linux/arch/x86/xen/mmu_pv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Xen mmu operations
   5 *
   6 * This file contains the various mmu fetch and update operations.
   7 * The most important job they must perform is the mapping between the
   8 * domain's pfn and the overall machine mfns.
   9 *
  10 * Xen allows guests to directly update the pagetable, in a controlled
  11 * fashion.  In other words, the guest modifies the same pagetable
  12 * that the CPU actually uses, which eliminates the overhead of having
  13 * a separate shadow pagetable.
  14 *
  15 * In order to allow this, it falls on the guest domain to map its
  16 * notion of a "physical" pfn - which is just a domain-local linear
  17 * address - into a real "machine address" which the CPU's MMU can
  18 * use.
  19 *
  20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  21 * inserted directly into the pagetable.  When creating a new
  22 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  24 * the mfn back into a pfn.
  25 *
  26 * The other constraint is that all pages which make up a pagetable
  27 * must be mapped read-only in the guest.  This prevents uncontrolled
  28 * guest updates to the pagetable.  Xen strictly enforces this, and
  29 * will disallow any pagetable update which will end up mapping a
  30 * pagetable page RW, and will disallow using any writable page as a
  31 * pagetable.
  32 *
  33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  34 * would need to validate the whole pagetable before going on.
  35 * Naturally, this is quite slow.  The solution is to "pin" a
  36 * pagetable, which enforces all the constraints on the pagetable even
  37 * when it is not actively in use.  This menas that Xen can be assured
  38 * that it is still valid when you do load it into %cr3, and doesn't
  39 * need to revalidate it.
  40 *
  41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  42 */
  43#include <linux/sched/mm.h>
  44#include <linux/debugfs.h>
  45#include <linux/bug.h>
  46#include <linux/vmalloc.h>
  47#include <linux/export.h>
  48#include <linux/init.h>
  49#include <linux/gfp.h>
  50#include <linux/memblock.h>
  51#include <linux/seq_file.h>
  52#include <linux/crash_dump.h>
  53#include <linux/pgtable.h>
  54#ifdef CONFIG_KEXEC_CORE
  55#include <linux/kexec.h>
  56#endif
  57
  58#include <trace/events/xen.h>
  59
  60#include <asm/tlbflush.h>
  61#include <asm/fixmap.h>
  62#include <asm/mmu_context.h>
  63#include <asm/setup.h>
  64#include <asm/paravirt.h>
  65#include <asm/e820/api.h>
  66#include <asm/linkage.h>
  67#include <asm/page.h>
  68#include <asm/init.h>
  69#include <asm/memtype.h>
  70#include <asm/smp.h>
  71#include <asm/tlb.h>
  72
  73#include <asm/xen/hypercall.h>
  74#include <asm/xen/hypervisor.h>
  75
  76#include <xen/xen.h>
  77#include <xen/page.h>
  78#include <xen/interface/xen.h>
  79#include <xen/interface/hvm/hvm_op.h>
  80#include <xen/interface/version.h>
  81#include <xen/interface/memory.h>
  82#include <xen/hvc-console.h>
  83
  84#include "multicalls.h"
  85#include "mmu.h"
  86#include "debugfs.h"
  87
  88#ifdef CONFIG_X86_VSYSCALL_EMULATION
  89/* l3 pud for userspace vsyscall mapping */
  90static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  91#endif
  92
  93/*
  94 * Protects atomic reservation decrease/increase against concurrent increases.
  95 * Also protects non-atomic updates of current_pages and balloon lists.
  96 */
  97static DEFINE_SPINLOCK(xen_reservation_lock);
  98
  99/*
 100 * Note about cr3 (pagetable base) values:
 101 *
 102 * xen_cr3 contains the current logical cr3 value; it contains the
 103 * last set cr3.  This may not be the current effective cr3, because
 104 * its update may be being lazily deferred.  However, a vcpu looking
 105 * at its own cr3 can use this value knowing that it everything will
 106 * be self-consistent.
 107 *
 108 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 109 * hypercall to set the vcpu cr3 is complete (so it may be a little
 110 * out of date, but it will never be set early).  If one vcpu is
 111 * looking at another vcpu's cr3 value, it should use this variable.
 112 */
 113DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 114DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 115
 116static phys_addr_t xen_pt_base, xen_pt_size __initdata;
 117
 118static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
 119
 120/*
 121 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 122 * redzone above it, so round it up to a PGD boundary.
 123 */
 124#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 125
 126void make_lowmem_page_readonly(void *vaddr)
 127{
 128        pte_t *pte, ptev;
 129        unsigned long address = (unsigned long)vaddr;
 130        unsigned int level;
 131
 132        pte = lookup_address(address, &level);
 133        if (pte == NULL)
 134                return;         /* vaddr missing */
 135
 136        ptev = pte_wrprotect(*pte);
 137
 138        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 139                BUG();
 140}
 141
 142void make_lowmem_page_readwrite(void *vaddr)
 143{
 144        pte_t *pte, ptev;
 145        unsigned long address = (unsigned long)vaddr;
 146        unsigned int level;
 147
 148        pte = lookup_address(address, &level);
 149        if (pte == NULL)
 150                return;         /* vaddr missing */
 151
 152        ptev = pte_mkwrite(*pte);
 153
 154        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 155                BUG();
 156}
 157
 158
 159/*
 160 * During early boot all page table pages are pinned, but we do not have struct
 161 * pages, so return true until struct pages are ready.
 162 */
 163static bool xen_page_pinned(void *ptr)
 164{
 165        if (static_branch_likely(&xen_struct_pages_ready)) {
 166                struct page *page = virt_to_page(ptr);
 167
 168                return PagePinned(page);
 169        }
 170        return true;
 171}
 172
 173static void xen_extend_mmu_update(const struct mmu_update *update)
 174{
 175        struct multicall_space mcs;
 176        struct mmu_update *u;
 177
 178        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 179
 180        if (mcs.mc != NULL) {
 181                mcs.mc->args[1]++;
 182        } else {
 183                mcs = __xen_mc_entry(sizeof(*u));
 184                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 185        }
 186
 187        u = mcs.args;
 188        *u = *update;
 189}
 190
 191static void xen_extend_mmuext_op(const struct mmuext_op *op)
 192{
 193        struct multicall_space mcs;
 194        struct mmuext_op *u;
 195
 196        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 197
 198        if (mcs.mc != NULL) {
 199                mcs.mc->args[1]++;
 200        } else {
 201                mcs = __xen_mc_entry(sizeof(*u));
 202                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 203        }
 204
 205        u = mcs.args;
 206        *u = *op;
 207}
 208
 209static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 210{
 211        struct mmu_update u;
 212
 213        preempt_disable();
 214
 215        xen_mc_batch();
 216
 217        /* ptr may be ioremapped for 64-bit pagetable setup */
 218        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 219        u.val = pmd_val_ma(val);
 220        xen_extend_mmu_update(&u);
 221
 222        xen_mc_issue(PARAVIRT_LAZY_MMU);
 223
 224        preempt_enable();
 225}
 226
 227static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 228{
 229        trace_xen_mmu_set_pmd(ptr, val);
 230
 231        /* If page is not pinned, we can just update the entry
 232           directly */
 233        if (!xen_page_pinned(ptr)) {
 234                *ptr = val;
 235                return;
 236        }
 237
 238        xen_set_pmd_hyper(ptr, val);
 239}
 240
 241/*
 242 * Associate a virtual page frame with a given physical page frame
 243 * and protection flags for that frame.
 244 */
 245void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 246{
 247        if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
 248                                         UVMF_INVLPG))
 249                BUG();
 250}
 251
 252static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 253{
 254        struct mmu_update u;
 255
 256        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 257                return false;
 258
 259        xen_mc_batch();
 260
 261        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 262        u.val = pte_val_ma(pteval);
 263        xen_extend_mmu_update(&u);
 264
 265        xen_mc_issue(PARAVIRT_LAZY_MMU);
 266
 267        return true;
 268}
 269
 270static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 271{
 272        if (!xen_batched_set_pte(ptep, pteval)) {
 273                /*
 274                 * Could call native_set_pte() here and trap and
 275                 * emulate the PTE write, but a hypercall is much cheaper.
 276                 */
 277                struct mmu_update u;
 278
 279                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 280                u.val = pte_val_ma(pteval);
 281                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 282        }
 283}
 284
 285static void xen_set_pte(pte_t *ptep, pte_t pteval)
 286{
 287        trace_xen_mmu_set_pte(ptep, pteval);
 288        __xen_set_pte(ptep, pteval);
 289}
 290
 291pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
 292                                 unsigned long addr, pte_t *ptep)
 293{
 294        /* Just return the pte as-is.  We preserve the bits on commit */
 295        trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
 296        return *ptep;
 297}
 298
 299void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 300                                 pte_t *ptep, pte_t pte)
 301{
 302        struct mmu_update u;
 303
 304        trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
 305        xen_mc_batch();
 306
 307        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 308        u.val = pte_val_ma(pte);
 309        xen_extend_mmu_update(&u);
 310
 311        xen_mc_issue(PARAVIRT_LAZY_MMU);
 312}
 313
 314/* Assume pteval_t is equivalent to all the other *val_t types. */
 315static pteval_t pte_mfn_to_pfn(pteval_t val)
 316{
 317        if (val & _PAGE_PRESENT) {
 318                unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
 319                unsigned long pfn = mfn_to_pfn(mfn);
 320
 321                pteval_t flags = val & PTE_FLAGS_MASK;
 322                if (unlikely(pfn == ~0))
 323                        val = flags & ~_PAGE_PRESENT;
 324                else
 325                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 326        }
 327
 328        return val;
 329}
 330
 331static pteval_t pte_pfn_to_mfn(pteval_t val)
 332{
 333        if (val & _PAGE_PRESENT) {
 334                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 335                pteval_t flags = val & PTE_FLAGS_MASK;
 336                unsigned long mfn;
 337
 338                mfn = __pfn_to_mfn(pfn);
 339
 340                /*
 341                 * If there's no mfn for the pfn, then just create an
 342                 * empty non-present pte.  Unfortunately this loses
 343                 * information about the original pfn, so
 344                 * pte_mfn_to_pfn is asymmetric.
 345                 */
 346                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 347                        mfn = 0;
 348                        flags = 0;
 349                } else
 350                        mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 351                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 352        }
 353
 354        return val;
 355}
 356
 357__visible pteval_t xen_pte_val(pte_t pte)
 358{
 359        pteval_t pteval = pte.pte;
 360
 361        return pte_mfn_to_pfn(pteval);
 362}
 363PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 364
 365__visible pgdval_t xen_pgd_val(pgd_t pgd)
 366{
 367        return pte_mfn_to_pfn(pgd.pgd);
 368}
 369PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 370
 371__visible pte_t xen_make_pte(pteval_t pte)
 372{
 373        pte = pte_pfn_to_mfn(pte);
 374
 375        return native_make_pte(pte);
 376}
 377PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 378
 379__visible pgd_t xen_make_pgd(pgdval_t pgd)
 380{
 381        pgd = pte_pfn_to_mfn(pgd);
 382        return native_make_pgd(pgd);
 383}
 384PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 385
 386__visible pmdval_t xen_pmd_val(pmd_t pmd)
 387{
 388        return pte_mfn_to_pfn(pmd.pmd);
 389}
 390PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 391
 392static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 393{
 394        struct mmu_update u;
 395
 396        preempt_disable();
 397
 398        xen_mc_batch();
 399
 400        /* ptr may be ioremapped for 64-bit pagetable setup */
 401        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 402        u.val = pud_val_ma(val);
 403        xen_extend_mmu_update(&u);
 404
 405        xen_mc_issue(PARAVIRT_LAZY_MMU);
 406
 407        preempt_enable();
 408}
 409
 410static void xen_set_pud(pud_t *ptr, pud_t val)
 411{
 412        trace_xen_mmu_set_pud(ptr, val);
 413
 414        /* If page is not pinned, we can just update the entry
 415           directly */
 416        if (!xen_page_pinned(ptr)) {
 417                *ptr = val;
 418                return;
 419        }
 420
 421        xen_set_pud_hyper(ptr, val);
 422}
 423
 424__visible pmd_t xen_make_pmd(pmdval_t pmd)
 425{
 426        pmd = pte_pfn_to_mfn(pmd);
 427        return native_make_pmd(pmd);
 428}
 429PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 430
 431__visible pudval_t xen_pud_val(pud_t pud)
 432{
 433        return pte_mfn_to_pfn(pud.pud);
 434}
 435PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 436
 437__visible pud_t xen_make_pud(pudval_t pud)
 438{
 439        pud = pte_pfn_to_mfn(pud);
 440
 441        return native_make_pud(pud);
 442}
 443PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 444
 445static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 446{
 447        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 448        unsigned offset = pgd - pgd_page;
 449        pgd_t *user_ptr = NULL;
 450
 451        if (offset < pgd_index(USER_LIMIT)) {
 452                struct page *page = virt_to_page(pgd_page);
 453                user_ptr = (pgd_t *)page->private;
 454                if (user_ptr)
 455                        user_ptr += offset;
 456        }
 457
 458        return user_ptr;
 459}
 460
 461static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 462{
 463        struct mmu_update u;
 464
 465        u.ptr = virt_to_machine(ptr).maddr;
 466        u.val = p4d_val_ma(val);
 467        xen_extend_mmu_update(&u);
 468}
 469
 470/*
 471 * Raw hypercall-based set_p4d, intended for in early boot before
 472 * there's a page structure.  This implies:
 473 *  1. The only existing pagetable is the kernel's
 474 *  2. It is always pinned
 475 *  3. It has no user pagetable attached to it
 476 */
 477static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 478{
 479        preempt_disable();
 480
 481        xen_mc_batch();
 482
 483        __xen_set_p4d_hyper(ptr, val);
 484
 485        xen_mc_issue(PARAVIRT_LAZY_MMU);
 486
 487        preempt_enable();
 488}
 489
 490static void xen_set_p4d(p4d_t *ptr, p4d_t val)
 491{
 492        pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
 493        pgd_t pgd_val;
 494
 495        trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
 496
 497        /* If page is not pinned, we can just update the entry
 498           directly */
 499        if (!xen_page_pinned(ptr)) {
 500                *ptr = val;
 501                if (user_ptr) {
 502                        WARN_ON(xen_page_pinned(user_ptr));
 503                        pgd_val.pgd = p4d_val_ma(val);
 504                        *user_ptr = pgd_val;
 505                }
 506                return;
 507        }
 508
 509        /* If it's pinned, then we can at least batch the kernel and
 510           user updates together. */
 511        xen_mc_batch();
 512
 513        __xen_set_p4d_hyper(ptr, val);
 514        if (user_ptr)
 515                __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
 516
 517        xen_mc_issue(PARAVIRT_LAZY_MMU);
 518}
 519
 520#if CONFIG_PGTABLE_LEVELS >= 5
 521__visible p4dval_t xen_p4d_val(p4d_t p4d)
 522{
 523        return pte_mfn_to_pfn(p4d.p4d);
 524}
 525PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
 526
 527__visible p4d_t xen_make_p4d(p4dval_t p4d)
 528{
 529        p4d = pte_pfn_to_mfn(p4d);
 530
 531        return native_make_p4d(p4d);
 532}
 533PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
 534#endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
 535
 536static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
 537                         void (*func)(struct mm_struct *mm, struct page *,
 538                                      enum pt_level),
 539                         bool last, unsigned long limit)
 540{
 541        int i, nr;
 542
 543        nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
 544        for (i = 0; i < nr; i++) {
 545                if (!pmd_none(pmd[i]))
 546                        (*func)(mm, pmd_page(pmd[i]), PT_PTE);
 547        }
 548}
 549
 550static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
 551                         void (*func)(struct mm_struct *mm, struct page *,
 552                                      enum pt_level),
 553                         bool last, unsigned long limit)
 554{
 555        int i, nr;
 556
 557        nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
 558        for (i = 0; i < nr; i++) {
 559                pmd_t *pmd;
 560
 561                if (pud_none(pud[i]))
 562                        continue;
 563
 564                pmd = pmd_offset(&pud[i], 0);
 565                if (PTRS_PER_PMD > 1)
 566                        (*func)(mm, virt_to_page(pmd), PT_PMD);
 567                xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
 568        }
 569}
 570
 571static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
 572                         void (*func)(struct mm_struct *mm, struct page *,
 573                                      enum pt_level),
 574                         bool last, unsigned long limit)
 575{
 576        pud_t *pud;
 577
 578
 579        if (p4d_none(*p4d))
 580                return;
 581
 582        pud = pud_offset(p4d, 0);
 583        if (PTRS_PER_PUD > 1)
 584                (*func)(mm, virt_to_page(pud), PT_PUD);
 585        xen_pud_walk(mm, pud, func, last, limit);
 586}
 587
 588/*
 589 * (Yet another) pagetable walker.  This one is intended for pinning a
 590 * pagetable.  This means that it walks a pagetable and calls the
 591 * callback function on each page it finds making up the page table,
 592 * at every level.  It walks the entire pagetable, but it only bothers
 593 * pinning pte pages which are below limit.  In the normal case this
 594 * will be STACK_TOP_MAX, but at boot we need to pin up to
 595 * FIXADDR_TOP.
 596 *
 597 * We must skip the Xen hole in the middle of the address space, just after
 598 * the big x86-64 virtual hole.
 599 */
 600static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 601                           void (*func)(struct mm_struct *mm, struct page *,
 602                                        enum pt_level),
 603                           unsigned long limit)
 604{
 605        int i, nr;
 606        unsigned hole_low = 0, hole_high = 0;
 607
 608        /* The limit is the last byte to be touched */
 609        limit--;
 610        BUG_ON(limit >= FIXADDR_TOP);
 611
 612        /*
 613         * 64-bit has a great big hole in the middle of the address
 614         * space, which contains the Xen mappings.
 615         */
 616        hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
 617        hole_high = pgd_index(GUARD_HOLE_END_ADDR);
 618
 619        nr = pgd_index(limit) + 1;
 620        for (i = 0; i < nr; i++) {
 621                p4d_t *p4d;
 622
 623                if (i >= hole_low && i < hole_high)
 624                        continue;
 625
 626                if (pgd_none(pgd[i]))
 627                        continue;
 628
 629                p4d = p4d_offset(&pgd[i], 0);
 630                xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
 631        }
 632
 633        /* Do the top level last, so that the callbacks can use it as
 634           a cue to do final things like tlb flushes. */
 635        (*func)(mm, virt_to_page(pgd), PT_PGD);
 636}
 637
 638static void xen_pgd_walk(struct mm_struct *mm,
 639                         void (*func)(struct mm_struct *mm, struct page *,
 640                                      enum pt_level),
 641                         unsigned long limit)
 642{
 643        __xen_pgd_walk(mm, mm->pgd, func, limit);
 644}
 645
 646/* If we're using split pte locks, then take the page's lock and
 647   return a pointer to it.  Otherwise return NULL. */
 648static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 649{
 650        spinlock_t *ptl = NULL;
 651
 652#if USE_SPLIT_PTE_PTLOCKS
 653        ptl = ptlock_ptr(page);
 654        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 655#endif
 656
 657        return ptl;
 658}
 659
 660static void xen_pte_unlock(void *v)
 661{
 662        spinlock_t *ptl = v;
 663        spin_unlock(ptl);
 664}
 665
 666static void xen_do_pin(unsigned level, unsigned long pfn)
 667{
 668        struct mmuext_op op;
 669
 670        op.cmd = level;
 671        op.arg1.mfn = pfn_to_mfn(pfn);
 672
 673        xen_extend_mmuext_op(&op);
 674}
 675
 676static void xen_pin_page(struct mm_struct *mm, struct page *page,
 677                         enum pt_level level)
 678{
 679        unsigned pgfl = TestSetPagePinned(page);
 680
 681        if (!pgfl) {
 682                void *pt = lowmem_page_address(page);
 683                unsigned long pfn = page_to_pfn(page);
 684                struct multicall_space mcs = __xen_mc_entry(0);
 685                spinlock_t *ptl;
 686
 687                /*
 688                 * We need to hold the pagetable lock between the time
 689                 * we make the pagetable RO and when we actually pin
 690                 * it.  If we don't, then other users may come in and
 691                 * attempt to update the pagetable by writing it,
 692                 * which will fail because the memory is RO but not
 693                 * pinned, so Xen won't do the trap'n'emulate.
 694                 *
 695                 * If we're using split pte locks, we can't hold the
 696                 * entire pagetable's worth of locks during the
 697                 * traverse, because we may wrap the preempt count (8
 698                 * bits).  The solution is to mark RO and pin each PTE
 699                 * page while holding the lock.  This means the number
 700                 * of locks we end up holding is never more than a
 701                 * batch size (~32 entries, at present).
 702                 *
 703                 * If we're not using split pte locks, we needn't pin
 704                 * the PTE pages independently, because we're
 705                 * protected by the overall pagetable lock.
 706                 */
 707                ptl = NULL;
 708                if (level == PT_PTE)
 709                        ptl = xen_pte_lock(page, mm);
 710
 711                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 712                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 713                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 714
 715                if (ptl) {
 716                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 717
 718                        /* Queue a deferred unlock for when this batch
 719                           is completed. */
 720                        xen_mc_callback(xen_pte_unlock, ptl);
 721                }
 722        }
 723}
 724
 725/* This is called just after a mm has been created, but it has not
 726   been used yet.  We need to make sure that its pagetable is all
 727   read-only, and can be pinned. */
 728static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 729{
 730        pgd_t *user_pgd = xen_get_user_pgd(pgd);
 731
 732        trace_xen_mmu_pgd_pin(mm, pgd);
 733
 734        xen_mc_batch();
 735
 736        __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
 737
 738        xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 739
 740        if (user_pgd) {
 741                xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 742                xen_do_pin(MMUEXT_PIN_L4_TABLE,
 743                           PFN_DOWN(__pa(user_pgd)));
 744        }
 745
 746        xen_mc_issue(0);
 747}
 748
 749static void xen_pgd_pin(struct mm_struct *mm)
 750{
 751        __xen_pgd_pin(mm, mm->pgd);
 752}
 753
 754/*
 755 * On save, we need to pin all pagetables to make sure they get their
 756 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 757 * them (unpinned pgds are not currently in use, probably because the
 758 * process is under construction or destruction).
 759 *
 760 * Expected to be called in stop_machine() ("equivalent to taking
 761 * every spinlock in the system"), so the locking doesn't really
 762 * matter all that much.
 763 */
 764void xen_mm_pin_all(void)
 765{
 766        struct page *page;
 767
 768        spin_lock(&pgd_lock);
 769
 770        list_for_each_entry(page, &pgd_list, lru) {
 771                if (!PagePinned(page)) {
 772                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 773                        SetPageSavePinned(page);
 774                }
 775        }
 776
 777        spin_unlock(&pgd_lock);
 778}
 779
 780static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 781                                   enum pt_level level)
 782{
 783        SetPagePinned(page);
 784}
 785
 786/*
 787 * The init_mm pagetable is really pinned as soon as its created, but
 788 * that's before we have page structures to store the bits.  So do all
 789 * the book-keeping now once struct pages for allocated pages are
 790 * initialized. This happens only after memblock_free_all() is called.
 791 */
 792static void __init xen_after_bootmem(void)
 793{
 794        static_branch_enable(&xen_struct_pages_ready);
 795#ifdef CONFIG_X86_VSYSCALL_EMULATION
 796        SetPagePinned(virt_to_page(level3_user_vsyscall));
 797#endif
 798        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 799}
 800
 801static void xen_unpin_page(struct mm_struct *mm, struct page *page,
 802                           enum pt_level level)
 803{
 804        unsigned pgfl = TestClearPagePinned(page);
 805
 806        if (pgfl) {
 807                void *pt = lowmem_page_address(page);
 808                unsigned long pfn = page_to_pfn(page);
 809                spinlock_t *ptl = NULL;
 810                struct multicall_space mcs;
 811
 812                /*
 813                 * Do the converse to pin_page.  If we're using split
 814                 * pte locks, we must be holding the lock for while
 815                 * the pte page is unpinned but still RO to prevent
 816                 * concurrent updates from seeing it in this
 817                 * partially-pinned state.
 818                 */
 819                if (level == PT_PTE) {
 820                        ptl = xen_pte_lock(page, mm);
 821
 822                        if (ptl)
 823                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 824                }
 825
 826                mcs = __xen_mc_entry(0);
 827
 828                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 829                                        pfn_pte(pfn, PAGE_KERNEL),
 830                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 831
 832                if (ptl) {
 833                        /* unlock when batch completed */
 834                        xen_mc_callback(xen_pte_unlock, ptl);
 835                }
 836        }
 837}
 838
 839/* Release a pagetables pages back as normal RW */
 840static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 841{
 842        pgd_t *user_pgd = xen_get_user_pgd(pgd);
 843
 844        trace_xen_mmu_pgd_unpin(mm, pgd);
 845
 846        xen_mc_batch();
 847
 848        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 849
 850        if (user_pgd) {
 851                xen_do_pin(MMUEXT_UNPIN_TABLE,
 852                           PFN_DOWN(__pa(user_pgd)));
 853                xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 854        }
 855
 856        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 857
 858        xen_mc_issue(0);
 859}
 860
 861static void xen_pgd_unpin(struct mm_struct *mm)
 862{
 863        __xen_pgd_unpin(mm, mm->pgd);
 864}
 865
 866/*
 867 * On resume, undo any pinning done at save, so that the rest of the
 868 * kernel doesn't see any unexpected pinned pagetables.
 869 */
 870void xen_mm_unpin_all(void)
 871{
 872        struct page *page;
 873
 874        spin_lock(&pgd_lock);
 875
 876        list_for_each_entry(page, &pgd_list, lru) {
 877                if (PageSavePinned(page)) {
 878                        BUG_ON(!PagePinned(page));
 879                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 880                        ClearPageSavePinned(page);
 881                }
 882        }
 883
 884        spin_unlock(&pgd_lock);
 885}
 886
 887static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 888{
 889        spin_lock(&next->page_table_lock);
 890        xen_pgd_pin(next);
 891        spin_unlock(&next->page_table_lock);
 892}
 893
 894static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 895{
 896        spin_lock(&mm->page_table_lock);
 897        xen_pgd_pin(mm);
 898        spin_unlock(&mm->page_table_lock);
 899}
 900
 901static void drop_mm_ref_this_cpu(void *info)
 902{
 903        struct mm_struct *mm = info;
 904
 905        if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
 906                leave_mm(smp_processor_id());
 907
 908        /*
 909         * If this cpu still has a stale cr3 reference, then make sure
 910         * it has been flushed.
 911         */
 912        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
 913                xen_mc_flush();
 914}
 915
 916#ifdef CONFIG_SMP
 917/*
 918 * Another cpu may still have their %cr3 pointing at the pagetable, so
 919 * we need to repoint it somewhere else before we can unpin it.
 920 */
 921static void xen_drop_mm_ref(struct mm_struct *mm)
 922{
 923        cpumask_var_t mask;
 924        unsigned cpu;
 925
 926        drop_mm_ref_this_cpu(mm);
 927
 928        /* Get the "official" set of cpus referring to our pagetable. */
 929        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
 930                for_each_online_cpu(cpu) {
 931                        if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
 932                                continue;
 933                        smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
 934                }
 935                return;
 936        }
 937
 938        /*
 939         * It's possible that a vcpu may have a stale reference to our
 940         * cr3, because its in lazy mode, and it hasn't yet flushed
 941         * its set of pending hypercalls yet.  In this case, we can
 942         * look at its actual current cr3 value, and force it to flush
 943         * if needed.
 944         */
 945        cpumask_clear(mask);
 946        for_each_online_cpu(cpu) {
 947                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
 948                        cpumask_set_cpu(cpu, mask);
 949        }
 950
 951        smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
 952        free_cpumask_var(mask);
 953}
 954#else
 955static void xen_drop_mm_ref(struct mm_struct *mm)
 956{
 957        drop_mm_ref_this_cpu(mm);
 958}
 959#endif
 960
 961/*
 962 * While a process runs, Xen pins its pagetables, which means that the
 963 * hypervisor forces it to be read-only, and it controls all updates
 964 * to it.  This means that all pagetable updates have to go via the
 965 * hypervisor, which is moderately expensive.
 966 *
 967 * Since we're pulling the pagetable down, we switch to use init_mm,
 968 * unpin old process pagetable and mark it all read-write, which
 969 * allows further operations on it to be simple memory accesses.
 970 *
 971 * The only subtle point is that another CPU may be still using the
 972 * pagetable because of lazy tlb flushing.  This means we need need to
 973 * switch all CPUs off this pagetable before we can unpin it.
 974 */
 975static void xen_exit_mmap(struct mm_struct *mm)
 976{
 977        get_cpu();              /* make sure we don't move around */
 978        xen_drop_mm_ref(mm);
 979        put_cpu();
 980
 981        spin_lock(&mm->page_table_lock);
 982
 983        /* pgd may not be pinned in the error exit path of execve */
 984        if (xen_page_pinned(mm->pgd))
 985                xen_pgd_unpin(mm);
 986
 987        spin_unlock(&mm->page_table_lock);
 988}
 989
 990static void xen_post_allocator_init(void);
 991
 992static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
 993{
 994        struct mmuext_op op;
 995
 996        op.cmd = cmd;
 997        op.arg1.mfn = pfn_to_mfn(pfn);
 998        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
 999                BUG();
1000}
1001
1002static void __init xen_cleanhighmap(unsigned long vaddr,
1003                                    unsigned long vaddr_end)
1004{
1005        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1006        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1007
1008        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1009         * We include the PMD passed in on _both_ boundaries. */
1010        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1011                        pmd++, vaddr += PMD_SIZE) {
1012                if (pmd_none(*pmd))
1013                        continue;
1014                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1015                        set_pmd(pmd, __pmd(0));
1016        }
1017        /* In case we did something silly, we should crash in this function
1018         * instead of somewhere later and be confusing. */
1019        xen_mc_flush();
1020}
1021
1022/*
1023 * Make a page range writeable and free it.
1024 */
1025static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1026{
1027        void *vaddr = __va(paddr);
1028        void *vaddr_end = vaddr + size;
1029
1030        for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1031                make_lowmem_page_readwrite(vaddr);
1032
1033        memblock_phys_free(paddr, size);
1034}
1035
1036static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1037{
1038        unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1039
1040        if (unpin)
1041                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1042        ClearPagePinned(virt_to_page(__va(pa)));
1043        xen_free_ro_pages(pa, PAGE_SIZE);
1044}
1045
1046static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1047{
1048        unsigned long pa;
1049        pte_t *pte_tbl;
1050        int i;
1051
1052        if (pmd_large(*pmd)) {
1053                pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1054                xen_free_ro_pages(pa, PMD_SIZE);
1055                return;
1056        }
1057
1058        pte_tbl = pte_offset_kernel(pmd, 0);
1059        for (i = 0; i < PTRS_PER_PTE; i++) {
1060                if (pte_none(pte_tbl[i]))
1061                        continue;
1062                pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1063                xen_free_ro_pages(pa, PAGE_SIZE);
1064        }
1065        set_pmd(pmd, __pmd(0));
1066        xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1067}
1068
1069static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1070{
1071        unsigned long pa;
1072        pmd_t *pmd_tbl;
1073        int i;
1074
1075        if (pud_large(*pud)) {
1076                pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1077                xen_free_ro_pages(pa, PUD_SIZE);
1078                return;
1079        }
1080
1081        pmd_tbl = pmd_offset(pud, 0);
1082        for (i = 0; i < PTRS_PER_PMD; i++) {
1083                if (pmd_none(pmd_tbl[i]))
1084                        continue;
1085                xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1086        }
1087        set_pud(pud, __pud(0));
1088        xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1089}
1090
1091static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1092{
1093        unsigned long pa;
1094        pud_t *pud_tbl;
1095        int i;
1096
1097        if (p4d_large(*p4d)) {
1098                pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1099                xen_free_ro_pages(pa, P4D_SIZE);
1100                return;
1101        }
1102
1103        pud_tbl = pud_offset(p4d, 0);
1104        for (i = 0; i < PTRS_PER_PUD; i++) {
1105                if (pud_none(pud_tbl[i]))
1106                        continue;
1107                xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1108        }
1109        set_p4d(p4d, __p4d(0));
1110        xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1111}
1112
1113/*
1114 * Since it is well isolated we can (and since it is perhaps large we should)
1115 * also free the page tables mapping the initial P->M table.
1116 */
1117static void __init xen_cleanmfnmap(unsigned long vaddr)
1118{
1119        pgd_t *pgd;
1120        p4d_t *p4d;
1121        bool unpin;
1122
1123        unpin = (vaddr == 2 * PGDIR_SIZE);
1124        vaddr &= PMD_MASK;
1125        pgd = pgd_offset_k(vaddr);
1126        p4d = p4d_offset(pgd, 0);
1127        if (!p4d_none(*p4d))
1128                xen_cleanmfnmap_p4d(p4d, unpin);
1129}
1130
1131static void __init xen_pagetable_p2m_free(void)
1132{
1133        unsigned long size;
1134        unsigned long addr;
1135
1136        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1137
1138        /* No memory or already called. */
1139        if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1140                return;
1141
1142        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1143        memset((void *)xen_start_info->mfn_list, 0xff, size);
1144
1145        addr = xen_start_info->mfn_list;
1146        /*
1147         * We could be in __ka space.
1148         * We roundup to the PMD, which means that if anybody at this stage is
1149         * using the __ka address of xen_start_info or
1150         * xen_start_info->shared_info they are in going to crash. Fortunately
1151         * we have already revectored in xen_setup_kernel_pagetable.
1152         */
1153        size = roundup(size, PMD_SIZE);
1154
1155        if (addr >= __START_KERNEL_map) {
1156                xen_cleanhighmap(addr, addr + size);
1157                size = PAGE_ALIGN(xen_start_info->nr_pages *
1158                                  sizeof(unsigned long));
1159                memblock_free((void *)addr, size);
1160        } else {
1161                xen_cleanmfnmap(addr);
1162        }
1163}
1164
1165static void __init xen_pagetable_cleanhighmap(void)
1166{
1167        unsigned long size;
1168        unsigned long addr;
1169
1170        /* At this stage, cleanup_highmap has already cleaned __ka space
1171         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1172         * the ramdisk). We continue on, erasing PMD entries that point to page
1173         * tables - do note that they are accessible at this stage via __va.
1174         * As Xen is aligning the memory end to a 4MB boundary, for good
1175         * measure we also round up to PMD_SIZE * 2 - which means that if
1176         * anybody is using __ka address to the initial boot-stack - and try
1177         * to use it - they are going to crash. The xen_start_info has been
1178         * taken care of already in xen_setup_kernel_pagetable. */
1179        addr = xen_start_info->pt_base;
1180        size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1181
1182        xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1183        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1184}
1185
1186static void __init xen_pagetable_p2m_setup(void)
1187{
1188        xen_vmalloc_p2m_tree();
1189
1190        xen_pagetable_p2m_free();
1191
1192        xen_pagetable_cleanhighmap();
1193
1194        /* And revector! Bye bye old array */
1195        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1196}
1197
1198static void __init xen_pagetable_init(void)
1199{
1200        /*
1201         * The majority of further PTE writes is to pagetables already
1202         * announced as such to Xen. Hence it is more efficient to use
1203         * hypercalls for these updates.
1204         */
1205        pv_ops.mmu.set_pte = __xen_set_pte;
1206
1207        paging_init();
1208        xen_post_allocator_init();
1209
1210        xen_pagetable_p2m_setup();
1211
1212        /* Allocate and initialize top and mid mfn levels for p2m structure */
1213        xen_build_mfn_list_list();
1214
1215        /* Remap memory freed due to conflicts with E820 map */
1216        xen_remap_memory();
1217        xen_setup_mfn_list_list();
1218}
1219
1220static noinstr void xen_write_cr2(unsigned long cr2)
1221{
1222        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1223}
1224
1225static noinline void xen_flush_tlb(void)
1226{
1227        struct mmuext_op *op;
1228        struct multicall_space mcs;
1229
1230        preempt_disable();
1231
1232        mcs = xen_mc_entry(sizeof(*op));
1233
1234        op = mcs.args;
1235        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1236        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1237
1238        xen_mc_issue(PARAVIRT_LAZY_MMU);
1239
1240        preempt_enable();
1241}
1242
1243static void xen_flush_tlb_one_user(unsigned long addr)
1244{
1245        struct mmuext_op *op;
1246        struct multicall_space mcs;
1247
1248        trace_xen_mmu_flush_tlb_one_user(addr);
1249
1250        preempt_disable();
1251
1252        mcs = xen_mc_entry(sizeof(*op));
1253        op = mcs.args;
1254        op->cmd = MMUEXT_INVLPG_LOCAL;
1255        op->arg1.linear_addr = addr & PAGE_MASK;
1256        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1257
1258        xen_mc_issue(PARAVIRT_LAZY_MMU);
1259
1260        preempt_enable();
1261}
1262
1263static void xen_flush_tlb_multi(const struct cpumask *cpus,
1264                                const struct flush_tlb_info *info)
1265{
1266        struct {
1267                struct mmuext_op op;
1268                DECLARE_BITMAP(mask, NR_CPUS);
1269        } *args;
1270        struct multicall_space mcs;
1271        const size_t mc_entry_size = sizeof(args->op) +
1272                sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1273
1274        trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1275
1276        if (cpumask_empty(cpus))
1277                return;         /* nothing to do */
1278
1279        mcs = xen_mc_entry(mc_entry_size);
1280        args = mcs.args;
1281        args->op.arg2.vcpumask = to_cpumask(args->mask);
1282
1283        /* Remove any offline CPUs */
1284        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1285
1286        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1287        if (info->end != TLB_FLUSH_ALL &&
1288            (info->end - info->start) <= PAGE_SIZE) {
1289                args->op.cmd = MMUEXT_INVLPG_MULTI;
1290                args->op.arg1.linear_addr = info->start;
1291        }
1292
1293        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1294
1295        xen_mc_issue(PARAVIRT_LAZY_MMU);
1296}
1297
1298static unsigned long xen_read_cr3(void)
1299{
1300        return this_cpu_read(xen_cr3);
1301}
1302
1303static void set_current_cr3(void *v)
1304{
1305        this_cpu_write(xen_current_cr3, (unsigned long)v);
1306}
1307
1308static void __xen_write_cr3(bool kernel, unsigned long cr3)
1309{
1310        struct mmuext_op op;
1311        unsigned long mfn;
1312
1313        trace_xen_mmu_write_cr3(kernel, cr3);
1314
1315        if (cr3)
1316                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1317        else
1318                mfn = 0;
1319
1320        WARN_ON(mfn == 0 && kernel);
1321
1322        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1323        op.arg1.mfn = mfn;
1324
1325        xen_extend_mmuext_op(&op);
1326
1327        if (kernel) {
1328                this_cpu_write(xen_cr3, cr3);
1329
1330                /* Update xen_current_cr3 once the batch has actually
1331                   been submitted. */
1332                xen_mc_callback(set_current_cr3, (void *)cr3);
1333        }
1334}
1335static void xen_write_cr3(unsigned long cr3)
1336{
1337        pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1338
1339        BUG_ON(preemptible());
1340
1341        xen_mc_batch();  /* disables interrupts */
1342
1343        /* Update while interrupts are disabled, so its atomic with
1344           respect to ipis */
1345        this_cpu_write(xen_cr3, cr3);
1346
1347        __xen_write_cr3(true, cr3);
1348
1349        if (user_pgd)
1350                __xen_write_cr3(false, __pa(user_pgd));
1351        else
1352                __xen_write_cr3(false, 0);
1353
1354        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1355}
1356
1357/*
1358 * At the start of the day - when Xen launches a guest, it has already
1359 * built pagetables for the guest. We diligently look over them
1360 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1361 * init_top_pgt and its friends. Then when we are happy we load
1362 * the new init_top_pgt - and continue on.
1363 *
1364 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1365 * up the rest of the pagetables. When it has completed it loads the cr3.
1366 * N.B. that baremetal would start at 'start_kernel' (and the early
1367 * #PF handler would create bootstrap pagetables) - so we are running
1368 * with the same assumptions as what to do when write_cr3 is executed
1369 * at this point.
1370 *
1371 * Since there are no user-page tables at all, we have two variants
1372 * of xen_write_cr3 - the early bootup (this one), and the late one
1373 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1374 * the Linux kernel and user-space are both in ring 3 while the
1375 * hypervisor is in ring 0.
1376 */
1377static void __init xen_write_cr3_init(unsigned long cr3)
1378{
1379        BUG_ON(preemptible());
1380
1381        xen_mc_batch();  /* disables interrupts */
1382
1383        /* Update while interrupts are disabled, so its atomic with
1384           respect to ipis */
1385        this_cpu_write(xen_cr3, cr3);
1386
1387        __xen_write_cr3(true, cr3);
1388
1389        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1390}
1391
1392static int xen_pgd_alloc(struct mm_struct *mm)
1393{
1394        pgd_t *pgd = mm->pgd;
1395        struct page *page = virt_to_page(pgd);
1396        pgd_t *user_pgd;
1397        int ret = -ENOMEM;
1398
1399        BUG_ON(PagePinned(virt_to_page(pgd)));
1400        BUG_ON(page->private != 0);
1401
1402        user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1403        page->private = (unsigned long)user_pgd;
1404
1405        if (user_pgd != NULL) {
1406#ifdef CONFIG_X86_VSYSCALL_EMULATION
1407                user_pgd[pgd_index(VSYSCALL_ADDR)] =
1408                        __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1409#endif
1410                ret = 0;
1411        }
1412
1413        BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1414
1415        return ret;
1416}
1417
1418static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1419{
1420        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1421
1422        if (user_pgd)
1423                free_page((unsigned long)user_pgd);
1424}
1425
1426/*
1427 * Init-time set_pte while constructing initial pagetables, which
1428 * doesn't allow RO page table pages to be remapped RW.
1429 *
1430 * If there is no MFN for this PFN then this page is initially
1431 * ballooned out so clear the PTE (as in decrease_reservation() in
1432 * drivers/xen/balloon.c).
1433 *
1434 * Many of these PTE updates are done on unpinned and writable pages
1435 * and doing a hypercall for these is unnecessary and expensive.  At
1436 * this point it is rarely possible to tell if a page is pinned, so
1437 * mostly write the PTE directly and rely on Xen trapping and
1438 * emulating any updates as necessary.
1439 */
1440static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1441{
1442        if (unlikely(is_early_ioremap_ptep(ptep)))
1443                __xen_set_pte(ptep, pte);
1444        else
1445                native_set_pte(ptep, pte);
1446}
1447
1448__visible pte_t xen_make_pte_init(pteval_t pte)
1449{
1450        unsigned long pfn;
1451
1452        /*
1453         * Pages belonging to the initial p2m list mapped outside the default
1454         * address range must be mapped read-only. This region contains the
1455         * page tables for mapping the p2m list, too, and page tables MUST be
1456         * mapped read-only.
1457         */
1458        pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1459        if (xen_start_info->mfn_list < __START_KERNEL_map &&
1460            pfn >= xen_start_info->first_p2m_pfn &&
1461            pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1462                pte &= ~_PAGE_RW;
1463
1464        pte = pte_pfn_to_mfn(pte);
1465        return native_make_pte(pte);
1466}
1467PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1468
1469/* Early in boot, while setting up the initial pagetable, assume
1470   everything is pinned. */
1471static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1472{
1473#ifdef CONFIG_FLATMEM
1474        BUG_ON(mem_map);        /* should only be used early */
1475#endif
1476        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1477        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1478}
1479
1480/* Used for pmd and pud */
1481static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1482{
1483#ifdef CONFIG_FLATMEM
1484        BUG_ON(mem_map);        /* should only be used early */
1485#endif
1486        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1487}
1488
1489/* Early release_pte assumes that all pts are pinned, since there's
1490   only init_mm and anything attached to that is pinned. */
1491static void __init xen_release_pte_init(unsigned long pfn)
1492{
1493        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1494        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1495}
1496
1497static void __init xen_release_pmd_init(unsigned long pfn)
1498{
1499        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1500}
1501
1502static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1503{
1504        struct multicall_space mcs;
1505        struct mmuext_op *op;
1506
1507        mcs = __xen_mc_entry(sizeof(*op));
1508        op = mcs.args;
1509        op->cmd = cmd;
1510        op->arg1.mfn = pfn_to_mfn(pfn);
1511
1512        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1513}
1514
1515static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1516{
1517        struct multicall_space mcs;
1518        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1519
1520        mcs = __xen_mc_entry(0);
1521        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1522                                pfn_pte(pfn, prot), 0);
1523}
1524
1525/* This needs to make sure the new pte page is pinned iff its being
1526   attached to a pinned pagetable. */
1527static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1528                                    unsigned level)
1529{
1530        bool pinned = xen_page_pinned(mm->pgd);
1531
1532        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1533
1534        if (pinned) {
1535                struct page *page = pfn_to_page(pfn);
1536
1537                pinned = false;
1538                if (static_branch_likely(&xen_struct_pages_ready)) {
1539                        pinned = PagePinned(page);
1540                        SetPagePinned(page);
1541                }
1542
1543                xen_mc_batch();
1544
1545                __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1546
1547                if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1548                        __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1549
1550                xen_mc_issue(PARAVIRT_LAZY_MMU);
1551        }
1552}
1553
1554static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1555{
1556        xen_alloc_ptpage(mm, pfn, PT_PTE);
1557}
1558
1559static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1560{
1561        xen_alloc_ptpage(mm, pfn, PT_PMD);
1562}
1563
1564/* This should never happen until we're OK to use struct page */
1565static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1566{
1567        struct page *page = pfn_to_page(pfn);
1568        bool pinned = PagePinned(page);
1569
1570        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1571
1572        if (pinned) {
1573                xen_mc_batch();
1574
1575                if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1576                        __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1577
1578                __set_pfn_prot(pfn, PAGE_KERNEL);
1579
1580                xen_mc_issue(PARAVIRT_LAZY_MMU);
1581
1582                ClearPagePinned(page);
1583        }
1584}
1585
1586static void xen_release_pte(unsigned long pfn)
1587{
1588        xen_release_ptpage(pfn, PT_PTE);
1589}
1590
1591static void xen_release_pmd(unsigned long pfn)
1592{
1593        xen_release_ptpage(pfn, PT_PMD);
1594}
1595
1596static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1597{
1598        xen_alloc_ptpage(mm, pfn, PT_PUD);
1599}
1600
1601static void xen_release_pud(unsigned long pfn)
1602{
1603        xen_release_ptpage(pfn, PT_PUD);
1604}
1605
1606/*
1607 * Like __va(), but returns address in the kernel mapping (which is
1608 * all we have until the physical memory mapping has been set up.
1609 */
1610static void * __init __ka(phys_addr_t paddr)
1611{
1612        return (void *)(paddr + __START_KERNEL_map);
1613}
1614
1615/* Convert a machine address to physical address */
1616static unsigned long __init m2p(phys_addr_t maddr)
1617{
1618        phys_addr_t paddr;
1619
1620        maddr &= XEN_PTE_MFN_MASK;
1621        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1622
1623        return paddr;
1624}
1625
1626/* Convert a machine address to kernel virtual */
1627static void * __init m2v(phys_addr_t maddr)
1628{
1629        return __ka(m2p(maddr));
1630}
1631
1632/* Set the page permissions on an identity-mapped pages */
1633static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1634                                       unsigned long flags)
1635{
1636        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1637        pte_t pte = pfn_pte(pfn, prot);
1638
1639        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1640                BUG();
1641}
1642static void __init set_page_prot(void *addr, pgprot_t prot)
1643{
1644        return set_page_prot_flags(addr, prot, UVMF_NONE);
1645}
1646
1647void __init xen_setup_machphys_mapping(void)
1648{
1649        struct xen_machphys_mapping mapping;
1650
1651        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1652                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1653                machine_to_phys_nr = mapping.max_mfn + 1;
1654        } else {
1655                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1656        }
1657}
1658
1659static void __init convert_pfn_mfn(void *v)
1660{
1661        pte_t *pte = v;
1662        int i;
1663
1664        /* All levels are converted the same way, so just treat them
1665           as ptes. */
1666        for (i = 0; i < PTRS_PER_PTE; i++)
1667                pte[i] = xen_make_pte(pte[i].pte);
1668}
1669static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1670                                 unsigned long addr)
1671{
1672        if (*pt_base == PFN_DOWN(__pa(addr))) {
1673                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1674                clear_page((void *)addr);
1675                (*pt_base)++;
1676        }
1677        if (*pt_end == PFN_DOWN(__pa(addr))) {
1678                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1679                clear_page((void *)addr);
1680                (*pt_end)--;
1681        }
1682}
1683/*
1684 * Set up the initial kernel pagetable.
1685 *
1686 * We can construct this by grafting the Xen provided pagetable into
1687 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1688 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1689 * kernel has a physical mapping to start with - but that's enough to
1690 * get __va working.  We need to fill in the rest of the physical
1691 * mapping once some sort of allocator has been set up.
1692 */
1693void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1694{
1695        pud_t *l3;
1696        pmd_t *l2;
1697        unsigned long addr[3];
1698        unsigned long pt_base, pt_end;
1699        unsigned i;
1700
1701        /* max_pfn_mapped is the last pfn mapped in the initial memory
1702         * mappings. Considering that on Xen after the kernel mappings we
1703         * have the mappings of some pages that don't exist in pfn space, we
1704         * set max_pfn_mapped to the last real pfn mapped. */
1705        if (xen_start_info->mfn_list < __START_KERNEL_map)
1706                max_pfn_mapped = xen_start_info->first_p2m_pfn;
1707        else
1708                max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1709
1710        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1711        pt_end = pt_base + xen_start_info->nr_pt_frames;
1712
1713        /* Zap identity mapping */
1714        init_top_pgt[0] = __pgd(0);
1715
1716        /* Pre-constructed entries are in pfn, so convert to mfn */
1717        /* L4[273] -> level3_ident_pgt  */
1718        /* L4[511] -> level3_kernel_pgt */
1719        convert_pfn_mfn(init_top_pgt);
1720
1721        /* L3_i[0] -> level2_ident_pgt */
1722        convert_pfn_mfn(level3_ident_pgt);
1723        /* L3_k[510] -> level2_kernel_pgt */
1724        /* L3_k[511] -> level2_fixmap_pgt */
1725        convert_pfn_mfn(level3_kernel_pgt);
1726
1727        /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1728        convert_pfn_mfn(level2_fixmap_pgt);
1729
1730        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1731        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1732        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1733
1734        addr[0] = (unsigned long)pgd;
1735        addr[1] = (unsigned long)l3;
1736        addr[2] = (unsigned long)l2;
1737        /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1738         * Both L4[273][0] and L4[511][510] have entries that point to the same
1739         * L2 (PMD) tables. Meaning that if you modify it in __va space
1740         * it will be also modified in the __ka space! (But if you just
1741         * modify the PMD table to point to other PTE's or none, then you
1742         * are OK - which is what cleanup_highmap does) */
1743        copy_page(level2_ident_pgt, l2);
1744        /* Graft it onto L4[511][510] */
1745        copy_page(level2_kernel_pgt, l2);
1746
1747        /*
1748         * Zap execute permission from the ident map. Due to the sharing of
1749         * L1 entries we need to do this in the L2.
1750         */
1751        if (__supported_pte_mask & _PAGE_NX) {
1752                for (i = 0; i < PTRS_PER_PMD; ++i) {
1753                        if (pmd_none(level2_ident_pgt[i]))
1754                                continue;
1755                        level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1756                }
1757        }
1758
1759        /* Copy the initial P->M table mappings if necessary. */
1760        i = pgd_index(xen_start_info->mfn_list);
1761        if (i && i < pgd_index(__START_KERNEL_map))
1762                init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1763
1764        /* Make pagetable pieces RO */
1765        set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1766        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1767        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1768        set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1769        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1770        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1771
1772        for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1773                set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1774                              PAGE_KERNEL_RO);
1775        }
1776
1777        /* Pin down new L4 */
1778        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1779                          PFN_DOWN(__pa_symbol(init_top_pgt)));
1780
1781        /* Unpin Xen-provided one */
1782        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1783
1784#ifdef CONFIG_X86_VSYSCALL_EMULATION
1785        /* Pin user vsyscall L3 */
1786        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1787        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1788                          PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1789#endif
1790
1791        /*
1792         * At this stage there can be no user pgd, and no page structure to
1793         * attach it to, so make sure we just set kernel pgd.
1794         */
1795        xen_mc_batch();
1796        __xen_write_cr3(true, __pa(init_top_pgt));
1797        xen_mc_issue(PARAVIRT_LAZY_CPU);
1798
1799        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1800         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1801         * the initial domain. For guests using the toolstack, they are in:
1802         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1803         * rip out the [L4] (pgd), but for guests we shave off three pages.
1804         */
1805        for (i = 0; i < ARRAY_SIZE(addr); i++)
1806                check_pt_base(&pt_base, &pt_end, addr[i]);
1807
1808        /* Our (by three pages) smaller Xen pagetable that we are using */
1809        xen_pt_base = PFN_PHYS(pt_base);
1810        xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1811        memblock_reserve(xen_pt_base, xen_pt_size);
1812
1813        /* Revector the xen_start_info */
1814        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1815}
1816
1817/*
1818 * Read a value from a physical address.
1819 */
1820static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1821{
1822        unsigned long *vaddr;
1823        unsigned long val;
1824
1825        vaddr = early_memremap_ro(addr, sizeof(val));
1826        val = *vaddr;
1827        early_memunmap(vaddr, sizeof(val));
1828        return val;
1829}
1830
1831/*
1832 * Translate a virtual address to a physical one without relying on mapped
1833 * page tables. Don't rely on big pages being aligned in (guest) physical
1834 * space!
1835 */
1836static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1837{
1838        phys_addr_t pa;
1839        pgd_t pgd;
1840        pud_t pud;
1841        pmd_t pmd;
1842        pte_t pte;
1843
1844        pa = read_cr3_pa();
1845        pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1846                                                       sizeof(pgd)));
1847        if (!pgd_present(pgd))
1848                return 0;
1849
1850        pa = pgd_val(pgd) & PTE_PFN_MASK;
1851        pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1852                                                       sizeof(pud)));
1853        if (!pud_present(pud))
1854                return 0;
1855        pa = pud_val(pud) & PTE_PFN_MASK;
1856        if (pud_large(pud))
1857                return pa + (vaddr & ~PUD_MASK);
1858
1859        pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1860                                                       sizeof(pmd)));
1861        if (!pmd_present(pmd))
1862                return 0;
1863        pa = pmd_val(pmd) & PTE_PFN_MASK;
1864        if (pmd_large(pmd))
1865                return pa + (vaddr & ~PMD_MASK);
1866
1867        pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1868                                                       sizeof(pte)));
1869        if (!pte_present(pte))
1870                return 0;
1871        pa = pte_pfn(pte) << PAGE_SHIFT;
1872
1873        return pa | (vaddr & ~PAGE_MASK);
1874}
1875
1876/*
1877 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1878 * this area.
1879 */
1880void __init xen_relocate_p2m(void)
1881{
1882        phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1883        unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1884        int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1885        pte_t *pt;
1886        pmd_t *pmd;
1887        pud_t *pud;
1888        pgd_t *pgd;
1889        unsigned long *new_p2m;
1890
1891        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1892        n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1893        n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1894        n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1895        n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1896        n_frames = n_pte + n_pt + n_pmd + n_pud;
1897
1898        new_area = xen_find_free_area(PFN_PHYS(n_frames));
1899        if (!new_area) {
1900                xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1901                BUG();
1902        }
1903
1904        /*
1905         * Setup the page tables for addressing the new p2m list.
1906         * We have asked the hypervisor to map the p2m list at the user address
1907         * PUD_SIZE. It may have done so, or it may have used a kernel space
1908         * address depending on the Xen version.
1909         * To avoid any possible virtual address collision, just use
1910         * 2 * PUD_SIZE for the new area.
1911         */
1912        pud_phys = new_area;
1913        pmd_phys = pud_phys + PFN_PHYS(n_pud);
1914        pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1915        p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1916
1917        pgd = __va(read_cr3_pa());
1918        new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1919        for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1920                pud = early_memremap(pud_phys, PAGE_SIZE);
1921                clear_page(pud);
1922                for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1923                                idx_pmd++) {
1924                        pmd = early_memremap(pmd_phys, PAGE_SIZE);
1925                        clear_page(pmd);
1926                        for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1927                                        idx_pt++) {
1928                                pt = early_memremap(pt_phys, PAGE_SIZE);
1929                                clear_page(pt);
1930                                for (idx_pte = 0;
1931                                     idx_pte < min(n_pte, PTRS_PER_PTE);
1932                                     idx_pte++) {
1933                                        pt[idx_pte] = pfn_pte(p2m_pfn,
1934                                                              PAGE_KERNEL);
1935                                        p2m_pfn++;
1936                                }
1937                                n_pte -= PTRS_PER_PTE;
1938                                early_memunmap(pt, PAGE_SIZE);
1939                                make_lowmem_page_readonly(__va(pt_phys));
1940                                pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1941                                                PFN_DOWN(pt_phys));
1942                                pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1943                                pt_phys += PAGE_SIZE;
1944                        }
1945                        n_pt -= PTRS_PER_PMD;
1946                        early_memunmap(pmd, PAGE_SIZE);
1947                        make_lowmem_page_readonly(__va(pmd_phys));
1948                        pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1949                                        PFN_DOWN(pmd_phys));
1950                        pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1951                        pmd_phys += PAGE_SIZE;
1952                }
1953                n_pmd -= PTRS_PER_PUD;
1954                early_memunmap(pud, PAGE_SIZE);
1955                make_lowmem_page_readonly(__va(pud_phys));
1956                pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1957                set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1958                pud_phys += PAGE_SIZE;
1959        }
1960
1961        /* Now copy the old p2m info to the new area. */
1962        memcpy(new_p2m, xen_p2m_addr, size);
1963        xen_p2m_addr = new_p2m;
1964
1965        /* Release the old p2m list and set new list info. */
1966        p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1967        BUG_ON(!p2m_pfn);
1968        p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1969
1970        if (xen_start_info->mfn_list < __START_KERNEL_map) {
1971                pfn = xen_start_info->first_p2m_pfn;
1972                pfn_end = xen_start_info->first_p2m_pfn +
1973                          xen_start_info->nr_p2m_frames;
1974                set_pgd(pgd + 1, __pgd(0));
1975        } else {
1976                pfn = p2m_pfn;
1977                pfn_end = p2m_pfn_end;
1978        }
1979
1980        memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1981        while (pfn < pfn_end) {
1982                if (pfn == p2m_pfn) {
1983                        pfn = p2m_pfn_end;
1984                        continue;
1985                }
1986                make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1987                pfn++;
1988        }
1989
1990        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1991        xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
1992        xen_start_info->nr_p2m_frames = n_frames;
1993}
1994
1995void __init xen_reserve_special_pages(void)
1996{
1997        phys_addr_t paddr;
1998
1999        memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2000        if (xen_start_info->store_mfn) {
2001                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2002                memblock_reserve(paddr, PAGE_SIZE);
2003        }
2004        if (!xen_initial_domain()) {
2005                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2006                memblock_reserve(paddr, PAGE_SIZE);
2007        }
2008}
2009
2010void __init xen_pt_check_e820(void)
2011{
2012        if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2013                xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2014                BUG();
2015        }
2016}
2017
2018static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2019
2020static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2021{
2022        pte_t pte;
2023        unsigned long vaddr;
2024
2025        phys >>= PAGE_SHIFT;
2026
2027        switch (idx) {
2028        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2029#ifdef CONFIG_X86_VSYSCALL_EMULATION
2030        case VSYSCALL_PAGE:
2031#endif
2032                /* All local page mappings */
2033                pte = pfn_pte(phys, prot);
2034                break;
2035
2036#ifdef CONFIG_X86_LOCAL_APIC
2037        case FIX_APIC_BASE:     /* maps dummy local APIC */
2038                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2039                break;
2040#endif
2041
2042#ifdef CONFIG_X86_IO_APIC
2043        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2044                /*
2045                 * We just don't map the IO APIC - all access is via
2046                 * hypercalls.  Keep the address in the pte for reference.
2047                 */
2048                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2049                break;
2050#endif
2051
2052        case FIX_PARAVIRT_BOOTMAP:
2053                /* This is an MFN, but it isn't an IO mapping from the
2054                   IO domain */
2055                pte = mfn_pte(phys, prot);
2056                break;
2057
2058        default:
2059                /* By default, set_fixmap is used for hardware mappings */
2060                pte = mfn_pte(phys, prot);
2061                break;
2062        }
2063
2064        vaddr = __fix_to_virt(idx);
2065        if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2066                BUG();
2067
2068#ifdef CONFIG_X86_VSYSCALL_EMULATION
2069        /* Replicate changes to map the vsyscall page into the user
2070           pagetable vsyscall mapping. */
2071        if (idx == VSYSCALL_PAGE)
2072                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2073#endif
2074}
2075
2076static void __init xen_post_allocator_init(void)
2077{
2078        pv_ops.mmu.set_pte = xen_set_pte;
2079        pv_ops.mmu.set_pmd = xen_set_pmd;
2080        pv_ops.mmu.set_pud = xen_set_pud;
2081        pv_ops.mmu.set_p4d = xen_set_p4d;
2082
2083        /* This will work as long as patching hasn't happened yet
2084           (which it hasn't) */
2085        pv_ops.mmu.alloc_pte = xen_alloc_pte;
2086        pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2087        pv_ops.mmu.release_pte = xen_release_pte;
2088        pv_ops.mmu.release_pmd = xen_release_pmd;
2089        pv_ops.mmu.alloc_pud = xen_alloc_pud;
2090        pv_ops.mmu.release_pud = xen_release_pud;
2091        pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2092
2093        pv_ops.mmu.write_cr3 = &xen_write_cr3;
2094}
2095
2096static void xen_leave_lazy_mmu(void)
2097{
2098        preempt_disable();
2099        xen_mc_flush();
2100        paravirt_leave_lazy_mmu();
2101        preempt_enable();
2102}
2103
2104static const typeof(pv_ops) xen_mmu_ops __initconst = {
2105        .mmu = {
2106                .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2107                .write_cr2 = xen_write_cr2,
2108
2109                .read_cr3 = xen_read_cr3,
2110                .write_cr3 = xen_write_cr3_init,
2111
2112                .flush_tlb_user = xen_flush_tlb,
2113                .flush_tlb_kernel = xen_flush_tlb,
2114                .flush_tlb_one_user = xen_flush_tlb_one_user,
2115                .flush_tlb_multi = xen_flush_tlb_multi,
2116                .tlb_remove_table = tlb_remove_table,
2117
2118                .pgd_alloc = xen_pgd_alloc,
2119                .pgd_free = xen_pgd_free,
2120
2121                .alloc_pte = xen_alloc_pte_init,
2122                .release_pte = xen_release_pte_init,
2123                .alloc_pmd = xen_alloc_pmd_init,
2124                .release_pmd = xen_release_pmd_init,
2125
2126                .set_pte = xen_set_pte_init,
2127                .set_pmd = xen_set_pmd_hyper,
2128
2129                .ptep_modify_prot_start = xen_ptep_modify_prot_start,
2130                .ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2131
2132                .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2133                .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2134
2135                .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2136                .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2137
2138                .set_pud = xen_set_pud_hyper,
2139
2140                .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2141                .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2142
2143                .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2144                .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2145                .set_p4d = xen_set_p4d_hyper,
2146
2147                .alloc_pud = xen_alloc_pmd_init,
2148                .release_pud = xen_release_pmd_init,
2149
2150#if CONFIG_PGTABLE_LEVELS >= 5
2151                .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2152                .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2153#endif
2154
2155                .activate_mm = xen_activate_mm,
2156                .dup_mmap = xen_dup_mmap,
2157                .exit_mmap = xen_exit_mmap,
2158
2159                .lazy_mode = {
2160                        .enter = paravirt_enter_lazy_mmu,
2161                        .leave = xen_leave_lazy_mmu,
2162                        .flush = paravirt_flush_lazy_mmu,
2163                },
2164
2165                .set_fixmap = xen_set_fixmap,
2166        },
2167};
2168
2169void __init xen_init_mmu_ops(void)
2170{
2171        x86_init.paging.pagetable_init = xen_pagetable_init;
2172        x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2173
2174        pv_ops.mmu = xen_mmu_ops.mmu;
2175
2176        memset(dummy_mapping, 0xff, PAGE_SIZE);
2177}
2178
2179/* Protected by xen_reservation_lock. */
2180#define MAX_CONTIG_ORDER 9 /* 2MB */
2181static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2182
2183#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2184static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2185                                unsigned long *in_frames,
2186                                unsigned long *out_frames)
2187{
2188        int i;
2189        struct multicall_space mcs;
2190
2191        xen_mc_batch();
2192        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2193                mcs = __xen_mc_entry(0);
2194
2195                if (in_frames)
2196                        in_frames[i] = virt_to_mfn(vaddr);
2197
2198                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2199                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2200
2201                if (out_frames)
2202                        out_frames[i] = virt_to_pfn(vaddr);
2203        }
2204        xen_mc_issue(0);
2205}
2206
2207/*
2208 * Update the pfn-to-mfn mappings for a virtual address range, either to
2209 * point to an array of mfns, or contiguously from a single starting
2210 * mfn.
2211 */
2212static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2213                                     unsigned long *mfns,
2214                                     unsigned long first_mfn)
2215{
2216        unsigned i, limit;
2217        unsigned long mfn;
2218
2219        xen_mc_batch();
2220
2221        limit = 1u << order;
2222        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2223                struct multicall_space mcs;
2224                unsigned flags;
2225
2226                mcs = __xen_mc_entry(0);
2227                if (mfns)
2228                        mfn = mfns[i];
2229                else
2230                        mfn = first_mfn + i;
2231
2232                if (i < (limit - 1))
2233                        flags = 0;
2234                else {
2235                        if (order == 0)
2236                                flags = UVMF_INVLPG | UVMF_ALL;
2237                        else
2238                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2239                }
2240
2241                MULTI_update_va_mapping(mcs.mc, vaddr,
2242                                mfn_pte(mfn, PAGE_KERNEL), flags);
2243
2244                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2245        }
2246
2247        xen_mc_issue(0);
2248}
2249
2250/*
2251 * Perform the hypercall to exchange a region of our pfns to point to
2252 * memory with the required contiguous alignment.  Takes the pfns as
2253 * input, and populates mfns as output.
2254 *
2255 * Returns a success code indicating whether the hypervisor was able to
2256 * satisfy the request or not.
2257 */
2258static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2259                               unsigned long *pfns_in,
2260                               unsigned long extents_out,
2261                               unsigned int order_out,
2262                               unsigned long *mfns_out,
2263                               unsigned int address_bits)
2264{
2265        long rc;
2266        int success;
2267
2268        struct xen_memory_exchange exchange = {
2269                .in = {
2270                        .nr_extents   = extents_in,
2271                        .extent_order = order_in,
2272                        .extent_start = pfns_in,
2273                        .domid        = DOMID_SELF
2274                },
2275                .out = {
2276                        .nr_extents   = extents_out,
2277                        .extent_order = order_out,
2278                        .extent_start = mfns_out,
2279                        .address_bits = address_bits,
2280                        .domid        = DOMID_SELF
2281                }
2282        };
2283
2284        BUG_ON(extents_in << order_in != extents_out << order_out);
2285
2286        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2287        success = (exchange.nr_exchanged == extents_in);
2288
2289        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2290        BUG_ON(success && (rc != 0));
2291
2292        return success;
2293}
2294
2295int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2296                                 unsigned int address_bits,
2297                                 dma_addr_t *dma_handle)
2298{
2299        unsigned long *in_frames = discontig_frames, out_frame;
2300        unsigned long  flags;
2301        int            success;
2302        unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2303
2304        /*
2305         * Currently an auto-translated guest will not perform I/O, nor will
2306         * it require PAE page directories below 4GB. Therefore any calls to
2307         * this function are redundant and can be ignored.
2308         */
2309
2310        if (unlikely(order > MAX_CONTIG_ORDER))
2311                return -ENOMEM;
2312
2313        memset((void *) vstart, 0, PAGE_SIZE << order);
2314
2315        spin_lock_irqsave(&xen_reservation_lock, flags);
2316
2317        /* 1. Zap current PTEs, remembering MFNs. */
2318        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2319
2320        /* 2. Get a new contiguous memory extent. */
2321        out_frame = virt_to_pfn(vstart);
2322        success = xen_exchange_memory(1UL << order, 0, in_frames,
2323                                      1, order, &out_frame,
2324                                      address_bits);
2325
2326        /* 3. Map the new extent in place of old pages. */
2327        if (success)
2328                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2329        else
2330                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2331
2332        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2333
2334        *dma_handle = virt_to_machine(vstart).maddr;
2335        return success ? 0 : -ENOMEM;
2336}
2337
2338void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2339{
2340        unsigned long *out_frames = discontig_frames, in_frame;
2341        unsigned long  flags;
2342        int success;
2343        unsigned long vstart;
2344
2345        if (unlikely(order > MAX_CONTIG_ORDER))
2346                return;
2347
2348        vstart = (unsigned long)phys_to_virt(pstart);
2349        memset((void *) vstart, 0, PAGE_SIZE << order);
2350
2351        spin_lock_irqsave(&xen_reservation_lock, flags);
2352
2353        /* 1. Find start MFN of contiguous extent. */
2354        in_frame = virt_to_mfn(vstart);
2355
2356        /* 2. Zap current PTEs. */
2357        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2358
2359        /* 3. Do the exchange for non-contiguous MFNs. */
2360        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2361                                        0, out_frames, 0);
2362
2363        /* 4. Map new pages in place of old pages. */
2364        if (success)
2365                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2366        else
2367                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2368
2369        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2370}
2371
2372static noinline void xen_flush_tlb_all(void)
2373{
2374        struct mmuext_op *op;
2375        struct multicall_space mcs;
2376
2377        preempt_disable();
2378
2379        mcs = xen_mc_entry(sizeof(*op));
2380
2381        op = mcs.args;
2382        op->cmd = MMUEXT_TLB_FLUSH_ALL;
2383        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2384
2385        xen_mc_issue(PARAVIRT_LAZY_MMU);
2386
2387        preempt_enable();
2388}
2389
2390#define REMAP_BATCH_SIZE 16
2391
2392struct remap_data {
2393        xen_pfn_t *pfn;
2394        bool contiguous;
2395        bool no_translate;
2396        pgprot_t prot;
2397        struct mmu_update *mmu_update;
2398};
2399
2400static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2401{
2402        struct remap_data *rmd = data;
2403        pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2404
2405        /*
2406         * If we have a contiguous range, just update the pfn itself,
2407         * else update pointer to be "next pfn".
2408         */
2409        if (rmd->contiguous)
2410                (*rmd->pfn)++;
2411        else
2412                rmd->pfn++;
2413
2414        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2415        rmd->mmu_update->ptr |= rmd->no_translate ?
2416                MMU_PT_UPDATE_NO_TRANSLATE :
2417                MMU_NORMAL_PT_UPDATE;
2418        rmd->mmu_update->val = pte_val_ma(pte);
2419        rmd->mmu_update++;
2420
2421        return 0;
2422}
2423
2424int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2425                  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2426                  unsigned int domid, bool no_translate)
2427{
2428        int err = 0;
2429        struct remap_data rmd;
2430        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2431        unsigned long range;
2432        int mapped = 0;
2433
2434        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2435
2436        rmd.pfn = pfn;
2437        rmd.prot = prot;
2438        /*
2439         * We use the err_ptr to indicate if there we are doing a contiguous
2440         * mapping or a discontiguous mapping.
2441         */
2442        rmd.contiguous = !err_ptr;
2443        rmd.no_translate = no_translate;
2444
2445        while (nr) {
2446                int index = 0;
2447                int done = 0;
2448                int batch = min(REMAP_BATCH_SIZE, nr);
2449                int batch_left = batch;
2450
2451                range = (unsigned long)batch << PAGE_SHIFT;
2452
2453                rmd.mmu_update = mmu_update;
2454                err = apply_to_page_range(vma->vm_mm, addr, range,
2455                                          remap_area_pfn_pte_fn, &rmd);
2456                if (err)
2457                        goto out;
2458
2459                /*
2460                 * We record the error for each page that gives an error, but
2461                 * continue mapping until the whole set is done
2462                 */
2463                do {
2464                        int i;
2465
2466                        err = HYPERVISOR_mmu_update(&mmu_update[index],
2467                                                    batch_left, &done, domid);
2468
2469                        /*
2470                         * @err_ptr may be the same buffer as @gfn, so
2471                         * only clear it after each chunk of @gfn is
2472                         * used.
2473                         */
2474                        if (err_ptr) {
2475                                for (i = index; i < index + done; i++)
2476                                        err_ptr[i] = 0;
2477                        }
2478                        if (err < 0) {
2479                                if (!err_ptr)
2480                                        goto out;
2481                                err_ptr[i] = err;
2482                                done++; /* Skip failed frame. */
2483                        } else
2484                                mapped += done;
2485                        batch_left -= done;
2486                        index += done;
2487                } while (batch_left);
2488
2489                nr -= batch;
2490                addr += range;
2491                if (err_ptr)
2492                        err_ptr += batch;
2493                cond_resched();
2494        }
2495out:
2496
2497        xen_flush_tlb_all();
2498
2499        return err < 0 ? err : mapped;
2500}
2501EXPORT_SYMBOL_GPL(xen_remap_pfn);
2502
2503#ifdef CONFIG_KEXEC_CORE
2504phys_addr_t paddr_vmcoreinfo_note(void)
2505{
2506        if (xen_pv_domain())
2507                return virt_to_machine(vmcoreinfo_note).maddr;
2508        else
2509                return __pa(vmcoreinfo_note);
2510}
2511#endif /* CONFIG_KEXEC_CORE */
2512