1
2
3
4
5
6
7
8
9#include <linux/delay.h>
10#include <linux/i2c.h>
11
12#include <drm/drm_plane_helper.h>
13
14#include "framebuffer.h"
15#include "gem.h"
16#include "gma_display.h"
17#include "power.h"
18#include "psb_drv.h"
19#include "psb_intel_drv.h"
20#include "psb_intel_reg.h"
21
22#define INTEL_LIMIT_I9XX_SDVO_DAC 0
23#define INTEL_LIMIT_I9XX_LVDS 1
24
25static const struct gma_limit_t psb_intel_limits[] = {
26 {
27 .dot = {.min = 20000, .max = 400000},
28 .vco = {.min = 1400000, .max = 2800000},
29 .n = {.min = 1, .max = 6},
30 .m = {.min = 70, .max = 120},
31 .m1 = {.min = 8, .max = 18},
32 .m2 = {.min = 3, .max = 7},
33 .p = {.min = 5, .max = 80},
34 .p1 = {.min = 1, .max = 8},
35 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
36 .find_pll = gma_find_best_pll,
37 },
38 {
39 .dot = {.min = 20000, .max = 400000},
40 .vco = {.min = 1400000, .max = 2800000},
41 .n = {.min = 1, .max = 6},
42 .m = {.min = 70, .max = 120},
43 .m1 = {.min = 8, .max = 18},
44 .m2 = {.min = 3, .max = 7},
45 .p = {.min = 7, .max = 98},
46 .p1 = {.min = 1, .max = 8},
47
48
49
50 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
51 .find_pll = gma_find_best_pll,
52 },
53};
54
55static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
56 int refclk)
57{
58 const struct gma_limit_t *limit;
59
60 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
61 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
62 else
63 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
64 return limit;
65}
66
67static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
68{
69 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
70 clock->p = clock->p1 * clock->p2;
71 clock->vco = refclk * clock->m / (clock->n + 2);
72 clock->dot = clock->vco / clock->p;
73}
74
75
76
77
78
79static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
80{
81 u32 pfit_control;
82
83 pfit_control = REG_READ(PFIT_CONTROL);
84
85
86 if ((pfit_control & PFIT_ENABLE) == 0)
87 return -1;
88
89 return 1;
90}
91
92static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
93 struct drm_display_mode *mode,
94 struct drm_display_mode *adjusted_mode,
95 int x, int y,
96 struct drm_framebuffer *old_fb)
97{
98 struct drm_device *dev = crtc->dev;
99 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
100 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
101 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
102 int pipe = gma_crtc->pipe;
103 const struct psb_offset *map = &dev_priv->regmap[pipe];
104 int refclk;
105 struct gma_clock_t clock;
106 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
107 bool ok, is_sdvo = false;
108 bool is_lvds = false, is_tv = false;
109 struct drm_mode_config *mode_config = &dev->mode_config;
110 struct drm_connector *connector;
111 const struct gma_limit_t *limit;
112
113
114 if (crtc->primary->fb == NULL) {
115 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
116 return 0;
117 }
118
119 list_for_each_entry(connector, &mode_config->connector_list, head) {
120 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
121
122 if (!connector->encoder
123 || connector->encoder->crtc != crtc)
124 continue;
125
126 switch (gma_encoder->type) {
127 case INTEL_OUTPUT_LVDS:
128 is_lvds = true;
129 break;
130 case INTEL_OUTPUT_SDVO:
131 is_sdvo = true;
132 break;
133 case INTEL_OUTPUT_TVOUT:
134 is_tv = true;
135 break;
136 }
137 }
138
139 refclk = 96000;
140
141 limit = gma_crtc->clock_funcs->limit(crtc, refclk);
142
143 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
144 &clock);
145 if (!ok) {
146 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
147 adjusted_mode->clock, clock.dot);
148 return 0;
149 }
150
151 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
152
153 dpll = DPLL_VGA_MODE_DIS;
154 if (is_lvds) {
155 dpll |= DPLLB_MODE_LVDS;
156 dpll |= DPLL_DVO_HIGH_SPEED;
157 } else
158 dpll |= DPLLB_MODE_DAC_SERIAL;
159 if (is_sdvo) {
160 int sdvo_pixel_multiply =
161 adjusted_mode->clock / mode->clock;
162 dpll |= DPLL_DVO_HIGH_SPEED;
163 dpll |=
164 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
165 }
166
167
168 dpll |= (1 << (clock.p1 - 1)) << 16;
169 switch (clock.p2) {
170 case 5:
171 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
172 break;
173 case 7:
174 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
175 break;
176 case 10:
177 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
178 break;
179 case 14:
180 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
181 break;
182 }
183
184 if (is_tv) {
185
186
187 dpll |= 3;
188 }
189 dpll |= PLL_REF_INPUT_DREFCLK;
190
191
192 pipeconf = REG_READ(map->conf);
193
194
195 dspcntr = DISPPLANE_GAMMA_ENABLE;
196
197 if (pipe == 0)
198 dspcntr |= DISPPLANE_SEL_PIPE_A;
199 else
200 dspcntr |= DISPPLANE_SEL_PIPE_B;
201
202 dspcntr |= DISPLAY_PLANE_ENABLE;
203 pipeconf |= PIPEACONF_ENABLE;
204 dpll |= DPLL_VCO_ENABLE;
205
206
207
208 if (psb_intel_panel_fitter_pipe(dev) == pipe)
209 REG_WRITE(PFIT_CONTROL, 0);
210
211 drm_mode_debug_printmodeline(mode);
212
213 if (dpll & DPLL_VCO_ENABLE) {
214 REG_WRITE(map->fp0, fp);
215 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
216 REG_READ(map->dpll);
217 udelay(150);
218 }
219
220
221
222
223
224 if (is_lvds) {
225 u32 lvds = REG_READ(LVDS);
226
227 lvds &= ~LVDS_PIPEB_SELECT;
228 if (pipe == 1)
229 lvds |= LVDS_PIPEB_SELECT;
230
231 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
232
233
234
235
236 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
237 if (clock.p2 == 7)
238 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
239
240
241
242
243
244
245 REG_WRITE(LVDS, lvds);
246 REG_READ(LVDS);
247 }
248
249 REG_WRITE(map->fp0, fp);
250 REG_WRITE(map->dpll, dpll);
251 REG_READ(map->dpll);
252
253 udelay(150);
254
255
256 REG_WRITE(map->dpll, dpll);
257
258 REG_READ(map->dpll);
259
260 udelay(150);
261
262 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
263 ((adjusted_mode->crtc_htotal - 1) << 16));
264 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
265 ((adjusted_mode->crtc_hblank_end - 1) << 16));
266 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
267 ((adjusted_mode->crtc_hsync_end - 1) << 16));
268 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
269 ((adjusted_mode->crtc_vtotal - 1) << 16));
270 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
271 ((adjusted_mode->crtc_vblank_end - 1) << 16));
272 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
273 ((adjusted_mode->crtc_vsync_end - 1) << 16));
274
275
276
277 REG_WRITE(map->size,
278 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
279 REG_WRITE(map->pos, 0);
280 REG_WRITE(map->src,
281 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
282 REG_WRITE(map->conf, pipeconf);
283 REG_READ(map->conf);
284
285 gma_wait_for_vblank(dev);
286
287 REG_WRITE(map->cntr, dspcntr);
288
289
290 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
291
292 gma_wait_for_vblank(dev);
293
294 return 0;
295}
296
297
298static int psb_intel_crtc_clock_get(struct drm_device *dev,
299 struct drm_crtc *crtc)
300{
301 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
302 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
303 int pipe = gma_crtc->pipe;
304 const struct psb_offset *map = &dev_priv->regmap[pipe];
305 u32 dpll;
306 u32 fp;
307 struct gma_clock_t clock;
308 bool is_lvds;
309 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
310
311 if (gma_power_begin(dev, false)) {
312 dpll = REG_READ(map->dpll);
313 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
314 fp = REG_READ(map->fp0);
315 else
316 fp = REG_READ(map->fp1);
317 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
318 gma_power_end(dev);
319 } else {
320 dpll = p->dpll;
321
322 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
323 fp = p->fp0;
324 else
325 fp = p->fp1;
326
327 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
328 LVDS_PORT_EN);
329 }
330
331 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
332 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
333 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
334
335 if (is_lvds) {
336 clock.p1 =
337 ffs((dpll &
338 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
339 DPLL_FPA01_P1_POST_DIV_SHIFT);
340 clock.p2 = 14;
341
342 if ((dpll & PLL_REF_INPUT_MASK) ==
343 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
344
345 psb_intel_clock(66000, &clock);
346 } else
347 psb_intel_clock(48000, &clock);
348 } else {
349 if (dpll & PLL_P1_DIVIDE_BY_TWO)
350 clock.p1 = 2;
351 else {
352 clock.p1 =
353 ((dpll &
354 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
355 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
356 }
357 if (dpll & PLL_P2_DIVIDE_BY_4)
358 clock.p2 = 4;
359 else
360 clock.p2 = 2;
361
362 psb_intel_clock(48000, &clock);
363 }
364
365
366
367
368
369
370 return clock.dot;
371}
372
373
374struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
375 struct drm_crtc *crtc)
376{
377 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
378 int pipe = gma_crtc->pipe;
379 struct drm_display_mode *mode;
380 int htot;
381 int hsync;
382 int vtot;
383 int vsync;
384 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
385 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
386 const struct psb_offset *map = &dev_priv->regmap[pipe];
387
388 if (gma_power_begin(dev, false)) {
389 htot = REG_READ(map->htotal);
390 hsync = REG_READ(map->hsync);
391 vtot = REG_READ(map->vtotal);
392 vsync = REG_READ(map->vsync);
393 gma_power_end(dev);
394 } else {
395 htot = p->htotal;
396 hsync = p->hsync;
397 vtot = p->vtotal;
398 vsync = p->vsync;
399 }
400
401 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
402 if (!mode)
403 return NULL;
404
405 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
406 mode->hdisplay = (htot & 0xffff) + 1;
407 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
408 mode->hsync_start = (hsync & 0xffff) + 1;
409 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
410 mode->vdisplay = (vtot & 0xffff) + 1;
411 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
412 mode->vsync_start = (vsync & 0xffff) + 1;
413 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
414
415 drm_mode_set_name(mode);
416 drm_mode_set_crtcinfo(mode, 0);
417
418 return mode;
419}
420
421const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
422 .dpms = gma_crtc_dpms,
423 .mode_set = psb_intel_crtc_mode_set,
424 .mode_set_base = gma_pipe_set_base,
425 .prepare = gma_crtc_prepare,
426 .commit = gma_crtc_commit,
427 .disable = gma_crtc_disable,
428};
429
430const struct drm_crtc_funcs gma_intel_crtc_funcs = {
431 .cursor_set = gma_crtc_cursor_set,
432 .cursor_move = gma_crtc_cursor_move,
433 .gamma_set = gma_crtc_gamma_set,
434 .set_config = gma_crtc_set_config,
435 .destroy = gma_crtc_destroy,
436 .page_flip = gma_crtc_page_flip,
437 .enable_vblank = psb_enable_vblank,
438 .disable_vblank = psb_disable_vblank,
439 .get_vblank_counter = psb_get_vblank_counter,
440};
441
442const struct gma_clock_funcs psb_clock_funcs = {
443 .clock = psb_intel_clock,
444 .limit = psb_intel_limit,
445 .pll_is_valid = gma_pll_is_valid,
446};
447
448
449
450
451
452static void psb_intel_cursor_init(struct drm_device *dev,
453 struct gma_crtc *gma_crtc)
454{
455 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
456 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
457 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
458 struct psb_gem_object *cursor_pobj;
459
460 if (dev_priv->ops->cursor_needs_phys) {
461
462
463
464 cursor_pobj = psb_gem_create(dev, 4 * PAGE_SIZE, "cursor", true, PAGE_SIZE);
465 if (IS_ERR(cursor_pobj)) {
466 gma_crtc->cursor_pobj = NULL;
467 goto out;
468 }
469 gma_crtc->cursor_pobj = cursor_pobj;
470 gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_pobj->offset;
471 } else {
472 gma_crtc->cursor_pobj = NULL;
473 }
474
475out:
476 REG_WRITE(control[gma_crtc->pipe], 0);
477 REG_WRITE(base[gma_crtc->pipe], 0);
478}
479
480void psb_intel_crtc_init(struct drm_device *dev, int pipe,
481 struct psb_intel_mode_device *mode_dev)
482{
483 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
484 struct gma_crtc *gma_crtc;
485 int i;
486
487
488
489 gma_crtc = kzalloc(sizeof(struct gma_crtc) +
490 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
491 GFP_KERNEL);
492 if (gma_crtc == NULL)
493 return;
494
495 gma_crtc->crtc_state =
496 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
497 if (!gma_crtc->crtc_state) {
498 dev_err(dev->dev, "Crtc state error: No memory\n");
499 kfree(gma_crtc);
500 return;
501 }
502
503
504 drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
505
506
507 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
508
509 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
510 gma_crtc->pipe = pipe;
511 gma_crtc->plane = pipe;
512
513 for (i = 0; i < 256; i++)
514 gma_crtc->lut_adj[i] = 0;
515
516 gma_crtc->mode_dev = mode_dev;
517 gma_crtc->cursor_addr = 0;
518
519 drm_crtc_helper_add(&gma_crtc->base,
520 dev_priv->ops->crtc_helper);
521
522
523 gma_crtc->mode_set.crtc = &gma_crtc->base;
524 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
525 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
526 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
527 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
528 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
529 gma_crtc->mode_set.num_connectors = 0;
530 psb_intel_cursor_init(dev, gma_crtc);
531
532
533 gma_crtc->active = true;
534}
535
536struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
537{
538 struct drm_crtc *crtc = NULL;
539
540 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
541 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
542 if (gma_crtc->pipe == pipe)
543 break;
544 }
545 return crtc;
546}
547
548int gma_connector_clones(struct drm_device *dev, int type_mask)
549{
550 int index_mask = 0;
551 struct drm_connector *connector;
552 int entry = 0;
553
554 list_for_each_entry(connector, &dev->mode_config.connector_list,
555 head) {
556 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
557 if (type_mask & (1 << gma_encoder->type))
558 index_mask |= (1 << entry);
559 entry++;
560 }
561 return index_mask;
562}
563