linux/drivers/gpu/drm/gma500/cdv_intel_display.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2006-2011 Intel Corporation
   4 *
   5 * Authors:
   6 *      Eric Anholt <eric@anholt.net>
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/i2c.h>
  11
  12#include <drm/drm_crtc.h>
  13
  14#include "cdv_device.h"
  15#include "framebuffer.h"
  16#include "gma_display.h"
  17#include "power.h"
  18#include "psb_drv.h"
  19#include "psb_intel_drv.h"
  20#include "psb_intel_reg.h"
  21
  22static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
  23                                  struct drm_crtc *crtc, int target,
  24                                  int refclk, struct gma_clock_t *best_clock);
  25
  26
  27#define CDV_LIMIT_SINGLE_LVDS_96        0
  28#define CDV_LIMIT_SINGLE_LVDS_100       1
  29#define CDV_LIMIT_DAC_HDMI_27           2
  30#define CDV_LIMIT_DAC_HDMI_96           3
  31#define CDV_LIMIT_DP_27                 4
  32#define CDV_LIMIT_DP_100                5
  33
  34static const struct gma_limit_t cdv_intel_limits[] = {
  35        {                       /* CDV_SINGLE_LVDS_96MHz */
  36         .dot = {.min = 20000, .max = 115500},
  37         .vco = {.min = 1800000, .max = 3600000},
  38         .n = {.min = 2, .max = 6},
  39         .m = {.min = 60, .max = 160},
  40         .m1 = {.min = 0, .max = 0},
  41         .m2 = {.min = 58, .max = 158},
  42         .p = {.min = 28, .max = 140},
  43         .p1 = {.min = 2, .max = 10},
  44         .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
  45         .find_pll = gma_find_best_pll,
  46         },
  47        {                       /* CDV_SINGLE_LVDS_100MHz */
  48         .dot = {.min = 20000, .max = 115500},
  49         .vco = {.min = 1800000, .max = 3600000},
  50         .n = {.min = 2, .max = 6},
  51         .m = {.min = 60, .max = 160},
  52         .m1 = {.min = 0, .max = 0},
  53         .m2 = {.min = 58, .max = 158},
  54         .p = {.min = 28, .max = 140},
  55         .p1 = {.min = 2, .max = 10},
  56         /* The single-channel range is 25-112Mhz, and dual-channel
  57          * is 80-224Mhz.  Prefer single channel as much as possible.
  58          */
  59         .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
  60         .find_pll = gma_find_best_pll,
  61         },
  62        {                       /* CDV_DAC_HDMI_27MHz */
  63         .dot = {.min = 20000, .max = 400000},
  64         .vco = {.min = 1809000, .max = 3564000},
  65         .n = {.min = 1, .max = 1},
  66         .m = {.min = 67, .max = 132},
  67         .m1 = {.min = 0, .max = 0},
  68         .m2 = {.min = 65, .max = 130},
  69         .p = {.min = 5, .max = 90},
  70         .p1 = {.min = 1, .max = 9},
  71         .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
  72         .find_pll = gma_find_best_pll,
  73         },
  74        {                       /* CDV_DAC_HDMI_96MHz */
  75         .dot = {.min = 20000, .max = 400000},
  76         .vco = {.min = 1800000, .max = 3600000},
  77         .n = {.min = 2, .max = 6},
  78         .m = {.min = 60, .max = 160},
  79         .m1 = {.min = 0, .max = 0},
  80         .m2 = {.min = 58, .max = 158},
  81         .p = {.min = 5, .max = 100},
  82         .p1 = {.min = 1, .max = 10},
  83         .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
  84         .find_pll = gma_find_best_pll,
  85         },
  86        {                       /* CDV_DP_27MHz */
  87         .dot = {.min = 160000, .max = 272000},
  88         .vco = {.min = 1809000, .max = 3564000},
  89         .n = {.min = 1, .max = 1},
  90         .m = {.min = 67, .max = 132},
  91         .m1 = {.min = 0, .max = 0},
  92         .m2 = {.min = 65, .max = 130},
  93         .p = {.min = 5, .max = 90},
  94         .p1 = {.min = 1, .max = 9},
  95         .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
  96         .find_pll = cdv_intel_find_dp_pll,
  97         },
  98        {                       /* CDV_DP_100MHz */
  99         .dot = {.min = 160000, .max = 272000},
 100         .vco = {.min = 1800000, .max = 3600000},
 101         .n = {.min = 2, .max = 6},
 102         .m = {.min = 60, .max = 164},
 103         .m1 = {.min = 0, .max = 0},
 104         .m2 = {.min = 58, .max = 162},
 105         .p = {.min = 5, .max = 100},
 106         .p1 = {.min = 1, .max = 10},
 107         .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
 108         .find_pll = cdv_intel_find_dp_pll,
 109        }
 110};
 111
 112#define _wait_for(COND, MS, W) ({ \
 113        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 114        int ret__ = 0;                                                  \
 115        while (!(COND)) {                                               \
 116                if (time_after(jiffies, timeout__)) {                   \
 117                        ret__ = -ETIMEDOUT;                             \
 118                        break;                                          \
 119                }                                                       \
 120                if (W && !in_dbg_master())                              \
 121                        msleep(W);                                      \
 122        }                                                               \
 123        ret__;                                                          \
 124})
 125
 126#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 127
 128
 129int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
 130{
 131        int ret;
 132
 133        ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 134        if (ret) {
 135                DRM_ERROR("timeout waiting for SB to idle before read\n");
 136                return ret;
 137        }
 138
 139        REG_WRITE(SB_ADDR, reg);
 140        REG_WRITE(SB_PCKT,
 141                   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
 142                   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
 143                   SET_FIELD(0xf, SB_BYTE_ENABLE));
 144
 145        ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 146        if (ret) {
 147                DRM_ERROR("timeout waiting for SB to idle after read\n");
 148                return ret;
 149        }
 150
 151        *val = REG_READ(SB_DATA);
 152
 153        return 0;
 154}
 155
 156int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
 157{
 158        int ret;
 159        static bool dpio_debug = true;
 160        u32 temp;
 161
 162        if (dpio_debug) {
 163                if (cdv_sb_read(dev, reg, &temp) == 0)
 164                        DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
 165                DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
 166        }
 167
 168        ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 169        if (ret) {
 170                DRM_ERROR("timeout waiting for SB to idle before write\n");
 171                return ret;
 172        }
 173
 174        REG_WRITE(SB_ADDR, reg);
 175        REG_WRITE(SB_DATA, val);
 176        REG_WRITE(SB_PCKT,
 177                   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
 178                   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
 179                   SET_FIELD(0xf, SB_BYTE_ENABLE));
 180
 181        ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 182        if (ret) {
 183                DRM_ERROR("timeout waiting for SB to idle after write\n");
 184                return ret;
 185        }
 186
 187        if (dpio_debug) {
 188                if (cdv_sb_read(dev, reg, &temp) == 0)
 189                        DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
 190        }
 191
 192        return 0;
 193}
 194
 195/* Reset the DPIO configuration register.  The BIOS does this at every
 196 * mode set.
 197 */
 198void cdv_sb_reset(struct drm_device *dev)
 199{
 200
 201        REG_WRITE(DPIO_CFG, 0);
 202        REG_READ(DPIO_CFG);
 203        REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
 204}
 205
 206/* Unlike most Intel display engines, on Cedarview the DPLL registers
 207 * are behind this sideband bus.  They must be programmed while the
 208 * DPLL reference clock is on in the DPLL control register, but before
 209 * the DPLL is enabled in the DPLL control register.
 210 */
 211static int
 212cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
 213                       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
 214{
 215        struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 216        int pipe = gma_crtc->pipe;
 217        u32 m, n_vco, p;
 218        int ret = 0;
 219        int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
 220        int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
 221        u32 ref_value;
 222        u32 lane_reg, lane_value;
 223
 224        cdv_sb_reset(dev);
 225
 226        REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
 227
 228        udelay(100);
 229
 230        /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
 231        ref_value = 0x68A701;
 232
 233        cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
 234
 235        /* We don't know what the other fields of these regs are, so
 236         * leave them in place.
 237         */
 238        /*
 239         * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
 240         * for the pipe A/B. Display spec 1.06 has wrong definition.
 241         * Correct definition is like below:
 242         *
 243         * refclka mean use clock from same PLL
 244         *
 245         * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
 246         *
 247         * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
 248         *
 249         */
 250        ret = cdv_sb_read(dev, ref_sfr, &ref_value);
 251        if (ret)
 252                return ret;
 253        ref_value &= ~(REF_CLK_MASK);
 254
 255        /* use DPLL_A for pipeB on CRT/HDMI */
 256        if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
 257                DRM_DEBUG_KMS("use DPLLA for pipe B\n");
 258                ref_value |= REF_CLK_DPLLA;
 259        } else {
 260                DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
 261                ref_value |= REF_CLK_DPLL;
 262        }
 263        ret = cdv_sb_write(dev, ref_sfr, ref_value);
 264        if (ret)
 265                return ret;
 266
 267        ret = cdv_sb_read(dev, SB_M(pipe), &m);
 268        if (ret)
 269                return ret;
 270        m &= ~SB_M_DIVIDER_MASK;
 271        m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
 272        ret = cdv_sb_write(dev, SB_M(pipe), m);
 273        if (ret)
 274                return ret;
 275
 276        ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
 277        if (ret)
 278                return ret;
 279
 280        /* Follow the BIOS to program the N_DIVIDER REG */
 281        n_vco &= 0xFFFF;
 282        n_vco |= 0x107;
 283        n_vco &= ~(SB_N_VCO_SEL_MASK |
 284                   SB_N_DIVIDER_MASK |
 285                   SB_N_CB_TUNE_MASK);
 286
 287        n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
 288
 289        if (clock->vco < 2250000) {
 290                n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
 291                n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
 292        } else if (clock->vco < 2750000) {
 293                n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
 294                n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
 295        } else if (clock->vco < 3300000) {
 296                n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
 297                n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
 298        } else {
 299                n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
 300                n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
 301        }
 302
 303        ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
 304        if (ret)
 305                return ret;
 306
 307        ret = cdv_sb_read(dev, SB_P(pipe), &p);
 308        if (ret)
 309                return ret;
 310        p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
 311        p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
 312        switch (clock->p2) {
 313        case 5:
 314                p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
 315                break;
 316        case 10:
 317                p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
 318                break;
 319        case 14:
 320                p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
 321                break;
 322        case 7:
 323                p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
 324                break;
 325        default:
 326                DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
 327                return -EINVAL;
 328        }
 329        ret = cdv_sb_write(dev, SB_P(pipe), p);
 330        if (ret)
 331                return ret;
 332
 333        if (ddi_select) {
 334                if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
 335                        lane_reg = PSB_LANE0;
 336                        cdv_sb_read(dev, lane_reg, &lane_value);
 337                        lane_value &= ~(LANE_PLL_MASK);
 338                        lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 339                        cdv_sb_write(dev, lane_reg, lane_value);
 340
 341                        lane_reg = PSB_LANE1;
 342                        cdv_sb_read(dev, lane_reg, &lane_value);
 343                        lane_value &= ~(LANE_PLL_MASK);
 344                        lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 345                        cdv_sb_write(dev, lane_reg, lane_value);
 346                } else {
 347                        lane_reg = PSB_LANE2;
 348                        cdv_sb_read(dev, lane_reg, &lane_value);
 349                        lane_value &= ~(LANE_PLL_MASK);
 350                        lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 351                        cdv_sb_write(dev, lane_reg, lane_value);
 352
 353                        lane_reg = PSB_LANE3;
 354                        cdv_sb_read(dev, lane_reg, &lane_value);
 355                        lane_value &= ~(LANE_PLL_MASK);
 356                        lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 357                        cdv_sb_write(dev, lane_reg, lane_value);
 358                }
 359        }
 360        return 0;
 361}
 362
 363static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
 364                                                 int refclk)
 365{
 366        const struct gma_limit_t *limit;
 367        if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 368                /*
 369                 * Now only single-channel LVDS is supported on CDV. If it is
 370                 * incorrect, please add the dual-channel LVDS.
 371                 */
 372                if (refclk == 96000)
 373                        limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
 374                else
 375                        limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
 376        } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
 377                        gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
 378                if (refclk == 27000)
 379                        limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
 380                else
 381                        limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
 382        } else {
 383                if (refclk == 27000)
 384                        limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
 385                else
 386                        limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
 387        }
 388        return limit;
 389}
 390
 391/* m1 is reserved as 0 in CDV, n is a ring counter */
 392static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
 393{
 394        clock->m = clock->m2 + 2;
 395        clock->p = clock->p1 * clock->p2;
 396        clock->vco = (refclk * clock->m) / clock->n;
 397        clock->dot = clock->vco / clock->p;
 398}
 399
 400static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
 401                                  struct drm_crtc *crtc, int target,
 402                                  int refclk,
 403                                  struct gma_clock_t *best_clock)
 404{
 405        struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 406        struct gma_clock_t clock;
 407
 408        memset(&clock, 0, sizeof(clock));
 409
 410        switch (refclk) {
 411        case 27000:
 412                if (target < 200000) {
 413                        clock.p1 = 2;
 414                        clock.p2 = 10;
 415                        clock.n = 1;
 416                        clock.m1 = 0;
 417                        clock.m2 = 118;
 418                } else {
 419                        clock.p1 = 1;
 420                        clock.p2 = 10;
 421                        clock.n = 1;
 422                        clock.m1 = 0;
 423                        clock.m2 = 98;
 424                }
 425                break;
 426
 427        case 100000:
 428                if (target < 200000) {
 429                        clock.p1 = 2;
 430                        clock.p2 = 10;
 431                        clock.n = 5;
 432                        clock.m1 = 0;
 433                        clock.m2 = 160;
 434                } else {
 435                        clock.p1 = 1;
 436                        clock.p2 = 10;
 437                        clock.n = 5;
 438                        clock.m1 = 0;
 439                        clock.m2 = 133;
 440                }
 441                break;
 442
 443        default:
 444                return false;
 445        }
 446
 447        gma_crtc->clock_funcs->clock(refclk, &clock);
 448        memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
 449        return true;
 450}
 451
 452#define         FIFO_PIPEA              (1 << 0)
 453#define         FIFO_PIPEB              (1 << 1)
 454
 455static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
 456{
 457        struct drm_crtc *crtc;
 458        struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 459        struct gma_crtc *gma_crtc = NULL;
 460
 461        crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 462        gma_crtc = to_gma_crtc(crtc);
 463
 464        if (crtc->primary->fb == NULL || !gma_crtc->active)
 465                return false;
 466        return true;
 467}
 468
 469void cdv_disable_sr(struct drm_device *dev)
 470{
 471        if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
 472
 473                /* Disable self-refresh before adjust WM */
 474                REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
 475                REG_READ(FW_BLC_SELF);
 476
 477                gma_wait_for_vblank(dev);
 478
 479                /* Cedarview workaround to write ovelay plane, which force to leave
 480                 * MAX_FIFO state.
 481                 */
 482                REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
 483                REG_READ(OV_OVADD);
 484
 485                gma_wait_for_vblank(dev);
 486        }
 487
 488}
 489
 490void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
 491{
 492        struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 493        struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 494
 495        /* Is only one pipe enabled? */
 496        if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
 497                u32 fw;
 498
 499                fw = REG_READ(DSPFW1);
 500                fw &= ~DSP_FIFO_SR_WM_MASK;
 501                fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
 502                fw &= ~CURSOR_B_FIFO_WM_MASK;
 503                fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
 504                REG_WRITE(DSPFW1, fw);
 505
 506                fw = REG_READ(DSPFW2);
 507                fw &= ~CURSOR_A_FIFO_WM_MASK;
 508                fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
 509                fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
 510                fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
 511                REG_WRITE(DSPFW2, fw);
 512
 513                REG_WRITE(DSPFW3, 0x36000000);
 514
 515                /* ignore FW4 */
 516
 517                /* Is pipe b lvds ? */
 518                if (gma_crtc->pipe == 1 &&
 519                    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 520                        REG_WRITE(DSPFW5, 0x00040330);
 521                } else {
 522                        fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
 523                             (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
 524                             (3 << CURSOR_B_FIFO_WM1_SHIFT) |
 525                             (4 << CURSOR_FIFO_SR_WM1_SHIFT);
 526                        REG_WRITE(DSPFW5, fw);
 527                }
 528
 529                REG_WRITE(DSPFW6, 0x10);
 530
 531                gma_wait_for_vblank(dev);
 532
 533                /* enable self-refresh for single pipe active */
 534                REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
 535                REG_READ(FW_BLC_SELF);
 536                gma_wait_for_vblank(dev);
 537
 538        } else {
 539
 540                /* HW team suggested values... */
 541                REG_WRITE(DSPFW1, 0x3f880808);
 542                REG_WRITE(DSPFW2, 0x0b020202);
 543                REG_WRITE(DSPFW3, 0x24000000);
 544                REG_WRITE(DSPFW4, 0x08030202);
 545                REG_WRITE(DSPFW5, 0x01010101);
 546                REG_WRITE(DSPFW6, 0x1d0);
 547
 548                gma_wait_for_vblank(dev);
 549
 550                dev_priv->ops->disable_sr(dev);
 551        }
 552}
 553
 554/*
 555 * Return the pipe currently connected to the panel fitter,
 556 * or -1 if the panel fitter is not present or not in use
 557 */
 558static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
 559{
 560        u32 pfit_control;
 561
 562        pfit_control = REG_READ(PFIT_CONTROL);
 563
 564        /* See if the panel fitter is in use */
 565        if ((pfit_control & PFIT_ENABLE) == 0)
 566                return -1;
 567        return (pfit_control >> 29) & 0x3;
 568}
 569
 570static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
 571                               struct drm_display_mode *mode,
 572                               struct drm_display_mode *adjusted_mode,
 573                               int x, int y,
 574                               struct drm_framebuffer *old_fb)
 575{
 576        struct drm_device *dev = crtc->dev;
 577        struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 578        struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 579        int pipe = gma_crtc->pipe;
 580        const struct psb_offset *map = &dev_priv->regmap[pipe];
 581        int refclk;
 582        struct gma_clock_t clock;
 583        u32 dpll = 0, dspcntr, pipeconf;
 584        bool ok;
 585        bool is_lvds = false;
 586        bool is_dp = false;
 587        struct drm_mode_config *mode_config = &dev->mode_config;
 588        struct drm_connector *connector;
 589        const struct gma_limit_t *limit;
 590        u32 ddi_select = 0;
 591        bool is_edp = false;
 592
 593        list_for_each_entry(connector, &mode_config->connector_list, head) {
 594                struct gma_encoder *gma_encoder =
 595                                        gma_attached_encoder(connector);
 596
 597                if (!connector->encoder
 598                    || connector->encoder->crtc != crtc)
 599                        continue;
 600
 601                ddi_select = gma_encoder->ddi_select;
 602                switch (gma_encoder->type) {
 603                case INTEL_OUTPUT_LVDS:
 604                        is_lvds = true;
 605                        break;
 606                case INTEL_OUTPUT_ANALOG:
 607                case INTEL_OUTPUT_HDMI:
 608                        break;
 609                case INTEL_OUTPUT_DISPLAYPORT:
 610                        is_dp = true;
 611                        break;
 612                case INTEL_OUTPUT_EDP:
 613                        is_edp = true;
 614                        break;
 615                default:
 616                        DRM_ERROR("invalid output type.\n");
 617                        return 0;
 618                }
 619        }
 620
 621        if (dev_priv->dplla_96mhz)
 622                /* low-end sku, 96/100 mhz */
 623                refclk = 96000;
 624        else
 625                /* high-end sku, 27/100 mhz */
 626                refclk = 27000;
 627        if (is_dp || is_edp) {
 628                /*
 629                 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
 630                 * unnecessary to consider it for DP/eDP.
 631                 * On the high-end SKU, it will use the 27/100M reference clk
 632                 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
 633                 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
 634                 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
 635                 */
 636                if (pipe == 0)
 637                        refclk = 27000;
 638                else
 639                        refclk = 100000;
 640        }
 641
 642        if (is_lvds && dev_priv->lvds_use_ssc) {
 643                refclk = dev_priv->lvds_ssc_freq * 1000;
 644                DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
 645        }
 646
 647        drm_mode_debug_printmodeline(adjusted_mode);
 648
 649        limit = gma_crtc->clock_funcs->limit(crtc, refclk);
 650
 651        ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
 652                                 &clock);
 653        if (!ok) {
 654                DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
 655                          adjusted_mode->clock, clock.dot);
 656                return 0;
 657        }
 658
 659        dpll = DPLL_VGA_MODE_DIS;
 660
 661        if (is_dp || is_edp) {
 662                cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
 663        } else {
 664                REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
 665                REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
 666                REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
 667                REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
 668        }
 669
 670        dpll |= DPLL_SYNCLOCK_ENABLE;
 671/*      if (is_lvds)
 672                dpll |= DPLLB_MODE_LVDS;
 673        else
 674                dpll |= DPLLB_MODE_DAC_SERIAL; */
 675        /* dpll |= (2 << 11); */
 676
 677        /* setup pipeconf */
 678        pipeconf = REG_READ(map->conf);
 679
 680        pipeconf &= ~(PIPE_BPC_MASK);
 681        if (is_edp) {
 682                switch (dev_priv->edp.bpp) {
 683                case 24:
 684                        pipeconf |= PIPE_8BPC;
 685                        break;
 686                case 18:
 687                        pipeconf |= PIPE_6BPC;
 688                        break;
 689                case 30:
 690                        pipeconf |= PIPE_10BPC;
 691                        break;
 692                default:
 693                        pipeconf |= PIPE_8BPC;
 694                        break;
 695                }
 696        } else if (is_lvds) {
 697                /* the BPC will be 6 if it is 18-bit LVDS panel */
 698                if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
 699                        pipeconf |= PIPE_8BPC;
 700                else
 701                        pipeconf |= PIPE_6BPC;
 702        } else
 703                pipeconf |= PIPE_8BPC;
 704
 705        /* Set up the display plane register */
 706        dspcntr = DISPPLANE_GAMMA_ENABLE;
 707
 708        if (pipe == 0)
 709                dspcntr |= DISPPLANE_SEL_PIPE_A;
 710        else
 711                dspcntr |= DISPPLANE_SEL_PIPE_B;
 712
 713        dspcntr |= DISPLAY_PLANE_ENABLE;
 714        pipeconf |= PIPEACONF_ENABLE;
 715
 716        REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
 717        REG_READ(map->dpll);
 718
 719        cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
 720
 721        udelay(150);
 722
 723
 724        /* The LVDS pin pair needs to be on before the DPLLs are enabled.
 725         * This is an exception to the general rule that mode_set doesn't turn
 726         * things on.
 727         */
 728        if (is_lvds) {
 729                u32 lvds = REG_READ(LVDS);
 730
 731                lvds |=
 732                    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
 733                    LVDS_PIPEB_SELECT;
 734                /* Set the B0-B3 data pairs corresponding to
 735                 * whether we're going to
 736                 * set the DPLLs for dual-channel mode or not.
 737                 */
 738                if (clock.p2 == 7)
 739                        lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
 740                else
 741                        lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
 742
 743                /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
 744                 * appropriately here, but we need to look more
 745                 * thoroughly into how panels behave in the two modes.
 746                 */
 747
 748                REG_WRITE(LVDS, lvds);
 749                REG_READ(LVDS);
 750        }
 751
 752        dpll |= DPLL_VCO_ENABLE;
 753
 754        /* Disable the panel fitter if it was on our pipe */
 755        if (cdv_intel_panel_fitter_pipe(dev) == pipe)
 756                REG_WRITE(PFIT_CONTROL, 0);
 757
 758        DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
 759        drm_mode_debug_printmodeline(mode);
 760
 761        REG_WRITE(map->dpll,
 762                (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
 763        REG_READ(map->dpll);
 764        /* Wait for the clocks to stabilize. */
 765        udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
 766
 767        if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
 768                dev_err(dev->dev, "Failed to get DPLL lock\n");
 769                return -EBUSY;
 770        }
 771
 772        {
 773                int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
 774                REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
 775        }
 776
 777        REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
 778                  ((adjusted_mode->crtc_htotal - 1) << 16));
 779        REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
 780                  ((adjusted_mode->crtc_hblank_end - 1) << 16));
 781        REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
 782                  ((adjusted_mode->crtc_hsync_end - 1) << 16));
 783        REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
 784                  ((adjusted_mode->crtc_vtotal - 1) << 16));
 785        REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
 786                  ((adjusted_mode->crtc_vblank_end - 1) << 16));
 787        REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
 788                  ((adjusted_mode->crtc_vsync_end - 1) << 16));
 789        /* pipesrc and dspsize control the size that is scaled from,
 790         * which should always be the user's requested size.
 791         */
 792        REG_WRITE(map->size,
 793                  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
 794        REG_WRITE(map->pos, 0);
 795        REG_WRITE(map->src,
 796                  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
 797        REG_WRITE(map->conf, pipeconf);
 798        REG_READ(map->conf);
 799
 800        gma_wait_for_vblank(dev);
 801
 802        REG_WRITE(map->cntr, dspcntr);
 803
 804        /* Flush the plane changes */
 805        {
 806                const struct drm_crtc_helper_funcs *crtc_funcs =
 807                    crtc->helper_private;
 808                crtc_funcs->mode_set_base(crtc, x, y, old_fb);
 809        }
 810
 811        gma_wait_for_vblank(dev);
 812
 813        return 0;
 814}
 815
 816/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
 817
 818/* FIXME: why are we using this, should it be cdv_ in this tree ? */
 819
 820static void i8xx_clock(int refclk, struct gma_clock_t *clock)
 821{
 822        clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 823        clock->p = clock->p1 * clock->p2;
 824        clock->vco = refclk * clock->m / (clock->n + 2);
 825        clock->dot = clock->vco / clock->p;
 826}
 827
 828/* Returns the clock of the currently programmed mode of the given pipe. */
 829static int cdv_intel_crtc_clock_get(struct drm_device *dev,
 830                                struct drm_crtc *crtc)
 831{
 832        struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 833        struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 834        int pipe = gma_crtc->pipe;
 835        const struct psb_offset *map = &dev_priv->regmap[pipe];
 836        u32 dpll;
 837        u32 fp;
 838        struct gma_clock_t clock;
 839        bool is_lvds;
 840        struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 841
 842        if (gma_power_begin(dev, false)) {
 843                dpll = REG_READ(map->dpll);
 844                if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 845                        fp = REG_READ(map->fp0);
 846                else
 847                        fp = REG_READ(map->fp1);
 848                is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
 849                gma_power_end(dev);
 850        } else {
 851                dpll = p->dpll;
 852                if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 853                        fp = p->fp0;
 854                else
 855                        fp = p->fp1;
 856
 857                is_lvds = (pipe == 1) &&
 858                                (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
 859        }
 860
 861        clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
 862        clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
 863        clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
 864
 865        if (is_lvds) {
 866                clock.p1 =
 867                    ffs((dpll &
 868                         DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
 869                        DPLL_FPA01_P1_POST_DIV_SHIFT);
 870                if (clock.p1 == 0) {
 871                        clock.p1 = 4;
 872                        dev_err(dev->dev, "PLL %d\n", dpll);
 873                }
 874                clock.p2 = 14;
 875
 876                if ((dpll & PLL_REF_INPUT_MASK) ==
 877                    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
 878                        /* XXX: might not be 66MHz */
 879                        i8xx_clock(66000, &clock);
 880                } else
 881                        i8xx_clock(48000, &clock);
 882        } else {
 883                if (dpll & PLL_P1_DIVIDE_BY_TWO)
 884                        clock.p1 = 2;
 885                else {
 886                        clock.p1 =
 887                            ((dpll &
 888                              DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
 889                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
 890                }
 891                if (dpll & PLL_P2_DIVIDE_BY_4)
 892                        clock.p2 = 4;
 893                else
 894                        clock.p2 = 2;
 895
 896                i8xx_clock(48000, &clock);
 897        }
 898
 899        /* XXX: It would be nice to validate the clocks, but we can't reuse
 900         * i830PllIsValid() because it relies on the xf86_config connector
 901         * configuration being accurate, which it isn't necessarily.
 902         */
 903
 904        return clock.dot;
 905}
 906
 907/** Returns the currently programmed mode of the given pipe. */
 908struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
 909                                             struct drm_crtc *crtc)
 910{
 911        struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 912        int pipe = gma_crtc->pipe;
 913        struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 914        struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 915        const struct psb_offset *map = &dev_priv->regmap[pipe];
 916        struct drm_display_mode *mode;
 917        int htot;
 918        int hsync;
 919        int vtot;
 920        int vsync;
 921
 922        if (gma_power_begin(dev, false)) {
 923                htot = REG_READ(map->htotal);
 924                hsync = REG_READ(map->hsync);
 925                vtot = REG_READ(map->vtotal);
 926                vsync = REG_READ(map->vsync);
 927                gma_power_end(dev);
 928        } else {
 929                htot = p->htotal;
 930                hsync = p->hsync;
 931                vtot = p->vtotal;
 932                vsync = p->vsync;
 933        }
 934
 935        mode = kzalloc(sizeof(*mode), GFP_KERNEL);
 936        if (!mode)
 937                return NULL;
 938
 939        mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
 940        mode->hdisplay = (htot & 0xffff) + 1;
 941        mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
 942        mode->hsync_start = (hsync & 0xffff) + 1;
 943        mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
 944        mode->vdisplay = (vtot & 0xffff) + 1;
 945        mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
 946        mode->vsync_start = (vsync & 0xffff) + 1;
 947        mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
 948
 949        drm_mode_set_name(mode);
 950        drm_mode_set_crtcinfo(mode, 0);
 951
 952        return mode;
 953}
 954
 955const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
 956        .dpms = gma_crtc_dpms,
 957        .mode_set = cdv_intel_crtc_mode_set,
 958        .mode_set_base = gma_pipe_set_base,
 959        .prepare = gma_crtc_prepare,
 960        .commit = gma_crtc_commit,
 961        .disable = gma_crtc_disable,
 962};
 963
 964const struct gma_clock_funcs cdv_clock_funcs = {
 965        .clock = cdv_intel_clock,
 966        .limit = cdv_intel_limit,
 967        .pll_is_valid = gma_pll_is_valid,
 968};
 969