linux/arch/x86/mm/pat/set_memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17#include <linux/vmalloc.h>
  18#include <linux/libnvdimm.h>
  19#include <linux/vmstat.h>
  20#include <linux/kernel.h>
  21#include <linux/cc_platform.h>
  22
  23#include <asm/e820/api.h>
  24#include <asm/processor.h>
  25#include <asm/tlbflush.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <linux/uaccess.h>
  29#include <asm/pgalloc.h>
  30#include <asm/proto.h>
  31#include <asm/memtype.h>
  32#include <asm/set_memory.h>
  33#include <asm/hyperv-tlfs.h>
  34#include <asm/mshyperv.h>
  35
  36#include "../mm_internal.h"
  37
  38/*
  39 * The current flushing context - we pass it instead of 5 arguments:
  40 */
  41struct cpa_data {
  42        unsigned long   *vaddr;
  43        pgd_t           *pgd;
  44        pgprot_t        mask_set;
  45        pgprot_t        mask_clr;
  46        unsigned long   numpages;
  47        unsigned long   curpage;
  48        unsigned long   pfn;
  49        unsigned int    flags;
  50        unsigned int    force_split             : 1,
  51                        force_static_prot       : 1,
  52                        force_flush_all         : 1;
  53        struct page     **pages;
  54};
  55
  56enum cpa_warn {
  57        CPA_CONFLICT,
  58        CPA_PROTECT,
  59        CPA_DETECT,
  60};
  61
  62static const int cpa_warn_level = CPA_PROTECT;
  63
  64/*
  65 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  66 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  67 * entries change the page attribute in parallel to some other cpu
  68 * splitting a large page entry along with changing the attribute.
  69 */
  70static DEFINE_SPINLOCK(cpa_lock);
  71
  72#define CPA_FLUSHTLB 1
  73#define CPA_ARRAY 2
  74#define CPA_PAGES_ARRAY 4
  75#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  76
  77static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
  78{
  79        return __pgprot(cachemode2protval(pcm));
  80}
  81
  82#ifdef CONFIG_PROC_FS
  83static unsigned long direct_pages_count[PG_LEVEL_NUM];
  84
  85void update_page_count(int level, unsigned long pages)
  86{
  87        /* Protect against CPA */
  88        spin_lock(&pgd_lock);
  89        direct_pages_count[level] += pages;
  90        spin_unlock(&pgd_lock);
  91}
  92
  93static void split_page_count(int level)
  94{
  95        if (direct_pages_count[level] == 0)
  96                return;
  97
  98        direct_pages_count[level]--;
  99        if (system_state == SYSTEM_RUNNING) {
 100                if (level == PG_LEVEL_2M)
 101                        count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
 102                else if (level == PG_LEVEL_1G)
 103                        count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
 104        }
 105        direct_pages_count[level - 1] += PTRS_PER_PTE;
 106}
 107
 108void arch_report_meminfo(struct seq_file *m)
 109{
 110        seq_printf(m, "DirectMap4k:    %8lu kB\n",
 111                        direct_pages_count[PG_LEVEL_4K] << 2);
 112#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 113        seq_printf(m, "DirectMap2M:    %8lu kB\n",
 114                        direct_pages_count[PG_LEVEL_2M] << 11);
 115#else
 116        seq_printf(m, "DirectMap4M:    %8lu kB\n",
 117                        direct_pages_count[PG_LEVEL_2M] << 12);
 118#endif
 119        if (direct_gbpages)
 120                seq_printf(m, "DirectMap1G:    %8lu kB\n",
 121                        direct_pages_count[PG_LEVEL_1G] << 20);
 122}
 123#else
 124static inline void split_page_count(int level) { }
 125#endif
 126
 127#ifdef CONFIG_X86_CPA_STATISTICS
 128
 129static unsigned long cpa_1g_checked;
 130static unsigned long cpa_1g_sameprot;
 131static unsigned long cpa_1g_preserved;
 132static unsigned long cpa_2m_checked;
 133static unsigned long cpa_2m_sameprot;
 134static unsigned long cpa_2m_preserved;
 135static unsigned long cpa_4k_install;
 136
 137static inline void cpa_inc_1g_checked(void)
 138{
 139        cpa_1g_checked++;
 140}
 141
 142static inline void cpa_inc_2m_checked(void)
 143{
 144        cpa_2m_checked++;
 145}
 146
 147static inline void cpa_inc_4k_install(void)
 148{
 149        data_race(cpa_4k_install++);
 150}
 151
 152static inline void cpa_inc_lp_sameprot(int level)
 153{
 154        if (level == PG_LEVEL_1G)
 155                cpa_1g_sameprot++;
 156        else
 157                cpa_2m_sameprot++;
 158}
 159
 160static inline void cpa_inc_lp_preserved(int level)
 161{
 162        if (level == PG_LEVEL_1G)
 163                cpa_1g_preserved++;
 164        else
 165                cpa_2m_preserved++;
 166}
 167
 168static int cpastats_show(struct seq_file *m, void *p)
 169{
 170        seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 171        seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 172        seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 173        seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 174        seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 175        seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 176        seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 177        return 0;
 178}
 179
 180static int cpastats_open(struct inode *inode, struct file *file)
 181{
 182        return single_open(file, cpastats_show, NULL);
 183}
 184
 185static const struct file_operations cpastats_fops = {
 186        .open           = cpastats_open,
 187        .read           = seq_read,
 188        .llseek         = seq_lseek,
 189        .release        = single_release,
 190};
 191
 192static int __init cpa_stats_init(void)
 193{
 194        debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 195                            &cpastats_fops);
 196        return 0;
 197}
 198late_initcall(cpa_stats_init);
 199#else
 200static inline void cpa_inc_1g_checked(void) { }
 201static inline void cpa_inc_2m_checked(void) { }
 202static inline void cpa_inc_4k_install(void) { }
 203static inline void cpa_inc_lp_sameprot(int level) { }
 204static inline void cpa_inc_lp_preserved(int level) { }
 205#endif
 206
 207
 208static inline int
 209within(unsigned long addr, unsigned long start, unsigned long end)
 210{
 211        return addr >= start && addr < end;
 212}
 213
 214static inline int
 215within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 216{
 217        return addr >= start && addr <= end;
 218}
 219
 220#ifdef CONFIG_X86_64
 221
 222static inline unsigned long highmap_start_pfn(void)
 223{
 224        return __pa_symbol(_text) >> PAGE_SHIFT;
 225}
 226
 227static inline unsigned long highmap_end_pfn(void)
 228{
 229        /* Do not reference physical address outside the kernel. */
 230        return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 231}
 232
 233static bool __cpa_pfn_in_highmap(unsigned long pfn)
 234{
 235        /*
 236         * Kernel text has an alias mapping at a high address, known
 237         * here as "highmap".
 238         */
 239        return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 240}
 241
 242#else
 243
 244static bool __cpa_pfn_in_highmap(unsigned long pfn)
 245{
 246        /* There is no highmap on 32-bit */
 247        return false;
 248}
 249
 250#endif
 251
 252/*
 253 * See set_mce_nospec().
 254 *
 255 * Machine check recovery code needs to change cache mode of poisoned pages to
 256 * UC to avoid speculative access logging another error. But passing the
 257 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 258 * speculative access. So we cheat and flip the top bit of the address. This
 259 * works fine for the code that updates the page tables. But at the end of the
 260 * process we need to flush the TLB and cache and the non-canonical address
 261 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 262 *
 263 * But in the common case we already have a canonical address. This code
 264 * will fix the top bit if needed and is a no-op otherwise.
 265 */
 266static inline unsigned long fix_addr(unsigned long addr)
 267{
 268#ifdef CONFIG_X86_64
 269        return (long)(addr << 1) >> 1;
 270#else
 271        return addr;
 272#endif
 273}
 274
 275static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 276{
 277        if (cpa->flags & CPA_PAGES_ARRAY) {
 278                struct page *page = cpa->pages[idx];
 279
 280                if (unlikely(PageHighMem(page)))
 281                        return 0;
 282
 283                return (unsigned long)page_address(page);
 284        }
 285
 286        if (cpa->flags & CPA_ARRAY)
 287                return cpa->vaddr[idx];
 288
 289        return *cpa->vaddr + idx * PAGE_SIZE;
 290}
 291
 292/*
 293 * Flushing functions
 294 */
 295
 296static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 297{
 298        const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 299        void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 300        void *vend = vaddr + size;
 301
 302        if (p >= vend)
 303                return;
 304
 305        for (; p < vend; p += clflush_size)
 306                clflushopt(p);
 307}
 308
 309/**
 310 * clflush_cache_range - flush a cache range with clflush
 311 * @vaddr:      virtual start address
 312 * @size:       number of bytes to flush
 313 *
 314 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 315 * SFENCE to avoid ordering issues.
 316 */
 317void clflush_cache_range(void *vaddr, unsigned int size)
 318{
 319        mb();
 320        clflush_cache_range_opt(vaddr, size);
 321        mb();
 322}
 323EXPORT_SYMBOL_GPL(clflush_cache_range);
 324
 325#ifdef CONFIG_ARCH_HAS_PMEM_API
 326void arch_invalidate_pmem(void *addr, size_t size)
 327{
 328        clflush_cache_range(addr, size);
 329}
 330EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 331#endif
 332
 333static void __cpa_flush_all(void *arg)
 334{
 335        unsigned long cache = (unsigned long)arg;
 336
 337        /*
 338         * Flush all to work around Errata in early athlons regarding
 339         * large page flushing.
 340         */
 341        __flush_tlb_all();
 342
 343        if (cache && boot_cpu_data.x86 >= 4)
 344                wbinvd();
 345}
 346
 347static void cpa_flush_all(unsigned long cache)
 348{
 349        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 350
 351        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 352}
 353
 354static void __cpa_flush_tlb(void *data)
 355{
 356        struct cpa_data *cpa = data;
 357        unsigned int i;
 358
 359        for (i = 0; i < cpa->numpages; i++)
 360                flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 361}
 362
 363static void cpa_flush(struct cpa_data *data, int cache)
 364{
 365        struct cpa_data *cpa = data;
 366        unsigned int i;
 367
 368        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 369
 370        if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 371                cpa_flush_all(cache);
 372                return;
 373        }
 374
 375        if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 376                flush_tlb_all();
 377        else
 378                on_each_cpu(__cpa_flush_tlb, cpa, 1);
 379
 380        if (!cache)
 381                return;
 382
 383        mb();
 384        for (i = 0; i < cpa->numpages; i++) {
 385                unsigned long addr = __cpa_addr(cpa, i);
 386                unsigned int level;
 387
 388                pte_t *pte = lookup_address(addr, &level);
 389
 390                /*
 391                 * Only flush present addresses:
 392                 */
 393                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 394                        clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 395        }
 396        mb();
 397}
 398
 399static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 400                     unsigned long r2_start, unsigned long r2_end)
 401{
 402        return (r1_start <= r2_end && r1_end >= r2_start) ||
 403                (r2_start <= r1_end && r2_end >= r1_start);
 404}
 405
 406#ifdef CONFIG_PCI_BIOS
 407/*
 408 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 409 * based config access (CONFIG_PCI_GOBIOS) support.
 410 */
 411#define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 412#define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 413
 414static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 415{
 416        if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 417                return _PAGE_NX;
 418        return 0;
 419}
 420#else
 421static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 422{
 423        return 0;
 424}
 425#endif
 426
 427/*
 428 * The .rodata section needs to be read-only. Using the pfn catches all
 429 * aliases.  This also includes __ro_after_init, so do not enforce until
 430 * kernel_set_to_readonly is true.
 431 */
 432static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 433{
 434        unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 435
 436        /*
 437         * Note: __end_rodata is at page aligned and not inclusive, so
 438         * subtract 1 to get the last enforced PFN in the rodata area.
 439         */
 440        epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 441
 442        if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 443                return _PAGE_RW;
 444        return 0;
 445}
 446
 447/*
 448 * Protect kernel text against becoming non executable by forbidding
 449 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 450 * out of which the kernel actually executes.  Do not protect the low
 451 * mapping.
 452 *
 453 * This does not cover __inittext since that is gone after boot.
 454 */
 455static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 456{
 457        unsigned long t_end = (unsigned long)_etext - 1;
 458        unsigned long t_start = (unsigned long)_text;
 459
 460        if (overlaps(start, end, t_start, t_end))
 461                return _PAGE_NX;
 462        return 0;
 463}
 464
 465#if defined(CONFIG_X86_64)
 466/*
 467 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 468 * kernel text mappings for the large page aligned text, rodata sections
 469 * will be always read-only. For the kernel identity mappings covering the
 470 * holes caused by this alignment can be anything that user asks.
 471 *
 472 * This will preserve the large page mappings for kernel text/data at no
 473 * extra cost.
 474 */
 475static pgprotval_t protect_kernel_text_ro(unsigned long start,
 476                                          unsigned long end)
 477{
 478        unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 479        unsigned long t_start = (unsigned long)_text;
 480        unsigned int level;
 481
 482        if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 483                return 0;
 484        /*
 485         * Don't enforce the !RW mapping for the kernel text mapping, if
 486         * the current mapping is already using small page mapping.  No
 487         * need to work hard to preserve large page mappings in this case.
 488         *
 489         * This also fixes the Linux Xen paravirt guest boot failure caused
 490         * by unexpected read-only mappings for kernel identity
 491         * mappings. In this paravirt guest case, the kernel text mapping
 492         * and the kernel identity mapping share the same page-table pages,
 493         * so the protections for kernel text and identity mappings have to
 494         * be the same.
 495         */
 496        if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 497                return _PAGE_RW;
 498        return 0;
 499}
 500#else
 501static pgprotval_t protect_kernel_text_ro(unsigned long start,
 502                                          unsigned long end)
 503{
 504        return 0;
 505}
 506#endif
 507
 508static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 509{
 510        return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 511}
 512
 513static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 514                                  unsigned long start, unsigned long end,
 515                                  unsigned long pfn, const char *txt)
 516{
 517        static const char *lvltxt[] = {
 518                [CPA_CONFLICT]  = "conflict",
 519                [CPA_PROTECT]   = "protect",
 520                [CPA_DETECT]    = "detect",
 521        };
 522
 523        if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 524                return;
 525
 526        pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 527                lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 528                (unsigned long long)val);
 529}
 530
 531/*
 532 * Certain areas of memory on x86 require very specific protection flags,
 533 * for example the BIOS area or kernel text. Callers don't always get this
 534 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 535 * checks and fixes these known static required protection bits.
 536 */
 537static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 538                                          unsigned long pfn, unsigned long npg,
 539                                          unsigned long lpsize, int warnlvl)
 540{
 541        pgprotval_t forbidden, res;
 542        unsigned long end;
 543
 544        /*
 545         * There is no point in checking RW/NX conflicts when the requested
 546         * mapping is setting the page !PRESENT.
 547         */
 548        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 549                return prot;
 550
 551        /* Operate on the virtual address */
 552        end = start + npg * PAGE_SIZE - 1;
 553
 554        res = protect_kernel_text(start, end);
 555        check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 556        forbidden = res;
 557
 558        /*
 559         * Special case to preserve a large page. If the change spawns the
 560         * full large page mapping then there is no point to split it
 561         * up. Happens with ftrace and is going to be removed once ftrace
 562         * switched to text_poke().
 563         */
 564        if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 565                res = protect_kernel_text_ro(start, end);
 566                check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 567                forbidden |= res;
 568        }
 569
 570        /* Check the PFN directly */
 571        res = protect_pci_bios(pfn, pfn + npg - 1);
 572        check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 573        forbidden |= res;
 574
 575        res = protect_rodata(pfn, pfn + npg - 1);
 576        check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 577        forbidden |= res;
 578
 579        return __pgprot(pgprot_val(prot) & ~forbidden);
 580}
 581
 582/*
 583 * Lookup the page table entry for a virtual address in a specific pgd.
 584 * Return a pointer to the entry and the level of the mapping.
 585 */
 586pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 587                             unsigned int *level)
 588{
 589        p4d_t *p4d;
 590        pud_t *pud;
 591        pmd_t *pmd;
 592
 593        *level = PG_LEVEL_NONE;
 594
 595        if (pgd_none(*pgd))
 596                return NULL;
 597
 598        p4d = p4d_offset(pgd, address);
 599        if (p4d_none(*p4d))
 600                return NULL;
 601
 602        *level = PG_LEVEL_512G;
 603        if (p4d_large(*p4d) || !p4d_present(*p4d))
 604                return (pte_t *)p4d;
 605
 606        pud = pud_offset(p4d, address);
 607        if (pud_none(*pud))
 608                return NULL;
 609
 610        *level = PG_LEVEL_1G;
 611        if (pud_large(*pud) || !pud_present(*pud))
 612                return (pte_t *)pud;
 613
 614        pmd = pmd_offset(pud, address);
 615        if (pmd_none(*pmd))
 616                return NULL;
 617
 618        *level = PG_LEVEL_2M;
 619        if (pmd_large(*pmd) || !pmd_present(*pmd))
 620                return (pte_t *)pmd;
 621
 622        *level = PG_LEVEL_4K;
 623
 624        return pte_offset_kernel(pmd, address);
 625}
 626
 627/*
 628 * Lookup the page table entry for a virtual address. Return a pointer
 629 * to the entry and the level of the mapping.
 630 *
 631 * Note: We return pud and pmd either when the entry is marked large
 632 * or when the present bit is not set. Otherwise we would return a
 633 * pointer to a nonexisting mapping.
 634 */
 635pte_t *lookup_address(unsigned long address, unsigned int *level)
 636{
 637        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 638}
 639EXPORT_SYMBOL_GPL(lookup_address);
 640
 641/*
 642 * Lookup the page table entry for a virtual address in a given mm. Return a
 643 * pointer to the entry and the level of the mapping.
 644 */
 645pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
 646                            unsigned int *level)
 647{
 648        return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
 649}
 650EXPORT_SYMBOL_GPL(lookup_address_in_mm);
 651
 652static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 653                                  unsigned int *level)
 654{
 655        if (cpa->pgd)
 656                return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 657                                               address, level);
 658
 659        return lookup_address(address, level);
 660}
 661
 662/*
 663 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 664 * or NULL if not present.
 665 */
 666pmd_t *lookup_pmd_address(unsigned long address)
 667{
 668        pgd_t *pgd;
 669        p4d_t *p4d;
 670        pud_t *pud;
 671
 672        pgd = pgd_offset_k(address);
 673        if (pgd_none(*pgd))
 674                return NULL;
 675
 676        p4d = p4d_offset(pgd, address);
 677        if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 678                return NULL;
 679
 680        pud = pud_offset(p4d, address);
 681        if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 682                return NULL;
 683
 684        return pmd_offset(pud, address);
 685}
 686
 687/*
 688 * This is necessary because __pa() does not work on some
 689 * kinds of memory, like vmalloc() or the alloc_remap()
 690 * areas on 32-bit NUMA systems.  The percpu areas can
 691 * end up in this kind of memory, for instance.
 692 *
 693 * This could be optimized, but it is only intended to be
 694 * used at initialization time, and keeping it
 695 * unoptimized should increase the testing coverage for
 696 * the more obscure platforms.
 697 */
 698phys_addr_t slow_virt_to_phys(void *__virt_addr)
 699{
 700        unsigned long virt_addr = (unsigned long)__virt_addr;
 701        phys_addr_t phys_addr;
 702        unsigned long offset;
 703        enum pg_level level;
 704        pte_t *pte;
 705
 706        pte = lookup_address(virt_addr, &level);
 707        BUG_ON(!pte);
 708
 709        /*
 710         * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 711         * before being left-shifted PAGE_SHIFT bits -- this trick is to
 712         * make 32-PAE kernel work correctly.
 713         */
 714        switch (level) {
 715        case PG_LEVEL_1G:
 716                phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 717                offset = virt_addr & ~PUD_PAGE_MASK;
 718                break;
 719        case PG_LEVEL_2M:
 720                phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 721                offset = virt_addr & ~PMD_PAGE_MASK;
 722                break;
 723        default:
 724                phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 725                offset = virt_addr & ~PAGE_MASK;
 726        }
 727
 728        return (phys_addr_t)(phys_addr | offset);
 729}
 730EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 731
 732/*
 733 * Set the new pmd in all the pgds we know about:
 734 */
 735static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 736{
 737        /* change init_mm */
 738        set_pte_atomic(kpte, pte);
 739#ifdef CONFIG_X86_32
 740        if (!SHARED_KERNEL_PMD) {
 741                struct page *page;
 742
 743                list_for_each_entry(page, &pgd_list, lru) {
 744                        pgd_t *pgd;
 745                        p4d_t *p4d;
 746                        pud_t *pud;
 747                        pmd_t *pmd;
 748
 749                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 750                        p4d = p4d_offset(pgd, address);
 751                        pud = pud_offset(p4d, address);
 752                        pmd = pmd_offset(pud, address);
 753                        set_pte_atomic((pte_t *)pmd, pte);
 754                }
 755        }
 756#endif
 757}
 758
 759static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 760{
 761        /*
 762         * _PAGE_GLOBAL means "global page" for present PTEs.
 763         * But, it is also used to indicate _PAGE_PROTNONE
 764         * for non-present PTEs.
 765         *
 766         * This ensures that a _PAGE_GLOBAL PTE going from
 767         * present to non-present is not confused as
 768         * _PAGE_PROTNONE.
 769         */
 770        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 771                pgprot_val(prot) &= ~_PAGE_GLOBAL;
 772
 773        return prot;
 774}
 775
 776static int __should_split_large_page(pte_t *kpte, unsigned long address,
 777                                     struct cpa_data *cpa)
 778{
 779        unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 780        pgprot_t old_prot, new_prot, req_prot, chk_prot;
 781        pte_t new_pte, *tmp;
 782        enum pg_level level;
 783
 784        /*
 785         * Check for races, another CPU might have split this page
 786         * up already:
 787         */
 788        tmp = _lookup_address_cpa(cpa, address, &level);
 789        if (tmp != kpte)
 790                return 1;
 791
 792        switch (level) {
 793        case PG_LEVEL_2M:
 794                old_prot = pmd_pgprot(*(pmd_t *)kpte);
 795                old_pfn = pmd_pfn(*(pmd_t *)kpte);
 796                cpa_inc_2m_checked();
 797                break;
 798        case PG_LEVEL_1G:
 799                old_prot = pud_pgprot(*(pud_t *)kpte);
 800                old_pfn = pud_pfn(*(pud_t *)kpte);
 801                cpa_inc_1g_checked();
 802                break;
 803        default:
 804                return -EINVAL;
 805        }
 806
 807        psize = page_level_size(level);
 808        pmask = page_level_mask(level);
 809
 810        /*
 811         * Calculate the number of pages, which fit into this large
 812         * page starting at address:
 813         */
 814        lpaddr = (address + psize) & pmask;
 815        numpages = (lpaddr - address) >> PAGE_SHIFT;
 816        if (numpages < cpa->numpages)
 817                cpa->numpages = numpages;
 818
 819        /*
 820         * We are safe now. Check whether the new pgprot is the same:
 821         * Convert protection attributes to 4k-format, as cpa->mask* are set
 822         * up accordingly.
 823         */
 824
 825        /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 826        req_prot = pgprot_large_2_4k(old_prot);
 827
 828        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 829        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 830
 831        /*
 832         * req_prot is in format of 4k pages. It must be converted to large
 833         * page format: the caching mode includes the PAT bit located at
 834         * different bit positions in the two formats.
 835         */
 836        req_prot = pgprot_4k_2_large(req_prot);
 837        req_prot = pgprot_clear_protnone_bits(req_prot);
 838        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 839                pgprot_val(req_prot) |= _PAGE_PSE;
 840
 841        /*
 842         * old_pfn points to the large page base pfn. So we need to add the
 843         * offset of the virtual address:
 844         */
 845        pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 846        cpa->pfn = pfn;
 847
 848        /*
 849         * Calculate the large page base address and the number of 4K pages
 850         * in the large page
 851         */
 852        lpaddr = address & pmask;
 853        numpages = psize >> PAGE_SHIFT;
 854
 855        /*
 856         * Sanity check that the existing mapping is correct versus the static
 857         * protections. static_protections() guards against !PRESENT, so no
 858         * extra conditional required here.
 859         */
 860        chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 861                                      psize, CPA_CONFLICT);
 862
 863        if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 864                /*
 865                 * Split the large page and tell the split code to
 866                 * enforce static protections.
 867                 */
 868                cpa->force_static_prot = 1;
 869                return 1;
 870        }
 871
 872        /*
 873         * Optimization: If the requested pgprot is the same as the current
 874         * pgprot, then the large page can be preserved and no updates are
 875         * required independent of alignment and length of the requested
 876         * range. The above already established that the current pgprot is
 877         * correct, which in consequence makes the requested pgprot correct
 878         * as well if it is the same. The static protection scan below will
 879         * not come to a different conclusion.
 880         */
 881        if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 882                cpa_inc_lp_sameprot(level);
 883                return 0;
 884        }
 885
 886        /*
 887         * If the requested range does not cover the full page, split it up
 888         */
 889        if (address != lpaddr || cpa->numpages != numpages)
 890                return 1;
 891
 892        /*
 893         * Check whether the requested pgprot is conflicting with a static
 894         * protection requirement in the large page.
 895         */
 896        new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 897                                      psize, CPA_DETECT);
 898
 899        /*
 900         * If there is a conflict, split the large page.
 901         *
 902         * There used to be a 4k wise evaluation trying really hard to
 903         * preserve the large pages, but experimentation has shown, that this
 904         * does not help at all. There might be corner cases which would
 905         * preserve one large page occasionally, but it's really not worth the
 906         * extra code and cycles for the common case.
 907         */
 908        if (pgprot_val(req_prot) != pgprot_val(new_prot))
 909                return 1;
 910
 911        /* All checks passed. Update the large page mapping. */
 912        new_pte = pfn_pte(old_pfn, new_prot);
 913        __set_pmd_pte(kpte, address, new_pte);
 914        cpa->flags |= CPA_FLUSHTLB;
 915        cpa_inc_lp_preserved(level);
 916        return 0;
 917}
 918
 919static int should_split_large_page(pte_t *kpte, unsigned long address,
 920                                   struct cpa_data *cpa)
 921{
 922        int do_split;
 923
 924        if (cpa->force_split)
 925                return 1;
 926
 927        spin_lock(&pgd_lock);
 928        do_split = __should_split_large_page(kpte, address, cpa);
 929        spin_unlock(&pgd_lock);
 930
 931        return do_split;
 932}
 933
 934static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 935                          pgprot_t ref_prot, unsigned long address,
 936                          unsigned long size)
 937{
 938        unsigned int npg = PFN_DOWN(size);
 939        pgprot_t prot;
 940
 941        /*
 942         * If should_split_large_page() discovered an inconsistent mapping,
 943         * remove the invalid protection in the split mapping.
 944         */
 945        if (!cpa->force_static_prot)
 946                goto set;
 947
 948        /* Hand in lpsize = 0 to enforce the protection mechanism */
 949        prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
 950
 951        if (pgprot_val(prot) == pgprot_val(ref_prot))
 952                goto set;
 953
 954        /*
 955         * If this is splitting a PMD, fix it up. PUD splits cannot be
 956         * fixed trivially as that would require to rescan the newly
 957         * installed PMD mappings after returning from split_large_page()
 958         * so an eventual further split can allocate the necessary PTE
 959         * pages. Warn for now and revisit it in case this actually
 960         * happens.
 961         */
 962        if (size == PAGE_SIZE)
 963                ref_prot = prot;
 964        else
 965                pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 966set:
 967        set_pte(pte, pfn_pte(pfn, ref_prot));
 968}
 969
 970static int
 971__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 972                   struct page *base)
 973{
 974        unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 975        pte_t *pbase = (pte_t *)page_address(base);
 976        unsigned int i, level;
 977        pgprot_t ref_prot;
 978        pte_t *tmp;
 979
 980        spin_lock(&pgd_lock);
 981        /*
 982         * Check for races, another CPU might have split this page
 983         * up for us already:
 984         */
 985        tmp = _lookup_address_cpa(cpa, address, &level);
 986        if (tmp != kpte) {
 987                spin_unlock(&pgd_lock);
 988                return 1;
 989        }
 990
 991        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 992
 993        switch (level) {
 994        case PG_LEVEL_2M:
 995                ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 996                /*
 997                 * Clear PSE (aka _PAGE_PAT) and move
 998                 * PAT bit to correct position.
 999                 */
1000                ref_prot = pgprot_large_2_4k(ref_prot);
1001                ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1002                lpaddr = address & PMD_MASK;
1003                lpinc = PAGE_SIZE;
1004                break;
1005
1006        case PG_LEVEL_1G:
1007                ref_prot = pud_pgprot(*(pud_t *)kpte);
1008                ref_pfn = pud_pfn(*(pud_t *)kpte);
1009                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1010                lpaddr = address & PUD_MASK;
1011                lpinc = PMD_SIZE;
1012                /*
1013                 * Clear the PSE flags if the PRESENT flag is not set
1014                 * otherwise pmd_present/pmd_huge will return true
1015                 * even on a non present pmd.
1016                 */
1017                if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1018                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
1019                break;
1020
1021        default:
1022                spin_unlock(&pgd_lock);
1023                return 1;
1024        }
1025
1026        ref_prot = pgprot_clear_protnone_bits(ref_prot);
1027
1028        /*
1029         * Get the target pfn from the original entry:
1030         */
1031        pfn = ref_pfn;
1032        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1033                split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1034
1035        if (virt_addr_valid(address)) {
1036                unsigned long pfn = PFN_DOWN(__pa(address));
1037
1038                if (pfn_range_is_mapped(pfn, pfn + 1))
1039                        split_page_count(level);
1040        }
1041
1042        /*
1043         * Install the new, split up pagetable.
1044         *
1045         * We use the standard kernel pagetable protections for the new
1046         * pagetable protections, the actual ptes set above control the
1047         * primary protection behavior:
1048         */
1049        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1050
1051        /*
1052         * Do a global flush tlb after splitting the large page
1053         * and before we do the actual change page attribute in the PTE.
1054         *
1055         * Without this, we violate the TLB application note, that says:
1056         * "The TLBs may contain both ordinary and large-page
1057         *  translations for a 4-KByte range of linear addresses. This
1058         *  may occur if software modifies the paging structures so that
1059         *  the page size used for the address range changes. If the two
1060         *  translations differ with respect to page frame or attributes
1061         *  (e.g., permissions), processor behavior is undefined and may
1062         *  be implementation-specific."
1063         *
1064         * We do this global tlb flush inside the cpa_lock, so that we
1065         * don't allow any other cpu, with stale tlb entries change the
1066         * page attribute in parallel, that also falls into the
1067         * just split large page entry.
1068         */
1069        flush_tlb_all();
1070        spin_unlock(&pgd_lock);
1071
1072        return 0;
1073}
1074
1075static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1076                            unsigned long address)
1077{
1078        struct page *base;
1079
1080        if (!debug_pagealloc_enabled())
1081                spin_unlock(&cpa_lock);
1082        base = alloc_pages(GFP_KERNEL, 0);
1083        if (!debug_pagealloc_enabled())
1084                spin_lock(&cpa_lock);
1085        if (!base)
1086                return -ENOMEM;
1087
1088        if (__split_large_page(cpa, kpte, address, base))
1089                __free_page(base);
1090
1091        return 0;
1092}
1093
1094static bool try_to_free_pte_page(pte_t *pte)
1095{
1096        int i;
1097
1098        for (i = 0; i < PTRS_PER_PTE; i++)
1099                if (!pte_none(pte[i]))
1100                        return false;
1101
1102        free_page((unsigned long)pte);
1103        return true;
1104}
1105
1106static bool try_to_free_pmd_page(pmd_t *pmd)
1107{
1108        int i;
1109
1110        for (i = 0; i < PTRS_PER_PMD; i++)
1111                if (!pmd_none(pmd[i]))
1112                        return false;
1113
1114        free_page((unsigned long)pmd);
1115        return true;
1116}
1117
1118static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1119{
1120        pte_t *pte = pte_offset_kernel(pmd, start);
1121
1122        while (start < end) {
1123                set_pte(pte, __pte(0));
1124
1125                start += PAGE_SIZE;
1126                pte++;
1127        }
1128
1129        if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1130                pmd_clear(pmd);
1131                return true;
1132        }
1133        return false;
1134}
1135
1136static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1137                              unsigned long start, unsigned long end)
1138{
1139        if (unmap_pte_range(pmd, start, end))
1140                if (try_to_free_pmd_page(pud_pgtable(*pud)))
1141                        pud_clear(pud);
1142}
1143
1144static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1145{
1146        pmd_t *pmd = pmd_offset(pud, start);
1147
1148        /*
1149         * Not on a 2MB page boundary?
1150         */
1151        if (start & (PMD_SIZE - 1)) {
1152                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1153                unsigned long pre_end = min_t(unsigned long, end, next_page);
1154
1155                __unmap_pmd_range(pud, pmd, start, pre_end);
1156
1157                start = pre_end;
1158                pmd++;
1159        }
1160
1161        /*
1162         * Try to unmap in 2M chunks.
1163         */
1164        while (end - start >= PMD_SIZE) {
1165                if (pmd_large(*pmd))
1166                        pmd_clear(pmd);
1167                else
1168                        __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1169
1170                start += PMD_SIZE;
1171                pmd++;
1172        }
1173
1174        /*
1175         * 4K leftovers?
1176         */
1177        if (start < end)
1178                return __unmap_pmd_range(pud, pmd, start, end);
1179
1180        /*
1181         * Try again to free the PMD page if haven't succeeded above.
1182         */
1183        if (!pud_none(*pud))
1184                if (try_to_free_pmd_page(pud_pgtable(*pud)))
1185                        pud_clear(pud);
1186}
1187
1188static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1189{
1190        pud_t *pud = pud_offset(p4d, start);
1191
1192        /*
1193         * Not on a GB page boundary?
1194         */
1195        if (start & (PUD_SIZE - 1)) {
1196                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1197                unsigned long pre_end   = min_t(unsigned long, end, next_page);
1198
1199                unmap_pmd_range(pud, start, pre_end);
1200
1201                start = pre_end;
1202                pud++;
1203        }
1204
1205        /*
1206         * Try to unmap in 1G chunks?
1207         */
1208        while (end - start >= PUD_SIZE) {
1209
1210                if (pud_large(*pud))
1211                        pud_clear(pud);
1212                else
1213                        unmap_pmd_range(pud, start, start + PUD_SIZE);
1214
1215                start += PUD_SIZE;
1216                pud++;
1217        }
1218
1219        /*
1220         * 2M leftovers?
1221         */
1222        if (start < end)
1223                unmap_pmd_range(pud, start, end);
1224
1225        /*
1226         * No need to try to free the PUD page because we'll free it in
1227         * populate_pgd's error path
1228         */
1229}
1230
1231static int alloc_pte_page(pmd_t *pmd)
1232{
1233        pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1234        if (!pte)
1235                return -1;
1236
1237        set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1238        return 0;
1239}
1240
1241static int alloc_pmd_page(pud_t *pud)
1242{
1243        pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1244        if (!pmd)
1245                return -1;
1246
1247        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1248        return 0;
1249}
1250
1251static void populate_pte(struct cpa_data *cpa,
1252                         unsigned long start, unsigned long end,
1253                         unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1254{
1255        pte_t *pte;
1256
1257        pte = pte_offset_kernel(pmd, start);
1258
1259        pgprot = pgprot_clear_protnone_bits(pgprot);
1260
1261        while (num_pages-- && start < end) {
1262                set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1263
1264                start    += PAGE_SIZE;
1265                cpa->pfn++;
1266                pte++;
1267        }
1268}
1269
1270static long populate_pmd(struct cpa_data *cpa,
1271                         unsigned long start, unsigned long end,
1272                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1273{
1274        long cur_pages = 0;
1275        pmd_t *pmd;
1276        pgprot_t pmd_pgprot;
1277
1278        /*
1279         * Not on a 2M boundary?
1280         */
1281        if (start & (PMD_SIZE - 1)) {
1282                unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1283                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1284
1285                pre_end   = min_t(unsigned long, pre_end, next_page);
1286                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1287                cur_pages = min_t(unsigned int, num_pages, cur_pages);
1288
1289                /*
1290                 * Need a PTE page?
1291                 */
1292                pmd = pmd_offset(pud, start);
1293                if (pmd_none(*pmd))
1294                        if (alloc_pte_page(pmd))
1295                                return -1;
1296
1297                populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1298
1299                start = pre_end;
1300        }
1301
1302        /*
1303         * We mapped them all?
1304         */
1305        if (num_pages == cur_pages)
1306                return cur_pages;
1307
1308        pmd_pgprot = pgprot_4k_2_large(pgprot);
1309
1310        while (end - start >= PMD_SIZE) {
1311
1312                /*
1313                 * We cannot use a 1G page so allocate a PMD page if needed.
1314                 */
1315                if (pud_none(*pud))
1316                        if (alloc_pmd_page(pud))
1317                                return -1;
1318
1319                pmd = pmd_offset(pud, start);
1320
1321                set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1322                                        canon_pgprot(pmd_pgprot))));
1323
1324                start     += PMD_SIZE;
1325                cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1326                cur_pages += PMD_SIZE >> PAGE_SHIFT;
1327        }
1328
1329        /*
1330         * Map trailing 4K pages.
1331         */
1332        if (start < end) {
1333                pmd = pmd_offset(pud, start);
1334                if (pmd_none(*pmd))
1335                        if (alloc_pte_page(pmd))
1336                                return -1;
1337
1338                populate_pte(cpa, start, end, num_pages - cur_pages,
1339                             pmd, pgprot);
1340        }
1341        return num_pages;
1342}
1343
1344static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1345                        pgprot_t pgprot)
1346{
1347        pud_t *pud;
1348        unsigned long end;
1349        long cur_pages = 0;
1350        pgprot_t pud_pgprot;
1351
1352        end = start + (cpa->numpages << PAGE_SHIFT);
1353
1354        /*
1355         * Not on a Gb page boundary? => map everything up to it with
1356         * smaller pages.
1357         */
1358        if (start & (PUD_SIZE - 1)) {
1359                unsigned long pre_end;
1360                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1361
1362                pre_end   = min_t(unsigned long, end, next_page);
1363                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1364                cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1365
1366                pud = pud_offset(p4d, start);
1367
1368                /*
1369                 * Need a PMD page?
1370                 */
1371                if (pud_none(*pud))
1372                        if (alloc_pmd_page(pud))
1373                                return -1;
1374
1375                cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1376                                         pud, pgprot);
1377                if (cur_pages < 0)
1378                        return cur_pages;
1379
1380                start = pre_end;
1381        }
1382
1383        /* We mapped them all? */
1384        if (cpa->numpages == cur_pages)
1385                return cur_pages;
1386
1387        pud = pud_offset(p4d, start);
1388        pud_pgprot = pgprot_4k_2_large(pgprot);
1389
1390        /*
1391         * Map everything starting from the Gb boundary, possibly with 1G pages
1392         */
1393        while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1394                set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1395                                   canon_pgprot(pud_pgprot))));
1396
1397                start     += PUD_SIZE;
1398                cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1399                cur_pages += PUD_SIZE >> PAGE_SHIFT;
1400                pud++;
1401        }
1402
1403        /* Map trailing leftover */
1404        if (start < end) {
1405                long tmp;
1406
1407                pud = pud_offset(p4d, start);
1408                if (pud_none(*pud))
1409                        if (alloc_pmd_page(pud))
1410                                return -1;
1411
1412                tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1413                                   pud, pgprot);
1414                if (tmp < 0)
1415                        return cur_pages;
1416
1417                cur_pages += tmp;
1418        }
1419        return cur_pages;
1420}
1421
1422/*
1423 * Restrictions for kernel page table do not necessarily apply when mapping in
1424 * an alternate PGD.
1425 */
1426static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1427{
1428        pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1429        pud_t *pud = NULL;      /* shut up gcc */
1430        p4d_t *p4d;
1431        pgd_t *pgd_entry;
1432        long ret;
1433
1434        pgd_entry = cpa->pgd + pgd_index(addr);
1435
1436        if (pgd_none(*pgd_entry)) {
1437                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1438                if (!p4d)
1439                        return -1;
1440
1441                set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1442        }
1443
1444        /*
1445         * Allocate a PUD page and hand it down for mapping.
1446         */
1447        p4d = p4d_offset(pgd_entry, addr);
1448        if (p4d_none(*p4d)) {
1449                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1450                if (!pud)
1451                        return -1;
1452
1453                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1454        }
1455
1456        pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1457        pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1458
1459        ret = populate_pud(cpa, addr, p4d, pgprot);
1460        if (ret < 0) {
1461                /*
1462                 * Leave the PUD page in place in case some other CPU or thread
1463                 * already found it, but remove any useless entries we just
1464                 * added to it.
1465                 */
1466                unmap_pud_range(p4d, addr,
1467                                addr + (cpa->numpages << PAGE_SHIFT));
1468                return ret;
1469        }
1470
1471        cpa->numpages = ret;
1472        return 0;
1473}
1474
1475static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1476                               int primary)
1477{
1478        if (cpa->pgd) {
1479                /*
1480                 * Right now, we only execute this code path when mapping
1481                 * the EFI virtual memory map regions, no other users
1482                 * provide a ->pgd value. This may change in the future.
1483                 */
1484                return populate_pgd(cpa, vaddr);
1485        }
1486
1487        /*
1488         * Ignore all non primary paths.
1489         */
1490        if (!primary) {
1491                cpa->numpages = 1;
1492                return 0;
1493        }
1494
1495        /*
1496         * Ignore the NULL PTE for kernel identity mapping, as it is expected
1497         * to have holes.
1498         * Also set numpages to '1' indicating that we processed cpa req for
1499         * one virtual address page and its pfn. TBD: numpages can be set based
1500         * on the initial value and the level returned by lookup_address().
1501         */
1502        if (within(vaddr, PAGE_OFFSET,
1503                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1504                cpa->numpages = 1;
1505                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1506                return 0;
1507
1508        } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1509                /* Faults in the highmap are OK, so do not warn: */
1510                return -EFAULT;
1511        } else {
1512                WARN(1, KERN_WARNING "CPA: called for zero pte. "
1513                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1514                        *cpa->vaddr);
1515
1516                return -EFAULT;
1517        }
1518}
1519
1520static int __change_page_attr(struct cpa_data *cpa, int primary)
1521{
1522        unsigned long address;
1523        int do_split, err;
1524        unsigned int level;
1525        pte_t *kpte, old_pte;
1526
1527        address = __cpa_addr(cpa, cpa->curpage);
1528repeat:
1529        kpte = _lookup_address_cpa(cpa, address, &level);
1530        if (!kpte)
1531                return __cpa_process_fault(cpa, address, primary);
1532
1533        old_pte = *kpte;
1534        if (pte_none(old_pte))
1535                return __cpa_process_fault(cpa, address, primary);
1536
1537        if (level == PG_LEVEL_4K) {
1538                pte_t new_pte;
1539                pgprot_t new_prot = pte_pgprot(old_pte);
1540                unsigned long pfn = pte_pfn(old_pte);
1541
1542                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1543                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1544
1545                cpa_inc_4k_install();
1546                /* Hand in lpsize = 0 to enforce the protection mechanism */
1547                new_prot = static_protections(new_prot, address, pfn, 1, 0,
1548                                              CPA_PROTECT);
1549
1550                new_prot = pgprot_clear_protnone_bits(new_prot);
1551
1552                /*
1553                 * We need to keep the pfn from the existing PTE,
1554                 * after all we're only going to change it's attributes
1555                 * not the memory it points to
1556                 */
1557                new_pte = pfn_pte(pfn, new_prot);
1558                cpa->pfn = pfn;
1559                /*
1560                 * Do we really change anything ?
1561                 */
1562                if (pte_val(old_pte) != pte_val(new_pte)) {
1563                        set_pte_atomic(kpte, new_pte);
1564                        cpa->flags |= CPA_FLUSHTLB;
1565                }
1566                cpa->numpages = 1;
1567                return 0;
1568        }
1569
1570        /*
1571         * Check, whether we can keep the large page intact
1572         * and just change the pte:
1573         */
1574        do_split = should_split_large_page(kpte, address, cpa);
1575        /*
1576         * When the range fits into the existing large page,
1577         * return. cp->numpages and cpa->tlbflush have been updated in
1578         * try_large_page:
1579         */
1580        if (do_split <= 0)
1581                return do_split;
1582
1583        /*
1584         * We have to split the large page:
1585         */
1586        err = split_large_page(cpa, kpte, address);
1587        if (!err)
1588                goto repeat;
1589
1590        return err;
1591}
1592
1593static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1594
1595static int cpa_process_alias(struct cpa_data *cpa)
1596{
1597        struct cpa_data alias_cpa;
1598        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1599        unsigned long vaddr;
1600        int ret;
1601
1602        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1603                return 0;
1604
1605        /*
1606         * No need to redo, when the primary call touched the direct
1607         * mapping already:
1608         */
1609        vaddr = __cpa_addr(cpa, cpa->curpage);
1610        if (!(within(vaddr, PAGE_OFFSET,
1611                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1612
1613                alias_cpa = *cpa;
1614                alias_cpa.vaddr = &laddr;
1615                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1616                alias_cpa.curpage = 0;
1617
1618                cpa->force_flush_all = 1;
1619
1620                ret = __change_page_attr_set_clr(&alias_cpa, 0);
1621                if (ret)
1622                        return ret;
1623        }
1624
1625#ifdef CONFIG_X86_64
1626        /*
1627         * If the primary call didn't touch the high mapping already
1628         * and the physical address is inside the kernel map, we need
1629         * to touch the high mapped kernel as well:
1630         */
1631        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1632            __cpa_pfn_in_highmap(cpa->pfn)) {
1633                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1634                                               __START_KERNEL_map - phys_base;
1635                alias_cpa = *cpa;
1636                alias_cpa.vaddr = &temp_cpa_vaddr;
1637                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1638                alias_cpa.curpage = 0;
1639
1640                cpa->force_flush_all = 1;
1641                /*
1642                 * The high mapping range is imprecise, so ignore the
1643                 * return value.
1644                 */
1645                __change_page_attr_set_clr(&alias_cpa, 0);
1646        }
1647#endif
1648
1649        return 0;
1650}
1651
1652static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1653{
1654        unsigned long numpages = cpa->numpages;
1655        unsigned long rempages = numpages;
1656        int ret = 0;
1657
1658        while (rempages) {
1659                /*
1660                 * Store the remaining nr of pages for the large page
1661                 * preservation check.
1662                 */
1663                cpa->numpages = rempages;
1664                /* for array changes, we can't use large page */
1665                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1666                        cpa->numpages = 1;
1667
1668                if (!debug_pagealloc_enabled())
1669                        spin_lock(&cpa_lock);
1670                ret = __change_page_attr(cpa, checkalias);
1671                if (!debug_pagealloc_enabled())
1672                        spin_unlock(&cpa_lock);
1673                if (ret)
1674                        goto out;
1675
1676                if (checkalias) {
1677                        ret = cpa_process_alias(cpa);
1678                        if (ret)
1679                                goto out;
1680                }
1681
1682                /*
1683                 * Adjust the number of pages with the result of the
1684                 * CPA operation. Either a large page has been
1685                 * preserved or a single page update happened.
1686                 */
1687                BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1688                rempages -= cpa->numpages;
1689                cpa->curpage += cpa->numpages;
1690        }
1691
1692out:
1693        /* Restore the original numpages */
1694        cpa->numpages = numpages;
1695        return ret;
1696}
1697
1698static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1699                                    pgprot_t mask_set, pgprot_t mask_clr,
1700                                    int force_split, int in_flag,
1701                                    struct page **pages)
1702{
1703        struct cpa_data cpa;
1704        int ret, cache, checkalias;
1705
1706        memset(&cpa, 0, sizeof(cpa));
1707
1708        /*
1709         * Check, if we are requested to set a not supported
1710         * feature.  Clearing non-supported features is OK.
1711         */
1712        mask_set = canon_pgprot(mask_set);
1713
1714        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1715                return 0;
1716
1717        /* Ensure we are PAGE_SIZE aligned */
1718        if (in_flag & CPA_ARRAY) {
1719                int i;
1720                for (i = 0; i < numpages; i++) {
1721                        if (addr[i] & ~PAGE_MASK) {
1722                                addr[i] &= PAGE_MASK;
1723                                WARN_ON_ONCE(1);
1724                        }
1725                }
1726        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1727                /*
1728                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1729                 * No need to check in that case
1730                 */
1731                if (*addr & ~PAGE_MASK) {
1732                        *addr &= PAGE_MASK;
1733                        /*
1734                         * People should not be passing in unaligned addresses:
1735                         */
1736                        WARN_ON_ONCE(1);
1737                }
1738        }
1739
1740        /* Must avoid aliasing mappings in the highmem code */
1741        kmap_flush_unused();
1742
1743        vm_unmap_aliases();
1744
1745        cpa.vaddr = addr;
1746        cpa.pages = pages;
1747        cpa.numpages = numpages;
1748        cpa.mask_set = mask_set;
1749        cpa.mask_clr = mask_clr;
1750        cpa.flags = 0;
1751        cpa.curpage = 0;
1752        cpa.force_split = force_split;
1753
1754        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1755                cpa.flags |= in_flag;
1756
1757        /* No alias checking for _NX bit modifications */
1758        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1759        /* Has caller explicitly disabled alias checking? */
1760        if (in_flag & CPA_NO_CHECK_ALIAS)
1761                checkalias = 0;
1762
1763        ret = __change_page_attr_set_clr(&cpa, checkalias);
1764
1765        /*
1766         * Check whether we really changed something:
1767         */
1768        if (!(cpa.flags & CPA_FLUSHTLB))
1769                goto out;
1770
1771        /*
1772         * No need to flush, when we did not set any of the caching
1773         * attributes:
1774         */
1775        cache = !!pgprot2cachemode(mask_set);
1776
1777        /*
1778         * On error; flush everything to be sure.
1779         */
1780        if (ret) {
1781                cpa_flush_all(cache);
1782                goto out;
1783        }
1784
1785        cpa_flush(&cpa, cache);
1786out:
1787        return ret;
1788}
1789
1790static inline int change_page_attr_set(unsigned long *addr, int numpages,
1791                                       pgprot_t mask, int array)
1792{
1793        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1794                (array ? CPA_ARRAY : 0), NULL);
1795}
1796
1797static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1798                                         pgprot_t mask, int array)
1799{
1800        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1801                (array ? CPA_ARRAY : 0), NULL);
1802}
1803
1804static inline int cpa_set_pages_array(struct page **pages, int numpages,
1805                                       pgprot_t mask)
1806{
1807        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1808                CPA_PAGES_ARRAY, pages);
1809}
1810
1811static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1812                                         pgprot_t mask)
1813{
1814        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1815                CPA_PAGES_ARRAY, pages);
1816}
1817
1818/*
1819 * _set_memory_prot is an internal helper for callers that have been passed
1820 * a pgprot_t value from upper layers and a reservation has already been taken.
1821 * If you want to set the pgprot to a specific page protocol, use the
1822 * set_memory_xx() functions.
1823 */
1824int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1825{
1826        return change_page_attr_set_clr(&addr, numpages, prot,
1827                                        __pgprot(~pgprot_val(prot)), 0, 0,
1828                                        NULL);
1829}
1830
1831int _set_memory_uc(unsigned long addr, int numpages)
1832{
1833        /*
1834         * for now UC MINUS. see comments in ioremap()
1835         * If you really need strong UC use ioremap_uc(), but note
1836         * that you cannot override IO areas with set_memory_*() as
1837         * these helpers cannot work with IO memory.
1838         */
1839        return change_page_attr_set(&addr, numpages,
1840                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1841                                    0);
1842}
1843
1844int set_memory_uc(unsigned long addr, int numpages)
1845{
1846        int ret;
1847
1848        /*
1849         * for now UC MINUS. see comments in ioremap()
1850         */
1851        ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1852                              _PAGE_CACHE_MODE_UC_MINUS, NULL);
1853        if (ret)
1854                goto out_err;
1855
1856        ret = _set_memory_uc(addr, numpages);
1857        if (ret)
1858                goto out_free;
1859
1860        return 0;
1861
1862out_free:
1863        memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1864out_err:
1865        return ret;
1866}
1867EXPORT_SYMBOL(set_memory_uc);
1868
1869int _set_memory_wc(unsigned long addr, int numpages)
1870{
1871        int ret;
1872
1873        ret = change_page_attr_set(&addr, numpages,
1874                                   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1875                                   0);
1876        if (!ret) {
1877                ret = change_page_attr_set_clr(&addr, numpages,
1878                                               cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1879                                               __pgprot(_PAGE_CACHE_MASK),
1880                                               0, 0, NULL);
1881        }
1882        return ret;
1883}
1884
1885int set_memory_wc(unsigned long addr, int numpages)
1886{
1887        int ret;
1888
1889        ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890                _PAGE_CACHE_MODE_WC, NULL);
1891        if (ret)
1892                return ret;
1893
1894        ret = _set_memory_wc(addr, numpages);
1895        if (ret)
1896                memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1897
1898        return ret;
1899}
1900EXPORT_SYMBOL(set_memory_wc);
1901
1902int _set_memory_wt(unsigned long addr, int numpages)
1903{
1904        return change_page_attr_set(&addr, numpages,
1905                                    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1906}
1907
1908int _set_memory_wb(unsigned long addr, int numpages)
1909{
1910        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1911        return change_page_attr_clear(&addr, numpages,
1912                                      __pgprot(_PAGE_CACHE_MASK), 0);
1913}
1914
1915int set_memory_wb(unsigned long addr, int numpages)
1916{
1917        int ret;
1918
1919        ret = _set_memory_wb(addr, numpages);
1920        if (ret)
1921                return ret;
1922
1923        memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1924        return 0;
1925}
1926EXPORT_SYMBOL(set_memory_wb);
1927
1928int set_memory_x(unsigned long addr, int numpages)
1929{
1930        if (!(__supported_pte_mask & _PAGE_NX))
1931                return 0;
1932
1933        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1934}
1935
1936int set_memory_nx(unsigned long addr, int numpages)
1937{
1938        if (!(__supported_pte_mask & _PAGE_NX))
1939                return 0;
1940
1941        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1942}
1943
1944int set_memory_ro(unsigned long addr, int numpages)
1945{
1946        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1947}
1948
1949int set_memory_rw(unsigned long addr, int numpages)
1950{
1951        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1952}
1953
1954int set_memory_np(unsigned long addr, int numpages)
1955{
1956        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1957}
1958
1959int set_memory_np_noalias(unsigned long addr, int numpages)
1960{
1961        int cpa_flags = CPA_NO_CHECK_ALIAS;
1962
1963        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1964                                        __pgprot(_PAGE_PRESENT), 0,
1965                                        cpa_flags, NULL);
1966}
1967
1968int set_memory_4k(unsigned long addr, int numpages)
1969{
1970        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1971                                        __pgprot(0), 1, 0, NULL);
1972}
1973
1974int set_memory_nonglobal(unsigned long addr, int numpages)
1975{
1976        return change_page_attr_clear(&addr, numpages,
1977                                      __pgprot(_PAGE_GLOBAL), 0);
1978}
1979
1980int set_memory_global(unsigned long addr, int numpages)
1981{
1982        return change_page_attr_set(&addr, numpages,
1983                                    __pgprot(_PAGE_GLOBAL), 0);
1984}
1985
1986/*
1987 * __set_memory_enc_pgtable() is used for the hypervisors that get
1988 * informed about "encryption" status via page tables.
1989 */
1990static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
1991{
1992        struct cpa_data cpa;
1993        int ret;
1994
1995        /* Should not be working on unaligned addresses */
1996        if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1997                addr &= PAGE_MASK;
1998
1999        memset(&cpa, 0, sizeof(cpa));
2000        cpa.vaddr = &addr;
2001        cpa.numpages = numpages;
2002        cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2003        cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2004        cpa.pgd = init_mm.pgd;
2005
2006        /* Must avoid aliasing mappings in the highmem code */
2007        kmap_flush_unused();
2008        vm_unmap_aliases();
2009
2010        /*
2011         * Before changing the encryption attribute, we need to flush caches.
2012         */
2013        cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT));
2014
2015        ret = __change_page_attr_set_clr(&cpa, 1);
2016
2017        /*
2018         * After changing the encryption attribute, we need to flush TLBs again
2019         * in case any speculative TLB caching occurred (but no need to flush
2020         * caches again).  We could just use cpa_flush_all(), but in case TLB
2021         * flushing gets optimized in the cpa_flush() path use the same logic
2022         * as above.
2023         */
2024        cpa_flush(&cpa, 0);
2025
2026        /*
2027         * Notify hypervisor that a given memory range is mapped encrypted
2028         * or decrypted.
2029         */
2030        notify_range_enc_status_changed(addr, numpages, enc);
2031
2032        return ret;
2033}
2034
2035static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2036{
2037        if (hv_is_isolation_supported())
2038                return hv_set_mem_host_visibility(addr, numpages, !enc);
2039
2040        if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2041                return __set_memory_enc_pgtable(addr, numpages, enc);
2042
2043        return 0;
2044}
2045
2046int set_memory_encrypted(unsigned long addr, int numpages)
2047{
2048        return __set_memory_enc_dec(addr, numpages, true);
2049}
2050EXPORT_SYMBOL_GPL(set_memory_encrypted);
2051
2052int set_memory_decrypted(unsigned long addr, int numpages)
2053{
2054        return __set_memory_enc_dec(addr, numpages, false);
2055}
2056EXPORT_SYMBOL_GPL(set_memory_decrypted);
2057
2058int set_pages_uc(struct page *page, int numpages)
2059{
2060        unsigned long addr = (unsigned long)page_address(page);
2061
2062        return set_memory_uc(addr, numpages);
2063}
2064EXPORT_SYMBOL(set_pages_uc);
2065
2066static int _set_pages_array(struct page **pages, int numpages,
2067                enum page_cache_mode new_type)
2068{
2069        unsigned long start;
2070        unsigned long end;
2071        enum page_cache_mode set_type;
2072        int i;
2073        int free_idx;
2074        int ret;
2075
2076        for (i = 0; i < numpages; i++) {
2077                if (PageHighMem(pages[i]))
2078                        continue;
2079                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2080                end = start + PAGE_SIZE;
2081                if (memtype_reserve(start, end, new_type, NULL))
2082                        goto err_out;
2083        }
2084
2085        /* If WC, set to UC- first and then WC */
2086        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2087                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
2088
2089        ret = cpa_set_pages_array(pages, numpages,
2090                                  cachemode2pgprot(set_type));
2091        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2092                ret = change_page_attr_set_clr(NULL, numpages,
2093                                               cachemode2pgprot(
2094                                                _PAGE_CACHE_MODE_WC),
2095                                               __pgprot(_PAGE_CACHE_MASK),
2096                                               0, CPA_PAGES_ARRAY, pages);
2097        if (ret)
2098                goto err_out;
2099        return 0; /* Success */
2100err_out:
2101        free_idx = i;
2102        for (i = 0; i < free_idx; i++) {
2103                if (PageHighMem(pages[i]))
2104                        continue;
2105                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2106                end = start + PAGE_SIZE;
2107                memtype_free(start, end);
2108        }
2109        return -EINVAL;
2110}
2111
2112int set_pages_array_uc(struct page **pages, int numpages)
2113{
2114        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2115}
2116EXPORT_SYMBOL(set_pages_array_uc);
2117
2118int set_pages_array_wc(struct page **pages, int numpages)
2119{
2120        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2121}
2122EXPORT_SYMBOL(set_pages_array_wc);
2123
2124int set_pages_array_wt(struct page **pages, int numpages)
2125{
2126        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2127}
2128EXPORT_SYMBOL_GPL(set_pages_array_wt);
2129
2130int set_pages_wb(struct page *page, int numpages)
2131{
2132        unsigned long addr = (unsigned long)page_address(page);
2133
2134        return set_memory_wb(addr, numpages);
2135}
2136EXPORT_SYMBOL(set_pages_wb);
2137
2138int set_pages_array_wb(struct page **pages, int numpages)
2139{
2140        int retval;
2141        unsigned long start;
2142        unsigned long end;
2143        int i;
2144
2145        /* WB cache mode is hard wired to all cache attribute bits being 0 */
2146        retval = cpa_clear_pages_array(pages, numpages,
2147                        __pgprot(_PAGE_CACHE_MASK));
2148        if (retval)
2149                return retval;
2150
2151        for (i = 0; i < numpages; i++) {
2152                if (PageHighMem(pages[i]))
2153                        continue;
2154                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2155                end = start + PAGE_SIZE;
2156                memtype_free(start, end);
2157        }
2158
2159        return 0;
2160}
2161EXPORT_SYMBOL(set_pages_array_wb);
2162
2163int set_pages_ro(struct page *page, int numpages)
2164{
2165        unsigned long addr = (unsigned long)page_address(page);
2166
2167        return set_memory_ro(addr, numpages);
2168}
2169
2170int set_pages_rw(struct page *page, int numpages)
2171{
2172        unsigned long addr = (unsigned long)page_address(page);
2173
2174        return set_memory_rw(addr, numpages);
2175}
2176
2177static int __set_pages_p(struct page *page, int numpages)
2178{
2179        unsigned long tempaddr = (unsigned long) page_address(page);
2180        struct cpa_data cpa = { .vaddr = &tempaddr,
2181                                .pgd = NULL,
2182                                .numpages = numpages,
2183                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2184                                .mask_clr = __pgprot(0),
2185                                .flags = 0};
2186
2187        /*
2188         * No alias checking needed for setting present flag. otherwise,
2189         * we may need to break large pages for 64-bit kernel text
2190         * mappings (this adds to complexity if we want to do this from
2191         * atomic context especially). Let's keep it simple!
2192         */
2193        return __change_page_attr_set_clr(&cpa, 0);
2194}
2195
2196static int __set_pages_np(struct page *page, int numpages)
2197{
2198        unsigned long tempaddr = (unsigned long) page_address(page);
2199        struct cpa_data cpa = { .vaddr = &tempaddr,
2200                                .pgd = NULL,
2201                                .numpages = numpages,
2202                                .mask_set = __pgprot(0),
2203                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2204                                .flags = 0};
2205
2206        /*
2207         * No alias checking needed for setting not present flag. otherwise,
2208         * we may need to break large pages for 64-bit kernel text
2209         * mappings (this adds to complexity if we want to do this from
2210         * atomic context especially). Let's keep it simple!
2211         */
2212        return __change_page_attr_set_clr(&cpa, 0);
2213}
2214
2215int set_direct_map_invalid_noflush(struct page *page)
2216{
2217        return __set_pages_np(page, 1);
2218}
2219
2220int set_direct_map_default_noflush(struct page *page)
2221{
2222        return __set_pages_p(page, 1);
2223}
2224
2225#ifdef CONFIG_DEBUG_PAGEALLOC
2226void __kernel_map_pages(struct page *page, int numpages, int enable)
2227{
2228        if (PageHighMem(page))
2229                return;
2230        if (!enable) {
2231                debug_check_no_locks_freed(page_address(page),
2232                                           numpages * PAGE_SIZE);
2233        }
2234
2235        /*
2236         * The return value is ignored as the calls cannot fail.
2237         * Large pages for identity mappings are not used at boot time
2238         * and hence no memory allocations during large page split.
2239         */
2240        if (enable)
2241                __set_pages_p(page, numpages);
2242        else
2243                __set_pages_np(page, numpages);
2244
2245        /*
2246         * We should perform an IPI and flush all tlbs,
2247         * but that can deadlock->flush only current cpu.
2248         * Preemption needs to be disabled around __flush_tlb_all() due to
2249         * CR3 reload in __native_flush_tlb().
2250         */
2251        preempt_disable();
2252        __flush_tlb_all();
2253        preempt_enable();
2254
2255        arch_flush_lazy_mmu_mode();
2256}
2257#endif /* CONFIG_DEBUG_PAGEALLOC */
2258
2259bool kernel_page_present(struct page *page)
2260{
2261        unsigned int level;
2262        pte_t *pte;
2263
2264        if (PageHighMem(page))
2265                return false;
2266
2267        pte = lookup_address((unsigned long)page_address(page), &level);
2268        return (pte_val(*pte) & _PAGE_PRESENT);
2269}
2270
2271int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2272                                   unsigned numpages, unsigned long page_flags)
2273{
2274        int retval = -EINVAL;
2275
2276        struct cpa_data cpa = {
2277                .vaddr = &address,
2278                .pfn = pfn,
2279                .pgd = pgd,
2280                .numpages = numpages,
2281                .mask_set = __pgprot(0),
2282                .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2283                .flags = 0,
2284        };
2285
2286        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2287
2288        if (!(__supported_pte_mask & _PAGE_NX))
2289                goto out;
2290
2291        if (!(page_flags & _PAGE_ENC))
2292                cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2293
2294        cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2295
2296        retval = __change_page_attr_set_clr(&cpa, 0);
2297        __flush_tlb_all();
2298
2299out:
2300        return retval;
2301}
2302
2303/*
2304 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2305 * function shouldn't be used in an SMP environment. Presently, it's used only
2306 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2307 */
2308int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2309                                     unsigned long numpages)
2310{
2311        int retval;
2312
2313        /*
2314         * The typical sequence for unmapping is to find a pte through
2315         * lookup_address_in_pgd() (ideally, it should never return NULL because
2316         * the address is already mapped) and change it's protections. As pfn is
2317         * the *target* of a mapping, it's not useful while unmapping.
2318         */
2319        struct cpa_data cpa = {
2320                .vaddr          = &address,
2321                .pfn            = 0,
2322                .pgd            = pgd,
2323                .numpages       = numpages,
2324                .mask_set       = __pgprot(0),
2325                .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2326                .flags          = 0,
2327        };
2328
2329        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2330
2331        retval = __change_page_attr_set_clr(&cpa, 0);
2332        __flush_tlb_all();
2333
2334        return retval;
2335}
2336
2337/*
2338 * The testcases use internal knowledge of the implementation that shouldn't
2339 * be exposed to the rest of the kernel. Include these directly here.
2340 */
2341#ifdef CONFIG_CPA_DEBUG
2342#include "cpa-test.c"
2343#endif
2344