linux/drivers/gpu/drm/msm/msm_gpu.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Copyright (C) 2013 Red Hat
   4 * Author: Rob Clark <robdclark@gmail.com>
   5 */
   6
   7#ifndef __MSM_GPU_H__
   8#define __MSM_GPU_H__
   9
  10#include <linux/adreno-smmu-priv.h>
  11#include <linux/clk.h>
  12#include <linux/interconnect.h>
  13#include <linux/pm_opp.h>
  14#include <linux/regulator/consumer.h>
  15
  16#include "msm_drv.h"
  17#include "msm_fence.h"
  18#include "msm_ringbuffer.h"
  19#include "msm_gem.h"
  20
  21struct msm_gem_submit;
  22struct msm_gpu_perfcntr;
  23struct msm_gpu_state;
  24
  25struct msm_gpu_config {
  26        const char *ioname;
  27        unsigned int nr_rings;
  28};
  29
  30/* So far, with hardware that I've seen to date, we can have:
  31 *  + zero, one, or two z180 2d cores
  32 *  + a3xx or a2xx 3d core, which share a common CP (the firmware
  33 *    for the CP seems to implement some different PM4 packet types
  34 *    but the basics of cmdstream submission are the same)
  35 *
  36 * Which means that the eventual complete "class" hierarchy, once
  37 * support for all past and present hw is in place, becomes:
  38 *  + msm_gpu
  39 *    + adreno_gpu
  40 *      + a3xx_gpu
  41 *      + a2xx_gpu
  42 *    + z180_gpu
  43 */
  44struct msm_gpu_funcs {
  45        int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
  46        int (*hw_init)(struct msm_gpu *gpu);
  47        int (*pm_suspend)(struct msm_gpu *gpu);
  48        int (*pm_resume)(struct msm_gpu *gpu);
  49        void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
  50        void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
  51        irqreturn_t (*irq)(struct msm_gpu *irq);
  52        struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
  53        void (*recover)(struct msm_gpu *gpu);
  54        void (*destroy)(struct msm_gpu *gpu);
  55#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
  56        /* show GPU status in debugfs: */
  57        void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
  58                        struct drm_printer *p);
  59        /* for generation specific debugfs: */
  60        void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
  61#endif
  62        unsigned long (*gpu_busy)(struct msm_gpu *gpu);
  63        struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
  64        int (*gpu_state_put)(struct msm_gpu_state *state);
  65        unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
  66        void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
  67        struct msm_gem_address_space *(*create_address_space)
  68                (struct msm_gpu *gpu, struct platform_device *pdev);
  69        struct msm_gem_address_space *(*create_private_address_space)
  70                (struct msm_gpu *gpu);
  71        uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
  72};
  73
  74/* Additional state for iommu faults: */
  75struct msm_gpu_fault_info {
  76        u64 ttbr0;
  77        unsigned long iova;
  78        int flags;
  79        const char *type;
  80        const char *block;
  81};
  82
  83/**
  84 * struct msm_gpu_devfreq - devfreq related state
  85 */
  86struct msm_gpu_devfreq {
  87        /** devfreq: devfreq instance */
  88        struct devfreq *devfreq;
  89
  90        /**
  91         * idle_constraint:
  92         *
  93         * A PM QoS constraint to limit max freq while the GPU is idle.
  94         */
  95        struct dev_pm_qos_request idle_freq;
  96
  97        /**
  98         * boost_constraint:
  99         *
 100         * A PM QoS constraint to boost min freq for a period of time
 101         * until the boost expires.
 102         */
 103        struct dev_pm_qos_request boost_freq;
 104
 105        /**
 106         * busy_cycles:
 107         *
 108         * Used by implementation of gpu->gpu_busy() to track the last
 109         * busy counter value, for calculating elapsed busy cycles since
 110         * last sampling period.
 111         */
 112        u64 busy_cycles;
 113
 114        /** time: Time of last sampling period. */
 115        ktime_t time;
 116
 117        /** idle_time: Time of last transition to idle: */
 118        ktime_t idle_time;
 119
 120        /**
 121         * idle_work:
 122         *
 123         * Used to delay clamping to idle freq on active->idle transition.
 124         */
 125        struct msm_hrtimer_work idle_work;
 126
 127        /**
 128         * boost_work:
 129         *
 130         * Used to reset the boost_constraint after the boost period has
 131         * elapsed
 132         */
 133        struct msm_hrtimer_work boost_work;
 134};
 135
 136struct msm_gpu {
 137        const char *name;
 138        struct drm_device *dev;
 139        struct platform_device *pdev;
 140        const struct msm_gpu_funcs *funcs;
 141
 142        struct adreno_smmu_priv adreno_smmu;
 143
 144        /* performance counters (hw & sw): */
 145        spinlock_t perf_lock;
 146        bool perfcntr_active;
 147        struct {
 148                bool active;
 149                ktime_t time;
 150        } last_sample;
 151        uint32_t totaltime, activetime;    /* sw counters */
 152        uint32_t last_cntrs[5];            /* hw counters */
 153        const struct msm_gpu_perfcntr *perfcntrs;
 154        uint32_t num_perfcntrs;
 155
 156        struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
 157        int nr_rings;
 158
 159        /**
 160         * cur_ctx_seqno:
 161         *
 162         * The ctx->seqno value of the last context to submit rendering,
 163         * and the one with current pgtables installed (for generations
 164         * that support per-context pgtables).  Tracked by seqno rather
 165         * than pointer value to avoid dangling pointers, and cases where
 166         * a ctx can be freed and a new one created with the same address.
 167         */
 168        int cur_ctx_seqno;
 169
 170        /*
 171         * List of GEM active objects on this gpu.  Protected by
 172         * msm_drm_private::mm_lock
 173         */
 174        struct list_head active_list;
 175
 176        /**
 177         * lock:
 178         *
 179         * General lock for serializing all the gpu things.
 180         *
 181         * TODO move to per-ring locking where feasible (ie. submit/retire
 182         * path, etc)
 183         */
 184        struct mutex lock;
 185
 186        /**
 187         * active_submits:
 188         *
 189         * The number of submitted but not yet retired submits, used to
 190         * determine transitions between active and idle.
 191         *
 192         * Protected by active_lock
 193         */
 194        int active_submits;
 195
 196        /** lock: protects active_submits and idle/active transitions */
 197        struct mutex active_lock;
 198
 199        /* does gpu need hw_init? */
 200        bool needs_hw_init;
 201
 202        /* number of GPU hangs (for all contexts) */
 203        int global_faults;
 204
 205        void __iomem *mmio;
 206        int irq;
 207
 208        struct msm_gem_address_space *aspace;
 209
 210        /* Power Control: */
 211        struct regulator *gpu_reg, *gpu_cx;
 212        struct clk_bulk_data *grp_clks;
 213        int nr_clocks;
 214        struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
 215        uint32_t fast_rate;
 216
 217        /* Hang and Inactivity Detection:
 218         */
 219#define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
 220
 221#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
 222        struct timer_list hangcheck_timer;
 223
 224        /* Fault info for most recent iova fault: */
 225        struct msm_gpu_fault_info fault_info;
 226
 227        /* work for handling GPU ioval faults: */
 228        struct kthread_work fault_work;
 229
 230        /* work for handling GPU recovery: */
 231        struct kthread_work recover_work;
 232
 233        /** retire_event: notified when submits are retired: */
 234        wait_queue_head_t retire_event;
 235
 236        /* work for handling active-list retiring: */
 237        struct kthread_work retire_work;
 238
 239        /* worker for retire/recover: */
 240        struct kthread_worker *worker;
 241
 242        struct drm_gem_object *memptrs_bo;
 243
 244        struct msm_gpu_devfreq devfreq;
 245
 246        uint32_t suspend_count;
 247
 248        struct msm_gpu_state *crashstate;
 249
 250        /* Enable clamping to idle freq when inactive: */
 251        bool clamp_to_idle;
 252
 253        /* True if the hardware supports expanded apriv (a650 and newer) */
 254        bool hw_apriv;
 255
 256        struct thermal_cooling_device *cooling;
 257};
 258
 259static inline struct msm_gpu *dev_to_gpu(struct device *dev)
 260{
 261        struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
 262        return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
 263}
 264
 265/* It turns out that all targets use the same ringbuffer size */
 266#define MSM_GPU_RINGBUFFER_SZ SZ_32K
 267#define MSM_GPU_RINGBUFFER_BLKSIZE 32
 268
 269#define MSM_GPU_RB_CNTL_DEFAULT \
 270                (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
 271                AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
 272
 273static inline bool msm_gpu_active(struct msm_gpu *gpu)
 274{
 275        int i;
 276
 277        for (i = 0; i < gpu->nr_rings; i++) {
 278                struct msm_ringbuffer *ring = gpu->rb[i];
 279
 280                if (fence_after(ring->seqno, ring->memptrs->fence))
 281                        return true;
 282        }
 283
 284        return false;
 285}
 286
 287/* Perf-Counters:
 288 * The select_reg and select_val are just there for the benefit of the child
 289 * class that actually enables the perf counter..  but msm_gpu base class
 290 * will handle sampling/displaying the counters.
 291 */
 292
 293struct msm_gpu_perfcntr {
 294        uint32_t select_reg;
 295        uint32_t sample_reg;
 296        uint32_t select_val;
 297        const char *name;
 298};
 299
 300/*
 301 * The number of priority levels provided by drm gpu scheduler.  The
 302 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
 303 * cases, so we don't use it (no need for kernel generated jobs).
 304 */
 305#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
 306
 307/**
 308 * struct msm_file_private - per-drm_file context
 309 *
 310 * @queuelock:    synchronizes access to submitqueues list
 311 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
 312 * @queueid:      counter incremented each time a submitqueue is created,
 313 *                used to assign &msm_gpu_submitqueue.id
 314 * @aspace:       the per-process GPU address-space
 315 * @ref:          reference count
 316 * @seqno:        unique per process seqno
 317 */
 318struct msm_file_private {
 319        rwlock_t queuelock;
 320        struct list_head submitqueues;
 321        int queueid;
 322        struct msm_gem_address_space *aspace;
 323        struct kref ref;
 324        int seqno;
 325
 326        /**
 327         * entities:
 328         *
 329         * Table of per-priority-level sched entities used by submitqueues
 330         * associated with this &drm_file.  Because some userspace apps
 331         * make assumptions about rendering from multiple gl contexts
 332         * (of the same priority) within the process happening in FIFO
 333         * order without requiring any fencing beyond MakeCurrent(), we
 334         * create at most one &drm_sched_entity per-process per-priority-
 335         * level.
 336         */
 337        struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
 338};
 339
 340/**
 341 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
 342 *
 343 * @gpu:        the gpu instance
 344 * @prio:       the userspace priority level
 345 * @ring_nr:    [out] the ringbuffer the userspace priority maps to
 346 * @sched_prio: [out] the gpu scheduler priority level which the userspace
 347 *              priority maps to
 348 *
 349 * With drm/scheduler providing it's own level of prioritization, our total
 350 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
 351 * Each ring is associated with it's own scheduler instance.  However, our
 352 * UABI is that lower numerical values are higher priority.  So mapping the
 353 * single userspace priority level into ring_nr and sched_prio takes some
 354 * care.  The userspace provided priority (when a submitqueue is created)
 355 * is mapped to ring nr and scheduler priority as such:
 356 *
 357 *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
 358 *   sched_prio = NR_SCHED_PRIORITIES -
 359 *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
 360 *
 361 * This allows generations without preemption (nr_rings==1) to have some
 362 * amount of prioritization, and provides more priority levels for gens
 363 * that do have preemption.
 364 */
 365static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
 366                unsigned *ring_nr, enum drm_sched_priority *sched_prio)
 367{
 368        unsigned rn, sp;
 369
 370        rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
 371
 372        /* invert sched priority to map to higher-numeric-is-higher-
 373         * priority convention
 374         */
 375        sp = NR_SCHED_PRIORITIES - sp - 1;
 376
 377        if (rn >= gpu->nr_rings)
 378                return -EINVAL;
 379
 380        *ring_nr = rn;
 381        *sched_prio = sp;
 382
 383        return 0;
 384}
 385
 386/**
 387 * struct msm_gpu_submitqueues - Userspace created context.
 388 *
 389 * A submitqueue is associated with a gl context or vk queue (or equiv)
 390 * in userspace.
 391 *
 392 * @id:        userspace id for the submitqueue, unique within the drm_file
 393 * @flags:     userspace flags for the submitqueue, specified at creation
 394 *             (currently unusued)
 395 * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
 396 *             by the submitqueue's priority
 397 * @faults:    the number of GPU hangs associated with this submitqueue
 398 * @last_fence: the sequence number of the last allocated fence (for error
 399 *             checking)
 400 * @ctx:       the per-drm_file context associated with the submitqueue (ie.
 401 *             which set of pgtables do submits jobs associated with the
 402 *             submitqueue use)
 403 * @node:      node in the context's list of submitqueues
 404 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
 405 *             seqno, protected by submitqueue lock
 406 * @lock:      submitqueue lock
 407 * @ref:       reference count
 408 * @entity:    the submit job-queue
 409 */
 410struct msm_gpu_submitqueue {
 411        int id;
 412        u32 flags;
 413        u32 ring_nr;
 414        int faults;
 415        uint32_t last_fence;
 416        struct msm_file_private *ctx;
 417        struct list_head node;
 418        struct idr fence_idr;
 419        struct mutex lock;
 420        struct kref ref;
 421        struct drm_sched_entity *entity;
 422};
 423
 424struct msm_gpu_state_bo {
 425        u64 iova;
 426        size_t size;
 427        void *data;
 428        bool encoded;
 429};
 430
 431struct msm_gpu_state {
 432        struct kref ref;
 433        struct timespec64 time;
 434
 435        struct {
 436                u64 iova;
 437                u32 fence;
 438                u32 seqno;
 439                u32 rptr;
 440                u32 wptr;
 441                void *data;
 442                int data_size;
 443                bool encoded;
 444        } ring[MSM_GPU_MAX_RINGS];
 445
 446        int nr_registers;
 447        u32 *registers;
 448
 449        u32 rbbm_status;
 450
 451        char *comm;
 452        char *cmd;
 453
 454        struct msm_gpu_fault_info fault_info;
 455
 456        int nr_bos;
 457        struct msm_gpu_state_bo *bos;
 458};
 459
 460static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
 461{
 462        msm_writel(data, gpu->mmio + (reg << 2));
 463}
 464
 465static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
 466{
 467        return msm_readl(gpu->mmio + (reg << 2));
 468}
 469
 470static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
 471{
 472        msm_rmw(gpu->mmio + (reg << 2), mask, or);
 473}
 474
 475static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
 476{
 477        u64 val;
 478
 479        /*
 480         * Why not a readq here? Two reasons: 1) many of the LO registers are
 481         * not quad word aligned and 2) the GPU hardware designers have a bit
 482         * of a history of putting registers where they fit, especially in
 483         * spins. The longer a GPU family goes the higher the chance that
 484         * we'll get burned.  We could do a series of validity checks if we
 485         * wanted to, but really is a readq() that much better? Nah.
 486         */
 487
 488        /*
 489         * For some lo/hi registers (like perfcounters), the hi value is latched
 490         * when the lo is read, so make sure to read the lo first to trigger
 491         * that
 492         */
 493        val = (u64) msm_readl(gpu->mmio + (lo << 2));
 494        val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
 495
 496        return val;
 497}
 498
 499static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
 500{
 501        /* Why not a writeq here? Read the screed above */
 502        msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
 503        msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
 504}
 505
 506int msm_gpu_pm_suspend(struct msm_gpu *gpu);
 507int msm_gpu_pm_resume(struct msm_gpu *gpu);
 508
 509int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
 510struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
 511                u32 id);
 512int msm_submitqueue_create(struct drm_device *drm,
 513                struct msm_file_private *ctx,
 514                u32 prio, u32 flags, u32 *id);
 515int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
 516                struct drm_msm_submitqueue_query *args);
 517int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
 518void msm_submitqueue_close(struct msm_file_private *ctx);
 519
 520void msm_submitqueue_destroy(struct kref *kref);
 521
 522void __msm_file_private_destroy(struct kref *kref);
 523
 524static inline void msm_file_private_put(struct msm_file_private *ctx)
 525{
 526        kref_put(&ctx->ref, __msm_file_private_destroy);
 527}
 528
 529static inline struct msm_file_private *msm_file_private_get(
 530        struct msm_file_private *ctx)
 531{
 532        kref_get(&ctx->ref);
 533        return ctx;
 534}
 535
 536void msm_devfreq_init(struct msm_gpu *gpu);
 537void msm_devfreq_cleanup(struct msm_gpu *gpu);
 538void msm_devfreq_resume(struct msm_gpu *gpu);
 539void msm_devfreq_suspend(struct msm_gpu *gpu);
 540void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
 541void msm_devfreq_active(struct msm_gpu *gpu);
 542void msm_devfreq_idle(struct msm_gpu *gpu);
 543
 544int msm_gpu_hw_init(struct msm_gpu *gpu);
 545
 546void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
 547void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
 548int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
 549                uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
 550
 551void msm_gpu_retire(struct msm_gpu *gpu);
 552void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
 553
 554int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
 555                struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
 556                const char *name, struct msm_gpu_config *config);
 557
 558struct msm_gem_address_space *
 559msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
 560
 561void msm_gpu_cleanup(struct msm_gpu *gpu);
 562
 563struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
 564void __init adreno_register(void);
 565void __exit adreno_unregister(void);
 566
 567static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
 568{
 569        if (queue)
 570                kref_put(&queue->ref, msm_submitqueue_destroy);
 571}
 572
 573static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
 574{
 575        struct msm_gpu_state *state = NULL;
 576
 577        mutex_lock(&gpu->lock);
 578
 579        if (gpu->crashstate) {
 580                kref_get(&gpu->crashstate->ref);
 581                state = gpu->crashstate;
 582        }
 583
 584        mutex_unlock(&gpu->lock);
 585
 586        return state;
 587}
 588
 589static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
 590{
 591        mutex_lock(&gpu->lock);
 592
 593        if (gpu->crashstate) {
 594                if (gpu->funcs->gpu_state_put(gpu->crashstate))
 595                        gpu->crashstate = NULL;
 596        }
 597
 598        mutex_unlock(&gpu->lock);
 599}
 600
 601/*
 602 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
 603 * support expanded privileges
 604 */
 605#define check_apriv(gpu, flags) \
 606        (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
 607
 608
 609#endif /* __MSM_GPU_H__ */
 610