linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/sched/task_stack.h>     /* task_stack_*(), ...          */
   9#include <linux/kdebug.h>               /* oops_begin/end, ...          */
  10#include <linux/extable.h>              /* search_exception_tables      */
  11#include <linux/memblock.h>             /* max_low_pfn                  */
  12#include <linux/kfence.h>               /* kfence_handle_page_fault     */
  13#include <linux/kprobes.h>              /* NOKPROBE_SYMBOL, ...         */
  14#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  15#include <linux/perf_event.h>           /* perf_sw_event                */
  16#include <linux/hugetlb.h>              /* hstate_index_to_shift        */
  17#include <linux/prefetch.h>             /* prefetchw                    */
  18#include <linux/context_tracking.h>     /* exception_enter(), ...       */
  19#include <linux/uaccess.h>              /* faulthandler_disabled()      */
  20#include <linux/efi.h>                  /* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22
  23#include <asm/cpufeature.h>             /* boot_cpu_has, ...            */
  24#include <asm/traps.h>                  /* dotraplinkage, ...           */
  25#include <asm/fixmap.h>                 /* VSYSCALL_ADDR                */
  26#include <asm/vsyscall.h>               /* emulate_vsyscall             */
  27#include <asm/vm86.h>                   /* struct vm86                  */
  28#include <asm/mmu_context.h>            /* vma_pkey()                   */
  29#include <asm/efi.h>                    /* efi_crash_gracefully_on_page_fault()*/
  30#include <asm/desc.h>                   /* store_idt(), ...             */
  31#include <asm/cpu_entry_area.h>         /* exception stack              */
  32#include <asm/pgtable_areas.h>          /* VMALLOC_START, ...           */
  33#include <asm/kvm_para.h>               /* kvm_handle_async_pf          */
  34#include <asm/vdso.h>                   /* fixup_vdso_exception()       */
  35#include <asm/irq_stack.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <asm/trace/exceptions.h>
  39
  40/*
  41 * Returns 0 if mmiotrace is disabled, or if the fault is not
  42 * handled by mmiotrace:
  43 */
  44static nokprobe_inline int
  45kmmio_fault(struct pt_regs *regs, unsigned long addr)
  46{
  47        if (unlikely(is_kmmio_active()))
  48                if (kmmio_handler(regs, addr) == 1)
  49                        return -1;
  50        return 0;
  51}
  52
  53/*
  54 * Prefetch quirks:
  55 *
  56 * 32-bit mode:
  57 *
  58 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  59 *   Check that here and ignore it.  This is AMD erratum #91.
  60 *
  61 * 64-bit mode:
  62 *
  63 *   Sometimes the CPU reports invalid exceptions on prefetch.
  64 *   Check that here and ignore it.
  65 *
  66 * Opcode checker based on code by Richard Brunner.
  67 */
  68static inline int
  69check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  70                      unsigned char opcode, int *prefetch)
  71{
  72        unsigned char instr_hi = opcode & 0xf0;
  73        unsigned char instr_lo = opcode & 0x0f;
  74
  75        switch (instr_hi) {
  76        case 0x20:
  77        case 0x30:
  78                /*
  79                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  80                 * In X86_64 long mode, the CPU will signal invalid
  81                 * opcode if some of these prefixes are present so
  82                 * X86_64 will never get here anyway
  83                 */
  84                return ((instr_lo & 7) == 0x6);
  85#ifdef CONFIG_X86_64
  86        case 0x40:
  87                /*
  88                 * In 64-bit mode 0x40..0x4F are valid REX prefixes
  89                 */
  90                return (!user_mode(regs) || user_64bit_mode(regs));
  91#endif
  92        case 0x60:
  93                /* 0x64 thru 0x67 are valid prefixes in all modes. */
  94                return (instr_lo & 0xC) == 0x4;
  95        case 0xF0:
  96                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  97                return !instr_lo || (instr_lo>>1) == 1;
  98        case 0x00:
  99                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 100                if (get_kernel_nofault(opcode, instr))
 101                        return 0;
 102
 103                *prefetch = (instr_lo == 0xF) &&
 104                        (opcode == 0x0D || opcode == 0x18);
 105                return 0;
 106        default:
 107                return 0;
 108        }
 109}
 110
 111static bool is_amd_k8_pre_npt(void)
 112{
 113        struct cpuinfo_x86 *c = &boot_cpu_data;
 114
 115        return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 116                        c->x86_vendor == X86_VENDOR_AMD &&
 117                        c->x86 == 0xf && c->x86_model < 0x40);
 118}
 119
 120static int
 121is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 122{
 123        unsigned char *max_instr;
 124        unsigned char *instr;
 125        int prefetch = 0;
 126
 127        /* Erratum #91 affects AMD K8, pre-NPT CPUs */
 128        if (!is_amd_k8_pre_npt())
 129                return 0;
 130
 131        /*
 132         * If it was a exec (instruction fetch) fault on NX page, then
 133         * do not ignore the fault:
 134         */
 135        if (error_code & X86_PF_INSTR)
 136                return 0;
 137
 138        instr = (void *)convert_ip_to_linear(current, regs);
 139        max_instr = instr + 15;
 140
 141        /*
 142         * This code has historically always bailed out if IP points to a
 143         * not-present page (e.g. due to a race).  No one has ever
 144         * complained about this.
 145         */
 146        pagefault_disable();
 147
 148        while (instr < max_instr) {
 149                unsigned char opcode;
 150
 151                if (user_mode(regs)) {
 152                        if (get_user(opcode, instr))
 153                                break;
 154                } else {
 155                        if (get_kernel_nofault(opcode, instr))
 156                                break;
 157                }
 158
 159                instr++;
 160
 161                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 162                        break;
 163        }
 164
 165        pagefault_enable();
 166        return prefetch;
 167}
 168
 169DEFINE_SPINLOCK(pgd_lock);
 170LIST_HEAD(pgd_list);
 171
 172#ifdef CONFIG_X86_32
 173static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 174{
 175        unsigned index = pgd_index(address);
 176        pgd_t *pgd_k;
 177        p4d_t *p4d, *p4d_k;
 178        pud_t *pud, *pud_k;
 179        pmd_t *pmd, *pmd_k;
 180
 181        pgd += index;
 182        pgd_k = init_mm.pgd + index;
 183
 184        if (!pgd_present(*pgd_k))
 185                return NULL;
 186
 187        /*
 188         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 189         * and redundant with the set_pmd() on non-PAE. As would
 190         * set_p4d/set_pud.
 191         */
 192        p4d = p4d_offset(pgd, address);
 193        p4d_k = p4d_offset(pgd_k, address);
 194        if (!p4d_present(*p4d_k))
 195                return NULL;
 196
 197        pud = pud_offset(p4d, address);
 198        pud_k = pud_offset(p4d_k, address);
 199        if (!pud_present(*pud_k))
 200                return NULL;
 201
 202        pmd = pmd_offset(pud, address);
 203        pmd_k = pmd_offset(pud_k, address);
 204
 205        if (pmd_present(*pmd) != pmd_present(*pmd_k))
 206                set_pmd(pmd, *pmd_k);
 207
 208        if (!pmd_present(*pmd_k))
 209                return NULL;
 210        else
 211                BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 212
 213        return pmd_k;
 214}
 215
 216/*
 217 *   Handle a fault on the vmalloc or module mapping area
 218 *
 219 *   This is needed because there is a race condition between the time
 220 *   when the vmalloc mapping code updates the PMD to the point in time
 221 *   where it synchronizes this update with the other page-tables in the
 222 *   system.
 223 *
 224 *   In this race window another thread/CPU can map an area on the same
 225 *   PMD, finds it already present and does not synchronize it with the
 226 *   rest of the system yet. As a result v[mz]alloc might return areas
 227 *   which are not mapped in every page-table in the system, causing an
 228 *   unhandled page-fault when they are accessed.
 229 */
 230static noinline int vmalloc_fault(unsigned long address)
 231{
 232        unsigned long pgd_paddr;
 233        pmd_t *pmd_k;
 234        pte_t *pte_k;
 235
 236        /* Make sure we are in vmalloc area: */
 237        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 238                return -1;
 239
 240        /*
 241         * Synchronize this task's top level page-table
 242         * with the 'reference' page table.
 243         *
 244         * Do _not_ use "current" here. We might be inside
 245         * an interrupt in the middle of a task switch..
 246         */
 247        pgd_paddr = read_cr3_pa();
 248        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 249        if (!pmd_k)
 250                return -1;
 251
 252        if (pmd_large(*pmd_k))
 253                return 0;
 254
 255        pte_k = pte_offset_kernel(pmd_k, address);
 256        if (!pte_present(*pte_k))
 257                return -1;
 258
 259        return 0;
 260}
 261NOKPROBE_SYMBOL(vmalloc_fault);
 262
 263void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 264{
 265        unsigned long addr;
 266
 267        for (addr = start & PMD_MASK;
 268             addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 269             addr += PMD_SIZE) {
 270                struct page *page;
 271
 272                spin_lock(&pgd_lock);
 273                list_for_each_entry(page, &pgd_list, lru) {
 274                        spinlock_t *pgt_lock;
 275
 276                        /* the pgt_lock only for Xen */
 277                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 278
 279                        spin_lock(pgt_lock);
 280                        vmalloc_sync_one(page_address(page), addr);
 281                        spin_unlock(pgt_lock);
 282                }
 283                spin_unlock(&pgd_lock);
 284        }
 285}
 286
 287static bool low_pfn(unsigned long pfn)
 288{
 289        return pfn < max_low_pfn;
 290}
 291
 292static void dump_pagetable(unsigned long address)
 293{
 294        pgd_t *base = __va(read_cr3_pa());
 295        pgd_t *pgd = &base[pgd_index(address)];
 296        p4d_t *p4d;
 297        pud_t *pud;
 298        pmd_t *pmd;
 299        pte_t *pte;
 300
 301#ifdef CONFIG_X86_PAE
 302        pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 303        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 304                goto out;
 305#define pr_pde pr_cont
 306#else
 307#define pr_pde pr_info
 308#endif
 309        p4d = p4d_offset(pgd, address);
 310        pud = pud_offset(p4d, address);
 311        pmd = pmd_offset(pud, address);
 312        pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 313#undef pr_pde
 314
 315        /*
 316         * We must not directly access the pte in the highpte
 317         * case if the page table is located in highmem.
 318         * And let's rather not kmap-atomic the pte, just in case
 319         * it's allocated already:
 320         */
 321        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 322                goto out;
 323
 324        pte = pte_offset_kernel(pmd, address);
 325        pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 326out:
 327        pr_cont("\n");
 328}
 329
 330#else /* CONFIG_X86_64: */
 331
 332#ifdef CONFIG_CPU_SUP_AMD
 333static const char errata93_warning[] =
 334KERN_ERR 
 335"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 336"******* Working around it, but it may cause SEGVs or burn power.\n"
 337"******* Please consider a BIOS update.\n"
 338"******* Disabling USB legacy in the BIOS may also help.\n";
 339#endif
 340
 341static int bad_address(void *p)
 342{
 343        unsigned long dummy;
 344
 345        return get_kernel_nofault(dummy, (unsigned long *)p);
 346}
 347
 348static void dump_pagetable(unsigned long address)
 349{
 350        pgd_t *base = __va(read_cr3_pa());
 351        pgd_t *pgd = base + pgd_index(address);
 352        p4d_t *p4d;
 353        pud_t *pud;
 354        pmd_t *pmd;
 355        pte_t *pte;
 356
 357        if (bad_address(pgd))
 358                goto bad;
 359
 360        pr_info("PGD %lx ", pgd_val(*pgd));
 361
 362        if (!pgd_present(*pgd))
 363                goto out;
 364
 365        p4d = p4d_offset(pgd, address);
 366        if (bad_address(p4d))
 367                goto bad;
 368
 369        pr_cont("P4D %lx ", p4d_val(*p4d));
 370        if (!p4d_present(*p4d) || p4d_large(*p4d))
 371                goto out;
 372
 373        pud = pud_offset(p4d, address);
 374        if (bad_address(pud))
 375                goto bad;
 376
 377        pr_cont("PUD %lx ", pud_val(*pud));
 378        if (!pud_present(*pud) || pud_large(*pud))
 379                goto out;
 380
 381        pmd = pmd_offset(pud, address);
 382        if (bad_address(pmd))
 383                goto bad;
 384
 385        pr_cont("PMD %lx ", pmd_val(*pmd));
 386        if (!pmd_present(*pmd) || pmd_large(*pmd))
 387                goto out;
 388
 389        pte = pte_offset_kernel(pmd, address);
 390        if (bad_address(pte))
 391                goto bad;
 392
 393        pr_cont("PTE %lx", pte_val(*pte));
 394out:
 395        pr_cont("\n");
 396        return;
 397bad:
 398        pr_info("BAD\n");
 399}
 400
 401#endif /* CONFIG_X86_64 */
 402
 403/*
 404 * Workaround for K8 erratum #93 & buggy BIOS.
 405 *
 406 * BIOS SMM functions are required to use a specific workaround
 407 * to avoid corruption of the 64bit RIP register on C stepping K8.
 408 *
 409 * A lot of BIOS that didn't get tested properly miss this.
 410 *
 411 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 412 * Try to work around it here.
 413 *
 414 * Note we only handle faults in kernel here.
 415 * Does nothing on 32-bit.
 416 */
 417static int is_errata93(struct pt_regs *regs, unsigned long address)
 418{
 419#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 420        if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 421            || boot_cpu_data.x86 != 0xf)
 422                return 0;
 423
 424        if (user_mode(regs))
 425                return 0;
 426
 427        if (address != regs->ip)
 428                return 0;
 429
 430        if ((address >> 32) != 0)
 431                return 0;
 432
 433        address |= 0xffffffffUL << 32;
 434        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 435            (address >= MODULES_VADDR && address <= MODULES_END)) {
 436                printk_once(errata93_warning);
 437                regs->ip = address;
 438                return 1;
 439        }
 440#endif
 441        return 0;
 442}
 443
 444/*
 445 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 446 * to illegal addresses >4GB.
 447 *
 448 * We catch this in the page fault handler because these addresses
 449 * are not reachable. Just detect this case and return.  Any code
 450 * segment in LDT is compatibility mode.
 451 */
 452static int is_errata100(struct pt_regs *regs, unsigned long address)
 453{
 454#ifdef CONFIG_X86_64
 455        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 456                return 1;
 457#endif
 458        return 0;
 459}
 460
 461/* Pentium F0 0F C7 C8 bug workaround: */
 462static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 463                       unsigned long address)
 464{
 465#ifdef CONFIG_X86_F00F_BUG
 466        if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 467            idt_is_f00f_address(address)) {
 468                handle_invalid_op(regs);
 469                return 1;
 470        }
 471#endif
 472        return 0;
 473}
 474
 475static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 476{
 477        u32 offset = (index >> 3) * sizeof(struct desc_struct);
 478        unsigned long addr;
 479        struct ldttss_desc desc;
 480
 481        if (index == 0) {
 482                pr_alert("%s: NULL\n", name);
 483                return;
 484        }
 485
 486        if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 487                pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 488                return;
 489        }
 490
 491        if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 492                              sizeof(struct ldttss_desc))) {
 493                pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 494                         name, index);
 495                return;
 496        }
 497
 498        addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 499#ifdef CONFIG_X86_64
 500        addr |= ((u64)desc.base3 << 32);
 501#endif
 502        pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 503                 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 504}
 505
 506static void
 507show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 508{
 509        if (!oops_may_print())
 510                return;
 511
 512        if (error_code & X86_PF_INSTR) {
 513                unsigned int level;
 514                pgd_t *pgd;
 515                pte_t *pte;
 516
 517                pgd = __va(read_cr3_pa());
 518                pgd += pgd_index(address);
 519
 520                pte = lookup_address_in_pgd(pgd, address, &level);
 521
 522                if (pte && pte_present(*pte) && !pte_exec(*pte))
 523                        pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 524                                from_kuid(&init_user_ns, current_uid()));
 525                if (pte && pte_present(*pte) && pte_exec(*pte) &&
 526                                (pgd_flags(*pgd) & _PAGE_USER) &&
 527                                (__read_cr4() & X86_CR4_SMEP))
 528                        pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 529                                from_kuid(&init_user_ns, current_uid()));
 530        }
 531
 532        if (address < PAGE_SIZE && !user_mode(regs))
 533                pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 534                        (void *)address);
 535        else
 536                pr_alert("BUG: unable to handle page fault for address: %px\n",
 537                        (void *)address);
 538
 539        pr_alert("#PF: %s %s in %s mode\n",
 540                 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 541                 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 542                 (error_code & X86_PF_WRITE) ? "write access" :
 543                                               "read access",
 544                             user_mode(regs) ? "user" : "kernel");
 545        pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 546                 !(error_code & X86_PF_PROT) ? "not-present page" :
 547                 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 548                 (error_code & X86_PF_PK)    ? "protection keys violation" :
 549                                               "permissions violation");
 550
 551        if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 552                struct desc_ptr idt, gdt;
 553                u16 ldtr, tr;
 554
 555                /*
 556                 * This can happen for quite a few reasons.  The more obvious
 557                 * ones are faults accessing the GDT, or LDT.  Perhaps
 558                 * surprisingly, if the CPU tries to deliver a benign or
 559                 * contributory exception from user code and gets a page fault
 560                 * during delivery, the page fault can be delivered as though
 561                 * it originated directly from user code.  This could happen
 562                 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 563                 * kernel or IST stack.
 564                 */
 565                store_idt(&idt);
 566
 567                /* Usable even on Xen PV -- it's just slow. */
 568                native_store_gdt(&gdt);
 569
 570                pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 571                         idt.address, idt.size, gdt.address, gdt.size);
 572
 573                store_ldt(ldtr);
 574                show_ldttss(&gdt, "LDTR", ldtr);
 575
 576                store_tr(tr);
 577                show_ldttss(&gdt, "TR", tr);
 578        }
 579
 580        dump_pagetable(address);
 581}
 582
 583static noinline void
 584pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 585            unsigned long address)
 586{
 587        struct task_struct *tsk;
 588        unsigned long flags;
 589        int sig;
 590
 591        flags = oops_begin();
 592        tsk = current;
 593        sig = SIGKILL;
 594
 595        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 596               tsk->comm, address);
 597        dump_pagetable(address);
 598
 599        if (__die("Bad pagetable", regs, error_code))
 600                sig = 0;
 601
 602        oops_end(flags, regs, sig);
 603}
 604
 605static void sanitize_error_code(unsigned long address,
 606                                unsigned long *error_code)
 607{
 608        /*
 609         * To avoid leaking information about the kernel page
 610         * table layout, pretend that user-mode accesses to
 611         * kernel addresses are always protection faults.
 612         *
 613         * NB: This means that failed vsyscalls with vsyscall=none
 614         * will have the PROT bit.  This doesn't leak any
 615         * information and does not appear to cause any problems.
 616         */
 617        if (address >= TASK_SIZE_MAX)
 618                *error_code |= X86_PF_PROT;
 619}
 620
 621static void set_signal_archinfo(unsigned long address,
 622                                unsigned long error_code)
 623{
 624        struct task_struct *tsk = current;
 625
 626        tsk->thread.trap_nr = X86_TRAP_PF;
 627        tsk->thread.error_code = error_code | X86_PF_USER;
 628        tsk->thread.cr2 = address;
 629}
 630
 631static noinline void
 632page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 633                unsigned long address)
 634{
 635#ifdef CONFIG_VMAP_STACK
 636        struct stack_info info;
 637#endif
 638        unsigned long flags;
 639        int sig;
 640
 641        if (user_mode(regs)) {
 642                /*
 643                 * Implicit kernel access from user mode?  Skip the stack
 644                 * overflow and EFI special cases.
 645                 */
 646                goto oops;
 647        }
 648
 649#ifdef CONFIG_VMAP_STACK
 650        /*
 651         * Stack overflow?  During boot, we can fault near the initial
 652         * stack in the direct map, but that's not an overflow -- check
 653         * that we're in vmalloc space to avoid this.
 654         */
 655        if (is_vmalloc_addr((void *)address) &&
 656            get_stack_guard_info((void *)address, &info)) {
 657                /*
 658                 * We're likely to be running with very little stack space
 659                 * left.  It's plausible that we'd hit this condition but
 660                 * double-fault even before we get this far, in which case
 661                 * we're fine: the double-fault handler will deal with it.
 662                 *
 663                 * We don't want to make it all the way into the oops code
 664                 * and then double-fault, though, because we're likely to
 665                 * break the console driver and lose most of the stack dump.
 666                 */
 667                call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
 668                              handle_stack_overflow,
 669                              ASM_CALL_ARG3,
 670                              , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
 671
 672                unreachable();
 673        }
 674#endif
 675
 676        /*
 677         * Buggy firmware could access regions which might page fault.  If
 678         * this happens, EFI has a special OOPS path that will try to
 679         * avoid hanging the system.
 680         */
 681        if (IS_ENABLED(CONFIG_EFI))
 682                efi_crash_gracefully_on_page_fault(address);
 683
 684        /* Only not-present faults should be handled by KFENCE. */
 685        if (!(error_code & X86_PF_PROT) &&
 686            kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 687                return;
 688
 689oops:
 690        /*
 691         * Oops. The kernel tried to access some bad page. We'll have to
 692         * terminate things with extreme prejudice:
 693         */
 694        flags = oops_begin();
 695
 696        show_fault_oops(regs, error_code, address);
 697
 698        if (task_stack_end_corrupted(current))
 699                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 700
 701        sig = SIGKILL;
 702        if (__die("Oops", regs, error_code))
 703                sig = 0;
 704
 705        /* Executive summary in case the body of the oops scrolled away */
 706        printk(KERN_DEFAULT "CR2: %016lx\n", address);
 707
 708        oops_end(flags, regs, sig);
 709}
 710
 711static noinline void
 712kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 713                         unsigned long address, int signal, int si_code,
 714                         u32 pkey)
 715{
 716        WARN_ON_ONCE(user_mode(regs));
 717
 718        /* Are we prepared to handle this kernel fault? */
 719        if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 720                /*
 721                 * Any interrupt that takes a fault gets the fixup. This makes
 722                 * the below recursive fault logic only apply to a faults from
 723                 * task context.
 724                 */
 725                if (in_interrupt())
 726                        return;
 727
 728                /*
 729                 * Per the above we're !in_interrupt(), aka. task context.
 730                 *
 731                 * In this case we need to make sure we're not recursively
 732                 * faulting through the emulate_vsyscall() logic.
 733                 */
 734                if (current->thread.sig_on_uaccess_err && signal) {
 735                        sanitize_error_code(address, &error_code);
 736
 737                        set_signal_archinfo(address, error_code);
 738
 739                        if (si_code == SEGV_PKUERR) {
 740                                force_sig_pkuerr((void __user *)address, pkey);
 741                        } else {
 742                                /* XXX: hwpoison faults will set the wrong code. */
 743                                force_sig_fault(signal, si_code, (void __user *)address);
 744                        }
 745                }
 746
 747                /*
 748                 * Barring that, we can do the fixup and be happy.
 749                 */
 750                return;
 751        }
 752
 753        /*
 754         * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 755         * instruction.
 756         */
 757        if (is_prefetch(regs, error_code, address))
 758                return;
 759
 760        page_fault_oops(regs, error_code, address);
 761}
 762
 763/*
 764 * Print out info about fatal segfaults, if the show_unhandled_signals
 765 * sysctl is set:
 766 */
 767static inline void
 768show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 769                unsigned long address, struct task_struct *tsk)
 770{
 771        const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 772
 773        if (!unhandled_signal(tsk, SIGSEGV))
 774                return;
 775
 776        if (!printk_ratelimit())
 777                return;
 778
 779        printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 780                loglvl, tsk->comm, task_pid_nr(tsk), address,
 781                (void *)regs->ip, (void *)regs->sp, error_code);
 782
 783        print_vma_addr(KERN_CONT " in ", regs->ip);
 784
 785        printk(KERN_CONT "\n");
 786
 787        show_opcodes(regs, loglvl);
 788}
 789
 790/*
 791 * The (legacy) vsyscall page is the long page in the kernel portion
 792 * of the address space that has user-accessible permissions.
 793 */
 794static bool is_vsyscall_vaddr(unsigned long vaddr)
 795{
 796        return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
 797}
 798
 799static void
 800__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 801                       unsigned long address, u32 pkey, int si_code)
 802{
 803        struct task_struct *tsk = current;
 804
 805        if (!user_mode(regs)) {
 806                kernelmode_fixup_or_oops(regs, error_code, address,
 807                                         SIGSEGV, si_code, pkey);
 808                return;
 809        }
 810
 811        if (!(error_code & X86_PF_USER)) {
 812                /* Implicit user access to kernel memory -- just oops */
 813                page_fault_oops(regs, error_code, address);
 814                return;
 815        }
 816
 817        /*
 818         * User mode accesses just cause a SIGSEGV.
 819         * It's possible to have interrupts off here:
 820         */
 821        local_irq_enable();
 822
 823        /*
 824         * Valid to do another page fault here because this one came
 825         * from user space:
 826         */
 827        if (is_prefetch(regs, error_code, address))
 828                return;
 829
 830        if (is_errata100(regs, address))
 831                return;
 832
 833        sanitize_error_code(address, &error_code);
 834
 835        if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 836                return;
 837
 838        if (likely(show_unhandled_signals))
 839                show_signal_msg(regs, error_code, address, tsk);
 840
 841        set_signal_archinfo(address, error_code);
 842
 843        if (si_code == SEGV_PKUERR)
 844                force_sig_pkuerr((void __user *)address, pkey);
 845        else
 846                force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 847
 848        local_irq_disable();
 849}
 850
 851static noinline void
 852bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 853                     unsigned long address)
 854{
 855        __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 856}
 857
 858static void
 859__bad_area(struct pt_regs *regs, unsigned long error_code,
 860           unsigned long address, u32 pkey, int si_code)
 861{
 862        struct mm_struct *mm = current->mm;
 863        /*
 864         * Something tried to access memory that isn't in our memory map..
 865         * Fix it, but check if it's kernel or user first..
 866         */
 867        mmap_read_unlock(mm);
 868
 869        __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 870}
 871
 872static noinline void
 873bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 874{
 875        __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
 876}
 877
 878static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 879                struct vm_area_struct *vma)
 880{
 881        /* This code is always called on the current mm */
 882        bool foreign = false;
 883
 884        if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 885                return false;
 886        if (error_code & X86_PF_PK)
 887                return true;
 888        /* this checks permission keys on the VMA: */
 889        if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 890                                       (error_code & X86_PF_INSTR), foreign))
 891                return true;
 892        return false;
 893}
 894
 895static noinline void
 896bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 897                      unsigned long address, struct vm_area_struct *vma)
 898{
 899        /*
 900         * This OSPKE check is not strictly necessary at runtime.
 901         * But, doing it this way allows compiler optimizations
 902         * if pkeys are compiled out.
 903         */
 904        if (bad_area_access_from_pkeys(error_code, vma)) {
 905                /*
 906                 * A protection key fault means that the PKRU value did not allow
 907                 * access to some PTE.  Userspace can figure out what PKRU was
 908                 * from the XSAVE state.  This function captures the pkey from
 909                 * the vma and passes it to userspace so userspace can discover
 910                 * which protection key was set on the PTE.
 911                 *
 912                 * If we get here, we know that the hardware signaled a X86_PF_PK
 913                 * fault and that there was a VMA once we got in the fault
 914                 * handler.  It does *not* guarantee that the VMA we find here
 915                 * was the one that we faulted on.
 916                 *
 917                 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 918                 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 919                 * 3. T1   : faults...
 920                 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 921                 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 922                 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 923                 *           faulted on a pte with its pkey=4.
 924                 */
 925                u32 pkey = vma_pkey(vma);
 926
 927                __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 928        } else {
 929                __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 930        }
 931}
 932
 933static void
 934do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 935          vm_fault_t fault)
 936{
 937        /* Kernel mode? Handle exceptions or die: */
 938        if (!user_mode(regs)) {
 939                kernelmode_fixup_or_oops(regs, error_code, address,
 940                                         SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 941                return;
 942        }
 943
 944        /* User-space => ok to do another page fault: */
 945        if (is_prefetch(regs, error_code, address))
 946                return;
 947
 948        sanitize_error_code(address, &error_code);
 949
 950        if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 951                return;
 952
 953        set_signal_archinfo(address, error_code);
 954
 955#ifdef CONFIG_MEMORY_FAILURE
 956        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 957                struct task_struct *tsk = current;
 958                unsigned lsb = 0;
 959
 960                pr_err(
 961        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 962                        tsk->comm, tsk->pid, address);
 963                if (fault & VM_FAULT_HWPOISON_LARGE)
 964                        lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 965                if (fault & VM_FAULT_HWPOISON)
 966                        lsb = PAGE_SHIFT;
 967                force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 968                return;
 969        }
 970#endif
 971        force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 972}
 973
 974static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 975{
 976        if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 977                return 0;
 978
 979        if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 980                return 0;
 981
 982        return 1;
 983}
 984
 985/*
 986 * Handle a spurious fault caused by a stale TLB entry.
 987 *
 988 * This allows us to lazily refresh the TLB when increasing the
 989 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 990 * eagerly is very expensive since that implies doing a full
 991 * cross-processor TLB flush, even if no stale TLB entries exist
 992 * on other processors.
 993 *
 994 * Spurious faults may only occur if the TLB contains an entry with
 995 * fewer permission than the page table entry.  Non-present (P = 0)
 996 * and reserved bit (R = 1) faults are never spurious.
 997 *
 998 * There are no security implications to leaving a stale TLB when
 999 * increasing the permissions on a page.
1000 *
1001 * Returns non-zero if a spurious fault was handled, zero otherwise.
1002 *
1003 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1004 * (Optional Invalidation).
1005 */
1006static noinline int
1007spurious_kernel_fault(unsigned long error_code, unsigned long address)
1008{
1009        pgd_t *pgd;
1010        p4d_t *p4d;
1011        pud_t *pud;
1012        pmd_t *pmd;
1013        pte_t *pte;
1014        int ret;
1015
1016        /*
1017         * Only writes to RO or instruction fetches from NX may cause
1018         * spurious faults.
1019         *
1020         * These could be from user or supervisor accesses but the TLB
1021         * is only lazily flushed after a kernel mapping protection
1022         * change, so user accesses are not expected to cause spurious
1023         * faults.
1024         */
1025        if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1026            error_code != (X86_PF_INSTR | X86_PF_PROT))
1027                return 0;
1028
1029        pgd = init_mm.pgd + pgd_index(address);
1030        if (!pgd_present(*pgd))
1031                return 0;
1032
1033        p4d = p4d_offset(pgd, address);
1034        if (!p4d_present(*p4d))
1035                return 0;
1036
1037        if (p4d_large(*p4d))
1038                return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1039
1040        pud = pud_offset(p4d, address);
1041        if (!pud_present(*pud))
1042                return 0;
1043
1044        if (pud_large(*pud))
1045                return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1046
1047        pmd = pmd_offset(pud, address);
1048        if (!pmd_present(*pmd))
1049                return 0;
1050
1051        if (pmd_large(*pmd))
1052                return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1053
1054        pte = pte_offset_kernel(pmd, address);
1055        if (!pte_present(*pte))
1056                return 0;
1057
1058        ret = spurious_kernel_fault_check(error_code, pte);
1059        if (!ret)
1060                return 0;
1061
1062        /*
1063         * Make sure we have permissions in PMD.
1064         * If not, then there's a bug in the page tables:
1065         */
1066        ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1067        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1068
1069        return ret;
1070}
1071NOKPROBE_SYMBOL(spurious_kernel_fault);
1072
1073int show_unhandled_signals = 1;
1074
1075static inline int
1076access_error(unsigned long error_code, struct vm_area_struct *vma)
1077{
1078        /* This is only called for the current mm, so: */
1079        bool foreign = false;
1080
1081        /*
1082         * Read or write was blocked by protection keys.  This is
1083         * always an unconditional error and can never result in
1084         * a follow-up action to resolve the fault, like a COW.
1085         */
1086        if (error_code & X86_PF_PK)
1087                return 1;
1088
1089        /*
1090         * SGX hardware blocked the access.  This usually happens
1091         * when the enclave memory contents have been destroyed, like
1092         * after a suspend/resume cycle. In any case, the kernel can't
1093         * fix the cause of the fault.  Handle the fault as an access
1094         * error even in cases where no actual access violation
1095         * occurred.  This allows userspace to rebuild the enclave in
1096         * response to the signal.
1097         */
1098        if (unlikely(error_code & X86_PF_SGX))
1099                return 1;
1100
1101        /*
1102         * Make sure to check the VMA so that we do not perform
1103         * faults just to hit a X86_PF_PK as soon as we fill in a
1104         * page.
1105         */
1106        if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1107                                       (error_code & X86_PF_INSTR), foreign))
1108                return 1;
1109
1110        if (error_code & X86_PF_WRITE) {
1111                /* write, present and write, not present: */
1112                if (unlikely(!(vma->vm_flags & VM_WRITE)))
1113                        return 1;
1114                return 0;
1115        }
1116
1117        /* read, present: */
1118        if (unlikely(error_code & X86_PF_PROT))
1119                return 1;
1120
1121        /* read, not present: */
1122        if (unlikely(!vma_is_accessible(vma)))
1123                return 1;
1124
1125        return 0;
1126}
1127
1128bool fault_in_kernel_space(unsigned long address)
1129{
1130        /*
1131         * On 64-bit systems, the vsyscall page is at an address above
1132         * TASK_SIZE_MAX, but is not considered part of the kernel
1133         * address space.
1134         */
1135        if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1136                return false;
1137
1138        return address >= TASK_SIZE_MAX;
1139}
1140
1141/*
1142 * Called for all faults where 'address' is part of the kernel address
1143 * space.  Might get called for faults that originate from *code* that
1144 * ran in userspace or the kernel.
1145 */
1146static void
1147do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1148                   unsigned long address)
1149{
1150        /*
1151         * Protection keys exceptions only happen on user pages.  We
1152         * have no user pages in the kernel portion of the address
1153         * space, so do not expect them here.
1154         */
1155        WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1156
1157#ifdef CONFIG_X86_32
1158        /*
1159         * We can fault-in kernel-space virtual memory on-demand. The
1160         * 'reference' page table is init_mm.pgd.
1161         *
1162         * NOTE! We MUST NOT take any locks for this case. We may
1163         * be in an interrupt or a critical region, and should
1164         * only copy the information from the master page table,
1165         * nothing more.
1166         *
1167         * Before doing this on-demand faulting, ensure that the
1168         * fault is not any of the following:
1169         * 1. A fault on a PTE with a reserved bit set.
1170         * 2. A fault caused by a user-mode access.  (Do not demand-
1171         *    fault kernel memory due to user-mode accesses).
1172         * 3. A fault caused by a page-level protection violation.
1173         *    (A demand fault would be on a non-present page which
1174         *     would have X86_PF_PROT==0).
1175         *
1176         * This is only needed to close a race condition on x86-32 in
1177         * the vmalloc mapping/unmapping code. See the comment above
1178         * vmalloc_fault() for details. On x86-64 the race does not
1179         * exist as the vmalloc mappings don't need to be synchronized
1180         * there.
1181         */
1182        if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1183                if (vmalloc_fault(address) >= 0)
1184                        return;
1185        }
1186#endif
1187
1188        if (is_f00f_bug(regs, hw_error_code, address))
1189                return;
1190
1191        /* Was the fault spurious, caused by lazy TLB invalidation? */
1192        if (spurious_kernel_fault(hw_error_code, address))
1193                return;
1194
1195        /* kprobes don't want to hook the spurious faults: */
1196        if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1197                return;
1198
1199        /*
1200         * Note, despite being a "bad area", there are quite a few
1201         * acceptable reasons to get here, such as erratum fixups
1202         * and handling kernel code that can fault, like get_user().
1203         *
1204         * Don't take the mm semaphore here. If we fixup a prefetch
1205         * fault we could otherwise deadlock:
1206         */
1207        bad_area_nosemaphore(regs, hw_error_code, address);
1208}
1209NOKPROBE_SYMBOL(do_kern_addr_fault);
1210
1211/*
1212 * Handle faults in the user portion of the address space.  Nothing in here
1213 * should check X86_PF_USER without a specific justification: for almost
1214 * all purposes, we should treat a normal kernel access to user memory
1215 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1216 * The one exception is AC flag handling, which is, per the x86
1217 * architecture, special for WRUSS.
1218 */
1219static inline
1220void do_user_addr_fault(struct pt_regs *regs,
1221                        unsigned long error_code,
1222                        unsigned long address)
1223{
1224        struct vm_area_struct *vma;
1225        struct task_struct *tsk;
1226        struct mm_struct *mm;
1227        vm_fault_t fault;
1228        unsigned int flags = FAULT_FLAG_DEFAULT;
1229
1230        tsk = current;
1231        mm = tsk->mm;
1232
1233        if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1234                /*
1235                 * Whoops, this is kernel mode code trying to execute from
1236                 * user memory.  Unless this is AMD erratum #93, which
1237                 * corrupts RIP such that it looks like a user address,
1238                 * this is unrecoverable.  Don't even try to look up the
1239                 * VMA or look for extable entries.
1240                 */
1241                if (is_errata93(regs, address))
1242                        return;
1243
1244                page_fault_oops(regs, error_code, address);
1245                return;
1246        }
1247
1248        /* kprobes don't want to hook the spurious faults: */
1249        if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1250                return;
1251
1252        /*
1253         * Reserved bits are never expected to be set on
1254         * entries in the user portion of the page tables.
1255         */
1256        if (unlikely(error_code & X86_PF_RSVD))
1257                pgtable_bad(regs, error_code, address);
1258
1259        /*
1260         * If SMAP is on, check for invalid kernel (supervisor) access to user
1261         * pages in the user address space.  The odd case here is WRUSS,
1262         * which, according to the preliminary documentation, does not respect
1263         * SMAP and will have the USER bit set so, in all cases, SMAP
1264         * enforcement appears to be consistent with the USER bit.
1265         */
1266        if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1267                     !(error_code & X86_PF_USER) &&
1268                     !(regs->flags & X86_EFLAGS_AC))) {
1269                /*
1270                 * No extable entry here.  This was a kernel access to an
1271                 * invalid pointer.  get_kernel_nofault() will not get here.
1272                 */
1273                page_fault_oops(regs, error_code, address);
1274                return;
1275        }
1276
1277        /*
1278         * If we're in an interrupt, have no user context or are running
1279         * in a region with pagefaults disabled then we must not take the fault
1280         */
1281        if (unlikely(faulthandler_disabled() || !mm)) {
1282                bad_area_nosemaphore(regs, error_code, address);
1283                return;
1284        }
1285
1286        /*
1287         * It's safe to allow irq's after cr2 has been saved and the
1288         * vmalloc fault has been handled.
1289         *
1290         * User-mode registers count as a user access even for any
1291         * potential system fault or CPU buglet:
1292         */
1293        if (user_mode(regs)) {
1294                local_irq_enable();
1295                flags |= FAULT_FLAG_USER;
1296        } else {
1297                if (regs->flags & X86_EFLAGS_IF)
1298                        local_irq_enable();
1299        }
1300
1301        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1302
1303        if (error_code & X86_PF_WRITE)
1304                flags |= FAULT_FLAG_WRITE;
1305        if (error_code & X86_PF_INSTR)
1306                flags |= FAULT_FLAG_INSTRUCTION;
1307
1308#ifdef CONFIG_X86_64
1309        /*
1310         * Faults in the vsyscall page might need emulation.  The
1311         * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312         * considered to be part of the user address space.
1313         *
1314         * The vsyscall page does not have a "real" VMA, so do this
1315         * emulation before we go searching for VMAs.
1316         *
1317         * PKRU never rejects instruction fetches, so we don't need
1318         * to consider the PF_PK bit.
1319         */
1320        if (is_vsyscall_vaddr(address)) {
1321                if (emulate_vsyscall(error_code, regs, address))
1322                        return;
1323        }
1324#endif
1325
1326        /*
1327         * Kernel-mode access to the user address space should only occur
1328         * on well-defined single instructions listed in the exception
1329         * tables.  But, an erroneous kernel fault occurring outside one of
1330         * those areas which also holds mmap_lock might deadlock attempting
1331         * to validate the fault against the address space.
1332         *
1333         * Only do the expensive exception table search when we might be at
1334         * risk of a deadlock.  This happens if we
1335         * 1. Failed to acquire mmap_lock, and
1336         * 2. The access did not originate in userspace.
1337         */
1338        if (unlikely(!mmap_read_trylock(mm))) {
1339                if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1340                        /*
1341                         * Fault from code in kernel from
1342                         * which we do not expect faults.
1343                         */
1344                        bad_area_nosemaphore(regs, error_code, address);
1345                        return;
1346                }
1347retry:
1348                mmap_read_lock(mm);
1349        } else {
1350                /*
1351                 * The above down_read_trylock() might have succeeded in
1352                 * which case we'll have missed the might_sleep() from
1353                 * down_read():
1354                 */
1355                might_sleep();
1356        }
1357
1358        vma = find_vma(mm, address);
1359        if (unlikely(!vma)) {
1360                bad_area(regs, error_code, address);
1361                return;
1362        }
1363        if (likely(vma->vm_start <= address))
1364                goto good_area;
1365        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1366                bad_area(regs, error_code, address);
1367                return;
1368        }
1369        if (unlikely(expand_stack(vma, address))) {
1370                bad_area(regs, error_code, address);
1371                return;
1372        }
1373
1374        /*
1375         * Ok, we have a good vm_area for this memory access, so
1376         * we can handle it..
1377         */
1378good_area:
1379        if (unlikely(access_error(error_code, vma))) {
1380                bad_area_access_error(regs, error_code, address, vma);
1381                return;
1382        }
1383
1384        /*
1385         * If for any reason at all we couldn't handle the fault,
1386         * make sure we exit gracefully rather than endlessly redo
1387         * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1388         * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1389         *
1390         * Note that handle_userfault() may also release and reacquire mmap_lock
1391         * (and not return with VM_FAULT_RETRY), when returning to userland to
1392         * repeat the page fault later with a VM_FAULT_NOPAGE retval
1393         * (potentially after handling any pending signal during the return to
1394         * userland). The return to userland is identified whenever
1395         * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1396         */
1397        fault = handle_mm_fault(vma, address, flags, regs);
1398
1399        if (fault_signal_pending(fault, regs)) {
1400                /*
1401                 * Quick path to respond to signals.  The core mm code
1402                 * has unlocked the mm for us if we get here.
1403                 */
1404                if (!user_mode(regs))
1405                        kernelmode_fixup_or_oops(regs, error_code, address,
1406                                                 SIGBUS, BUS_ADRERR,
1407                                                 ARCH_DEFAULT_PKEY);
1408                return;
1409        }
1410
1411        /*
1412         * If we need to retry the mmap_lock has already been released,
1413         * and if there is a fatal signal pending there is no guarantee
1414         * that we made any progress. Handle this case first.
1415         */
1416        if (unlikely(fault & VM_FAULT_RETRY)) {
1417                flags |= FAULT_FLAG_TRIED;
1418                goto retry;
1419        }
1420
1421        mmap_read_unlock(mm);
1422        if (likely(!(fault & VM_FAULT_ERROR)))
1423                return;
1424
1425        if (fatal_signal_pending(current) && !user_mode(regs)) {
1426                kernelmode_fixup_or_oops(regs, error_code, address,
1427                                         0, 0, ARCH_DEFAULT_PKEY);
1428                return;
1429        }
1430
1431        if (fault & VM_FAULT_OOM) {
1432                /* Kernel mode? Handle exceptions or die: */
1433                if (!user_mode(regs)) {
1434                        kernelmode_fixup_or_oops(regs, error_code, address,
1435                                                 SIGSEGV, SEGV_MAPERR,
1436                                                 ARCH_DEFAULT_PKEY);
1437                        return;
1438                }
1439
1440                /*
1441                 * We ran out of memory, call the OOM killer, and return the
1442                 * userspace (which will retry the fault, or kill us if we got
1443                 * oom-killed):
1444                 */
1445                pagefault_out_of_memory();
1446        } else {
1447                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1448                             VM_FAULT_HWPOISON_LARGE))
1449                        do_sigbus(regs, error_code, address, fault);
1450                else if (fault & VM_FAULT_SIGSEGV)
1451                        bad_area_nosemaphore(regs, error_code, address);
1452                else
1453                        BUG();
1454        }
1455}
1456NOKPROBE_SYMBOL(do_user_addr_fault);
1457
1458static __always_inline void
1459trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1460                         unsigned long address)
1461{
1462        if (!trace_pagefault_enabled())
1463                return;
1464
1465        if (user_mode(regs))
1466                trace_page_fault_user(address, regs, error_code);
1467        else
1468                trace_page_fault_kernel(address, regs, error_code);
1469}
1470
1471static __always_inline void
1472handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1473                              unsigned long address)
1474{
1475        trace_page_fault_entries(regs, error_code, address);
1476
1477        if (unlikely(kmmio_fault(regs, address)))
1478                return;
1479
1480        /* Was the fault on kernel-controlled part of the address space? */
1481        if (unlikely(fault_in_kernel_space(address))) {
1482                do_kern_addr_fault(regs, error_code, address);
1483        } else {
1484                do_user_addr_fault(regs, error_code, address);
1485                /*
1486                 * User address page fault handling might have reenabled
1487                 * interrupts. Fixing up all potential exit points of
1488                 * do_user_addr_fault() and its leaf functions is just not
1489                 * doable w/o creating an unholy mess or turning the code
1490                 * upside down.
1491                 */
1492                local_irq_disable();
1493        }
1494}
1495
1496DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1497{
1498        unsigned long address = read_cr2();
1499        irqentry_state_t state;
1500
1501        prefetchw(&current->mm->mmap_lock);
1502
1503        /*
1504         * KVM uses #PF vector to deliver 'page not present' events to guests
1505         * (asynchronous page fault mechanism). The event happens when a
1506         * userspace task is trying to access some valid (from guest's point of
1507         * view) memory which is not currently mapped by the host (e.g. the
1508         * memory is swapped out). Note, the corresponding "page ready" event
1509         * which is injected when the memory becomes available, is delivered via
1510         * an interrupt mechanism and not a #PF exception
1511         * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1512         *
1513         * We are relying on the interrupted context being sane (valid RSP,
1514         * relevant locks not held, etc.), which is fine as long as the
1515         * interrupted context had IF=1.  We are also relying on the KVM
1516         * async pf type field and CR2 being read consistently instead of
1517         * getting values from real and async page faults mixed up.
1518         *
1519         * Fingers crossed.
1520         *
1521         * The async #PF handling code takes care of idtentry handling
1522         * itself.
1523         */
1524        if (kvm_handle_async_pf(regs, (u32)address))
1525                return;
1526
1527        /*
1528         * Entry handling for valid #PF from kernel mode is slightly
1529         * different: RCU is already watching and rcu_irq_enter() must not
1530         * be invoked because a kernel fault on a user space address might
1531         * sleep.
1532         *
1533         * In case the fault hit a RCU idle region the conditional entry
1534         * code reenabled RCU to avoid subsequent wreckage which helps
1535         * debuggability.
1536         */
1537        state = irqentry_enter(regs);
1538
1539        instrumentation_begin();
1540        handle_page_fault(regs, error_code, address);
1541        instrumentation_end();
1542
1543        irqentry_exit(regs, state);
1544}
1545