;
8125        u32 enable, rwlen;
8126
8127        enable = dr7;
8128        rwlen = dr7 >> 16;
8129        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8130                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8131                        dr6 |= (1 << i);
8132        return dr6;
8133}
8134
8135static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8136{
8137        struct kvm_run *kvm_run = vcpu->run;
8138
8139        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8140                kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8141                kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8142                kvm_run->debug.arch.exception = DB_VECTOR;
8143                kvm_run->exit_reason = KVM_EXIT_DEBUG;
8144                return 0;
8145        }
8146        kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8147        return 1;
8148}
8149
8150int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8151{
8152        unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8153        int r;
8154
8155        r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8156        if (unlikely(!r))
8157                return 0;
8158
8159        kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8160
8161        /*
8162         * rflags is the old, "raw" value of the flags.  The new value has
8163         * not been saved yet.
8164         *
8165         * This is correct even for TF set by the guest, because "the
8166         * processor will not generate this exception after the instruction
8167         * that sets the TF flag".
8168         */
8169        if (unlikely(rflags & X86_EFLAGS_TF))
8170                r = kvm_vcpu_do_singlestep(vcpu);
8171        return r;
8172}
8173EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8174
8175static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8176{
8177        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8178            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8179                struct kvm_run *kvm_run = vcpu->run;
8180                unsigned long eip = kvm_get_linear_rip(vcpu);
8181                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8182                                           vcpu->arch.guest_debug_dr7,
8183                                           vcpu->arch.eff_db);
8184
8185                if (dr6 != 0) {
8186                        kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8187                        kvm_run->debug.arch.pc = eip;
8188                        kvm_run->debug.arch.exception = DB_VECTOR;
8189                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
8190                        *r = 0;
8191                        return true;
8192                }
8193        }
8194
8195        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8196            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8197                unsigned long eip = kvm_get_linear_rip(vcpu);
8198                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8199                                           vcpu->arch.dr7,
8200                                           vcpu->arch.db);
8201
8202                if (dr6 != 0) {
8203                        kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8204                        *r = 1;
8205                        return true;
8206                }
8207        }
8208
8209        return false;
8210}
8211
8212static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8213{
8214        switch (ctxt->opcode_len) {
8215        case 1:
8216                switch (ctxt->b) {
8217                case 0xe4:      /* IN */
8218                case 0xe5:
8219                case 0xec:
8220                case 0xed:
8221                case 0xe6:      /* OUT */
8222                case 0xe7:
8223                case 0xee:
8224                case 0xef:
8225                case 0x6c:      /* INS */
8226                case 0x6d:
8227                case 0x6e:      /* OUTS */
8228                case 0x6f:
8229                        return true;
8230                }
8231                break;
8232        case 2:
8233                switch (ctxt->b) {
8234                case 0x33:      /* RDPMC */
8235                        return true;
8236                }
8237                break;
8238        }
8239
8240        return false;
8241}
8242
8243/*
8244 * Decode to be emulated instruction. Return EMULATION_OK if success.
8245 */
8246int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8247                                    void *insn, int insn_len)
8248{
8249        int r = EMULATION_OK;
8250        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8251
8252        init_emulate_ctxt(vcpu);
8253
8254        /*
8255         * We will reenter on the same instruction since we do not set
8256         * complete_userspace_io. This does not handle watchpoints yet,
8257         * those would be handled in the emulate_ops.
8258         */
8259        if (!(emulation_type & EMULTYPE_SKIP) &&
8260            kvm_vcpu_check_breakpoint(vcpu, &r))
8261                return r;
8262
8263        r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8264
8265        trace_kvm_emulate_insn_start(vcpu);
8266        ++vcpu->stat.insn_emulation;
8267
8268        return r;
8269}
8270EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8271
8272int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8273                            int emulation_type, void *insn, int insn_len)
8274{
8275        int r;
8276        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8277        bool writeback = true;
8278        bool write_fault_to_spt;
8279
8280        if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8281                return 1;
8282
8283        vcpu->arch.l1tf_flush_l1d = true;
8284
8285        /*
8286         * Clear write_fault_to_shadow_pgtable here to ensure it is
8287         * never reused.
8288         */
8289        write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8290        vcpu->arch.write_fault_to_shadow_pgtable = false;
8291
8292        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8293                kvm_clear_exception_queue(vcpu);
8294
8295                r = x86_decode_emulated_instruction(vcpu, emulation_type,
8296                                                    insn, insn_len);
8297                if (r != EMULATION_OK)  {
8298                        if ((emulation_type & EMULTYPE_TRAP_UD) ||
8299                            (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8300                                kvm_queue_exception(vcpu, UD_VECTOR);
8301                                return 1;
8302                        }
8303                        if (reexecute_instruction(vcpu, cr2_or_gpa,
8304                                                  write_fault_to_spt,
8305                                                  emulation_type))
8306                                return 1;
8307                        if (ctxt->have_exception) {
8308                                /*
8309                                 * #UD should result in just EMULATION_FAILED, and trap-like
8310                                 * exception should not be encountered during decode.
8311                                 */
8312                                WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8313                                             exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8314                                inject_emulated_exception(vcpu);
8315                                return 1;
8316                        }
8317                        return handle_emulation_failure(vcpu, emulation_type);
8318                }
8319        }
8320
8321        if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8322            !is_vmware_backdoor_opcode(ctxt)) {
8323                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8324                return 1;
8325        }
8326
8327        /*
8328         * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8329         * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8330         * The caller is responsible for updating interruptibility state and
8331         * injecting single-step #DBs.
8332         */
8333        if (emulation_type & EMULTYPE_SKIP) {
8334                if (ctxt->mode != X86EMUL_MODE_PROT64)
8335                        ctxt->eip = (u32)ctxt->_eip;
8336                else
8337                        ctxt->eip = ctxt->_eip;
8338
8339                if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8340                        r = 1;
8341                        goto writeback;
8342                }
8343
8344                kvm_rip_write(vcpu, ctxt->eip);
8345                if (ctxt->eflags & X86_EFLAGS_RF)
8346                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8347                return 1;
8348        }
8349
8350        if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8351                return 1;
8352
8353        /* this is needed for vmware backdoor interface to work since it
8354           changes registers values  during IO operation */
8355        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8356                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8357                emulator_invalidate_register_cache(ctxt);
8358        }
8359
8360restart:
8361        if (emulation_type & EMULTYPE_PF) {
8362                /* Save the faulting GPA (cr2) in the address field */
8363                ctxt->exception.address = cr2_or_gpa;
8364
8365                /* With shadow page tables, cr2 contains a GVA or nGPA. */
8366                if (vcpu->arch.mmu->direct_map) {
8367                        ctxt->gpa_available = true;
8368                        ctxt->gpa_val = cr2_or_gpa;
8369                }
8370        } else {
8371                /* Sanitize the address out of an abundance of paranoia. */
8372                ctxt->exception.address = 0;
8373        }
8374
8375        r = x86_emulate_insn(ctxt);
8376
8377        if (r == EMULATION_INTERCEPTED)
8378                return 1;
8379
8380        if (r == EMULATION_FAILED) {
8381                if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8382                                        emulation_type))
8383                        return 1;
8384
8385                return handle_emulation_failure(vcpu, emulation_type);
8386        }
8387
8388        if (ctxt->have_exception) {
8389                r = 1;
8390                if (inject_emulated_exception(vcpu))
8391                        return r;
8392        } else if (vcpu->arch.pio.count) {
8393                if (!vcpu->arch.pio.in) {
8394                        /* FIXME: return into emulator if single-stepping.  */
8395                        vcpu->arch.pio.count = 0;
8396                } else {
8397                        writeback = false;
8398                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
8399                }
8400                r = 0;
8401        } else if (vcpu->mmio_needed) {
8402                ++vcpu->stat.mmio_exits;
8403
8404                if (!vcpu->mmio_is_write)
8405                        writeback = false;
8406                r = 0;
8407                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8408        } else if (vcpu->arch.complete_userspace_io) {
8409                writeback = false;
8410                r = 0;
8411        } else if (r == EMULATION_RESTART)
8412                goto restart;
8413        else
8414                r = 1;
8415
8416writeback:
8417        if (writeback) {
8418                unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8419                toggle_interruptibility(vcpu, ctxt->interruptibility);
8420                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8421                if (!ctxt->have_exception ||
8422                    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8423                        kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8424                        if (ctxt->is_branch)
8425                                kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8426                        kvm_rip_write(vcpu, ctxt->eip);
8427                        if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8428                                r = kvm_vcpu_do_singlestep(vcpu);
8429                        if (kvm_x86_ops.update_emulated_instruction)
8430                                static_call(kvm_x86_update_emulated_instruction)(vcpu);
8431                        __kvm_set_rflags(vcpu, ctxt->eflags);
8432                }
8433
8434                /*
8435                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8436                 * do nothing, and it will be requested again as soon as
8437                 * the shadow expires.  But we still need to check here,
8438                 * because POPF has no interrupt shadow.
8439                 */
8440                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8441                        kvm_make_request(KVM_REQ_EVENT, vcpu);
8442        } else
8443                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8444
8445        return r;
8446}
8447
8448int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8449{
8450        return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8451}
8452EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8453
8454int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8455                                        void *insn, int insn_len)
8456{
8457        return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8458}
8459EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8460
8461static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8462{
8463        vcpu->arch.pio.count = 0;
8464        return 1;
8465}
8466
8467static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8468{
8469        vcpu->arch.pio.count = 0;
8470
8471        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8472                return 1;
8473
8474        return kvm_skip_emulated_instruction(vcpu);
8475}
8476
8477static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8478                            unsigned short port)
8479{
8480        unsigned long val = kvm_rax_read(vcpu);
8481        int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8482
8483        if (ret)
8484                return ret;
8485
8486        /*
8487         * Workaround userspace that relies on old KVM behavior of %rip being
8488         * incremented prior to exiting to userspace to handle "OUT 0x7e".
8489         */
8490        if (port == 0x7e &&
8491            kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8492                vcpu->arch.complete_userspace_io =
8493                        complete_fast_pio_out_port_0x7e;
8494                kvm_skip_emulated_instruction(vcpu);
8495        } else {
8496                vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8497                vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8498        }
8499        return 0;
8500}
8501
8502static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8503{
8504        unsigned long val;
8505
8506        /* We should only ever be called with arch.pio.count equal to 1 */
8507        BUG_ON(vcpu->arch.pio.count != 1);
8508
8509        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8510                vcpu->arch.pio.count = 0;
8511                return 1;
8512        }
8513
8514        /* For size less than 4 we merge, else we zero extend */
8515        val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8516
8517        /*
8518         * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8519         * the copy and tracing
8520         */
8521        emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8522        kvm_rax_write(vcpu, val);
8523
8524        return kvm_skip_emulated_instruction(vcpu);
8525}
8526
8527static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8528                           unsigned short port)
8529{
8530        unsigned long val;
8531        int ret;
8532
8533        /* For size less than 4 we merge, else we zero extend */
8534        val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8535
8536        ret = emulator_pio_in(vcpu, size, port, &val, 1);
8537        if (ret) {
8538                kvm_rax_write(vcpu, val);
8539                return ret;
8540        }
8541
8542        vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8543        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8544
8545        return 0;
8546}
8547
8548int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8549{
8550        int ret;
8551
8552        if (in)
8553                ret = kvm_fast_pio_in(vcpu, size, port);
8554        else
8555                ret = kvm_fast_pio_out(vcpu, size, port);
8556        return ret && kvm_skip_emulated_instruction(vcpu);
8557}
8558EXPORT_SYMBOL_GPL(kvm_fast_pio);
8559
8560static int kvmclock_cpu_down_prep(unsigned int cpu)
8561{
8562        __this_cpu_write(cpu_tsc_khz, 0);
8563        return 0;
8564}
8565
8566static void tsc_khz_changed(void *data)
8567{
8568        struct cpufreq_freqs *freq = data;
8569        unsigned long khz = 0;
8570
8571        if (data)
8572                khz = freq->new;
8573        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8574                khz = cpufreq_quick_get(raw_smp_processor_id());
8575        if (!khz)
8576                khz = tsc_khz;
8577        __this_cpu_write(cpu_tsc_khz, khz);
8578}
8579
8580#ifdef CONFIG_X86_64
8581static void kvm_hyperv_tsc_notifier(void)
8582{
8583        struct kvm *kvm;
8584        int cpu;
8585
8586        mutex_lock(&kvm_lock);
8587        list_for_each_entry(kvm, &vm_list, vm_list)
8588                kvm_make_mclock_inprogress_request(kvm);
8589
8590        /* no guest entries from this point */
8591        hyperv_stop_tsc_emulation();
8592
8593        /* TSC frequency always matches when on Hyper-V */
8594        for_each_present_cpu(cpu)
8595                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8596        kvm_max_guest_tsc_khz = tsc_khz;
8597
8598        list_for_each_entry(kvm, &vm_list, vm_list) {
8599                __kvm_start_pvclock_update(kvm);
8600                pvclock_update_vm_gtod_copy(kvm);
8601                kvm_end_pvclock_update(kvm);
8602        }
8603
8604        mutex_unlock(&kvm_lock);
8605}
8606#endif
8607
8608static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8609{
8610        struct kvm *kvm;
8611        struct kvm_vcpu *vcpu;
8612        int send_ipi = 0;
8613        unsigned long i;
8614
8615        /*
8616         * We allow guests to temporarily run on slowing clocks,
8617         * provided we notify them after, or to run on accelerating
8618         * clocks, provided we notify them before.  Thus time never
8619         * goes backwards.
8620         *
8621         * However, we have a problem.  We can't atomically update
8622         * the frequency of a given CPU from this function; it is
8623         * merely a notifier, which can be called from any CPU.
8624         * Changing the TSC frequency at arbitrary points in time
8625         * requires a recomputation of local variables related to
8626         * the TSC for each VCPU.  We must flag these local variables
8627         * to be updated and be sure the update takes place with the
8628         * new frequency before any guests proceed.
8629         *
8630         * Unfortunately, the combination of hotplug CPU and frequency
8631         * change creates an intractable locking scenario; the order
8632         * of when these callouts happen is undefined with respect to
8633         * CPU hotplug, and they can race with each other.  As such,
8634         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8635         * undefined; you can actually have a CPU frequency change take
8636         * place in between the computation of X and the setting of the
8637         * variable.  To protect against this problem, all updates of
8638         * the per_cpu tsc_khz variable are done in an interrupt
8639         * protected IPI, and all callers wishing to update the value
8640         * must wait for a synchronous IPI to complete (which is trivial
8641         * if the caller is on the CPU already).  This establishes the
8642         * necessary total order on variable updates.
8643         *
8644         * Note that because a guest time update may take place
8645         * anytime after the setting of the VCPU's request bit, the
8646         * correct TSC value must be set before the request.  However,
8647         * to ensure the update actually makes it to any guest which
8648         * starts running in hardware virtualization between the set
8649         * and the acquisition of the spinlock, we must also ping the
8650         * CPU after setting the request bit.
8651         *
8652         */
8653
8654        smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8655
8656        mutex_lock(&kvm_lock);
8657        list_for_each_entry(kvm, &vm_list, vm_list) {
8658                kvm_for_each_vcpu(i, vcpu, kvm) {
8659                        if (vcpu->cpu != cpu)
8660                                continue;
8661                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8662                        if (vcpu->cpu != raw_smp_processor_id())
8663                                send_ipi = 1;
8664                }
8665        }
8666        mutex_unlock(&kvm_lock);
8667
8668        if (freq->old < freq->new && send_ipi) {
8669                /*
8670                 * We upscale the frequency.  Must make the guest
8671                 * doesn't see old kvmclock values while running with
8672                 * the new frequency, otherwise we risk the guest sees
8673                 * time go backwards.
8674                 *
8675                 * In case we update the frequency for another cpu
8676                 * (which might be in guest context) send an interrupt
8677                 * to kick the cpu out of guest context.  Next time
8678                 * guest context is entered kvmclock will be updated,
8679                 * so the guest will not see stale values.
8680                 */
8681                smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8682        }
8683}
8684
8685static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8686                                     void *data)
8687{
8688        struct cpufreq_freqs *freq = data;
8689        int cpu;
8690
8691        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8692                return 0;
8693        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8694                return 0;
8695
8696        for_each_cpu(cpu, freq->policy->cpus)
8697                __kvmclock_cpufreq_notifier(freq, cpu);
8698
8699        return 0;
8700}
8701
8702static struct notifier_block kvmclock_cpufreq_notifier_block = {
8703        .notifier_call  = kvmclock_cpufreq_notifier
8704};
8705
8706static int kvmclock_cpu_online(unsigned int cpu)
8707{
8708        tsc_khz_changed(NULL);
8709        return 0;
8710}
8711
8712static void kvm_timer_init(void)
8713{
8714        max_tsc_khz = tsc_khz;
8715
8716        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8717#ifdef CONFIG_CPU_FREQ
8718                struct cpufreq_policy *policy;
8719                int cpu;
8720
8721                cpu = get_cpu();
8722                policy = cpufreq_cpu_get(cpu);
8723                if (policy) {
8724                        if (policy->cpuinfo.max_freq)
8725                                max_tsc_khz = policy->cpuinfo.max_freq;
8726                        cpufreq_cpu_put(policy);
8727                }
8728                put_cpu();
8729#endif
8730                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8731                                          CPUFREQ_TRANSITION_NOTIFIER);
8732        }
8733
8734        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8735                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
8736}
8737
8738#ifdef CONFIG_X86_64
8739static void pvclock_gtod_update_fn(struct work_struct *work)
8740{
8741        struct kvm *kvm;
8742        struct kvm_vcpu *vcpu;
8743        unsigned long i;
8744
8745        mutex_lock(&kvm_lock);
8746        list_for_each_entry(kvm, &vm_list, vm_list)
8747                kvm_for_each_vcpu(i, vcpu, kvm)
8748                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8749        atomic_set(&kvm_guest_has_master_clock, 0);
8750        mutex_unlock(&kvm_lock);
8751}
8752
8753static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8754
8755/*
8756 * Indirection to move queue_work() out of the tk_core.seq write held
8757 * region to prevent possible deadlocks against time accessors which
8758 * are invoked with work related locks held.
8759 */
8760static void pvclock_irq_work_fn(struct irq_work *w)
8761{
8762        queue_work(system_long_wq, &pvclock_gtod_work);
8763}
8764
8765static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8766
8767/*
8768 * Notification about pvclock gtod data update.
8769 */
8770static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8771                               void *priv)
8772{
8773        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8774        struct timekeeper *tk = priv;
8775
8776        update_pvclock_gtod(tk);
8777
8778        /*
8779         * Disable master clock if host does not trust, or does not use,
8780         * TSC based clocksource. Delegate queue_work() to irq_work as
8781         * this is invoked with tk_core.seq write held.
8782         */
8783        if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8784            atomic_read(&kvm_guest_has_master_clock) != 0)
8785                irq_work_queue(&pvclock_irq_work);
8786        return 0;
8787}
8788
8789static struct notifier_block pvclock_gtod_notifier = {
8790        .notifier_call = pvclock_gtod_notify,
8791};
8792#endif
8793
8794int kvm_arch_init(void *opaque)
8795{
8796        struct kvm_x86_init_ops *ops = opaque;
8797        int r;
8798
8799        if (kvm_x86_ops.hardware_enable) {
8800                pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8801                r = -EEXIST;
8802                goto out;
8803        }
8804
8805        if (!ops->cpu_has_kvm_support()) {
8806                pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8807                                   ops->runtime_ops->name);
8808                r = -EOPNOTSUPP;
8809                goto out;
8810        }
8811        if (ops->disabled_by_bios()) {
8812                pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8813                                   ops->runtime_ops->name);
8814                r = -EOPNOTSUPP;
8815                goto out;
8816        }
8817
8818        /*
8819         * KVM explicitly assumes that the guest has an FPU and
8820         * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8821         * vCPU's FPU state as a fxregs_state struct.
8822         */
8823        if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8824                printk(KERN_ERR "kvm: inadequate fpu\n");
8825                r = -EOPNOTSUPP;
8826                goto out;
8827        }
8828
8829        r = -ENOMEM;
8830
8831        x86_emulator_cache = kvm_alloc_emulator_cache();
8832        if (!x86_emulator_cache) {
8833                pr_err("kvm: failed to allocate cache for x86 emulator\n");
8834                goto out;
8835        }
8836
8837        user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8838        if (!user_return_msrs) {
8839                printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8840                goto out_free_x86_emulator_cache;
8841        }
8842        kvm_nr_uret_msrs = 0;
8843
8844        r = kvm_mmu_module_init();
8845        if (r)
8846                goto out_free_percpu;
8847
8848        kvm_timer_init();
8849
8850        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8851                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8852                supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8853        }
8854
8855        if (pi_inject_timer == -1)
8856                pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8857#ifdef CONFIG_X86_64
8858        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8859
8860        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8861                set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8862#endif
8863
8864        return 0;
8865
8866out_free_percpu:
8867        free_percpu(user_return_msrs);
8868out_free_x86_emulator_cache:
8869        kmem_cache_destroy(x86_emulator_cache);
8870out:
8871        return r;
8872}
8873
8874void kvm_arch_exit(void)
8875{
8876#ifdef CONFIG_X86_64
8877        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8878                clear_hv_tscchange_cb();
8879#endif
8880        kvm_lapic_exit();
8881
8882        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8883                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8884                                            CPUFREQ_TRANSITION_NOTIFIER);
8885        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8886#ifdef CONFIG_X86_64
8887        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8888        irq_work_sync(&pvclock_irq_work);
8889        cancel_work_sync(&pvclock_gtod_work);
8890#endif
8891        kvm_x86_ops.hardware_enable = NULL;
8892        kvm_mmu_module_exit();
8893        free_percpu(user_return_msrs);
8894        kmem_cache_destroy(x86_emulator_cache);
8895#ifdef CONFIG_KVM_XEN
8896        static_key_deferred_flush(&kvm_xen_enabled);
8897        WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8898#endif
8899}
8900
8901static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8902{
8903        /*
8904         * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8905         * local APIC is in-kernel, the run loop will detect the non-runnable
8906         * state and halt the vCPU.  Exit to userspace if the local APIC is
8907         * managed by userspace, in which case userspace is responsible for
8908         * handling wake events.
8909         */
8910        ++vcpu->stat.halt_exits;
8911        if (lapic_in_kernel(vcpu)) {
8912                vcpu->arch.mp_state = state;
8913                return 1;
8914        } else {
8915                vcpu->run->exit_reason = reason;
8916                return 0;
8917        }
8918}
8919
8920int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8921{
8922        return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8923}
8924EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8925
8926int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8927{
8928        int ret = kvm_skip_emulated_instruction(vcpu);
8929        /*
8930         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8931         * KVM_EXIT_DEBUG here.
8932         */
8933        return kvm_emulate_halt_noskip(vcpu) && ret;
8934}
8935EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8936
8937int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8938{
8939        int ret = kvm_skip_emulated_instruction(vcpu);
8940
8941        return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8942                                        KVM_EXIT_AP_RESET_HOLD) && ret;
8943}
8944EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8945
8946#ifdef CONFIG_X86_64
8947static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8948                                unsigned long clock_type)
8949{
8950        struct kvm_clock_pairing clock_pairing;
8951        struct timespec64 ts;
8952        u64 cycle;
8953        int ret;
8954
8955        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8956                return -KVM_EOPNOTSUPP;
8957
8958        /*
8959         * When tsc is in permanent catchup mode guests won't be able to use
8960         * pvclock_read_retry loop to get consistent view of pvclock
8961         */
8962        if (vcpu->arch.tsc_always_catchup)
8963                return -KVM_EOPNOTSUPP;
8964
8965        if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8966                return -KVM_EOPNOTSUPP;
8967
8968        clock_pairing.sec = ts.tv_sec;
8969        clock_pairing.nsec = ts.tv_nsec;
8970        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8971        clock_pairing.flags = 0;
8972        memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8973
8974        ret = 0;
8975        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8976                            sizeof(struct kvm_clock_pairing)))
8977                ret = -KVM_EFAULT;
8978
8979        return ret;
8980}
8981#endif
8982
8983/*
8984 * kvm_pv_kick_cpu_op:  Kick a vcpu.
8985 *
8986 * @apicid - apicid of vcpu to be kicked.
8987 */
8988static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8989{
8990        struct kvm_lapic_irq lapic_irq;
8991
8992        lapic_irq.shorthand = APIC_DEST_NOSHORT;
8993        lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8994        lapic_irq.level = 0;
8995        lapic_irq.dest_id = apicid;
8996        lapic_irq.msi_redir_hint = false;
8997
8998        lapic_irq.delivery_mode = APIC_DM_REMRD;
8999        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9000}
9001
9002bool kvm_apicv_activated(struct kvm *kvm)
9003{
9004        return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9005}
9006EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9007
9008static void kvm_apicv_init(struct kvm *kvm)
9009{
9010        init_rwsem(&kvm->arch.apicv_update_lock);
9011
9012        set_bit(APICV_INHIBIT_REASON_ABSENT,
9013                &kvm->arch.apicv_inhibit_reasons);
9014        if (!enable_apicv)
9015                set_bit(APICV_INHIBIT_REASON_DISABLE,
9016                        &kvm->arch.apicv_inhibit_reasons);
9017}
9018
9019static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9020{
9021        struct kvm_vcpu *target = NULL;
9022        struct kvm_apic_map *map;
9023
9024        vcpu->stat.directed_yield_attempted++;
9025
9026        if (single_task_running())
9027                goto no_yield;
9028
9029        rcu_read_lock();
9030        map = rcu_dereference(vcpu->kvm->arch.apic_map);
9031
9032        if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9033                target = map->phys_map[dest_id]->vcpu;
9034
9035        rcu_read_unlock();
9036
9037        if (!target || !READ_ONCE(target->ready))
9038                goto no_yield;
9039
9040        /* Ignore requests to yield to self */
9041        if (vcpu == target)
9042                goto no_yield;
9043
9044        if (kvm_vcpu_yield_to(target) <= 0)
9045                goto no_yield;
9046
9047        vcpu->stat.directed_yield_successful++;
9048
9049no_yield:
9050        return;
9051}
9052
9053static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9054{
9055        u64 ret = vcpu->run->hypercall.ret;
9056
9057        if (!is_64_bit_mode(vcpu))
9058                ret = (u32)ret;
9059        kvm_rax_write(vcpu, ret);
9060        ++vcpu->stat.hypercalls;
9061        return kvm_skip_emulated_instruction(vcpu);
9062}
9063
9064int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9065{
9066        unsigned long nr, a0, a1, a2, a3, ret;
9067        int op_64_bit;
9068
9069        if (kvm_xen_hypercall_enabled(vcpu->kvm))
9070                return kvm_xen_hypercall(vcpu);
9071
9072        if (kvm_hv_hypercall_enabled(vcpu))
9073                return kvm_hv_hypercall(vcpu);
9074
9075        nr = kvm_rax_read(vcpu);
9076        a0 = kvm_rbx_read(vcpu);
9077        a1 = kvm_rcx_read(vcpu);
9078        a2 = kvm_rdx_read(vcpu);
9079        a3 = kvm_rsi_read(vcpu);
9080
9081        trace_kvm_hypercall(nr, a0, a1, a2, a3);
9082
9083        op_64_bit = is_64_bit_hypercall(vcpu);
9084        if (!op_64_bit) {
9085                nr &= 0xFFFFFFFF;
9086                a0 &= 0xFFFFFFFF;
9087                a1 &= 0xFFFFFFFF;
9088                a2 &= 0xFFFFFFFF;
9089                a3 &= 0xFFFFFFFF;
9090        }
9091
9092        if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9093                ret = -KVM_EPERM;
9094                goto out;
9095        }
9096
9097        ret = -KVM_ENOSYS;
9098
9099        switch (nr) {
9100        case KVM_HC_VAPIC_POLL_IRQ:
9101                ret = 0;
9102                break;
9103        case KVM_HC_KICK_CPU:
9104                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9105                        break;
9106
9107                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9108                kvm_sched_yield(vcpu, a1);
9109                ret = 0;
9110                break;
9111#ifdef CONFIG_X86_64
9112        case KVM_HC_CLOCK_PAIRING:
9113                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9114                break;
9115#endif
9116        case KVM_HC_SEND_IPI:
9117                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9118                        break;
9119
9120                ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9121                break;
9122        case KVM_HC_SCHED_YIELD:
9123                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9124                        break;
9125
9126                kvm_sched_yield(vcpu, a0);
9127                ret = 0;
9128                break;
9129        case KVM_HC_MAP_GPA_RANGE: {
9130                u64 gpa = a0, npages = a1, attrs = a2;
9131
9132                ret = -KVM_ENOSYS;
9133                if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9134                        break;
9135
9136                if (!PAGE_ALIGNED(gpa) || !npages ||
9137                    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9138                        ret = -KVM_EINVAL;
9139                        break;
9140                }
9141
9142                vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9143                vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9144                vcpu->run->hypercall.args[0]  = gpa;
9145                vcpu->run->hypercall.args[1]  = npages;
9146                vcpu->run->hypercall.args[2]  = attrs;
9147                vcpu->run->hypercall.longmode = op_64_bit;
9148                vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9149                return 0;
9150        }
9151        default:
9152                ret = -KVM_ENOSYS;
9153                break;
9154        }
9155out:
9156        if (!op_64_bit)
9157                ret = (u32)ret;
9158        kvm_rax_write(vcpu, ret);
9159
9160        ++vcpu->stat.hypercalls;
9161        return kvm_skip_emulated_instruction(vcpu);
9162}
9163EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9164
9165static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9166{
9167        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9168        char instruction[3];
9169        unsigned long rip = kvm_rip_read(vcpu);
9170
9171        static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9172
9173        return emulator_write_emulated(ctxt, rip, instruction, 3,
9174                &ctxt->exception);
9175}
9176
9177static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9178{
9179        return vcpu->run->request_interrupt_window &&
9180                likely(!pic_in_kernel(vcpu->kvm));
9181}
9182
9183/* Called within kvm->srcu read side.  */
9184static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9185{
9186        struct kvm_run *kvm_run = vcpu->run;
9187
9188        kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9189        kvm_run->cr8 = kvm_get_cr8(vcpu);
9190        kvm_run->apic_base = kvm_get_apic_base(vcpu);
9191
9192        kvm_run->ready_for_interrupt_injection =
9193                pic_in_kernel(vcpu->kvm) ||
9194                kvm_vcpu_ready_for_interrupt_injection(vcpu);
9195
9196        if (is_smm(vcpu))
9197                kvm_run->flags |= KVM_RUN_X86_SMM;
9198}
9199
9200static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9201{
9202        int max_irr, tpr;
9203
9204        if (!kvm_x86_ops.update_cr8_intercept)
9205                return;
9206
9207        if (!lapic_in_kernel(vcpu))
9208                return;
9209
9210        if (vcpu->arch.apicv_active)
9211                return;
9212
9213        if (!vcpu->arch.apic->vapic_addr)
9214                max_irr = kvm_lapic_find_highest_irr(vcpu);
9215        else
9216                max_irr = -1;
9217
9218        if (max_irr != -1)
9219                max_irr >>= 4;
9220
9221        tpr = kvm_lapic_get_cr8(vcpu);
9222
9223        static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9224}
9225
9226
9227int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9228{
9229        if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9230                kvm_x86_ops.nested_ops->triple_fault(vcpu);
9231                return 1;
9232        }
9233
9234        return kvm_x86_ops.nested_ops->check_events(vcpu);
9235}
9236
9237static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9238{
9239        if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9240                vcpu->arch.exception.error_code = false;
9241        static_call(kvm_x86_queue_exception)(vcpu);
9242}
9243
9244static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9245{
9246        int r;
9247        bool can_inject = true;
9248
9249        /* try to reinject previous events if any */
9250
9251        if (vcpu->arch.exception.injected) {
9252                kvm_inject_exception(vcpu);
9253                can_inject = false;
9254        }
9255        /*
9256         * Do not inject an NMI or interrupt if there is a pending
9257         * exception.  Exceptions and interrupts are recognized at
9258         * instruction boundaries, i.e. the start of an instruction.
9259         * Trap-like exceptions, e.g. #DB, have higher priority than
9260         * NMIs and interrupts, i.e. traps are recognized before an
9261         * NMI/interrupt that's pending on the same instruction.
9262         * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9263         * priority, but are only generated (pended) during instruction
9264         * execution, i.e. a pending fault-like exception means the
9265         * fault occurred on the *previous* instruction and must be
9266         * serviced prior to recognizing any new events in order to
9267         * fully complete the previous instruction.
9268         */
9269        else if (!vcpu->arch.exception.pending) {
9270                if (vcpu->arch.nmi_injected) {
9271                        static_call(kvm_x86_set_nmi)(vcpu);
9272                        can_inject = false;
9273                } else if (vcpu->arch.interrupt.injected) {
9274                        static_call(kvm_x86_set_irq)(vcpu);
9275                        can_inject = false;
9276                }
9277        }
9278
9279        WARN_ON_ONCE(vcpu->arch.exception.injected &&
9280                     vcpu->arch.exception.pending);
9281
9282        /*
9283         * Call check_nested_events() even if we reinjected a previous event
9284         * in order for caller to determine if it should require immediate-exit
9285         * from L2 to L1 due to pending L1 events which require exit
9286         * from L2 to L1.
9287         */
9288        if (is_guest_mode(vcpu)) {
9289                r = kvm_check_nested_events(vcpu);
9290                if (r < 0)
9291                        goto out;
9292        }
9293
9294        /* try to inject new event if pending */
9295        if (vcpu->arch.exception.pending) {
9296                trace_kvm_inj_exception(vcpu->arch.exception.nr,
9297                                        vcpu->arch.exception.has_error_code,
9298                                        vcpu->arch.exception.error_code);
9299
9300                vcpu->arch.exception.pending = false;
9301                vcpu->arch.exception.injected = true;
9302
9303                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9304                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9305                                             X86_EFLAGS_RF);
9306
9307                if (vcpu->arch.exception.nr == DB_VECTOR) {
9308                        kvm_deliver_exception_payload(vcpu);
9309                        if (vcpu->arch.dr7 & DR7_GD) {
9310                                vcpu->arch.dr7 &= ~DR7_GD;
9311                                kvm_update_dr7(vcpu);
9312                        }
9313                }
9314
9315                kvm_inject_exception(vcpu);
9316                can_inject = false;
9317        }
9318
9319        /* Don't inject interrupts if the user asked to avoid doing so */
9320        if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9321                return 0;
9322
9323        /*
9324         * Finally, inject interrupt events.  If an event cannot be injected
9325         * due to architectural conditions (e.g. IF=0) a window-open exit
9326         * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9327         * and can architecturally be injected, but we cannot do it right now:
9328         * an interrupt could have arrived just now and we have to inject it
9329         * as a vmexit, or there could already an event in the queue, which is
9330         * indicated by can_inject.  In that case we request an immediate exit
9331         * in order to make progress and get back here for another iteration.
9332         * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9333         */
9334        if (vcpu->arch.smi_pending) {
9335                r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9336                if (r < 0)
9337                        goto out;
9338                if (r) {
9339                        vcpu->arch.smi_pending = false;
9340                        ++vcpu->arch.smi_count;
9341                        enter_smm(vcpu);
9342                        can_inject = false;
9343                } else
9344                        static_call(kvm_x86_enable_smi_window)(vcpu);
9345        }
9346
9347        if (vcpu->arch.nmi_pending) {
9348                r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9349                if (r < 0)
9350                        goto out;
9351                if (r) {
9352                        --vcpu->arch.nmi_pending;
9353                        vcpu->arch.nmi_injected = true;
9354                        static_call(kvm_x86_set_nmi)(vcpu);
9355                        can_inject = false;
9356                        WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9357                }
9358                if (vcpu->arch.nmi_pending)
9359                        static_call(kvm_x86_enable_nmi_window)(vcpu);
9360        }
9361
9362        if (kvm_cpu_has_injectable_intr(vcpu)) {
9363                r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9364                if (r < 0)
9365                        goto out;
9366                if (r) {
9367                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9368                        static_call(kvm_x86_set_irq)(vcpu);
9369                        WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9370                }
9371                if (kvm_cpu_has_injectable_intr(vcpu))
9372                        static_call(kvm_x86_enable_irq_window)(vcpu);
9373        }
9374
9375        if (is_guest_mode(vcpu) &&
9376            kvm_x86_ops.nested_ops->hv_timer_pending &&
9377            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9378                *req_immediate_exit = true;
9379
9380        WARN_ON(vcpu->arch.exception.pending);
9381        return 0;
9382
9383out:
9384        if (r == -EBUSY) {
9385                *req_immediate_exit = true;
9386                r = 0;
9387        }
9388        return r;
9389}
9390
9391static void process_nmi(struct kvm_vcpu *vcpu)
9392{
9393        unsigned limit = 2;
9394
9395        /*
9396         * x86 is limited to one NMI running, and one NMI pending after it.
9397         * If an NMI is already in progress, limit further NMIs to just one.
9398         * Otherwise, allow two (and we'll inject the first one immediately).
9399         */
9400        if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9401                limit = 1;
9402
9403        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9404        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9405        kvm_make_request(KVM_REQ_EVENT, vcpu);
9406}
9407
9408static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9409{
9410        u32 flags = 0;
9411        flags |= seg->g       << 23;
9412        flags |= seg->db      << 22;
9413        flags |= seg->l       << 21;
9414        flags |= seg->avl     << 20;
9415        flags |= seg->present << 15;
9416        flags |= seg->dpl     << 13;
9417        flags |= seg->s       << 12;
9418        flags |= seg->type    << 8;
9419        return flags;
9420}
9421
9422static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9423{
9424        struct kvm_segment seg;
9425        int offset;
9426
9427        kvm_get_segment(vcpu, &seg, n);
9428        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9429
9430        if (n < 3)
9431                offset = 0x7f84 + n * 12;
9432        else
9433                offset = 0x7f2c + (n - 3) * 12;
9434
9435        put_smstate(u32, buf, offset + 8, seg.base);
9436        put_smstate(u32, buf, offset + 4, seg.limit);
9437        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9438}
9439
9440#ifdef CONFIG_X86_64
9441static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9442{
9443        struct kvm_segment seg;
9444        int offset;
9445        u16 flags;
9446
9447        kvm_get_segment(vcpu, &seg, n);
9448        offset = 0x7e00 + n * 16;
9449
9450        flags = enter_smm_get_segment_flags(&seg) >> 8;
9451        put_smstate(u16, buf, offset, seg.selector);
9452        put_smstate(u16, buf, offset + 2, flags);
9453        put_smstate(u32, buf, offset + 4, seg.limit);
9454        put_smstate(u64, buf, offset + 8, seg.base);
9455}
9456#endif
9457
9458static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9459{
9460        struct desc_ptr dt;
9461        struct kvm_segment seg;
9462        unsigned long val;
9463        int i;
9464
9465        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9466        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9467        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9468        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9469
9470        for (i = 0; i < 8; i++)
9471                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9472
9473        kvm_get_dr(vcpu, 6, &val);
9474        put_smstate(u32, buf, 0x7fcc, (u32)val);
9475        kvm_get_dr(vcpu, 7, &val);
9476        put_smstate(u32, buf, 0x7fc8, (u32)val);
9477
9478        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9479        put_smstate(u32, buf, 0x7fc4, seg.selector);
9480        put_smstate(u32, buf, 0x7f64, seg.base);
9481        put_smstate(u32, buf, 0x7f60, seg.limit);
9482        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9483
9484        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9485        put_smstate(u32, buf, 0x7fc0, seg.selector);
9486        put_smstate(u32, buf, 0x7f80, seg.base);
9487        put_smstate(u32, buf, 0x7f7c, seg.limit);
9488        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9489
9490        static_call(kvm_x86_get_gdt)(vcpu, &dt);
9491        put_smstate(u32, buf, 0x7f74, dt.address);
9492        put_smstate(u32, buf, 0x7f70, dt.size);
9493
9494        static_call(kvm_x86_get_idt)(vcpu, &dt);
9495        put_smstate(u32, buf, 0x7f58, dt.address);
9496        put_smstate(u32, buf, 0x7f54, dt.size);
9497
9498        for (i = 0; i < 6; i++)
9499                enter_smm_save_seg_32(vcpu, buf, i);
9500
9501        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9502
9503        /* revision id */
9504        put_smstate(u32, buf, 0x7efc, 0x00020000);
9505        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9506}
9507
9508#ifdef CONFIG_X86_64
9509static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9510{
9511        struct desc_ptr dt;
9512        struct kvm_segment seg;
9513        unsigned long val;
9514        int i;
9515
9516        for (i = 0; i < 16; i++)
9517                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9518
9519        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9520        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9521
9522        kvm_get_dr(vcpu, 6, &val);
9523        put_smstate(u64, buf, 0x7f68, val);
9524        kvm_get_dr(vcpu, 7, &val);
9525        put_smstate(u64, buf, 0x7f60, val);
9526
9527        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9528        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9529        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9530
9531        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9532
9533        /* revision id */
9534        put_smstate(u32, buf, 0x7efc, 0x00020064);
9535
9536        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9537
9538        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9539        put_smstate(u16, buf, 0x7e90, seg.selector);
9540        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9541        put_smstate(u32, buf, 0x7e94, seg.limit);
9542        put_smstate(u64, buf, 0x7e98, seg.base);
9543
9544        static_call(kvm_x86_get_idt)(vcpu, &dt);
9545        put_smstate(u32, buf, 0x7e84, dt.size);
9546        put_smstate(u64, buf, 0x7e88, dt.address);
9547
9548        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9549        put_smstate(u16, buf, 0x7e70, seg.selector);
9550        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9551        put_smstate(u32, buf, 0x7e74, seg.limit);
9552        put_smstate(u64, buf, 0x7e78, seg.base);
9553
9554        static_call(kvm_x86_get_gdt)(vcpu, &dt);
9555        put_smstate(u32, buf, 0x7e64, dt.size);
9556        put_smstate(u64, buf, 0x7e68, dt.address);
9557
9558        for (i = 0; i < 6; i++)
9559                enter_smm_save_seg_64(vcpu, buf, i);
9560}
9561#endif
9562
9563static void enter_smm(struct kvm_vcpu *vcpu)
9564{
9565        struct kvm_segment cs, ds;
9566        struct desc_ptr dt;
9567        unsigned long cr0;
9568        char buf[512];
9569
9570        memset(buf, 0, 512);
9571#ifdef CONFIG_X86_64
9572        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9573                enter_smm_save_state_64(vcpu, buf);
9574        else
9575#endif
9576                enter_smm_save_state_32(vcpu, buf);
9577
9578        /*
9579         * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9580         * state (e.g. leave guest mode) after we've saved the state into the
9581         * SMM state-save area.
9582         */
9583        static_call(kvm_x86_enter_smm)(vcpu, buf);
9584
9585        kvm_smm_changed(vcpu, true);
9586        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9587
9588        if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9589                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9590        else
9591                static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9592
9593        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9594        kvm_rip_write(vcpu, 0x8000);
9595
9596        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9597        static_call(kvm_x86_set_cr0)(vcpu, cr0);
9598        vcpu->arch.cr0 = cr0;
9599
9600        static_call(kvm_x86_set_cr4)(vcpu, 0);
9601
9602        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9603        dt.address = dt.size = 0;
9604        static_call(kvm_x86_set_idt)(vcpu, &dt);
9605
9606        kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9607
9608        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9609        cs.base = vcpu->arch.smbase;
9610
9611        ds.selector = 0;
9612        ds.base = 0;
9613
9614        cs.limit    = ds.limit = 0xffffffff;
9615        cs.type     = ds.type = 0x3;
9616        cs.dpl      = ds.dpl = 0;
9617        cs.db       = ds.db = 0;
9618        cs.s        = ds.s = 1;
9619        cs.l        = ds.l = 0;
9620        cs.g        = ds.g = 1;
9621        cs.avl      = ds.avl = 0;
9622        cs.present  = ds.present = 1;
9623        cs.unusable = ds.unusable = 0;
9624        cs.padding  = ds.padding = 0;
9625
9626        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9627        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9628        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9629        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9630        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9631        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9632
9633#ifdef CONFIG_X86_64
9634        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9635                static_call(kvm_x86_set_efer)(vcpu, 0);
9636#endif
9637
9638        kvm_update_cpuid_runtime(vcpu);
9639        kvm_mmu_reset_context(vcpu);
9640}
9641
9642static void process_smi(struct kvm_vcpu *vcpu)
9643{
9644        vcpu->arch.smi_pending = true;
9645        kvm_make_request(KVM_REQ_EVENT, vcpu);
9646}
9647
9648void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9649                                       unsigned long *vcpu_bitmap)
9650{
9651        kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9652}
9653
9654void kvm_make_scan_ioapic_request(struct kvm *kvm)
9655{
9656        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9657}
9658
9659void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9660{
9661        bool activate;
9662
9663        if (!lapic_in_kernel(vcpu))
9664                return;
9665
9666        down_read(&vcpu->kvm->arch.apicv_update_lock);
9667
9668        activate = kvm_apicv_activated(vcpu->kvm);
9669        if (vcpu->arch.apicv_active == activate)
9670                goto out;
9671
9672        vcpu->arch.apicv_active = activate;
9673        kvm_apic_update_apicv(vcpu);
9674        static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9675
9676        /*
9677         * When APICv gets disabled, we may still have injected interrupts
9678         * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9679         * still active when the interrupt got accepted. Make sure
9680         * inject_pending_event() is called to check for that.
9681         */
9682        if (!vcpu->arch.apicv_active)
9683                kvm_make_request(KVM_REQ_EVENT, vcpu);
9684
9685out:
9686        up_read(&vcpu->kvm->arch.apicv_update_lock);
9687}
9688EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9689
9690void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9691{
9692        unsigned long old, new;
9693
9694        lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9695
9696        if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9697            !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9698                return;
9699
9700        old = new = kvm->arch.apicv_inhibit_reasons;
9701
9702        if (activate)
9703                __clear_bit(bit, &new);
9704        else
9705                __set_bit(bit, &new);
9706
9707        if (!!old != !!new) {
9708                trace_kvm_apicv_update_request(activate, bit);
9709                /*
9710                 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9711                 * false positives in the sanity check WARN in svm_vcpu_run().
9712                 * This task will wait for all vCPUs to ack the kick IRQ before
9713                 * updating apicv_inhibit_reasons, and all other vCPUs will
9714                 * block on acquiring apicv_update_lock so that vCPUs can't
9715                 * redo svm_vcpu_run() without seeing the new inhibit state.
9716                 *
9717                 * Note, holding apicv_update_lock and taking it in the read
9718                 * side (handling the request) also prevents other vCPUs from
9719                 * servicing the request with a stale apicv_inhibit_reasons.
9720                 */
9721                kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9722                kvm->arch.apicv_inhibit_reasons = new;
9723                if (new) {
9724                        unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9725                        kvm_zap_gfn_range(kvm, gfn, gfn+1);
9726                }
9727        } else
9728                kvm->arch.apicv_inhibit_reasons = new;
9729}
9730EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9731
9732void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9733{
9734        down_write(&kvm->arch.apicv_update_lock);
9735        __kvm_request_apicv_update(kvm, activate, bit);
9736        up_write(&kvm->arch.apicv_update_lock);
9737}
9738EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9739
9740static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9741{
9742        if (!kvm_apic_present(vcpu))
9743                return;
9744
9745        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9746
9747        if (irqchip_split(vcpu->kvm))
9748                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9749        else {
9750                static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9751                if (ioapic_in_kernel(vcpu->kvm))
9752                        kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9753        }
9754
9755        if (is_guest_mode(vcpu))
9756                vcpu->arch.load_eoi_exitmap_pending = true;
9757        else
9758                kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9759}
9760
9761static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9762{
9763        u64 eoi_exit_bitmap[4];
9764
9765        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9766                return;
9767
9768        if (to_hv_vcpu(vcpu)) {
9769                bitmap_or((ulong *)eoi_exit_bitmap,
9770                          vcpu->arch.ioapic_handled_vectors,
9771                          to_hv_synic(vcpu)->vec_bitmap, 256);
9772                static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9773                return;
9774        }
9775
9776        static_call(kvm_x86_load_eoi_exitmap)(
9777                vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9778}
9779
9780void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9781                                            unsigned long start, unsigned long end)
9782{
9783        unsigned long apic_address;
9784
9785        /*
9786         * The physical address of apic access page is stored in the VMCS.
9787         * Update it when it becomes invalid.
9788         */
9789        apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9790        if (start <= apic_address && apic_address < end)
9791                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9792}
9793
9794static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9795{
9796        if (!lapic_in_kernel(vcpu))
9797                return;
9798
9799        if (!kvm_x86_ops.set_apic_access_page_addr)
9800                return;
9801
9802        static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9803}
9804
9805void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9806{
9807        smp_send_reschedule(vcpu->cpu);
9808}
9809EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9810
9811/*
9812 * Called within kvm->srcu read side.
9813 * Returns 1 to let vcpu_run() continue the guest execution loop without
9814 * exiting to the userspace.  Otherwise, the value will be returned to the
9815 * userspace.
9816 */
9817static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9818{
9819        int r;
9820        bool req_int_win =
9821                dm_request_for_irq_injection(vcpu) &&
9822                kvm_cpu_accept_dm_intr(vcpu);
9823        fastpath_t exit_fastpath;
9824
9825        bool req_immediate_exit = false;
9826
9827        /* Forbid vmenter if vcpu dirty ring is soft-full */
9828        if (unlikely(vcpu->kvm->dirty_ring_size &&
9829                     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9830                vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9831                trace_kvm_dirty_ring_exit(vcpu);
9832                r = 0;
9833                goto out;
9834        }
9835
9836        if (kvm_request_pending(vcpu)) {
9837                if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9838                        r = -EIO;
9839                        goto out;
9840                }
9841                if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9842                        if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9843                                r = 0;
9844                                goto out;
9845                        }
9846                }
9847                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9848                        kvm_mmu_unload(vcpu);
9849                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9850                        __kvm_migrate_timers(vcpu);
9851                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9852                        kvm_update_masterclock(vcpu->kvm);
9853                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9854                        kvm_gen_kvmclock_update(vcpu);
9855                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9856                        r = kvm_guest_time_update(vcpu);
9857                        if (unlikely(r))
9858                                goto out;
9859                }
9860                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9861                        kvm_mmu_sync_roots(vcpu);
9862                if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9863                        kvm_mmu_load_pgd(vcpu);
9864                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9865                        kvm_vcpu_flush_tlb_all(vcpu);
9866
9867                        /* Flushing all ASIDs flushes the current ASID... */
9868                        kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9869                }
9870                kvm_service_local_tlb_flush_requests(vcpu);
9871
9872                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9873                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9874                        r = 0;
9875                        goto out;
9876                }
9877                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9878                        if (is_guest_mode(vcpu)) {
9879                                kvm_x86_ops.nested_ops->triple_fault(vcpu);
9880                        } else {
9881                                vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9882                                vcpu->mmio_needed = 0;
9883                                r = 0;
9884                                goto out;
9885                        }
9886                }
9887                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9888                        /* Page is swapped out. Do synthetic halt */
9889                        vcpu->arch.apf.halted = true;
9890                        r = 1;
9891                        goto out;
9892                }
9893                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9894                        record_steal_time(vcpu);
9895                if (kvm_check_request(KVM_REQ_SMI, vcpu))
9896                        process_smi(vcpu);
9897                if (kvm_check_request(KVM_REQ_NMI, vcpu))
9898                        process_nmi(vcpu);
9899                if (kvm_check_request(KVM_REQ_PMU, vcpu))
9900                        kvm_pmu_handle_event(vcpu);
9901                if (kvm_check_request(KVM_REQ_PMI, vcpu))
9902                        kvm_pmu_deliver_pmi(vcpu);
9903                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9904                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9905                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
9906                                     vcpu->arch.ioapic_handled_vectors)) {
9907                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9908                                vcpu->run->eoi.vector =
9909                                                vcpu->arch.pending_ioapic_eoi;
9910                                r = 0;
9911                                goto out;
9912                        }
9913                }
9914                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9915                        vcpu_scan_ioapic(vcpu);
9916                if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9917                        vcpu_load_eoi_exitmap(vcpu);
9918                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9919                        kvm_vcpu_reload_apic_access_page(vcpu);
9920                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9921                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9922                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9923                        r = 0;
9924                        goto out;
9925                }
9926                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9927                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9928                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9929                        r = 0;
9930                        goto out;
9931                }
9932                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9933                        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9934
9935                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9936                        vcpu->run->hyperv = hv_vcpu->exit;
9937                        r = 0;
9938                        goto out;
9939                }
9940
9941                /*
9942                 * KVM_REQ_HV_STIMER has to be processed after
9943                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9944                 * depend on the guest clock being up-to-date
9945                 */
9946                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9947                        kvm_hv_process_stimers(vcpu);
9948                if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9949                        kvm_vcpu_update_apicv(vcpu);
9950                if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9951                        kvm_check_async_pf_completion(vcpu);
9952                if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9953                        static_call(kvm_x86_msr_filter_changed)(vcpu);
9954
9955                if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9956                        static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9957        }
9958
9959        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9960            kvm_xen_has_interrupt(vcpu)) {
9961                ++vcpu->stat.req_event;
9962                r = kvm_apic_accept_events(vcpu);
9963                if (r < 0) {
9964                        r = 0;
9965                        goto out;
9966                }
9967                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9968                        r = 1;
9969                        goto out;
9970                }
9971
9972                r = inject_pending_event(vcpu, &req_immediate_exit);
9973                if (r < 0) {
9974                        r = 0;
9975                        goto out;
9976                }
9977                if (req_int_win)
9978                        static_call(kvm_x86_enable_irq_window)(vcpu);
9979
9980                if (kvm_lapic_enabled(vcpu)) {
9981                        update_cr8_intercept(vcpu);
9982                        kvm_lapic_sync_to_vapic(vcpu);
9983                }
9984        }
9985
9986        r = kvm_mmu_reload(vcpu);
9987        if (unlikely(r)) {
9988                goto cancel_injection;
9989        }
9990
9991        preempt_disable();
9992
9993        static_call(kvm_x86_prepare_guest_switch)(vcpu);
9994
9995        /*
9996         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9997         * IPI are then delayed after guest entry, which ensures that they
9998         * result in virtual interrupt delivery.
9999         */
10000        local_irq_disable();
10001
10002        /* Store vcpu->apicv_active before vcpu->mode.  */
10003        smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10004
10005        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10006
10007        /*
10008         * 1) We should set ->mode before checking ->requests.  Please see
10009         * the comment in kvm_vcpu_exiting_guest_mode().
10010         *
10011         * 2) For APICv, we should set ->mode before checking PID.ON. This
10012         * pairs with the memory barrier implicit in pi_test_and_set_on
10013         * (see vmx_deliver_posted_interrupt).
10014         *
10015         * 3) This also orders the write to mode from any reads to the page
10016         * tables done while the VCPU is running.  Please see the comment
10017         * in kvm_flush_remote_tlbs.
10018         */
10019        smp_mb__after_srcu_read_unlock();
10020
10021        /*
10022         * Process pending posted interrupts to handle the case where the
10023         * notification IRQ arrived in the host, or was never sent (because the
10024         * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10025         * status, KVM doesn't update assigned devices when APICv is inhibited,
10026         * i.e. they can post interrupts even if APICv is temporarily disabled.
10027         */
10028        if (kvm_lapic_enabled(vcpu))
10029                static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10030
10031        if (kvm_vcpu_exit_request(vcpu)) {
10032                vcpu->mode = OUTSIDE_GUEST_MODE;
10033                smp_wmb();
10034                local_irq_enable();
10035                preempt_enable();
10036                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10037                r = 1;
10038                goto cancel_injection;
10039        }
10040
10041        if (req_immediate_exit) {
10042                kvm_make_request(KVM_REQ_EVENT, vcpu);
10043                static_call(kvm_x86_request_immediate_exit)(vcpu);
10044        }
10045
10046        fpregs_assert_state_consistent();
10047        if (test_thread_flag(TIF_NEED_FPU_LOAD))
10048                switch_fpu_return();
10049
10050        if (vcpu->arch.guest_fpu.xfd_err)
10051                wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10052
10053        if (unlikely(vcpu->arch.switch_db_regs)) {
10054                set_debugreg(0, 7);
10055                set_debugreg(vcpu->arch.eff_db[0], 0);
10056                set_debugreg(vcpu->arch.eff_db[1], 1);
10057                set_debugreg(vcpu->arch.eff_db[2], 2);
10058                set_debugreg(vcpu->arch.eff_db[3], 3);
10059        } else if (unlikely(hw_breakpoint_active())) {
10060                set_debugreg(0, 7);
10061        }
10062
10063        guest_timing_enter_irqoff();
10064
10065        for (;;) {
10066                /*
10067                 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10068                 * update must kick and wait for all vCPUs before toggling the
10069                 * per-VM state, and responsing vCPUs must wait for the update
10070                 * to complete before servicing KVM_REQ_APICV_UPDATE.
10071                 */
10072                WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10073
10074                exit_fastpath = static_call(kvm_x86_run)(vcpu);
10075                if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10076                        break;
10077
10078                if (kvm_lapic_enabled(vcpu))
10079                        static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10080
10081                if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10082                        exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10083                        break;
10084                }
10085        }
10086
10087        /*
10088         * Do this here before restoring debug registers on the host.  And
10089         * since we do this before handling the vmexit, a DR access vmexit
10090         * can (a) read the correct value of the debug registers, (b) set
10091         * KVM_DEBUGREG_WONT_EXIT again.
10092         */
10093        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10094                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10095                static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10096                kvm_update_dr0123(vcpu);
10097                kvm_update_dr7(vcpu);
10098        }
10099
10100        /*
10101         * If the guest has used debug registers, at least dr7
10102         * will be disabled while returning to the host.
10103         * If we don't have active breakpoints in the host, we don't
10104         * care about the messed up debug address registers. But if
10105         * we have some of them active, restore the old state.
10106         */
10107        if (hw_breakpoint_active())
10108                hw_breakpoint_restore();
10109
10110        vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10111        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10112
10113        vcpu->mode = OUTSIDE_GUEST_MODE;
10114        smp_wmb();
10115
10116        /*
10117         * Sync xfd before calling handle_exit_irqoff() which may
10118         * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10119         * in #NM irqoff handler).
10120         */
10121        if (vcpu->arch.xfd_no_write_intercept)
10122                fpu_sync_guest_vmexit_xfd_state();
10123
10124        static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10125
10126        if (vcpu->arch.guest_fpu.xfd_err)
10127                wrmsrl(MSR_IA32_XFD_ERR, 0);
10128
10129        /*
10130         * Consume any pending interrupts, including the possible source of
10131         * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10132         * An instruction is required after local_irq_enable() to fully unblock
10133         * interrupts on processors that implement an interrupt shadow, the
10134         * stat.exits increment will do nicely.
10135         */
10136        kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10137        local_irq_enable();
10138        ++vcpu->stat.exits;
10139        local_irq_disable();
10140        kvm_after_interrupt(vcpu);
10141
10142        /*
10143         * Wait until after servicing IRQs to account guest time so that any
10144         * ticks that occurred while running the guest are properly accounted
10145         * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10146         * of accounting via context tracking, but the loss of accuracy is
10147         * acceptable for all known use cases.
10148         */
10149        guest_timing_exit_irqoff();
10150
10151        if (lapic_in_kernel(vcpu)) {
10152                s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10153                if (delta != S64_MIN) {
10154                        trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10155                        vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10156                }
10157        }
10158
10159        local_irq_enable();
10160        preempt_enable();
10161
10162        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10163
10164        /*
10165         * Profile KVM exit RIPs:
10166         */
10167        if (unlikely(prof_on == KVM_PROFILING)) {
10168                unsigned long rip = kvm_rip_read(vcpu);
10169                profile_hit(KVM_PROFILING, (void *)rip);
10170        }
10171
10172        if (unlikely(vcpu->arch.tsc_always_catchup))
10173                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10174
10175        if (vcpu->arch.apic_attention)
10176                kvm_lapic_sync_from_vapic(vcpu);
10177
10178        r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10179        return r;
10180
10181cancel_injection:
10182        if (req_immediate_exit)
10183                kvm_make_request(KVM_REQ_EVENT, vcpu);
10184        static_call(kvm_x86_cancel_injection)(vcpu);
10185        if (unlikely(vcpu->arch.apic_attention))
10186                kvm_lapic_sync_from_vapic(vcpu);
10187out:
10188        return r;
10189}
10190
10191/* Called within kvm->srcu read side.  */
10192static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10193{
10194        bool hv_timer;
10195
10196        if (!kvm_arch_vcpu_runnable(vcpu)) {
10197                /*
10198                 * Switch to the software timer before halt-polling/blocking as
10199                 * the guest's timer may be a break event for the vCPU, and the
10200                 * hypervisor timer runs only when the CPU is in guest mode.
10201                 * Switch before halt-polling so that KVM recognizes an expired
10202                 * timer before blocking.
10203                 */
10204                hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10205                if (hv_timer)
10206                        kvm_lapic_switch_to_sw_timer(vcpu);
10207
10208                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10209                if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10210                        kvm_vcpu_halt(vcpu);
10211                else
10212                        kvm_vcpu_block(vcpu);
10213                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10214
10215                if (hv_timer)
10216                        kvm_lapic_switch_to_hv_timer(vcpu);
10217
10218                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10219                        return 1;
10220        }
10221
10222        if (kvm_apic_accept_events(vcpu) < 0)
10223                return 0;
10224        switch(vcpu->arch.mp_state) {
10225        case KVM_MP_STATE_HALTED:
10226        case KVM_MP_STATE_AP_RESET_HOLD:
10227                vcpu->arch.pv.pv_unhalted = false;
10228                vcpu->arch.mp_state =
10229                        KVM_MP_STATE_RUNNABLE;
10230                fallthrough;
10231        case KVM_MP_STATE_RUNNABLE:
10232                vcpu->arch.apf.halted = false;
10233                break;
10234        case KVM_MP_STATE_INIT_RECEIVED:
10235                break;
10236        default:
10237                return -EINTR;
10238        }
10239        return 1;
10240}
10241
10242static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10243{
10244        if (is_guest_mode(vcpu))
10245                kvm_check_nested_events(vcpu);
10246
10247        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10248                !vcpu->arch.apf.halted);
10249}
10250
10251/* Called within kvm->srcu read side.  */
10252static int vcpu_run(struct kvm_vcpu *vcpu)
10253{
10254        int r;
10255        struct kvm *kvm = vcpu->kvm;
10256
10257        vcpu->arch.l1tf_flush_l1d = true;
10258
10259        for (;;) {
10260                if (kvm_vcpu_running(vcpu)) {
10261                        r = vcpu_enter_guest(vcpu);
10262                } else {
10263                        r = vcpu_block(kvm, vcpu);
10264                }
10265
10266                if (r <= 0)
10267                        break;
10268
10269                kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10270                if (kvm_cpu_has_pending_timer(vcpu))
10271                        kvm_inject_pending_timer_irqs(vcpu);
10272
10273                if (dm_request_for_irq_injection(vcpu) &&
10274                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10275                        r = 0;
10276                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10277                        ++vcpu->stat.request_irq_exits;
10278                        break;
10279                }
10280
10281                if (__xfer_to_guest_mode_work_pending()) {
10282                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10283                        r = xfer_to_guest_mode_handle_work(vcpu);
10284                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10285                        if (r)
10286                                return r;
10287                }
10288        }
10289
10290        return r;
10291}
10292
10293static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10294{
10295        int r;
10296
10297        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10298        r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10299        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10300        return r;
10301}
10302
10303static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10304{
10305        BUG_ON(!vcpu->arch.pio.count);
10306
10307        return complete_emulated_io(vcpu);
10308}
10309
10310/*
10311 * Implements the following, as a state machine:
10312 *
10313 * read:
10314 *   for each fragment
10315 *     for each mmio piece in the fragment
10316 *       write gpa, len
10317 *       exit
10318 *       copy data
10319 *   execute insn
10320 *
10321 * write:
10322 *   for each fragment
10323 *     for each mmio piece in the fragment
10324 *       write gpa, len
10325 *       copy data
10326 *       exit
10327 */
10328static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10329{
10330        struct kvm_run *run = vcpu->run;
10331        struct kvm_mmio_fragment *frag;
10332        unsigned len;
10333
10334        BUG_ON(!vcpu->mmio_needed);
10335
10336        /* Complete previous fragment */
10337        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10338        len = min(8u, frag->len);
10339        if (!vcpu->mmio_is_write)
10340                memcpy(frag->data, run->mmio.data, len);
10341
10342        if (frag->len <= 8) {
10343                /* Switch to the next fragment. */
10344                frag++;
10345                vcpu->mmio_cur_fragment++;
10346        } else {
10347                /* Go forward to the next mmio piece. */
10348                frag->data += len;
10349                frag->gpa += len;
10350                frag->len -= len;
10351        }
10352
10353        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10354                vcpu->mmio_needed = 0;
10355
10356                /* FIXME: return into emulator if single-stepping.  */
10357                if (vcpu->mmio_is_write)
10358                        return 1;
10359                vcpu->mmio_read_completed = 1;
10360                return complete_emulated_io(vcpu);
10361        }
10362
10363        run->exit_reason = KVM_EXIT_MMIO;
10364        run->mmio.phys_addr = frag->gpa;
10365        if (vcpu->mmio_is_write)
10366                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10367        run->mmio.len = min(8u, frag->len);
10368        run->mmio.is_write = vcpu->mmio_is_write;
10369        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10370        return 0;
10371}
10372
10373/* Swap (qemu) user FPU context for the guest FPU context. */
10374static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10375{
10376        /*
10377         * Exclude PKRU from restore as restored separately in
10378         * kvm_x86_ops.run().
10379         */
10380        fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10381        trace_kvm_fpu(1);
10382}
10383
10384/* When vcpu_run ends, restore user space FPU context. */
10385static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10386{
10387        fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10388        ++vcpu->stat.fpu_reload;
10389        trace_kvm_fpu(0);
10390}
10391
10392int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10393{
10394        struct kvm_run *kvm_run = vcpu->run;
10395        struct kvm *kvm = vcpu->kvm;
10396        int r;
10397
10398        vcpu_load(vcpu);
10399        kvm_sigset_activate(vcpu);
10400        kvm_run->flags = 0;
10401        kvm_load_guest_fpu(vcpu);
10402
10403        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10404        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10405                if (kvm_run->immediate_exit) {
10406                        r = -EINTR;
10407                        goto out;
10408                }
10409                /*
10410                 * It should be impossible for the hypervisor timer to be in
10411                 * use before KVM has ever run the vCPU.
10412                 */
10413                WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10414
10415                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10416                kvm_vcpu_block(vcpu);
10417                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10418
10419                if (kvm_apic_accept_events(vcpu) < 0) {
10420                        r = 0;
10421                        goto out;
10422                }
10423                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10424                r = -EAGAIN;
10425                if (signal_pending(current)) {
10426                        r = -EINTR;
10427                        kvm_run->exit_reason = KVM_EXIT_INTR;
10428                        ++vcpu->stat.signal_exits;
10429                }
10430                goto out;
10431        }
10432
10433        if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10434            (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10435                r = -EINVAL;
10436                goto out;
10437        }
10438
10439        if (kvm_run->kvm_dirty_regs) {
10440                r = sync_regs(vcpu);
10441                if (r != 0)
10442                        goto out;
10443        }
10444
10445        /* re-sync apic's tpr */
10446        if (!lapic_in_kernel(vcpu)) {
10447                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10448                        r = -EINVAL;
10449                        goto out;
10450                }
10451        }
10452
10453        if (unlikely(vcpu->arch.complete_userspace_io)) {
10454                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10455                vcpu->arch.complete_userspace_io = NULL;
10456                r = cui(vcpu);
10457                if (r <= 0)
10458                        goto out;
10459        } else
10460                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10461
10462        if (kvm_run->immediate_exit) {
10463                r = -EINTR;
10464                goto out;
10465        }
10466
10467        r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10468        if (r <= 0)
10469                goto out;
10470
10471        r = vcpu_run(vcpu);
10472
10473out:
10474        kvm_put_guest_fpu(vcpu);
10475        if (kvm_run->kvm_valid_regs)
10476                store_regs(vcpu);
10477        post_kvm_run_save(vcpu);
10478        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10479
10480        kvm_sigset_deactivate(vcpu);
10481        vcpu_put(vcpu);
10482        return r;
10483}
10484
10485static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10486{
10487        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10488                /*
10489                 * We are here if userspace calls get_regs() in the middle of
10490                 * instruction emulation. Registers state needs to be copied
10491                 * back from emulation context to vcpu. Userspace shouldn't do
10492                 * that usually, but some bad designed PV devices (vmware
10493                 * backdoor interface) need this to work
10494                 */
10495                emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10496                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10497        }
10498        regs->rax = kvm_rax_read(vcpu);
10499        regs->rbx = kvm_rbx_read(vcpu);
10500        regs->rcx = kvm_rcx_read(vcpu);
10501        regs->rdx = kvm_rdx_read(vcpu);
10502        regs->rsi = kvm_rsi_read(vcpu);
10503        regs->rdi = kvm_rdi_read(vcpu);
10504        regs->rsp = kvm_rsp_read(vcpu);
10505        regs->rbp = kvm_rbp_read(vcpu);
10506#ifdef CONFIG_X86_64
10507        regs->r8 = kvm_r8_read(vcpu);
10508        regs->r9 = kvm_r9_read(vcpu);
10509        regs->r10 = kvm_r10_read(vcpu);
10510        regs->r11 = kvm_r11_read(vcpu);
10511        regs->r12 = kvm_r12_read(vcpu);
10512        regs->r13 = kvm_r13_read(vcpu);
10513        regs->r14 = kvm_r14_read(vcpu);
10514        regs->r15 = kvm_r15_read(vcpu);
10515#endif
10516
10517        regs->rip = kvm_rip_read(vcpu);
10518        regs->rflags = kvm_get_rflags(vcpu);
10519}
10520
10521int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10522{
10523        vcpu_load(vcpu);
10524        __get_regs(vcpu, regs);
10525        vcpu_put(vcpu);
10526        return 0;
10527}
10528
10529static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10530{
10531        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10532        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10533
10534        kvm_rax_write(vcpu, regs->rax);
10535        kvm_rbx_write(vcpu, regs->rbx);
10536        kvm_rcx_write(vcpu, regs->rcx);
10537        kvm_rdx_write(vcpu, regs->rdx);
10538        kvm_rsi_write(vcpu, regs->rsi);
10539        kvm_rdi_write(vcpu, regs->rdi);
10540        kvm_rsp_write(vcpu, regs->rsp);
10541        kvm_rbp_write(vcpu, regs->rbp);
10542#ifdef CONFIG_X86_64
10543        kvm_r8_write(vcpu, regs->r8);
10544        kvm_r9_write(vcpu, regs->r9);
10545        kvm_r10_write(vcpu, regs->r10);
10546        kvm_r11_write(vcpu, regs->r11);
10547        kvm_r12_write(vcpu, regs->r12);
10548        kvm_r13_write(vcpu, regs->r13);
10549        kvm_r14_write(vcpu, regs->r14);
10550        kvm_r15_write(vcpu, regs->r15);
10551#endif
10552
10553        kvm_rip_write(vcpu, regs->rip);
10554        kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10555
10556        vcpu->arch.exception.pending = false;
10557
10558        kvm_make_request(KVM_REQ_EVENT, vcpu);
10559}
10560
10561int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10562{
10563        vcpu_load(vcpu);
10564        __set_regs(vcpu, regs);
10565        vcpu_put(vcpu);
10566        return 0;
10567}
10568
10569void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10570{
10571        struct kvm_segment cs;
10572
10573        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10574        *db = cs.db;
10575        *l = cs.l;
10576}
10577EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10578
10579static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10580{
10581        struct desc_ptr dt;
10582
10583        if (vcpu->arch.guest_state_protected)
10584                goto skip_protected_regs;
10585
10586        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10587        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10588        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10589        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10590        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10591        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10592
10593        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10594        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10595
10596        static_call(kvm_x86_get_idt)(vcpu, &dt);
10597        sregs->idt.limit = dt.size;
10598        sregs->idt.base = dt.address;
10599        static_call(kvm_x86_get_gdt)(vcpu, &dt);
10600        sregs->gdt.limit = dt.size;
10601        sregs->gdt.base = dt.address;
10602
10603        sregs->cr2 = vcpu->arch.cr2;
10604        sregs->cr3 = kvm_read_cr3(vcpu);
10605
10606skip_protected_regs:
10607        sregs->cr0 = kvm_read_cr0(vcpu);
10608        sregs->cr4 = kvm_read_cr4(vcpu);
10609        sregs->cr8 = kvm_get_cr8(vcpu);
10610        sregs->efer = vcpu->arch.efer;
10611        sregs->apic_base = kvm_get_apic_base(vcpu);
10612}
10613
10614static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10615{
10616        __get_sregs_common(vcpu, sregs);
10617
10618        if (vcpu->arch.guest_state_protected)
10619                return;
10620
10621        if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10622                set_bit(vcpu->arch.interrupt.nr,
10623                        (unsigned long *)sregs->interrupt_bitmap);
10624}
10625
10626static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10627{
10628        int i;
10629
10630        __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10631
10632        if (vcpu->arch.guest_state_protected)
10633                return;
10634
10635        if (is_pae_paging(vcpu)) {
10636                for (i = 0 ; i < 4 ; i++)
10637                        sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10638                sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10639        }
10640}
10641
10642int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10643                                  struct kvm_sregs *sregs)
10644{
10645        vcpu_load(vcpu);
10646        __get_sregs(vcpu, sregs);
10647        vcpu_put(vcpu);
10648        return 0;
10649}
10650
10651int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10652                                    struct kvm_mp_state *mp_state)
10653{
10654        int r;
10655
10656        vcpu_load(vcpu);
10657        if (kvm_mpx_supported())
10658                kvm_load_guest_fpu(vcpu);
10659
10660        r = kvm_apic_accept_events(vcpu);
10661        if (r < 0)
10662                goto out;
10663        r = 0;
10664
10665        if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10666             vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10667            vcpu->arch.pv.pv_unhalted)
10668                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10669        else
10670                mp_state->mp_state = vcpu->arch.mp_state;
10671
10672out:
10673        if (kvm_mpx_supported())
10674                kvm_put_guest_fpu(vcpu);
10675        vcpu_put(vcpu);
10676        return r;
10677}
10678
10679int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10680                                    struct kvm_mp_state *mp_state)
10681{
10682        int ret = -EINVAL;
10683
10684        vcpu_load(vcpu);
10685
10686        if (!lapic_in_kernel(vcpu) &&
10687            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10688                goto out;
10689
10690        /*
10691         * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10692         * INIT state; latched init should be reported using
10693         * KVM_SET_VCPU_EVENTS, so reject it here.
10694         */
10695        if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10696            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10697             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10698                goto out;
10699
10700        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10701                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10702                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10703        } else
10704                vcpu->arch.mp_state = mp_state->mp_state;
10705        kvm_make_request(KVM_REQ_EVENT, vcpu);
10706
10707        ret = 0;
10708out:
10709        vcpu_put(vcpu);
10710        return ret;
10711}
10712
10713int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10714                    int reason, bool has_error_code, u32 error_code)
10715{
10716        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10717        int ret;
10718
10719        init_emulate_ctxt(vcpu);
10720
10721        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10722                                   has_error_code, error_code);
10723        if (ret) {
10724                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10725                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10726                vcpu->run->internal.ndata = 0;
10727                return 0;
10728        }
10729
10730        kvm_rip_write(vcpu, ctxt->eip);
10731        kvm_set_rflags(vcpu, ctxt->eflags);
10732        return 1;
10733}
10734EXPORT_SYMBOL_GPL(kvm_task_switch);
10735
10736static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10737{
10738        if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10739                /*
10740                 * When EFER.LME and CR0.PG are set, the processor is in
10741                 * 64-bit mode (though maybe in a 32-bit code segment).
10742                 * CR4.PAE and EFER.LMA must be set.
10743                 */
10744                if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10745                        return false;
10746                if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10747                        return false;
10748        } else {
10749                /*
10750                 * Not in 64-bit mode: EFER.LMA is clear and the code
10751                 * segment cannot be 64-bit.
10752                 */
10753                if (sregs->efer & EFER_LMA || sregs->cs.l)
10754                        return false;
10755        }
10756
10757        return kvm_is_valid_cr4(vcpu, sregs->cr4);
10758}
10759
10760static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10761                int *mmu_reset_needed, bool update_pdptrs)
10762{
10763        struct msr_data apic_base_msr;
10764        int idx;
10765        struct desc_ptr dt;
10766
10767        if (!kvm_is_valid_sregs(vcpu, sregs))
10768                return -EINVAL;
10769
10770        apic_base_msr.data = sregs->apic_base;
10771        apic_base_msr.host_initiated = true;
10772        if (kvm_set_apic_base(vcpu, &apic_base_msr))
10773                return -EINVAL;
10774
10775        if (vcpu->arch.guest_state_protected)
10776                return 0;
10777
10778        dt.size = sregs->idt.limit;
10779        dt.address = sregs->idt.base;
10780        static_call(kvm_x86_set_idt)(vcpu, &dt);
10781        dt.size = sregs->gdt.limit;
10782        dt.address = sregs->gdt.base;
10783        static_call(kvm_x86_set_gdt)(vcpu, &dt);
10784
10785        vcpu->arch.cr2 = sregs->cr2;
10786        *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10787        vcpu->arch.cr3 = sregs->cr3;
10788        kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10789        static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10790
10791        kvm_set_cr8(vcpu, sregs->cr8);
10792
10793        *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10794        static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10795
10796        *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10797        static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10798        vcpu->arch.cr0 = sregs->cr0;
10799
10800        *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10801        static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10802
10803        if (update_pdptrs) {
10804                idx = srcu_read_lock(&vcpu->kvm->srcu);
10805                if (is_pae_paging(vcpu)) {
10806                        load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10807                        *mmu_reset_needed = 1;
10808                }
10809                srcu_read_unlock(&vcpu->kvm->srcu, idx);
10810        }
10811
10812        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10813        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10814        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10815        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10816        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10817        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10818
10819        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10820        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10821
10822        update_cr8_intercept(vcpu);
10823
10824        /* Older userspace won't unhalt the vcpu on reset. */
10825        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10826            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10827            !is_protmode(vcpu))
10828                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10829
10830        return 0;
10831}
10832
10833static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10834{
10835        int pending_vec, max_bits;
10836        int mmu_reset_needed = 0;
10837        int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10838
10839        if (ret)
10840                return ret;
10841
10842        if (mmu_reset_needed)
10843                kvm_mmu_reset_context(vcpu);
10844
10845        max_bits = KVM_NR_INTERRUPTS;
10846        pending_vec = find_first_bit(
10847                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10848
10849        if (pending_vec < max_bits) {
10850                kvm_queue_interrupt(vcpu, pending_vec, false);
10851                pr_debug("Set back pending irq %d\n", pending_vec);
10852                kvm_make_request(KVM_REQ_EVENT, vcpu);
10853        }
10854        return 0;
10855}
10856
10857static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10858{
10859        int mmu_reset_needed = 0;
10860        bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10861        bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10862                !(sregs2->efer & EFER_LMA);
10863        int i, ret;
10864
10865        if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10866                return -EINVAL;
10867
10868        if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10869                return -EINVAL;
10870
10871        ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10872                                 &mmu_reset_needed, !valid_pdptrs);
10873        if (ret)
10874                return ret;
10875
10876        if (valid_pdptrs) {
10877                for (i = 0; i < 4 ; i++)
10878                        kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10879
10880                kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10881                mmu_reset_needed = 1;
10882                vcpu->arch.pdptrs_from_userspace = true;
10883        }
10884        if (mmu_reset_needed)
10885                kvm_mmu_reset_context(vcpu);
10886        return 0;
10887}
10888
10889int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10890                                  struct kvm_sregs *sregs)
10891{
10892        int ret;
10893
10894        vcpu_load(vcpu);
10895        ret = __set_sregs(vcpu, sregs);
10896        vcpu_put(vcpu);
10897        return ret;
10898}
10899
10900static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10901{
10902        bool inhibit = false;
10903        struct kvm_vcpu *vcpu;
10904        unsigned long i;
10905
10906        down_write(&kvm->arch.apicv_update_lock);
10907
10908        kvm_for_each_vcpu(i, vcpu, kvm) {
10909                if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10910                        inhibit = true;
10911                        break;
10912                }
10913        }
10914        __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10915        up_write(&kvm->arch.apicv_update_lock);
10916}
10917
10918int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10919                                        struct kvm_guest_debug *dbg)
10920{
10921        unsigned long rflags;
10922        int i, r;
10923
10924        if (vcpu->arch.guest_state_protected)
10925                return -EINVAL;
10926
10927        vcpu_load(vcpu);
10928
10929        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10930                r = -EBUSY;
10931                if (vcpu->arch.exception.pending)
10932                        goto out;
10933                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10934                        kvm_queue_exception(vcpu, DB_VECTOR);
10935                else
10936                        kvm_queue_exception(vcpu, BP_VECTOR);
10937        }
10938
10939        /*
10940         * Read rflags as long as potentially injected trace flags are still
10941         * filtered out.
10942         */
10943        rflags = kvm_get_rflags(vcpu);
10944
10945        vcpu->guest_debug = dbg->control;
10946        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10947                vcpu->guest_debug = 0;
10948
10949        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10950                for (i = 0; i < KVM_NR_DB_REGS; ++i)
10951                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10952                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10953        } else {
10954                for (i = 0; i < KVM_NR_DB_REGS; i++)
10955                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10956        }
10957        kvm_update_dr7(vcpu);
10958
10959        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10960                vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10961
10962        /*
10963         * Trigger an rflags update that will inject or remove the trace
10964         * flags.
10965         */
10966        kvm_set_rflags(vcpu, rflags);
10967
10968        static_call(kvm_x86_update_exception_bitmap)(vcpu);
10969
10970        kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10971
10972        r = 0;
10973
10974out:
10975        vcpu_put(vcpu);
10976        return r;
10977}
10978
10979/*
10980 * Translate a guest virtual address to a guest physical address.
10981 */
10982int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10983                                    struct kvm_translation *tr)
10984{
10985        unsigned long vaddr = tr->linear_address;
10986        gpa_t gpa;
10987        int idx;
10988
10989        vcpu_load(vcpu);
10990
10991        idx = srcu_read_lock(&vcpu->kvm->srcu);
10992        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10993        srcu_read_unlock(&vcpu->kvm->srcu, idx);
10994        tr->physical_address = gpa;
10995        tr->valid = gpa != UNMAPPED_GVA;
10996        tr->writeable = 1;
10997        tr->usermode = 0;
10998
10999        vcpu_put(vcpu);
11000        return 0;
11001}
11002
11003int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11004{
11005        struct fxregs_state *fxsave;
11006
11007        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11008                return 0;
11009
11010        vcpu_load(vcpu);
11011
11012        fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11013        memcpy(fpu->fpr, fxsave->st_space, 128);
11014        fpu->fcw = fxsave->cwd;
11015        fpu->fsw = fxsave->swd;
11016        fpu->ftwx = fxsave->twd;
11017        fpu->last_opcode = fxsave->fop;
11018        fpu->last_ip = fxsave->rip;
11019        fpu->last_dp = fxsave->rdp;
11020        memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11021
11022        vcpu_put(vcpu);
11023        return 0;
11024}
11025
11026int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11027{
11028        struct fxregs_state *fxsave;
11029
11030        if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11031                return 0;
11032
11033        vcpu_load(vcpu);
11034
11035        fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11036
11037        memcpy(fxsave->st_space, fpu->fpr, 128);
11038        fxsave->cwd = fpu->fcw;
11039        fxsave->swd = fpu->fsw;
11040        fxsave->twd = fpu->ftwx;
11041        fxsave->fop = fpu->last_opcode;
11042        fxsave->rip = fpu->last_ip;
11043        fxsave->rdp = fpu->last_dp;
11044        memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11045
11046        vcpu_put(vcpu);
11047        return 0;
11048}
11049
11050static void store_regs(struct kvm_vcpu *vcpu)
11051{
11052        BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11053
11054        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11055                __get_regs(vcpu, &vcpu->run->s.regs.regs);
11056
11057        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11058                __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11059
11060        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11061                kvm_vcpu_ioctl_x86_get_vcpu_events(
11062                                vcpu, &vcpu->run->s.regs.events);
11063}
11064
11065static int sync_regs(struct kvm_vcpu *vcpu)
11066{
11067        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11068                __set_regs(vcpu, &vcpu->run->s.regs.regs);
11069                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11070        }
11071        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11072                if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11073                        return -EINVAL;
11074                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11075        }
11076        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11077                if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11078                                vcpu, &vcpu->run->s.regs.events))
11079                        return -EINVAL;
11080                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11081        }
11082
11083        return 0;
11084}
11085
11086int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11087{
11088        if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11089                pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11090                             "guest TSC will not be reliable\n");
11091
11092        return 0;
11093}
11094
11095int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11096{
11097        struct page *page;
11098        int r;
11099
11100        vcpu->arch.last_vmentry_cpu = -1;
11101        vcpu->arch.regs_avail = ~0;
11102        vcpu->arch.regs_dirty = ~0;
11103
11104        if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11105                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11106        else
11107                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11108
11109        r = kvm_mmu_create(vcpu);
11110        if (r < 0)
11111                return r;
11112
11113        if (irqchip_in_kernel(vcpu->kvm)) {
11114                r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11115                if (r < 0)
11116                        goto fail_mmu_destroy;
11117                if (kvm_apicv_activated(vcpu->kvm))
11118                        vcpu->arch.apicv_active = true;
11119        } else
11120                static_branch_inc(&kvm_has_noapic_vcpu);
11121
11122        r = -ENOMEM;
11123
11124        page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11125        if (!page)
11126                goto fail_free_lapic;
11127        vcpu->arch.pio_data = page_address(page);
11128
11129        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11130                                       GFP_KERNEL_ACCOUNT);
11131        if (!vcpu->arch.mce_banks)
11132                goto fail_free_pio_data;
11133        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11134
11135        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11136                                GFP_KERNEL_ACCOUNT))
11137                goto fail_free_mce_banks;
11138
11139        if (!alloc_emulate_ctxt(vcpu))
11140                goto free_wbinvd_dirty_mask;
11141
11142        if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11143                pr_err("kvm: failed to allocate vcpu's fpu\n");
11144                goto free_emulate_ctxt;
11145        }
11146
11147        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11148        vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11149
11150        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11151
11152        kvm_async_pf_hash_reset(vcpu);
11153        kvm_pmu_init(vcpu);
11154
11155        vcpu->arch.pending_external_vector = -1;
11156        vcpu->arch.preempted_in_kernel = false;
11157
11158#if IS_ENABLED(CONFIG_HYPERV)
11159        vcpu->arch.hv_root_tdp = INVALID_PAGE;
11160#endif
11161
11162        r = static_call(kvm_x86_vcpu_create)(vcpu);
11163        if (r)
11164                goto free_guest_fpu;
11165
11166        vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11167        vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11168        kvm_vcpu_mtrr_init(vcpu);
11169        vcpu_load(vcpu);
11170        kvm_set_tsc_khz(vcpu, max_tsc_khz);
11171        kvm_vcpu_reset(vcpu, false);
11172        kvm_init_mmu(vcpu);
11173        vcpu_put(vcpu);
11174        return 0;
11175
11176free_guest_fpu:
11177        fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11178free_emulate_ctxt:
11179        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11180free_wbinvd_dirty_mask:
11181        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11182fail_free_mce_banks:
11183        kfree(vcpu->arch.mce_banks);
11184fail_free_pio_data:
11185        free_page((unsigned long)vcpu->arch.pio_data);
11186fail_free_lapic:
11187        kvm_free_lapic(vcpu);
11188fail_mmu_destroy:
11189        kvm_mmu_destroy(vcpu);
11190        return r;
11191}
11192
11193void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11194{
11195        struct kvm *kvm = vcpu->kvm;
11196
11197        if (mutex_lock_killable(&vcpu->mutex))
11198                return;
11199        vcpu_load(vcpu);
11200        kvm_synchronize_tsc(vcpu, 0);
11201        vcpu_put(vcpu);
11202
11203        /* poll control enabled by default */
11204        vcpu->arch.msr_kvm_poll_control = 1;
11205
11206        mutex_unlock(&vcpu->mutex);
11207
11208        if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11209                schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11210                                                KVMCLOCK_SYNC_PERIOD);
11211}
11212
11213void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11214{
11215        int idx;
11216
11217        kvmclock_reset(vcpu);
11218
11219        static_call(kvm_x86_vcpu_free)(vcpu);
11220
11221        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11222        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11223        fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11224
11225        kvm_hv_vcpu_uninit(vcpu);
11226        kvm_pmu_destroy(vcpu);
11227        kfree(vcpu->arch.mce_banks);
11228        kvm_free_lapic(vcpu);
11229        idx = srcu_read_lock(&vcpu->kvm->srcu);
11230        kvm_mmu_destroy(vcpu);
11231        srcu_read_unlock(&vcpu->kvm->srcu, idx);
11232        free_page((unsigned long)vcpu->arch.pio_data);
11233        kvfree(vcpu->arch.cpuid_entries);
11234        if (!lapic_in_kernel(vcpu))
11235                static_branch_dec(&kvm_has_noapic_vcpu);
11236}
11237
11238void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11239{
11240        struct kvm_cpuid_entry2 *cpuid_0x1;
11241        unsigned long old_cr0 = kvm_read_cr0(vcpu);
11242        unsigned long new_cr0;
11243
11244        /*
11245         * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11246         * to handle side effects.  RESET emulation hits those flows and relies
11247         * on emulated/virtualized registers, including those that are loaded
11248         * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11249         * to detect improper or missing initialization.
11250         */
11251        WARN_ON_ONCE(!init_event &&
11252                     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11253
11254        kvm_lapic_reset(vcpu, init_event);
11255
11256        vcpu->arch.hflags = 0;
11257
11258        vcpu->arch.smi_pending = 0;
11259        vcpu->arch.smi_count = 0;
11260        atomic_set(&vcpu->arch.nmi_queued, 0);
11261        vcpu->arch.nmi_pending = 0;
11262        vcpu->arch.nmi_injected = false;
11263        kvm_clear_interrupt_queue(vcpu);
11264        kvm_clear_exception_queue(vcpu);
11265
11266        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11267        kvm_update_dr0123(vcpu);
11268        vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11269        vcpu->arch.dr7 = DR7_FIXED_1;
11270        kvm_update_dr7(vcpu);
11271
11272        vcpu->arch.cr2 = 0;
11273
11274        kvm_make_request(KVM_REQ_EVENT, vcpu);
11275        vcpu->arch.apf.msr_en_val = 0;
11276        vcpu->arch.apf.msr_int_val = 0;
11277        vcpu->arch.st.msr_val = 0;
11278
11279        kvmclock_reset(vcpu);
11280
11281        kvm_clear_async_pf_completion_queue(vcpu);
11282        kvm_async_pf_hash_reset(vcpu);
11283        vcpu->arch.apf.halted = false;
11284
11285        if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11286                struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11287
11288                /*
11289                 * To avoid have the INIT path from kvm_apic_has_events() that be
11290                 * called with loaded FPU and does not let userspace fix the state.
11291                 */
11292                if (init_event)
11293                        kvm_put_guest_fpu(vcpu);
11294
11295                fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11296                fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11297
11298                if (init_event)
11299                        kvm_load_guest_fpu(vcpu);
11300        }
11301
11302        if (!init_event) {
11303                kvm_pmu_reset(vcpu);
11304                vcpu->arch.smbase = 0x30000;
11305
11306                vcpu->arch.msr_misc_features_enables = 0;
11307
11308                __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11309                __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11310        }
11311
11312        /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11313        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11314        kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11315
11316        /*
11317         * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11318         * if no CPUID match is found.  Note, it's impossible to get a match at
11319         * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11320         * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11321         * on RESET.  But, go through the motions in case that's ever remedied.
11322         */
11323        cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11324        kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11325
11326        static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11327
11328        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11329        kvm_rip_write(vcpu, 0xfff0);
11330
11331        vcpu->arch.cr3 = 0;
11332        kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11333
11334        /*
11335         * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11336         * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11337         * (or qualify) that with a footnote stating that CD/NW are preserved.
11338         */
11339        new_cr0 = X86_CR0_ET;
11340        if (init_event)
11341                new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11342        else
11343                new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11344
11345        static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11346        static_call(kvm_x86_set_cr4)(vcpu, 0);
11347        static_call(kvm_x86_set_efer)(vcpu, 0);
11348        static_call(kvm_x86_update_exception_bitmap)(vcpu);
11349
11350        /*
11351         * Reset the MMU context if paging was enabled prior to INIT (which is
11352         * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11353         * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11354         * checked because it is unconditionally cleared on INIT and all other
11355         * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11356         * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11357         */
11358        if (old_cr0 & X86_CR0_PG)
11359                kvm_mmu_reset_context(vcpu);
11360
11361        /*
11362         * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11363         * APM states the TLBs are untouched by INIT, but it also states that
11364         * the TLBs are flushed on "External initialization of the processor."
11365         * Flush the guest TLB regardless of vendor, there is no meaningful
11366         * benefit in relying on the guest to flush the TLB immediately after
11367         * INIT.  A spurious TLB flush is benign and likely negligible from a
11368         * performance perspective.
11369         */
11370        if (init_event)
11371                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11372}
11373EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11374
11375void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11376{
11377        struct kvm_segment cs;
11378
11379        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11380        cs.selector = vector << 8;
11381        cs.base = vector << 12;
11382        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11383        kvm_rip_write(vcpu, 0);
11384}
11385EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11386
11387int kvm_arch_hardware_enable(void)
11388{
11389        struct kvm *kvm;
11390        struct kvm_vcpu *vcpu;
11391        unsigned long i;
11392        int ret;
11393        u64 local_tsc;
11394        u64 max_tsc = 0;
11395        bool stable, backwards_tsc = false;
11396
11397        kvm_user_return_msr_cpu_online();
11398        ret = static_call(kvm_x86_hardware_enable)();
11399        if (ret != 0)
11400                return ret;
11401
11402        local_tsc = rdtsc();
11403        stable = !kvm_check_tsc_unstable();
11404        list_for_each_entry(kvm, &vm_list, vm_list) {
11405                kvm_for_each_vcpu(i, vcpu, kvm) {
11406                        if (!stable && vcpu->cpu == smp_processor_id())
11407                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11408                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11409                                backwards_tsc = true;
11410                                if (vcpu->arch.last_host_tsc > max_tsc)
11411                                        max_tsc = vcpu->arch.last_host_tsc;
11412                        }
11413                }
11414        }
11415
11416        /*
11417         * Sometimes, even reliable TSCs go backwards.  This happens on
11418         * platforms that reset TSC during suspend or hibernate actions, but
11419         * maintain synchronization.  We must compensate.  Fortunately, we can
11420         * detect that condition here, which happens early in CPU bringup,
11421         * before any KVM threads can be running.  Unfortunately, we can't
11422         * bring the TSCs fully up to date with real time, as we aren't yet far
11423         * enough into CPU bringup that we know how much real time has actually
11424         * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11425         * variables that haven't been updated yet.
11426         *
11427         * So we simply find the maximum observed TSC above, then record the
11428         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11429         * the adjustment will be applied.  Note that we accumulate
11430         * adjustments, in case multiple suspend cycles happen before some VCPU
11431         * gets a chance to run again.  In the event that no KVM threads get a
11432         * chance to run, we will miss the entire elapsed period, as we'll have
11433         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11434         * loose cycle time.  This isn't too big a deal, since the loss will be
11435         * uniform across all VCPUs (not to mention the scenario is extremely
11436         * unlikely). It is possible that a second hibernate recovery happens
11437         * much faster than a first, causing the observed TSC here to be
11438         * smaller; this would require additional padding adjustment, which is
11439         * why we set last_host_tsc to the local tsc observed here.
11440         *
11441         * N.B. - this code below runs only on platforms with reliable TSC,
11442         * as that is the only way backwards_tsc is set above.  Also note
11443         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11444         * have the same delta_cyc adjustment applied if backwards_tsc
11445         * is detected.  Note further, this adjustment is only done once,
11446         * as we reset last_host_tsc on all VCPUs to stop this from being
11447         * called multiple times (one for each physical CPU bringup).
11448         *
11449         * Platforms with unreliable TSCs don't have to deal with this, they
11450         * will be compensated by the logic in vcpu_load, which sets the TSC to
11451         * catchup mode.  This will catchup all VCPUs to real time, but cannot
11452         * guarantee that they stay in perfect synchronization.
11453         */
11454        if (backwards_tsc) {
11455                u64 delta_cyc = max_tsc - local_tsc;
11456                list_for_each_entry(kvm, &vm_list, vm_list) {
11457                        kvm->arch.backwards_tsc_observed = true;
11458                        kvm_for_each_vcpu(i, vcpu, kvm) {
11459                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
11460                                vcpu->arch.last_host_tsc = local_tsc;
11461                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11462                        }
11463
11464                        /*
11465                         * We have to disable TSC offset matching.. if you were
11466                         * booting a VM while issuing an S4 host suspend....
11467                         * you may have some problem.  Solving this issue is
11468                         * left as an exercise to the reader.
11469                         */
11470                        kvm->arch.last_tsc_nsec = 0;
11471                        kvm->arch.last_tsc_write = 0;
11472                }
11473
11474        }
11475        return 0;
11476}
11477
11478void kvm_arch_hardware_disable(void)
11479{
11480        static_call(kvm_x86_hardware_disable)();
11481        drop_user_return_notifiers();
11482}
11483
11484int kvm_arch_hardware_setup(void *opaque)
11485{
11486        struct kvm_x86_init_ops *ops = opaque;
11487        int r;
11488
11489        rdmsrl_safe(MSR_EFER, &host_efer);
11490
11491        if (boot_cpu_has(X86_FEATURE_XSAVES))
11492                rdmsrl(MSR_IA32_XSS, host_xss);
11493
11494        r = ops->hardware_setup();
11495        if (r != 0)
11496                return r;
11497
11498        memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11499        kvm_ops_static_call_update();
11500
11501        kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11502
11503        if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11504                supported_xss = 0;
11505
11506#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11507        cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11508#undef __kvm_cpu_cap_has
11509
11510        if (kvm_has_tsc_control) {
11511                /*
11512                 * Make sure the user can only configure tsc_khz values that
11513                 * fit into a signed integer.
11514                 * A min value is not calculated because it will always
11515                 * be 1 on all machines.
11516                 */
11517                u64 max = min(0x7fffffffULL,
11518                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11519                kvm_max_guest_tsc_khz = max;
11520
11521                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11522        }
11523
11524        kvm_init_msr_list();
11525        return 0;
11526}
11527
11528void kvm_arch_hardware_unsetup(void)
11529{
11530        kvm_unregister_perf_callbacks();
11531
11532        static_call(kvm_x86_hardware_unsetup)();
11533}
11534
11535int kvm_arch_check_processor_compat(void *opaque)
11536{
11537        struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11538        struct kvm_x86_init_ops *ops = opaque;
11539
11540        WARN_ON(!irqs_disabled());
11541
11542        if (__cr4_reserved_bits(cpu_has, c) !=
11543            __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11544                return -EIO;
11545
11546        return ops->check_processor_compatibility();
11547}
11548
11549bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11550{
11551        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11552}
11553EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11554
11555bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11556{
11557        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11558}
11559
11560__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11561EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11562
11563void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11564{
11565        struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11566
11567        vcpu->arch.l1tf_flush_l1d = true;
11568        if (pmu->version && unlikely(pmu->event_count)) {
11569                pmu->need_cleanup = true;
11570                kvm_make_request(KVM_REQ_PMU, vcpu);
11571        }
11572        static_call(kvm_x86_sched_in)(vcpu, cpu);
11573}
11574
11575void kvm_arch_free_vm(struct kvm *kvm)
11576{
11577        kfree(to_kvm_hv(kvm)->hv_pa_pg);
11578        __kvm_arch_free_vm(kvm);
11579}
11580
11581
11582int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11583{
11584        int ret;
11585        unsigned long flags;
11586
11587        if (type)
11588                return -EINVAL;
11589
11590        ret = kvm_page_track_init(kvm);
11591        if (ret)
11592                return ret;
11593
11594        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11595        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11596        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11597        INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11598        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11599        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11600
11601        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11602        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11603        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11604        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11605                &kvm->arch.irq_sources_bitmap);
11606
11607        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11608        mutex_init(&kvm->arch.apic_map_lock);
11609        seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11610        kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11611
11612        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11613        pvclock_update_vm_gtod_copy(kvm);
11614        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11615
11616        kvm->arch.guest_can_read_msr_platform_info = true;
11617
11618#if IS_ENABLED(CONFIG_HYPERV)
11619        spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11620        kvm->arch.hv_root_tdp = INVALID_PAGE;
11621#endif
11622
11623        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11624        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11625
11626        kvm_apicv_init(kvm);
11627        kvm_hv_init_vm(kvm);
11628        kvm_mmu_init_vm(kvm);
11629        kvm_xen_init_vm(kvm);
11630
11631        return static_call(kvm_x86_vm_init)(kvm);
11632}
11633
11634int kvm_arch_post_init_vm(struct kvm *kvm)
11635{
11636        return kvm_mmu_post_init_vm(kvm);
11637}
11638
11639static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11640{
11641        vcpu_load(vcpu);
11642        kvm_mmu_unload(vcpu);
11643        vcpu_put(vcpu);
11644}
11645
11646static void kvm_free_vcpus(struct kvm *kvm)
11647{
11648        unsigned long i;
11649        struct kvm_vcpu *vcpu;
11650
11651        /*
11652         * Unpin any mmu pages first.
11653         */
11654        kvm_for_each_vcpu(i, vcpu, kvm) {
11655                kvm_clear_async_pf_completion_queue(vcpu);
11656                kvm_unload_vcpu_mmu(vcpu);
11657        }
11658
11659        kvm_destroy_vcpus(kvm);
11660}
11661
11662void kvm_arch_sync_events(struct kvm *kvm)
11663{
11664        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11665        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11666        kvm_free_pit(kvm);
11667}
11668
11669/**
11670 * __x86_set_memory_region: Setup KVM internal memory slot
11671 *
11672 * @kvm: the kvm pointer to the VM.
11673 * @id: the slot ID to setup.
11674 * @gpa: the GPA to install the slot (unused when @size == 0).
11675 * @size: the size of the slot. Set to zero to uninstall a slot.
11676 *
11677 * This function helps to setup a KVM internal memory slot.  Specify
11678 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11679 * slot.  The return code can be one of the following:
11680 *
11681 *   HVA:           on success (uninstall will return a bogus HVA)
11682 *   -errno:        on error
11683 *
11684 * The caller should always use IS_ERR() to check the return value
11685 * before use.  Note, the KVM internal memory slots are guaranteed to
11686 * remain valid and unchanged until the VM is destroyed, i.e., the
11687 * GPA->HVA translation will not change.  However, the HVA is a user
11688 * address, i.e. its accessibility is not guaranteed, and must be
11689 * accessed via __copy_{to,from}_user().
11690 */
11691void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11692                                      u32 size)
11693{
11694        int i, r;
11695        unsigned long hva, old_npages;
11696        struct kvm_memslots *slots = kvm_memslots(kvm);
11697        struct kvm_memory_slot *slot;
11698
11699        /* Called with kvm->slots_lock held.  */
11700        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11701                return ERR_PTR_USR(-EINVAL);
11702
11703        slot = id_to_memslot(slots, id);
11704        if (size) {
11705                if (slot && slot->npages)
11706                        return ERR_PTR_USR(-EEXIST);
11707
11708                /*
11709                 * MAP_SHARED to prevent internal slot pages from being moved
11710                 * by fork()/COW.
11711                 */
11712                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11713                              MAP_SHARED | MAP_ANONYMOUS, 0);
11714                if (IS_ERR((void *)hva))
11715                        return (void __user *)hva;
11716        } else {
11717                if (!slot || !slot->npages)
11718                        return NULL;
11719
11720                old_npages = slot->npages;
11721                hva = slot->userspace_addr;
11722        }
11723
11724        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11725                struct kvm_userspace_memory_region m;
11726
11727                m.slot = id | (i << 16);
11728                m.flags = 0;
11729                m.guest_phys_addr = gpa;
11730                m.userspace_addr = hva;
11731                m.memory_size = size;
11732                r = __kvm_set_memory_region(kvm, &m);
11733                if (r < 0)
11734                        return ERR_PTR_USR(r);
11735        }
11736
11737        if (!size)
11738                vm_munmap(hva, old_npages * PAGE_SIZE);
11739
11740        return (void __user *)hva;
11741}
11742EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11743
11744void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11745{
11746        kvm_mmu_pre_destroy_vm(kvm);
11747}
11748
11749void kvm_arch_destroy_vm(struct kvm *kvm)
11750{
11751        if (current->mm == kvm->mm) {
11752                /*
11753                 * Free memory regions allocated on behalf of userspace,
11754                 * unless the the memory map has changed due to process exit
11755                 * or fd copying.
11756                 */
11757                mutex_lock(&kvm->slots_lock);
11758                __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11759                                        0, 0);
11760                __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11761                                        0, 0);
11762                __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11763                mutex_unlock(&kvm->slots_lock);
11764        }
11765        static_call_cond(kvm_x86_vm_destroy)(kvm);
11766        kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11767        kvm_pic_destroy(kvm);
11768        kvm_ioapic_destroy(kvm);
11769        kvm_free_vcpus(kvm);
11770        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11771        kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11772        kvm_mmu_uninit_vm(kvm);
11773        kvm_page_track_cleanup(kvm);
11774        kvm_xen_destroy_vm(kvm);
11775        kvm_hv_destroy_vm(kvm);
11776}
11777
11778static void memslot_rmap_free(struct kvm_memory_slot *slot)
11779{
11780        int i;
11781
11782        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11783                kvfree(slot->arch.rmap[i]);
11784                slot->arch.rmap[i] = NULL;
11785        }
11786}
11787
11788void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11789{
11790        int i;
11791
11792        memslot_rmap_free(slot);
11793
11794        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11795                kvfree(slot->arch.lpage_info[i - 1]);
11796                slot->arch.lpage_info[i - 1] = NULL;
11797        }
11798
11799        kvm_page_track_free_memslot(slot);
11800}
11801
11802int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11803{
11804        const int sz = sizeof(*slot->arch.rmap[0]);
11805        int i;
11806
11807        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11808                int level = i + 1;
11809                int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11810
11811                if (slot->arch.rmap[i])
11812                        continue;
11813
11814                slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11815                if (!slot->arch.rmap[i]) {
11816                        memslot_rmap_free(slot);
11817                        return -ENOMEM;
11818                }
11819        }
11820
11821        return 0;
11822}
11823
11824static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11825                                      struct kvm_memory_slot *slot)
11826{
11827        unsigned long npages = slot->npages;
11828        int i, r;
11829
11830        /*
11831         * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11832         * old arrays will be freed by __kvm_set_memory_region() if installing
11833         * the new memslot is successful.
11834         */
11835        memset(&slot->arch, 0, sizeof(slot->arch));
11836
11837        if (kvm_memslots_have_rmaps(kvm)) {
11838                r = memslot_rmap_alloc(slot, npages);
11839                if (r)
11840                        return r;
11841        }
11842
11843        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11844                struct kvm_lpage_info *linfo;
11845                unsigned long ugfn;
11846                int lpages;
11847                int level = i + 1;
11848
11849                lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11850
11851                linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11852                if (!linfo)
11853                        goto out_free;
11854
11855                slot->arch.lpage_info[i - 1] = linfo;
11856
11857                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11858                        linfo[0].disallow_lpage = 1;
11859                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11860                        linfo[lpages - 1].disallow_lpage = 1;
11861                ugfn = slot->userspace_addr >> PAGE_SHIFT;
11862                /*
11863                 * If the gfn and userspace address are not aligned wrt each
11864                 * other, disable large page support for this slot.
11865                 */
11866                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11867                        unsigned long j;
11868
11869                        for (j = 0; j < lpages; ++j)
11870                                linfo[j].disallow_lpage = 1;
11871                }
11872        }
11873
11874        if (kvm_page_track_create_memslot(kvm, slot, npages))
11875                goto out_free;
11876
11877        return 0;
11878
11879out_free:
11880        memslot_rmap_free(slot);
11881
11882        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11883                kvfree(slot->arch.lpage_info[i - 1]);
11884                slot->arch.lpage_info[i - 1] = NULL;
11885        }
11886        return -ENOMEM;
11887}
11888
11889void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11890{
11891        struct kvm_vcpu *vcpu;
11892        unsigned long i;
11893
11894        /*
11895         * memslots->generation has been incremented.
11896         * mmio generation may have reached its maximum value.
11897         */
11898        kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11899
11900        /* Force re-initialization of steal_time cache */
11901        kvm_for_each_vcpu(i, vcpu, kvm)
11902                kvm_vcpu_kick(vcpu);
11903}
11904
11905int kvm_arch_prepare_memory_region(struct kvm *kvm,
11906                                   const struct kvm_memory_slot *old,
11907                                   struct kvm_memory_slot *new,
11908                                   enum kvm_mr_change change)
11909{
11910        if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11911                return kvm_alloc_memslot_metadata(kvm, new);
11912
11913        if (change == KVM_MR_FLAGS_ONLY)
11914                memcpy(&new->arch, &old->arch, sizeof(old->arch));
11915        else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11916                return -EIO;
11917
11918        return 0;
11919}
11920
11921
11922static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11923{
11924        struct kvm_arch *ka = &kvm->arch;
11925
11926        if (!kvm_x86_ops.cpu_dirty_log_size)
11927                return;
11928
11929        if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11930            (!enable && --ka->cpu_dirty_logging_count == 0))
11931                kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11932
11933        WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11934}
11935
11936static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11937                                     struct kvm_memory_slot *old,
11938                                     const struct kvm_memory_slot *new,
11939                                     enum kvm_mr_change change)
11940{
11941        u32 old_flags = old ? old->flags : 0;
11942        u32 new_flags = new ? new->flags : 0;
11943        bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11944
11945        /*
11946         * Update CPU dirty logging if dirty logging is being toggled.  This
11947         * applies to all operations.
11948         */
11949        if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11950                kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11951
11952        /*
11953         * Nothing more to do for RO slots (which can't be dirtied and can't be
11954         * made writable) or CREATE/MOVE/DELETE of a slot.
11955         *
11956         * For a memslot with dirty logging disabled:
11957         * CREATE:      No dirty mappings will already exist.
11958         * MOVE/DELETE: The old mappings will already have been cleaned up by
11959         *              kvm_arch_flush_shadow_memslot()
11960         *
11961         * For a memslot with dirty logging enabled:
11962         * CREATE:      No shadow pages exist, thus nothing to write-protect
11963         *              and no dirty bits to clear.
11964         * MOVE/DELETE: The old mappings will already have been cleaned up by
11965         *              kvm_arch_flush_shadow_memslot().
11966         */
11967        if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11968                return;
11969
11970        /*
11971         * READONLY and non-flags changes were filtered out above, and the only
11972         * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11973         * logging isn't being toggled on or off.
11974         */
11975        if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11976                return;
11977
11978        if (!log_dirty_pages) {
11979                /*
11980                 * Dirty logging tracks sptes in 4k granularity, meaning that
11981                 * large sptes have to be split.  If live migration succeeds,
11982                 * the guest in the source machine will be destroyed and large
11983                 * sptes will be created in the destination.  However, if the
11984                 * guest continues to run in the source machine (for example if
11985                 * live migration fails), small sptes will remain around and
11986                 * cause bad performance.
11987                 *
11988                 * Scan sptes if dirty logging has been stopped, dropping those
11989                 * which can be collapsed into a single large-page spte.  Later
11990                 * page faults will create the large-page sptes.
11991                 */
11992                kvm_mmu_zap_collapsible_sptes(kvm, new);
11993        } else {
11994                /*
11995                 * Initially-all-set does not require write protecting any page,
11996                 * because they're all assumed to be dirty.
11997                 */
11998                if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11999                        return;
12000
12001                if (kvm_x86_ops.cpu_dirty_log_size) {
12002                        kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12003                        kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12004                } else {
12005                        kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12006                }
12007        }
12008}
12009
12010void kvm_arch_commit_memory_region(struct kvm *kvm,
12011                                struct kvm_memory_slot *old,
12012                                const struct kvm_memory_slot *new,
12013                                enum kvm_mr_change change)
12014{
12015        if (!kvm->arch.n_requested_mmu_pages &&
12016            (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12017                unsigned long nr_mmu_pages;
12018
12019                nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12020                nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12021                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12022        }
12023
12024        kvm_mmu_slot_apply_flags(kvm, old, new, change);
12025
12026        /* Free the arrays associated with the old memslot. */
12027        if (change == KVM_MR_MOVE)
12028                kvm_arch_free_memslot(kvm, old);
12029}
12030
12031void kvm_arch_flush_shadow_all(struct kvm *kvm)
12032{
12033        kvm_mmu_zap_all(kvm);
12034}
12035
12036void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12037                                   struct kvm_memory_slot *slot)
12038{
12039        kvm_page_track_flush_slot(kvm, slot);
12040}
12041
12042static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12043{
12044        return (is_guest_mode(vcpu) &&
12045                        kvm_x86_ops.guest_apic_has_interrupt &&
12046                        static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12047}
12048
12049static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12050{
12051        if (!list_empty_careful(&vcpu->async_pf.done))
12052                return true;
12053
12054        if (kvm_apic_has_events(vcpu))
12055                return true;
12056
12057        if (vcpu->arch.pv.pv_unhalted)
12058                return true;
12059
12060        if (vcpu->arch.exception.pending)
12061                return true;
12062
12063        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12064            (vcpu->arch.nmi_pending &&
12065             static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12066                return true;
12067
12068        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12069            (vcpu->arch.smi_pending &&
12070             static_call(kvm_x86_smi_allowed)(vcpu, false)))
12071                return true;
12072
12073        if (kvm_arch_interrupt_allowed(vcpu) &&
12074            (kvm_cpu_has_interrupt(vcpu) ||
12075            kvm_guest_apic_has_interrupt(vcpu)))
12076                return true;
12077
12078        if (kvm_hv_has_stimer_pending(vcpu))
12079                return true;
12080
12081        if (is_guest_mode(vcpu) &&
12082            kvm_x86_ops.nested_ops->hv_timer_pending &&
12083            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12084                return true;
12085
12086        return false;
12087}
12088
12089int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12090{
12091        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12092}
12093
12094bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12095{
12096        if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12097                return true;
12098
12099        return false;
12100}
12101
12102bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12103{
12104        if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12105                return true;
12106
12107        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12108                kvm_test_request(KVM_REQ_SMI, vcpu) ||
12109                 kvm_test_request(KVM_REQ_EVENT, vcpu))
12110                return true;
12111
12112        return kvm_arch_dy_has_pending_interrupt(vcpu);
12113}
12114
12115bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12116{
12117        if (vcpu->arch.guest_state_protected)
12118                return true;
12119
12120        return vcpu->arch.preempted_in_kernel;
12121}
12122
12123unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12124{
12125        return kvm_rip_read(vcpu);
12126}
12127
12128int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12129{
12130        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12131}
12132
12133int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12134{
12135        return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12136}
12137
12138unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12139{
12140        /* Can't read the RIP when guest state is protected, just return 0 */
12141        if (vcpu->arch.guest_state_protected)
12142                return 0;
12143
12144        if (is_64_bit_mode(vcpu))
12145                return kvm_rip_read(vcpu);
12146        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12147                     kvm_rip_read(vcpu));
12148}
12149EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12150
12151bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12152{
12153        return kvm_get_linear_rip(vcpu) == linear_rip;
12154}
12155EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12156
12157unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12158{
12159        unsigned long rflags;
12160
12161        rflags = static_call(kvm_x86_get_rflags)(vcpu);
12162        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12163                rflags &= ~X86_EFLAGS_TF;
12164        return rflags;
12165}
12166EXPORT_SYMBOL_GPL(kvm_get_rflags);
12167
12168static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12169{
12170        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12171            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12172                rflags |= X86_EFLAGS_TF;
12173        static_call(kvm_x86_set_rflags)(vcpu, rflags);
12174}
12175
12176void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12177{
12178        __kvm_set_rflags(vcpu, rflags);
12179        kvm_make_request(KVM_REQ_EVENT, vcpu);
12180}
12181EXPORT_SYMBOL_GPL(kvm_set_rflags);
12182
12183void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12184{
12185        int r;
12186
12187        if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12188              work->wakeup_all)
12189                return;
12190
12191        r = kvm_mmu_reload(vcpu);
12192        if (unlikely(r))
12193                return;
12194
12195        if (!vcpu->arch.mmu->direct_map &&
12196              work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12197                return;
12198
12199        kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12200}
12201
12202static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12203{
12204        BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12205
12206        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12207}
12208
12209static inline u32 kvm_async_pf_next_probe(u32 key)
12210{
12211        return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12212}
12213
12214static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12215{
12216        u32 key = kvm_async_pf_hash_fn(gfn);
12217
12218        while (vcpu->arch.apf.gfns[key] != ~0)
12219                key = kvm_async_pf_next_probe(key);
12220
12221        vcpu->arch.apf.gfns[key] = gfn;
12222}
12223
12224static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12225{
12226        int i;
12227        u32 key = kvm_async_pf_hash_fn(gfn);
12228
12229        for (i = 0; i < ASYNC_PF_PER_VCPU &&
12230                     (vcpu->arch.apf.gfns[key] != gfn &&
12231                      vcpu->arch.apf.gfns[key] != ~0); i++)
12232                key = kvm_async_pf_next_probe(key);
12233
12234        return key;
12235}
12236
12237bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12238{
12239        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12240}
12241
12242static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12243{
12244        u32 i, j, k;
12245
12246        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12247
12248        if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12249                return;
12250
12251        while (true) {
12252                vcpu->arch.apf.gfns[i] = ~0;
12253                do {
12254                        j = kvm_async_pf_next_probe(j);
12255                        if (vcpu->arch.apf.gfns[j] == ~0)
12256                                return;
12257                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12258                        /*
12259                         * k lies cyclically in ]i,j]
12260                         * |    i.k.j |
12261                         * |....j i.k.| or  |.k..j i...|
12262                         */
12263                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12264                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12265                i = j;
12266        }
12267}
12268
12269static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12270{
12271        u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12272
12273        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12274                                      sizeof(reason));
12275}
12276
12277static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12278{
12279        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12280
12281        return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12282                                             &token, offset, sizeof(token));
12283}
12284
12285static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12286{
12287        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12288        u32 val;
12289
12290        if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12291                                         &val, offset, sizeof(val)))
12292                return false;
12293
12294        return !val;
12295}
12296
12297static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12298{
12299        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12300                return false;
12301
12302        if (!kvm_pv_async_pf_enabled(vcpu) ||
12303            (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12304                return false;
12305
12306        return true;
12307}
12308
12309bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12310{
12311        if (unlikely(!lapic_in_kernel(vcpu) ||
12312                     kvm_event_needs_reinjection(vcpu) ||
12313                     vcpu->arch.exception.pending))
12314                return false;
12315
12316        if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12317                return false;
12318
12319        /*
12320         * If interrupts are off we cannot even use an artificial
12321         * halt state.
12322         */
12323        return kvm_arch_interrupt_allowed(vcpu);
12324}
12325
12326bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12327                                     struct kvm_async_pf *work)
12328{
12329        struct x86_exception fault;
12330
12331        trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12332        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12333
12334        if (kvm_can_deliver_async_pf(vcpu) &&
12335            !apf_put_user_notpresent(vcpu)) {
12336                fault.vector = PF_VECTOR;
12337                fault.error_code_valid = true;
12338                fault.error_code = 0;
12339                fault.nested_page_fault = false;
12340                fault.address = work->arch.token;
12341                fault.async_page_fault = true;
12342                kvm_inject_page_fault(vcpu, &fault);
12343                return true;
12344        } else {
12345                /*
12346                 * It is not possible to deliver a paravirtualized asynchronous
12347                 * page fault, but putting the guest in an artificial halt state
12348                 * can be beneficial nevertheless: if an interrupt arrives, we
12349                 * can deliver it timely and perhaps the guest will schedule
12350                 * another process.  When the instruction that triggered a page
12351                 * fault is retried, hopefully the page will be ready in the host.
12352                 */
12353                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12354                return false;
12355        }
12356}
12357
12358void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12359                                 struct kvm_async_pf *work)
12360{
12361        struct kvm_lapic_irq irq = {
12362                .delivery_mode = APIC_DM_FIXED,
12363                .vector = vcpu->arch.apf.vec
12364        };
12365
12366        if (work->wakeup_all)
12367                work->arch.token = ~0; /* broadcast wakeup */
12368        else
12369                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12370        trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12371
12372        if ((work->wakeup_all || work->notpresent_injected) &&
12373            kvm_pv_async_pf_enabled(vcpu) &&
12374            !apf_put_user_ready(vcpu, work->arch.token)) {
12375                vcpu->arch.apf.pageready_pending = true;
12376                kvm_apic_set_irq(vcpu, &irq, NULL);
12377        }
12378
12379        vcpu->arch.apf.halted = false;
12380        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12381}
12382
12383void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12384{
12385        kvm_make_request(KVM_REQ_APF_READY, vcpu);
12386        if (!vcpu->arch.apf.pageready_pending)
12387                kvm_vcpu_kick(vcpu);
12388}
12389
12390bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12391{
12392        if (!kvm_pv_async_pf_enabled(vcpu))
12393                return true;
12394        else
12395                return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12396}
12397
12398void kvm_arch_start_assignment(struct kvm *kvm)
12399{
12400        if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12401                static_call_cond(kvm_x86_start_assignment)(kvm);
12402}
12403EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12404
12405void kvm_arch_end_assignment(struct kvm *kvm)
12406{
12407        atomic_dec(&kvm->arch.assigned_device_count);
12408}
12409EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12410
12411bool kvm_arch_has_assigned_device(struct kvm *kvm)
12412{
12413        return atomic_read(&kvm->arch.assigned_device_count);
12414}
12415EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12416
12417void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12418{
12419        atomic_inc(&kvm->arch.noncoherent_dma_count);
12420}
12421EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12422
12423void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12424{
12425        atomic_dec(&kvm->arch.noncoherent_dma_count);
12426}
12427EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12428
12429bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12430{
12431        return atomic_read(&kvm->arch.noncoherent_dma_count);
12432}
12433EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12434
12435bool kvm_arch_has_irq_bypass(void)
12436{
12437        return true;
12438}
12439
12440int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12441                                      struct irq_bypass_producer *prod)
12442{
12443        struct kvm_kernel_irqfd *irqfd =
12444                container_of(cons, struct kvm_kernel_irqfd, consumer);
12445        int ret;
12446
12447        irqfd->producer = prod;
12448        kvm_arch_start_assignment(irqfd->kvm);
12449        ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12450                                         prod->irq, irqfd->gsi, 1);
12451
12452        if (ret)
12453                kvm_arch_end_assignment(irqfd->kvm);
12454
12455        return ret;
12456}
12457
12458void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12459                                      struct irq_bypass_producer *prod)
12460{
12461        int ret;
12462        struct kvm_kernel_irqfd *irqfd =
12463                container_of(cons, struct kvm_kernel_irqfd, consumer);
12464
12465        WARN_ON(irqfd->producer != prod);
12466        irqfd->producer = NULL;
12467
12468        /*
12469         * When producer of consumer is unregistered, we change back to
12470         * remapped mode, so we can re-use the current implementation
12471         * when the irq is masked/disabled or the consumer side (KVM
12472         * int this case doesn't want to receive the interrupts.
12473        */
12474        ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12475        if (ret)
12476                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12477                       " fails: %d\n", irqfd->consumer.token, ret);
12478
12479        kvm_arch_end_assignment(irqfd->kvm);
12480}
12481
12482int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12483                                   uint32_t guest_irq, bool set)
12484{
12485        return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12486}
12487
12488bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12489                                  struct kvm_kernel_irq_routing_entry *new)
12490{
12491        if (new->type != KVM_IRQ_ROUTING_MSI)
12492                return true;
12493
12494        return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12495}
12496
12497bool kvm_vector_hashing_enabled(void)
12498{
12499        return vector_hashing;
12500}
12501
12502bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12503{
12504        return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12505}
12506EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12507
12508
12509int kvm_spec_ctrl_test_value(u64 value)
12510{
12511        /*
12512         * test that setting IA32_SPEC_CTRL to given value
12513         * is allowed by the host processor
12514         */
12515
12516        u64 saved_value;
12517        unsigned long flags;
12518        int ret = 0;
12519
12520        local_irq_save(flags);
12521
12522        if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12523                ret = 1;
12524        else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12525                ret = 1;
12526        else
12527                wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12528
12529        local_irq_restore(flags);
12530
12531        return ret;
12532}
12533EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12534
12535void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12536{
12537        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12538        struct x86_exception fault;
12539        u32 access = error_code &
12540                (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12541
12542        if (!(error_code & PFERR_PRESENT_MASK) ||
12543            mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12544                /*
12545                 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12546                 * tables probably do not match the TLB.  Just proceed
12547                 * with the error code that the processor gave.
12548                 */
12549                fault.vector = PF_VECTOR;
12550                fault.error_code_valid = true;
12551                fault.error_code = error_code;
12552                fault.nested_page_fault = false;
12553                fault.address = gva;
12554        }
12555        vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12556}
12557EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12558
12559/*
12560 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12561 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12562 * indicates whether exit to userspace is needed.
12563 */
12564int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12565                              struct x86_exception *e)
12566{
12567        if (r == X86EMUL_PROPAGATE_FAULT) {
12568                kvm_inject_emulated_page_fault(vcpu, e);
12569                return 1;
12570        }
12571
12572        /*
12573         * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12574         * while handling a VMX instruction KVM could've handled the request
12575         * correctly by exiting to userspace and performing I/O but there
12576         * doesn't seem to be a real use-case behind such requests, just return
12577         * KVM_EXIT_INTERNAL_ERROR for now.
12578         */
12579        kvm_prepare_emulation_failure_exit(vcpu);
12580
12581        return 0;
12582}
12583EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12584
12585int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12586{
12587        bool pcid_enabled;
12588        struct x86_exception e;
12589        struct {
12590                u64 pcid;
12591                u64 gla;
12592        } operand;
12593        int r;
12594
12595        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12596        if (r != X86EMUL_CONTINUE)
12597                return kvm_handle_memory_failure(vcpu, r, &e);
12598
12599        if (operand.pcid >> 12 != 0) {
12600                kvm_inject_gp(vcpu, 0);
12601                return 1;
12602        }
12603
12604        pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12605
12606        switch (type) {
12607        case INVPCID_TYPE_INDIV_ADDR:
12608                if ((!pcid_enabled && (operand.pcid != 0)) ||
12609                    is_noncanonical_address(operand.gla, vcpu)) {
12610                        kvm_inject_gp(vcpu, 0);
12611                        return 1;
12612                }
12613                kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12614                return kvm_skip_emulated_instruction(vcpu);
12615
12616        case INVPCID_TYPE_SINGLE_CTXT:
12617                if (!pcid_enabled && (operand.pcid != 0)) {
12618                        kvm_inject_gp(vcpu, 0);
12619                        return 1;
12620                }
12621
12622                kvm_invalidate_pcid(vcpu, operand.pcid);
12623                return kvm_skip_emulated_instruction(vcpu);
12624
12625        case INVPCID_TYPE_ALL_NON_GLOBAL:
12626                /*
12627                 * Currently, KVM doesn't mark global entries in the shadow
12628                 * page tables, so a non-global flush just degenerates to a
12629                 * global flush. If needed, we could optimize this later by
12630                 * keeping track of global entries in shadow page tables.
12631                 */
12632
12633                fallthrough;
12634        case INVPCID_TYPE_ALL_INCL_GLOBAL:
12635                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12636                return kvm_skip_emulated_instruction(vcpu);
12637
12638        default:
12639                kvm_inject_gp(vcpu, 0);
12640                return 1;
12641        }
12642}
12643EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12644
12645static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12646{
12647        struct kvm_run *run = vcpu->run;
12648        struct kvm_mmio_fragment *frag;
12649        unsigned int len;
12650
12651        BUG_ON(!vcpu->mmio_needed);
12652
12653        /* Complete previous fragment */
12654        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12655        len = min(8u, frag->len);
12656        if (!vcpu->mmio_is_write)
12657                memcpy(frag->data, run->mmio.data, len);
12658
12659        if (frag->len <= 8) {
12660                /* Switch to the next fragment. */
12661                frag++;
12662                vcpu->mmio_cur_fragment++;
12663        } else {
12664                /* Go forward to the next mmio piece. */
12665                frag->data += len;
12666                frag->gpa += len;
12667                frag->len -= len;
12668        }
12669
12670        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12671                vcpu->mmio_needed = 0;
12672
12673                // VMG change, at this point, we're always done
12674                // RIP has already been advanced
12675                return 1;
12676        }
12677
12678        // More MMIO is needed
12679        run->mmio.phys_addr = frag->gpa;
12680        run->mmio.len = min(8u, frag->len);
12681        run->mmio.is_write = vcpu->mmio_is_write;
12682        if (run->mmio.is_write)
12683                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12684        run->exit_reason = KVM_EXIT_MMIO;
12685
12686        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12687
12688        return 0;
12689}
12690
12691int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12692                          void *data)
12693{
12694        int handled;
12695        struct kvm_mmio_fragment *frag;
12696
12697        if (!data)
12698                return -EINVAL;
12699
12700        handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12701        if (handled == bytes)
12702                return 1;
12703
12704        bytes -= handled;
12705        gpa += handled;
12706        data += handled;
12707
12708        /*TODO: Check if need to increment number of frags */
12709        frag = vcpu->mmio_fragments;
12710        vcpu->mmio_nr_fragments = 1;
12711        frag->len = bytes;
12712        frag->gpa = gpa;
12713        frag->data = data;
12714
12715        vcpu->mmio_needed = 1;
12716        vcpu->mmio_cur_fragment = 0;
12717
12718        vcpu->run->mmio.phys_addr = gpa;
12719        vcpu->run->mmio.len = min(8u, frag->len);
12720        vcpu->run->mmio.is_write = 1;
12721        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12722        vcpu->run->exit_reason = KVM_EXIT_MMIO;
12723
12724        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12725
12726        return 0;
12727}
12728EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12729
12730int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12731                         void *data)
12732{
12733        int handled;
12734        struct kvm_mmio_fragment *frag;
12735
12736        if (!data)
12737                return -EINVAL;
12738
12739        handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12740        if (handled == bytes)
12741                return 1;
12742
12743        bytes -= handled;
12744        gpa += handled;
12745        data += handled;
12746
12747        /*TODO: Check if need to increment number of frags */
12748        frag = vcpu->mmio_fragments;
12749        vcpu->mmio_nr_fragments = 1;
12750        frag->len = bytes;
12751        frag->gpa = gpa;
12752        frag->data = data;
12753
12754        vcpu->mmio_needed = 1;
12755        vcpu->mmio_cur_fragment = 0;
12756
12757        vcpu->run->mmio.phys_addr = gpa;
12758        vcpu->run->mmio.len = min(8u, frag->len);
12759        vcpu->run->mmio.is_write = 0;
12760        vcpu->run->exit_reason = KVM_EXIT_MMIO;
12761
12762        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12763
12764        return 0;
12765}
12766EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12767
12768static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12769                           unsigned int port);
12770
12771static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12772{
12773        int size = vcpu->arch.pio.size;
12774        int port = vcpu->arch.pio.port;
12775
12776        vcpu->arch.pio.count = 0;
12777        if (vcpu->arch.sev_pio_count)
12778                return kvm_sev_es_outs(vcpu, size, port);
12779        return 1;
12780}
12781
12782static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12783                           unsigned int port)
12784{
12785        for (;;) {
12786                unsigned int count =
12787                        min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12788                int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12789
12790                /* memcpy done already by emulator_pio_out.  */
12791                vcpu->arch.sev_pio_count -= count;
12792                vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12793                if (!ret)
12794                        break;
12795
12796                /* Emulation done by the kernel.  */
12797                if (!vcpu->arch.sev_pio_count)
12798                        return 1;
12799        }
12800
12801        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12802        return 0;
12803}
12804
12805static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12806                          unsigned int port);
12807
12808static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12809{
12810        unsigned count = vcpu->arch.pio.count;
12811        complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12812        vcpu->arch.sev_pio_count -= count;
12813        vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12814}
12815
12816static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12817{
12818        int size = vcpu->arch.pio.size;
12819        int port = vcpu->arch.pio.port;
12820
12821        advance_sev_es_emulated_ins(vcpu);
12822        if (vcpu->arch.sev_pio_count)
12823                return kvm_sev_es_ins(vcpu, size, port);
12824        return 1;
12825}
12826
12827static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12828                          unsigned int port)
12829{
12830        for (;;) {
12831                unsigned int count =
12832                        min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12833                if (!__emulator_pio_in(vcpu, size, port, count))
12834                        break;
12835
12836                /* Emulation done by the kernel.  */
12837                advance_sev_es_emulated_ins(vcpu);
12838                if (!vcpu->arch.sev_pio_count)
12839                        return 1;
12840        }
12841
12842        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12843        return 0;
12844}
12845
12846int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12847                         unsigned int port, void *data,  unsigned int count,
12848                         int in)
12849{
12850        vcpu->arch.sev_pio_data = data;
12851        vcpu->arch.sev_pio_count = count;
12852        return in ? kvm_sev_es_ins(vcpu, size, port)
12853                  : kvm_sev_es_outs(vcpu, size, port);
12854}
12855EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12856
12857EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12858EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12859EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12860EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12861EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12862EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12863EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12864EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12865EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12866EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12867EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12868EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12869EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12870EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12871EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12872EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12873EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12874EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12875EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12876EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12877EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12878EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12879EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12880EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12881EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12882EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12883EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12884EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12885