linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/iommu.h>
  11#include <linux/interconnect.h>
  12#include <linux/module.h>
  13#include <linux/of_device.h>
  14#include <linux/pm_domain.h>
  15#include <linux/pm_opp.h>
  16#include <linux/pm_runtime.h>
  17#include <linux/reset.h>
  18
  19#include <soc/tegra/common.h>
  20#include <soc/tegra/pmc.h>
  21
  22#include <drm/drm_atomic.h>
  23#include <drm/drm_atomic_helper.h>
  24#include <drm/drm_debugfs.h>
  25#include <drm/drm_fourcc.h>
  26#include <drm/drm_plane_helper.h>
  27#include <drm/drm_vblank.h>
  28
  29#include "dc.h"
  30#include "drm.h"
  31#include "gem.h"
  32#include "hub.h"
  33#include "plane.h"
  34
  35static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  36                                            struct drm_crtc_state *state);
  37
  38static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  39{
  40        stats->frames = 0;
  41        stats->vblank = 0;
  42        stats->underflow = 0;
  43        stats->overflow = 0;
  44}
  45
  46/* Reads the active copy of a register. */
  47static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  48{
  49        u32 value;
  50
  51        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  52        value = tegra_dc_readl(dc, offset);
  53        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  54
  55        return value;
  56}
  57
  58static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  59                                              unsigned int offset)
  60{
  61        if (offset >= 0x500 && offset <= 0x638) {
  62                offset = 0x000 + (offset - 0x500);
  63                return plane->offset + offset;
  64        }
  65
  66        if (offset >= 0x700 && offset <= 0x719) {
  67                offset = 0x180 + (offset - 0x700);
  68                return plane->offset + offset;
  69        }
  70
  71        if (offset >= 0x800 && offset <= 0x839) {
  72                offset = 0x1c0 + (offset - 0x800);
  73                return plane->offset + offset;
  74        }
  75
  76        dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  77
  78        return plane->offset + offset;
  79}
  80
  81static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  82                                    unsigned int offset)
  83{
  84        return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  85}
  86
  87static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  88                                      unsigned int offset)
  89{
  90        tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  91}
  92
  93bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  94{
  95        struct device_node *np = dc->dev->of_node;
  96        struct of_phandle_iterator it;
  97        int err;
  98
  99        of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
 100                if (it.node == dev->of_node)
 101                        return true;
 102
 103        return false;
 104}
 105
 106/*
 107 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 108 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 109 * Latching happens mmediately if the display controller is in STOP mode or
 110 * on the next frame boundary otherwise.
 111 *
 112 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 113 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 114 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 115 * into the ACTIVE copy, either immediately if the display controller is in
 116 * STOP mode, or at the next frame boundary otherwise.
 117 */
 118void tegra_dc_commit(struct tegra_dc *dc)
 119{
 120        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 121        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 122}
 123
 124static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 125                                  unsigned int bpp)
 126{
 127        fixed20_12 outf = dfixed_init(out);
 128        fixed20_12 inf = dfixed_init(in);
 129        u32 dda_inc;
 130        int max;
 131
 132        if (v)
 133                max = 15;
 134        else {
 135                switch (bpp) {
 136                case 2:
 137                        max = 8;
 138                        break;
 139
 140                default:
 141                        WARN_ON_ONCE(1);
 142                        fallthrough;
 143                case 4:
 144                        max = 4;
 145                        break;
 146                }
 147        }
 148
 149        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 150        inf.full -= dfixed_const(1);
 151
 152        dda_inc = dfixed_div(inf, outf);
 153        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 154
 155        return dda_inc;
 156}
 157
 158static inline u32 compute_initial_dda(unsigned int in)
 159{
 160        fixed20_12 inf = dfixed_init(in);
 161        return dfixed_frac(inf);
 162}
 163
 164static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 165{
 166        u32 background[3] = {
 167                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 168                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 169                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 170        };
 171        u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 172                         BLEND_COLOR_KEY_NONE;
 173        u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 174        struct tegra_plane_state *state;
 175        u32 blending[2];
 176        unsigned int i;
 177
 178        /* disable blending for non-overlapping case */
 179        tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 180        tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 181
 182        state = to_tegra_plane_state(plane->base.state);
 183
 184        if (state->opaque) {
 185                /*
 186                 * Since custom fix-weight blending isn't utilized and weight
 187                 * of top window is set to max, we can enforce dependent
 188                 * blending which in this case results in transparent bottom
 189                 * window if top window is opaque and if top window enables
 190                 * alpha blending, then bottom window is getting alpha value
 191                 * of 1 minus the sum of alpha components of the overlapping
 192                 * plane.
 193                 */
 194                background[0] |= BLEND_CONTROL_DEPENDENT;
 195                background[1] |= BLEND_CONTROL_DEPENDENT;
 196
 197                /*
 198                 * The region where three windows overlap is the intersection
 199                 * of the two regions where two windows overlap. It contributes
 200                 * to the area if all of the windows on top of it have an alpha
 201                 * component.
 202                 */
 203                switch (state->base.normalized_zpos) {
 204                case 0:
 205                        if (state->blending[0].alpha &&
 206                            state->blending[1].alpha)
 207                                background[2] |= BLEND_CONTROL_DEPENDENT;
 208                        break;
 209
 210                case 1:
 211                        background[2] |= BLEND_CONTROL_DEPENDENT;
 212                        break;
 213                }
 214        } else {
 215                /*
 216                 * Enable alpha blending if pixel format has an alpha
 217                 * component.
 218                 */
 219                foreground |= BLEND_CONTROL_ALPHA;
 220
 221                /*
 222                 * If any of the windows on top of this window is opaque, it
 223                 * will completely conceal this window within that area. If
 224                 * top window has an alpha component, it is blended over the
 225                 * bottom window.
 226                 */
 227                for (i = 0; i < 2; i++) {
 228                        if (state->blending[i].alpha &&
 229                            state->blending[i].top)
 230                                background[i] |= BLEND_CONTROL_DEPENDENT;
 231                }
 232
 233                switch (state->base.normalized_zpos) {
 234                case 0:
 235                        if (state->blending[0].alpha &&
 236                            state->blending[1].alpha)
 237                                background[2] |= BLEND_CONTROL_DEPENDENT;
 238                        break;
 239
 240                case 1:
 241                        /*
 242                         * When both middle and topmost windows have an alpha,
 243                         * these windows a mixed together and then the result
 244                         * is blended over the bottom window.
 245                         */
 246                        if (state->blending[0].alpha &&
 247                            state->blending[0].top)
 248                                background[2] |= BLEND_CONTROL_ALPHA;
 249
 250                        if (state->blending[1].alpha &&
 251                            state->blending[1].top)
 252                                background[2] |= BLEND_CONTROL_ALPHA;
 253                        break;
 254                }
 255        }
 256
 257        switch (state->base.normalized_zpos) {
 258        case 0:
 259                tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 260                tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 261                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 262                break;
 263
 264        case 1:
 265                /*
 266                 * If window B / C is topmost, then X / Y registers are
 267                 * matching the order of blending[...] state indices,
 268                 * otherwise a swap is required.
 269                 */
 270                if (!state->blending[0].top && state->blending[1].top) {
 271                        blending[0] = foreground;
 272                        blending[1] = background[1];
 273                } else {
 274                        blending[0] = background[0];
 275                        blending[1] = foreground;
 276                }
 277
 278                tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 279                tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 280                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 281                break;
 282
 283        case 2:
 284                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 285                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 286                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 287                break;
 288        }
 289}
 290
 291static void tegra_plane_setup_blending(struct tegra_plane *plane,
 292                                       const struct tegra_dc_window *window)
 293{
 294        u32 value;
 295
 296        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 297                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 298                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 299        tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 300
 301        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 302                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 303                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 304        tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 305
 306        value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 307        tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 308}
 309
 310static bool
 311tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 312                                     const struct tegra_dc_window *window)
 313{
 314        struct tegra_dc *dc = plane->dc;
 315
 316        if (window->src.w == window->dst.w)
 317                return false;
 318
 319        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 320                return false;
 321
 322        return true;
 323}
 324
 325static bool
 326tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 327                                   const struct tegra_dc_window *window)
 328{
 329        struct tegra_dc *dc = plane->dc;
 330
 331        if (window->src.h == window->dst.h)
 332                return false;
 333
 334        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 335                return false;
 336
 337        if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 338                return false;
 339
 340        return true;
 341}
 342
 343static void tegra_dc_setup_window(struct tegra_plane *plane,
 344                                  const struct tegra_dc_window *window)
 345{
 346        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 347        struct tegra_dc *dc = plane->dc;
 348        bool yuv, planar;
 349        u32 value;
 350
 351        /*
 352         * For YUV planar modes, the number of bytes per pixel takes into
 353         * account only the luma component and therefore is 1.
 354         */
 355        yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL);
 356        if (!yuv)
 357                bpp = window->bits_per_pixel / 8;
 358        else
 359                bpp = planar ? 1 : 2;
 360
 361        tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 362        tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 363
 364        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 365        tegra_plane_writel(plane, value, DC_WIN_POSITION);
 366
 367        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 368        tegra_plane_writel(plane, value, DC_WIN_SIZE);
 369
 370        h_offset = window->src.x * bpp;
 371        v_offset = window->src.y;
 372        h_size = window->src.w * bpp;
 373        v_size = window->src.h;
 374
 375        if (window->reflect_x)
 376                h_offset += (window->src.w - 1) * bpp;
 377
 378        if (window->reflect_y)
 379                v_offset += window->src.h - 1;
 380
 381        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 382        tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 383
 384        /*
 385         * For DDA computations the number of bytes per pixel for YUV planar
 386         * modes needs to take into account all Y, U and V components.
 387         */
 388        if (yuv && planar)
 389                bpp = 2;
 390
 391        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 392        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 393
 394        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 395        tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 396
 397        h_dda = compute_initial_dda(window->src.x);
 398        v_dda = compute_initial_dda(window->src.y);
 399
 400        tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 401        tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 402
 403        tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 404        tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 405
 406        tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 407
 408        if (yuv && planar) {
 409                tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 410                tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 411                value = window->stride[1] << 16 | window->stride[0];
 412                tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 413        } else {
 414                tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 415        }
 416
 417        tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 418        tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 419
 420        if (dc->soc->supports_block_linear) {
 421                unsigned long height = window->tiling.value;
 422
 423                switch (window->tiling.mode) {
 424                case TEGRA_BO_TILING_MODE_PITCH:
 425                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 426                        break;
 427
 428                case TEGRA_BO_TILING_MODE_TILED:
 429                        value = DC_WINBUF_SURFACE_KIND_TILED;
 430                        break;
 431
 432                case TEGRA_BO_TILING_MODE_BLOCK:
 433                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 434                                DC_WINBUF_SURFACE_KIND_BLOCK;
 435                        break;
 436                }
 437
 438                tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 439        } else {
 440                switch (window->tiling.mode) {
 441                case TEGRA_BO_TILING_MODE_PITCH:
 442                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 443                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 444                        break;
 445
 446                case TEGRA_BO_TILING_MODE_TILED:
 447                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 448                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 449                        break;
 450
 451                case TEGRA_BO_TILING_MODE_BLOCK:
 452                        /*
 453                         * No need to handle this here because ->atomic_check
 454                         * will already have filtered it out.
 455                         */
 456                        break;
 457                }
 458
 459                tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 460        }
 461
 462        value = WIN_ENABLE;
 463
 464        if (yuv) {
 465                /* setup default colorspace conversion coefficients */
 466                tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 467                tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 468                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 469                tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 470                tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 471                tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 472                tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 473                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 474
 475                value |= CSC_ENABLE;
 476        } else if (window->bits_per_pixel < 24) {
 477                value |= COLOR_EXPAND;
 478        }
 479
 480        if (window->reflect_x)
 481                value |= H_DIRECTION;
 482
 483        if (window->reflect_y)
 484                value |= V_DIRECTION;
 485
 486        if (tegra_plane_use_horizontal_filtering(plane, window)) {
 487                /*
 488                 * Enable horizontal 6-tap filter and set filtering
 489                 * coefficients to the default values defined in TRM.
 490                 */
 491                tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 492                tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 493                tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 494                tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 495                tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 496                tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 497                tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 498                tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 499                tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 500                tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 501                tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 502                tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 503                tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 504                tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 505                tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 506                tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 507
 508                value |= H_FILTER;
 509        }
 510
 511        if (tegra_plane_use_vertical_filtering(plane, window)) {
 512                unsigned int i, k;
 513
 514                /*
 515                 * Enable vertical 2-tap filter and set filtering
 516                 * coefficients to the default values defined in TRM.
 517                 */
 518                for (i = 0, k = 128; i < 16; i++, k -= 8)
 519                        tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 520
 521                value |= V_FILTER;
 522        }
 523
 524        tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 525
 526        if (dc->soc->has_legacy_blending)
 527                tegra_plane_setup_blending_legacy(plane);
 528        else
 529                tegra_plane_setup_blending(plane, window);
 530}
 531
 532static const u32 tegra20_primary_formats[] = {
 533        DRM_FORMAT_ARGB4444,
 534        DRM_FORMAT_ARGB1555,
 535        DRM_FORMAT_RGB565,
 536        DRM_FORMAT_RGBA5551,
 537        DRM_FORMAT_ABGR8888,
 538        DRM_FORMAT_ARGB8888,
 539        /* non-native formats */
 540        DRM_FORMAT_XRGB1555,
 541        DRM_FORMAT_RGBX5551,
 542        DRM_FORMAT_XBGR8888,
 543        DRM_FORMAT_XRGB8888,
 544};
 545
 546static const u64 tegra20_modifiers[] = {
 547        DRM_FORMAT_MOD_LINEAR,
 548        DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 549        DRM_FORMAT_MOD_INVALID
 550};
 551
 552static const u32 tegra114_primary_formats[] = {
 553        DRM_FORMAT_ARGB4444,
 554        DRM_FORMAT_ARGB1555,
 555        DRM_FORMAT_RGB565,
 556        DRM_FORMAT_RGBA5551,
 557        DRM_FORMAT_ABGR8888,
 558        DRM_FORMAT_ARGB8888,
 559        /* new on Tegra114 */
 560        DRM_FORMAT_ABGR4444,
 561        DRM_FORMAT_ABGR1555,
 562        DRM_FORMAT_BGRA5551,
 563        DRM_FORMAT_XRGB1555,
 564        DRM_FORMAT_RGBX5551,
 565        DRM_FORMAT_XBGR1555,
 566        DRM_FORMAT_BGRX5551,
 567        DRM_FORMAT_BGR565,
 568        DRM_FORMAT_BGRA8888,
 569        DRM_FORMAT_RGBA8888,
 570        DRM_FORMAT_XRGB8888,
 571        DRM_FORMAT_XBGR8888,
 572};
 573
 574static const u32 tegra124_primary_formats[] = {
 575        DRM_FORMAT_ARGB4444,
 576        DRM_FORMAT_ARGB1555,
 577        DRM_FORMAT_RGB565,
 578        DRM_FORMAT_RGBA5551,
 579        DRM_FORMAT_ABGR8888,
 580        DRM_FORMAT_ARGB8888,
 581        /* new on Tegra114 */
 582        DRM_FORMAT_ABGR4444,
 583        DRM_FORMAT_ABGR1555,
 584        DRM_FORMAT_BGRA5551,
 585        DRM_FORMAT_XRGB1555,
 586        DRM_FORMAT_RGBX5551,
 587        DRM_FORMAT_XBGR1555,
 588        DRM_FORMAT_BGRX5551,
 589        DRM_FORMAT_BGR565,
 590        DRM_FORMAT_BGRA8888,
 591        DRM_FORMAT_RGBA8888,
 592        DRM_FORMAT_XRGB8888,
 593        DRM_FORMAT_XBGR8888,
 594        /* new on Tegra124 */
 595        DRM_FORMAT_RGBX8888,
 596        DRM_FORMAT_BGRX8888,
 597};
 598
 599static const u64 tegra124_modifiers[] = {
 600        DRM_FORMAT_MOD_LINEAR,
 601        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 602        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 603        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 604        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 605        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 606        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 607        DRM_FORMAT_MOD_INVALID
 608};
 609
 610static int tegra_plane_atomic_check(struct drm_plane *plane,
 611                                    struct drm_atomic_state *state)
 612{
 613        struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 614                                                                                 plane);
 615        struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 616        unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
 617                                          DRM_MODE_REFLECT_X |
 618                                          DRM_MODE_REFLECT_Y;
 619        unsigned int rotation = new_plane_state->rotation;
 620        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 621        struct tegra_plane *tegra = to_tegra_plane(plane);
 622        struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
 623        int err;
 624
 625        plane_state->peak_memory_bandwidth = 0;
 626        plane_state->avg_memory_bandwidth = 0;
 627
 628        /* no need for further checks if the plane is being disabled */
 629        if (!new_plane_state->crtc) {
 630                plane_state->total_peak_memory_bandwidth = 0;
 631                return 0;
 632        }
 633
 634        err = tegra_plane_format(new_plane_state->fb->format->format,
 635                                 &plane_state->format,
 636                                 &plane_state->swap);
 637        if (err < 0)
 638                return err;
 639
 640        /*
 641         * Tegra20 and Tegra30 are special cases here because they support
 642         * only variants of specific formats with an alpha component, but not
 643         * the corresponding opaque formats. However, the opaque formats can
 644         * be emulated by disabling alpha blending for the plane.
 645         */
 646        if (dc->soc->has_legacy_blending) {
 647                err = tegra_plane_setup_legacy_state(tegra, plane_state);
 648                if (err < 0)
 649                        return err;
 650        }
 651
 652        err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
 653        if (err < 0)
 654                return err;
 655
 656        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 657            !dc->soc->supports_block_linear) {
 658                DRM_ERROR("hardware doesn't support block linear mode\n");
 659                return -EINVAL;
 660        }
 661
 662        /*
 663         * Older userspace used custom BO flag in order to specify the Y
 664         * reflection, while modern userspace uses the generic DRM rotation
 665         * property in order to achieve the same result.  The legacy BO flag
 666         * duplicates the DRM rotation property when both are set.
 667         */
 668        if (tegra_fb_is_bottom_up(new_plane_state->fb))
 669                rotation |= DRM_MODE_REFLECT_Y;
 670
 671        rotation = drm_rotation_simplify(rotation, supported_rotation);
 672
 673        if (rotation & DRM_MODE_REFLECT_X)
 674                plane_state->reflect_x = true;
 675        else
 676                plane_state->reflect_x = false;
 677
 678        if (rotation & DRM_MODE_REFLECT_Y)
 679                plane_state->reflect_y = true;
 680        else
 681                plane_state->reflect_y = false;
 682
 683        /*
 684         * Tegra doesn't support different strides for U and V planes so we
 685         * error out if the user tries to display a framebuffer with such a
 686         * configuration.
 687         */
 688        if (new_plane_state->fb->format->num_planes > 2) {
 689                if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
 690                        DRM_ERROR("unsupported UV-plane configuration\n");
 691                        return -EINVAL;
 692                }
 693        }
 694
 695        err = tegra_plane_state_add(tegra, new_plane_state);
 696        if (err < 0)
 697                return err;
 698
 699        return 0;
 700}
 701
 702static void tegra_plane_atomic_disable(struct drm_plane *plane,
 703                                       struct drm_atomic_state *state)
 704{
 705        struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
 706                                                                           plane);
 707        struct tegra_plane *p = to_tegra_plane(plane);
 708        u32 value;
 709
 710        /* rien ne va plus */
 711        if (!old_state || !old_state->crtc)
 712                return;
 713
 714        value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 715        value &= ~WIN_ENABLE;
 716        tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 717}
 718
 719static void tegra_plane_atomic_update(struct drm_plane *plane,
 720                                      struct drm_atomic_state *state)
 721{
 722        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
 723                                                                           plane);
 724        struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 725        struct drm_framebuffer *fb = new_state->fb;
 726        struct tegra_plane *p = to_tegra_plane(plane);
 727        struct tegra_dc_window window;
 728        unsigned int i;
 729
 730        /* rien ne va plus */
 731        if (!new_state->crtc || !new_state->fb)
 732                return;
 733
 734        if (!new_state->visible)
 735                return tegra_plane_atomic_disable(plane, state);
 736
 737        memset(&window, 0, sizeof(window));
 738        window.src.x = new_state->src.x1 >> 16;
 739        window.src.y = new_state->src.y1 >> 16;
 740        window.src.w = drm_rect_width(&new_state->src) >> 16;
 741        window.src.h = drm_rect_height(&new_state->src) >> 16;
 742        window.dst.x = new_state->dst.x1;
 743        window.dst.y = new_state->dst.y1;
 744        window.dst.w = drm_rect_width(&new_state->dst);
 745        window.dst.h = drm_rect_height(&new_state->dst);
 746        window.bits_per_pixel = fb->format->cpp[0] * 8;
 747        window.reflect_x = tegra_plane_state->reflect_x;
 748        window.reflect_y = tegra_plane_state->reflect_y;
 749
 750        /* copy from state */
 751        window.zpos = new_state->normalized_zpos;
 752        window.tiling = tegra_plane_state->tiling;
 753        window.format = tegra_plane_state->format;
 754        window.swap = tegra_plane_state->swap;
 755
 756        for (i = 0; i < fb->format->num_planes; i++) {
 757                window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
 758
 759                /*
 760                 * Tegra uses a shared stride for UV planes. Framebuffers are
 761                 * already checked for this in the tegra_plane_atomic_check()
 762                 * function, so it's safe to ignore the V-plane pitch here.
 763                 */
 764                if (i < 2)
 765                        window.stride[i] = fb->pitches[i];
 766        }
 767
 768        tegra_dc_setup_window(p, &window);
 769}
 770
 771static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 772        .prepare_fb = tegra_plane_prepare_fb,
 773        .cleanup_fb = tegra_plane_cleanup_fb,
 774        .atomic_check = tegra_plane_atomic_check,
 775        .atomic_disable = tegra_plane_atomic_disable,
 776        .atomic_update = tegra_plane_atomic_update,
 777};
 778
 779static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 780{
 781        /*
 782         * Ideally this would use drm_crtc_mask(), but that would require the
 783         * CRTC to already be in the mode_config's list of CRTCs. However, it
 784         * will only be added to that list in the drm_crtc_init_with_planes()
 785         * (in tegra_dc_init()), which in turn requires registration of these
 786         * planes. So we have ourselves a nice little chicken and egg problem
 787         * here.
 788         *
 789         * We work around this by manually creating the mask from the number
 790         * of CRTCs that have been registered, and should therefore always be
 791         * the same as drm_crtc_index() after registration.
 792         */
 793        return 1 << drm->mode_config.num_crtc;
 794}
 795
 796static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 797                                                    struct tegra_dc *dc)
 798{
 799        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 800        enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 801        struct tegra_plane *plane;
 802        unsigned int num_formats;
 803        const u64 *modifiers;
 804        const u32 *formats;
 805        int err;
 806
 807        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 808        if (!plane)
 809                return ERR_PTR(-ENOMEM);
 810
 811        /* Always use window A as primary window */
 812        plane->offset = 0xa00;
 813        plane->index = 0;
 814        plane->dc = dc;
 815
 816        num_formats = dc->soc->num_primary_formats;
 817        formats = dc->soc->primary_formats;
 818        modifiers = dc->soc->modifiers;
 819
 820        err = tegra_plane_interconnect_init(plane);
 821        if (err) {
 822                kfree(plane);
 823                return ERR_PTR(err);
 824        }
 825
 826        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 827                                       &tegra_plane_funcs, formats,
 828                                       num_formats, modifiers, type, NULL);
 829        if (err < 0) {
 830                kfree(plane);
 831                return ERR_PTR(err);
 832        }
 833
 834        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 835        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 836
 837        err = drm_plane_create_rotation_property(&plane->base,
 838                                                 DRM_MODE_ROTATE_0,
 839                                                 DRM_MODE_ROTATE_0 |
 840                                                 DRM_MODE_ROTATE_180 |
 841                                                 DRM_MODE_REFLECT_X |
 842                                                 DRM_MODE_REFLECT_Y);
 843        if (err < 0)
 844                dev_err(dc->dev, "failed to create rotation property: %d\n",
 845                        err);
 846
 847        return &plane->base;
 848}
 849
 850static const u32 tegra_legacy_cursor_plane_formats[] = {
 851        DRM_FORMAT_RGBA8888,
 852};
 853
 854static const u32 tegra_cursor_plane_formats[] = {
 855        DRM_FORMAT_ARGB8888,
 856};
 857
 858static int tegra_cursor_atomic_check(struct drm_plane *plane,
 859                                     struct drm_atomic_state *state)
 860{
 861        struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 862                                                                                 plane);
 863        struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 864        struct tegra_plane *tegra = to_tegra_plane(plane);
 865        int err;
 866
 867        plane_state->peak_memory_bandwidth = 0;
 868        plane_state->avg_memory_bandwidth = 0;
 869
 870        /* no need for further checks if the plane is being disabled */
 871        if (!new_plane_state->crtc) {
 872                plane_state->total_peak_memory_bandwidth = 0;
 873                return 0;
 874        }
 875
 876        /* scaling not supported for cursor */
 877        if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
 878            (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
 879                return -EINVAL;
 880
 881        /* only square cursors supported */
 882        if (new_plane_state->src_w != new_plane_state->src_h)
 883                return -EINVAL;
 884
 885        if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
 886            new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
 887                return -EINVAL;
 888
 889        err = tegra_plane_state_add(tegra, new_plane_state);
 890        if (err < 0)
 891                return err;
 892
 893        return 0;
 894}
 895
 896static void __tegra_cursor_atomic_update(struct drm_plane *plane,
 897                                         struct drm_plane_state *new_state)
 898{
 899        struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 900        struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
 901        struct tegra_drm *tegra = plane->dev->dev_private;
 902#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 903        u64 dma_mask = *dc->dev->dma_mask;
 904#endif
 905        unsigned int x, y;
 906        u32 value = 0;
 907
 908        /* rien ne va plus */
 909        if (!new_state->crtc || !new_state->fb)
 910                return;
 911
 912        /*
 913         * Legacy display supports hardware clipping of the cursor, but
 914         * nvdisplay relies on software to clip the cursor to the screen.
 915         */
 916        if (!dc->soc->has_nvdisplay)
 917                value |= CURSOR_CLIP_DISPLAY;
 918
 919        switch (new_state->crtc_w) {
 920        case 32:
 921                value |= CURSOR_SIZE_32x32;
 922                break;
 923
 924        case 64:
 925                value |= CURSOR_SIZE_64x64;
 926                break;
 927
 928        case 128:
 929                value |= CURSOR_SIZE_128x128;
 930                break;
 931
 932        case 256:
 933                value |= CURSOR_SIZE_256x256;
 934                break;
 935
 936        default:
 937                WARN(1, "cursor size %ux%u not supported\n",
 938                     new_state->crtc_w, new_state->crtc_h);
 939                return;
 940        }
 941
 942        value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
 943        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 944
 945#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 946        value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
 947        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 948#endif
 949
 950        /* enable cursor and set blend mode */
 951        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 952        value |= CURSOR_ENABLE;
 953        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 954
 955        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 956        value &= ~CURSOR_DST_BLEND_MASK;
 957        value &= ~CURSOR_SRC_BLEND_MASK;
 958
 959        if (dc->soc->has_nvdisplay)
 960                value &= ~CURSOR_COMPOSITION_MODE_XOR;
 961        else
 962                value |= CURSOR_MODE_NORMAL;
 963
 964        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 965        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 966        value |= CURSOR_ALPHA;
 967        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 968
 969        /* nvdisplay relies on software for clipping */
 970        if (dc->soc->has_nvdisplay) {
 971                struct drm_rect src;
 972
 973                x = new_state->dst.x1;
 974                y = new_state->dst.y1;
 975
 976                drm_rect_fp_to_int(&src, &new_state->src);
 977
 978                value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
 979                tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
 980
 981                value = (drm_rect_height(&src) & tegra->vmask) << 16 |
 982                        (drm_rect_width(&src) & tegra->hmask);
 983                tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
 984        } else {
 985                x = new_state->crtc_x;
 986                y = new_state->crtc_y;
 987        }
 988
 989        /* position the cursor */
 990        value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
 991        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 992}
 993
 994static void tegra_cursor_atomic_update(struct drm_plane *plane,
 995                                       struct drm_atomic_state *state)
 996{
 997        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
 998
 999        __tegra_cursor_atomic_update(plane, new_state);
1000}
1001
1002static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1003                                        struct drm_atomic_state *state)
1004{
1005        struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1006                                                                           plane);
1007        struct tegra_dc *dc;
1008        u32 value;
1009
1010        /* rien ne va plus */
1011        if (!old_state || !old_state->crtc)
1012                return;
1013
1014        dc = to_tegra_dc(old_state->crtc);
1015
1016        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1017        value &= ~CURSOR_ENABLE;
1018        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1019}
1020
1021static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1022{
1023        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1024        struct drm_crtc_state *crtc_state;
1025        int min_scale, max_scale;
1026        int err;
1027
1028        crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1029        if (WARN_ON(!crtc_state))
1030                return -EINVAL;
1031
1032        if (!crtc_state->active)
1033                return -EINVAL;
1034
1035        if (plane->state->crtc != new_state->crtc ||
1036            plane->state->src_w != new_state->src_w ||
1037            plane->state->src_h != new_state->src_h ||
1038            plane->state->crtc_w != new_state->crtc_w ||
1039            plane->state->crtc_h != new_state->crtc_h ||
1040            plane->state->fb != new_state->fb ||
1041            plane->state->fb == NULL)
1042                return -EINVAL;
1043
1044        min_scale = (1 << 16) / 8;
1045        max_scale = (8 << 16) / 1;
1046
1047        err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1048                                                  true, true);
1049        if (err < 0)
1050                return err;
1051
1052        if (new_state->visible != plane->state->visible)
1053                return -EINVAL;
1054
1055        return 0;
1056}
1057
1058static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1059                                             struct drm_atomic_state *state)
1060{
1061        struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1062        struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1063
1064        plane->state->src_x = new_state->src_x;
1065        plane->state->src_y = new_state->src_y;
1066        plane->state->crtc_x = new_state->crtc_x;
1067        plane->state->crtc_y = new_state->crtc_y;
1068
1069        if (new_state->visible) {
1070                struct tegra_plane *p = to_tegra_plane(plane);
1071                u32 value;
1072
1073                __tegra_cursor_atomic_update(plane, new_state);
1074
1075                value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1076                tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1077                (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1078
1079                value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1080                tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1081                (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1082        }
1083}
1084
1085static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1086        .prepare_fb = tegra_plane_prepare_fb,
1087        .cleanup_fb = tegra_plane_cleanup_fb,
1088        .atomic_check = tegra_cursor_atomic_check,
1089        .atomic_update = tegra_cursor_atomic_update,
1090        .atomic_disable = tegra_cursor_atomic_disable,
1091        .atomic_async_check = tegra_cursor_atomic_async_check,
1092        .atomic_async_update = tegra_cursor_atomic_async_update,
1093};
1094
1095static const uint64_t linear_modifiers[] = {
1096        DRM_FORMAT_MOD_LINEAR,
1097        DRM_FORMAT_MOD_INVALID
1098};
1099
1100static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1101                                                      struct tegra_dc *dc)
1102{
1103        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1104        struct tegra_plane *plane;
1105        unsigned int num_formats;
1106        const u32 *formats;
1107        int err;
1108
1109        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1110        if (!plane)
1111                return ERR_PTR(-ENOMEM);
1112
1113        /*
1114         * This index is kind of fake. The cursor isn't a regular plane, but
1115         * its update and activation request bits in DC_CMD_STATE_CONTROL do
1116         * use the same programming. Setting this fake index here allows the
1117         * code in tegra_add_plane_state() to do the right thing without the
1118         * need to special-casing the cursor plane.
1119         */
1120        plane->index = 6;
1121        plane->dc = dc;
1122
1123        if (!dc->soc->has_nvdisplay) {
1124                num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1125                formats = tegra_legacy_cursor_plane_formats;
1126
1127                err = tegra_plane_interconnect_init(plane);
1128                if (err) {
1129                        kfree(plane);
1130                        return ERR_PTR(err);
1131                }
1132        } else {
1133                num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1134                formats = tegra_cursor_plane_formats;
1135        }
1136
1137        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1138                                       &tegra_plane_funcs, formats,
1139                                       num_formats, linear_modifiers,
1140                                       DRM_PLANE_TYPE_CURSOR, NULL);
1141        if (err < 0) {
1142                kfree(plane);
1143                return ERR_PTR(err);
1144        }
1145
1146        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1147        drm_plane_create_zpos_immutable_property(&plane->base, 255);
1148
1149        return &plane->base;
1150}
1151
1152static const u32 tegra20_overlay_formats[] = {
1153        DRM_FORMAT_ARGB4444,
1154        DRM_FORMAT_ARGB1555,
1155        DRM_FORMAT_RGB565,
1156        DRM_FORMAT_RGBA5551,
1157        DRM_FORMAT_ABGR8888,
1158        DRM_FORMAT_ARGB8888,
1159        /* non-native formats */
1160        DRM_FORMAT_XRGB1555,
1161        DRM_FORMAT_RGBX5551,
1162        DRM_FORMAT_XBGR8888,
1163        DRM_FORMAT_XRGB8888,
1164        /* planar formats */
1165        DRM_FORMAT_UYVY,
1166        DRM_FORMAT_YUYV,
1167        DRM_FORMAT_YUV420,
1168        DRM_FORMAT_YUV422,
1169};
1170
1171static const u32 tegra114_overlay_formats[] = {
1172        DRM_FORMAT_ARGB4444,
1173        DRM_FORMAT_ARGB1555,
1174        DRM_FORMAT_RGB565,
1175        DRM_FORMAT_RGBA5551,
1176        DRM_FORMAT_ABGR8888,
1177        DRM_FORMAT_ARGB8888,
1178        /* new on Tegra114 */
1179        DRM_FORMAT_ABGR4444,
1180        DRM_FORMAT_ABGR1555,
1181        DRM_FORMAT_BGRA5551,
1182        DRM_FORMAT_XRGB1555,
1183        DRM_FORMAT_RGBX5551,
1184        DRM_FORMAT_XBGR1555,
1185        DRM_FORMAT_BGRX5551,
1186        DRM_FORMAT_BGR565,
1187        DRM_FORMAT_BGRA8888,
1188        DRM_FORMAT_RGBA8888,
1189        DRM_FORMAT_XRGB8888,
1190        DRM_FORMAT_XBGR8888,
1191        /* planar formats */
1192        DRM_FORMAT_UYVY,
1193        DRM_FORMAT_YUYV,
1194        DRM_FORMAT_YUV420,
1195        DRM_FORMAT_YUV422,
1196};
1197
1198static const u32 tegra124_overlay_formats[] = {
1199        DRM_FORMAT_ARGB4444,
1200        DRM_FORMAT_ARGB1555,
1201        DRM_FORMAT_RGB565,
1202        DRM_FORMAT_RGBA5551,
1203        DRM_FORMAT_ABGR8888,
1204        DRM_FORMAT_ARGB8888,
1205        /* new on Tegra114 */
1206        DRM_FORMAT_ABGR4444,
1207        DRM_FORMAT_ABGR1555,
1208        DRM_FORMAT_BGRA5551,
1209        DRM_FORMAT_XRGB1555,
1210        DRM_FORMAT_RGBX5551,
1211        DRM_FORMAT_XBGR1555,
1212        DRM_FORMAT_BGRX5551,
1213        DRM_FORMAT_BGR565,
1214        DRM_FORMAT_BGRA8888,
1215        DRM_FORMAT_RGBA8888,
1216        DRM_FORMAT_XRGB8888,
1217        DRM_FORMAT_XBGR8888,
1218        /* new on Tegra124 */
1219        DRM_FORMAT_RGBX8888,
1220        DRM_FORMAT_BGRX8888,
1221        /* planar formats */
1222        DRM_FORMAT_UYVY,
1223        DRM_FORMAT_YUYV,
1224        DRM_FORMAT_YUV420,
1225        DRM_FORMAT_YUV422,
1226};
1227
1228static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1229                                                       struct tegra_dc *dc,
1230                                                       unsigned int index,
1231                                                       bool cursor)
1232{
1233        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1234        struct tegra_plane *plane;
1235        unsigned int num_formats;
1236        enum drm_plane_type type;
1237        const u32 *formats;
1238        int err;
1239
1240        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1241        if (!plane)
1242                return ERR_PTR(-ENOMEM);
1243
1244        plane->offset = 0xa00 + 0x200 * index;
1245        plane->index = index;
1246        plane->dc = dc;
1247
1248        num_formats = dc->soc->num_overlay_formats;
1249        formats = dc->soc->overlay_formats;
1250
1251        err = tegra_plane_interconnect_init(plane);
1252        if (err) {
1253                kfree(plane);
1254                return ERR_PTR(err);
1255        }
1256
1257        if (!cursor)
1258                type = DRM_PLANE_TYPE_OVERLAY;
1259        else
1260                type = DRM_PLANE_TYPE_CURSOR;
1261
1262        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1263                                       &tegra_plane_funcs, formats,
1264                                       num_formats, linear_modifiers,
1265                                       type, NULL);
1266        if (err < 0) {
1267                kfree(plane);
1268                return ERR_PTR(err);
1269        }
1270
1271        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1272        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1273
1274        err = drm_plane_create_rotation_property(&plane->base,
1275                                                 DRM_MODE_ROTATE_0,
1276                                                 DRM_MODE_ROTATE_0 |
1277                                                 DRM_MODE_ROTATE_180 |
1278                                                 DRM_MODE_REFLECT_X |
1279                                                 DRM_MODE_REFLECT_Y);
1280        if (err < 0)
1281                dev_err(dc->dev, "failed to create rotation property: %d\n",
1282                        err);
1283
1284        return &plane->base;
1285}
1286
1287static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1288                                                    struct tegra_dc *dc)
1289{
1290        struct drm_plane *plane, *primary = NULL;
1291        unsigned int i, j;
1292
1293        for (i = 0; i < dc->soc->num_wgrps; i++) {
1294                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1295
1296                if (wgrp->dc == dc->pipe) {
1297                        for (j = 0; j < wgrp->num_windows; j++) {
1298                                unsigned int index = wgrp->windows[j];
1299
1300                                plane = tegra_shared_plane_create(drm, dc,
1301                                                                  wgrp->index,
1302                                                                  index);
1303                                if (IS_ERR(plane))
1304                                        return plane;
1305
1306                                /*
1307                                 * Choose the first shared plane owned by this
1308                                 * head as the primary plane.
1309                                 */
1310                                if (!primary) {
1311                                        plane->type = DRM_PLANE_TYPE_PRIMARY;
1312                                        primary = plane;
1313                                }
1314                        }
1315                }
1316        }
1317
1318        return primary;
1319}
1320
1321static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1322                                             struct tegra_dc *dc)
1323{
1324        struct drm_plane *planes[2], *primary;
1325        unsigned int planes_num;
1326        unsigned int i;
1327        int err;
1328
1329        primary = tegra_primary_plane_create(drm, dc);
1330        if (IS_ERR(primary))
1331                return primary;
1332
1333        if (dc->soc->supports_cursor)
1334                planes_num = 2;
1335        else
1336                planes_num = 1;
1337
1338        for (i = 0; i < planes_num; i++) {
1339                planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1340                                                          false);
1341                if (IS_ERR(planes[i])) {
1342                        err = PTR_ERR(planes[i]);
1343
1344                        while (i--)
1345                                planes[i]->funcs->destroy(planes[i]);
1346
1347                        primary->funcs->destroy(primary);
1348                        return ERR_PTR(err);
1349                }
1350        }
1351
1352        return primary;
1353}
1354
1355static void tegra_dc_destroy(struct drm_crtc *crtc)
1356{
1357        drm_crtc_cleanup(crtc);
1358}
1359
1360static void tegra_crtc_reset(struct drm_crtc *crtc)
1361{
1362        struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1363
1364        if (crtc->state)
1365                tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1366
1367        __drm_atomic_helper_crtc_reset(crtc, &state->base);
1368}
1369
1370static struct drm_crtc_state *
1371tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1372{
1373        struct tegra_dc_state *state = to_dc_state(crtc->state);
1374        struct tegra_dc_state *copy;
1375
1376        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1377        if (!copy)
1378                return NULL;
1379
1380        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1381        copy->clk = state->clk;
1382        copy->pclk = state->pclk;
1383        copy->div = state->div;
1384        copy->planes = state->planes;
1385
1386        return &copy->base;
1387}
1388
1389static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1390                                            struct drm_crtc_state *state)
1391{
1392        __drm_atomic_helper_crtc_destroy_state(state);
1393        kfree(state);
1394}
1395
1396#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1397
1398static const struct debugfs_reg32 tegra_dc_regs[] = {
1399        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1400        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1401        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1402        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1403        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1404        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1405        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1406        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1407        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1408        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1409        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1410        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1411        DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1412        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1413        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1414        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1415        DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1416        DEBUGFS_REG32(DC_CMD_INT_STATUS),
1417        DEBUGFS_REG32(DC_CMD_INT_MASK),
1418        DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1419        DEBUGFS_REG32(DC_CMD_INT_TYPE),
1420        DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1421        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1422        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1423        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1424        DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1425        DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1426        DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1427        DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1428        DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1429        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1430        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1431        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1432        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1433        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1434        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1435        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1436        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1437        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1438        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1439        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1440        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1441        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1442        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1443        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1444        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1445        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1446        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1447        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1448        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1449        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1450        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1451        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1452        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1453        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1454        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1455        DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1456        DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1457        DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1458        DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1459        DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1460        DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1461        DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1462        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1463        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1464        DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1465        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1466        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1467        DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1468        DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1469        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1470        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1471        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1472        DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1473        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1474        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1475        DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1476        DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1477        DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1478        DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1479        DEBUGFS_REG32(DC_DISP_ACTIVE),
1480        DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1481        DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1482        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1483        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1484        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1485        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1486        DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1487        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1488        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1489        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1490        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1491        DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1492        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1493        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1494        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1495        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1496        DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1497        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1498        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1499        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1500        DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1501        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1502        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1503        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1504        DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1505        DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1506        DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1507        DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1508        DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1509        DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1510        DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1511        DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1512        DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1513        DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1514        DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1515        DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1516        DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1517        DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1518        DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1519        DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1520        DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1521        DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1522        DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1523        DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1524        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1525        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1526        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1527        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1528        DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1529        DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1530        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1531        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1532        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1533        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1534        DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1535        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1536        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1537        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1538        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1539        DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1540        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1541        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1542        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1543        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1544        DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1545        DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1546        DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1547        DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1548        DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1549        DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1550        DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1551        DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1552        DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1553        DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1554        DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1555        DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1556        DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1557        DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1558        DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1559        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1560        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1561        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1562        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1563        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1564        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1565        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1566        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1567        DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1568        DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1569        DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1570        DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1571        DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1572        DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1573        DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1574        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1575        DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1576        DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1577        DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1578        DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1579        DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1580        DEBUGFS_REG32(DC_WIN_POSITION),
1581        DEBUGFS_REG32(DC_WIN_SIZE),
1582        DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1583        DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1584        DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1585        DEBUGFS_REG32(DC_WIN_DDA_INC),
1586        DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1587        DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1588        DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1589        DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1590        DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1591        DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1592        DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1593        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1594        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1595        DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1596        DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1597        DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1598        DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1599        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1600        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1601        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1602        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1603        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1604        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1605        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1606        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1607        DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1608        DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1609        DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1610        DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1611};
1612
1613static int tegra_dc_show_regs(struct seq_file *s, void *data)
1614{
1615        struct drm_info_node *node = s->private;
1616        struct tegra_dc *dc = node->info_ent->data;
1617        unsigned int i;
1618        int err = 0;
1619
1620        drm_modeset_lock(&dc->base.mutex, NULL);
1621
1622        if (!dc->base.state->active) {
1623                err = -EBUSY;
1624                goto unlock;
1625        }
1626
1627        for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1628                unsigned int offset = tegra_dc_regs[i].offset;
1629
1630                seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1631                           offset, tegra_dc_readl(dc, offset));
1632        }
1633
1634unlock:
1635        drm_modeset_unlock(&dc->base.mutex);
1636        return err;
1637}
1638
1639static int tegra_dc_show_crc(struct seq_file *s, void *data)
1640{
1641        struct drm_info_node *node = s->private;
1642        struct tegra_dc *dc = node->info_ent->data;
1643        int err = 0;
1644        u32 value;
1645
1646        drm_modeset_lock(&dc->base.mutex, NULL);
1647
1648        if (!dc->base.state->active) {
1649                err = -EBUSY;
1650                goto unlock;
1651        }
1652
1653        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1654        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1655        tegra_dc_commit(dc);
1656
1657        drm_crtc_wait_one_vblank(&dc->base);
1658        drm_crtc_wait_one_vblank(&dc->base);
1659
1660        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1661        seq_printf(s, "%08x\n", value);
1662
1663        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1664
1665unlock:
1666        drm_modeset_unlock(&dc->base.mutex);
1667        return err;
1668}
1669
1670static int tegra_dc_show_stats(struct seq_file *s, void *data)
1671{
1672        struct drm_info_node *node = s->private;
1673        struct tegra_dc *dc = node->info_ent->data;
1674
1675        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1676        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1677        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1678        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1679
1680        seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1681        seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1682        seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1683        seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1684
1685        return 0;
1686}
1687
1688static struct drm_info_list debugfs_files[] = {
1689        { "regs", tegra_dc_show_regs, 0, NULL },
1690        { "crc", tegra_dc_show_crc, 0, NULL },
1691        { "stats", tegra_dc_show_stats, 0, NULL },
1692};
1693
1694static int tegra_dc_late_register(struct drm_crtc *crtc)
1695{
1696        unsigned int i, count = ARRAY_SIZE(debugfs_files);
1697        struct drm_minor *minor = crtc->dev->primary;
1698        struct dentry *root;
1699        struct tegra_dc *dc = to_tegra_dc(crtc);
1700
1701#ifdef CONFIG_DEBUG_FS
1702        root = crtc->debugfs_entry;
1703#else
1704        root = NULL;
1705#endif
1706
1707        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1708                                    GFP_KERNEL);
1709        if (!dc->debugfs_files)
1710                return -ENOMEM;
1711
1712        for (i = 0; i < count; i++)
1713                dc->debugfs_files[i].data = dc;
1714
1715        drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1716
1717        return 0;
1718}
1719
1720static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1721{
1722        unsigned int count = ARRAY_SIZE(debugfs_files);
1723        struct drm_minor *minor = crtc->dev->primary;
1724        struct tegra_dc *dc = to_tegra_dc(crtc);
1725
1726        drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1727        kfree(dc->debugfs_files);
1728        dc->debugfs_files = NULL;
1729}
1730
1731static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1732{
1733        struct tegra_dc *dc = to_tegra_dc(crtc);
1734
1735        /* XXX vblank syncpoints don't work with nvdisplay yet */
1736        if (dc->syncpt && !dc->soc->has_nvdisplay)
1737                return host1x_syncpt_read(dc->syncpt);
1738
1739        /* fallback to software emulated VBLANK counter */
1740        return (u32)drm_crtc_vblank_count(&dc->base);
1741}
1742
1743static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1744{
1745        struct tegra_dc *dc = to_tegra_dc(crtc);
1746        u32 value;
1747
1748        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1749        value |= VBLANK_INT;
1750        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1751
1752        return 0;
1753}
1754
1755static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1756{
1757        struct tegra_dc *dc = to_tegra_dc(crtc);
1758        u32 value;
1759
1760        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1761        value &= ~VBLANK_INT;
1762        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1763}
1764
1765static const struct drm_crtc_funcs tegra_crtc_funcs = {
1766        .page_flip = drm_atomic_helper_page_flip,
1767        .set_config = drm_atomic_helper_set_config,
1768        .destroy = tegra_dc_destroy,
1769        .reset = tegra_crtc_reset,
1770        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1771        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1772        .late_register = tegra_dc_late_register,
1773        .early_unregister = tegra_dc_early_unregister,
1774        .get_vblank_counter = tegra_dc_get_vblank_counter,
1775        .enable_vblank = tegra_dc_enable_vblank,
1776        .disable_vblank = tegra_dc_disable_vblank,
1777};
1778
1779static int tegra_dc_set_timings(struct tegra_dc *dc,
1780                                struct drm_display_mode *mode)
1781{
1782        unsigned int h_ref_to_sync = 1;
1783        unsigned int v_ref_to_sync = 1;
1784        unsigned long value;
1785
1786        if (!dc->soc->has_nvdisplay) {
1787                tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1788
1789                value = (v_ref_to_sync << 16) | h_ref_to_sync;
1790                tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1791        }
1792
1793        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1794                ((mode->hsync_end - mode->hsync_start) <<  0);
1795        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1796
1797        value = ((mode->vtotal - mode->vsync_end) << 16) |
1798                ((mode->htotal - mode->hsync_end) <<  0);
1799        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1800
1801        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1802                ((mode->hsync_start - mode->hdisplay) <<  0);
1803        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1804
1805        value = (mode->vdisplay << 16) | mode->hdisplay;
1806        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1807
1808        return 0;
1809}
1810
1811/**
1812 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1813 *     state
1814 * @dc: display controller
1815 * @crtc_state: CRTC atomic state
1816 * @clk: parent clock for display controller
1817 * @pclk: pixel clock
1818 * @div: shift clock divider
1819 *
1820 * Returns:
1821 * 0 on success or a negative error-code on failure.
1822 */
1823int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1824                               struct drm_crtc_state *crtc_state,
1825                               struct clk *clk, unsigned long pclk,
1826                               unsigned int div)
1827{
1828        struct tegra_dc_state *state = to_dc_state(crtc_state);
1829
1830        if (!clk_has_parent(dc->clk, clk))
1831                return -EINVAL;
1832
1833        state->clk = clk;
1834        state->pclk = pclk;
1835        state->div = div;
1836
1837        return 0;
1838}
1839
1840static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1841                                          struct tegra_dc_state *state)
1842{
1843        unsigned long rate, pstate;
1844        struct dev_pm_opp *opp;
1845        int err;
1846
1847        if (!dc->has_opp_table)
1848                return;
1849
1850        /* calculate actual pixel clock rate which depends on internal divider */
1851        rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1852
1853        /* find suitable OPP for the rate */
1854        opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1855
1856        /*
1857         * Very high resolution modes may results in a clock rate that is
1858         * above the characterized maximum. In this case it's okay to fall
1859         * back to the characterized maximum.
1860         */
1861        if (opp == ERR_PTR(-ERANGE))
1862                opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1863
1864        if (IS_ERR(opp)) {
1865                dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1866                        rate, opp);
1867                return;
1868        }
1869
1870        pstate = dev_pm_opp_get_required_pstate(opp, 0);
1871        dev_pm_opp_put(opp);
1872
1873        /*
1874         * The minimum core voltage depends on the pixel clock rate (which
1875         * depends on internal clock divider of the CRTC) and not on the
1876         * rate of the display controller clock. This is why we're not using
1877         * dev_pm_opp_set_rate() API and instead controlling the power domain
1878         * directly.
1879         */
1880        err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1881        if (err)
1882                dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1883                        pstate, err);
1884}
1885
1886static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1887                                    struct tegra_dc_state *state)
1888{
1889        int err;
1890
1891        err = clk_set_parent(dc->clk, state->clk);
1892        if (err < 0)
1893                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1894
1895        /*
1896         * Outputs may not want to change the parent clock rate. This is only
1897         * relevant to Tegra20 where only a single display PLL is available.
1898         * Since that PLL would typically be used for HDMI, an internal LVDS
1899         * panel would need to be driven by some other clock such as PLL_P
1900         * which is shared with other peripherals. Changing the clock rate
1901         * should therefore be avoided.
1902         */
1903        if (state->pclk > 0) {
1904                err = clk_set_rate(state->clk, state->pclk);
1905                if (err < 0)
1906                        dev_err(dc->dev,
1907                                "failed to set clock rate to %lu Hz\n",
1908                                state->pclk);
1909
1910                err = clk_set_rate(dc->clk, state->pclk);
1911                if (err < 0)
1912                        dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1913                                dc->clk, state->pclk, err);
1914        }
1915
1916        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1917                      state->div);
1918        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1919
1920        tegra_dc_update_voltage_state(dc, state);
1921}
1922
1923static void tegra_dc_stop(struct tegra_dc *dc)
1924{
1925        u32 value;
1926
1927        /* stop the display controller */
1928        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1929        value &= ~DISP_CTRL_MODE_MASK;
1930        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1931
1932        tegra_dc_commit(dc);
1933}
1934
1935static bool tegra_dc_idle(struct tegra_dc *dc)
1936{
1937        u32 value;
1938
1939        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1940
1941        return (value & DISP_CTRL_MODE_MASK) == 0;
1942}
1943
1944static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1945{
1946        timeout = jiffies + msecs_to_jiffies(timeout);
1947
1948        while (time_before(jiffies, timeout)) {
1949                if (tegra_dc_idle(dc))
1950                        return 0;
1951
1952                usleep_range(1000, 2000);
1953        }
1954
1955        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1956        return -ETIMEDOUT;
1957}
1958
1959static void
1960tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1961                                   struct drm_atomic_state *state,
1962                                   bool prepare_bandwidth_transition)
1963{
1964        const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1965        u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1966        const struct drm_plane_state *old_plane_state;
1967        const struct drm_crtc_state *old_crtc_state;
1968        struct tegra_dc_window window, old_window;
1969        struct tegra_dc *dc = to_tegra_dc(crtc);
1970        struct tegra_plane *tegra;
1971        struct drm_plane *plane;
1972
1973        if (dc->soc->has_nvdisplay)
1974                return;
1975
1976        old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1977
1978        if (!crtc->state->active) {
1979                if (!old_crtc_state->active)
1980                        return;
1981
1982                /*
1983                 * When CRTC is disabled on DPMS, the state of attached planes
1984                 * is kept unchanged. Hence we need to enforce removal of the
1985                 * bandwidths from the ICC paths.
1986                 */
1987                drm_atomic_crtc_for_each_plane(plane, crtc) {
1988                        tegra = to_tegra_plane(plane);
1989
1990                        icc_set_bw(tegra->icc_mem, 0, 0);
1991                        icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
1992                }
1993
1994                return;
1995        }
1996
1997        for_each_old_plane_in_state(old_crtc_state->state, plane,
1998                                    old_plane_state, i) {
1999                old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2000                new_tegra_state = to_const_tegra_plane_state(plane->state);
2001                tegra = to_tegra_plane(plane);
2002
2003                /*
2004                 * We're iterating over the global atomic state and it contains
2005                 * planes from another CRTC, hence we need to filter out the
2006                 * planes unrelated to this CRTC.
2007                 */
2008                if (tegra->dc != dc)
2009                        continue;
2010
2011                new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2012                old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2013
2014                new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2015                old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2016
2017                /*
2018                 * See the comment related to !crtc->state->active above,
2019                 * which explains why bandwidths need to be updated when
2020                 * CRTC is turning ON.
2021                 */
2022                if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2023                    old_crtc_state->active)
2024                        continue;
2025
2026                window.src.h = drm_rect_height(&plane->state->src) >> 16;
2027                window.dst.h = drm_rect_height(&plane->state->dst);
2028
2029                old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2030                old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2031
2032                /*
2033                 * During the preparation phase (atomic_begin), the memory
2034                 * freq should go high before the DC changes are committed
2035                 * if bandwidth requirement goes up, otherwise memory freq
2036                 * should to stay high if BW requirement goes down.  The
2037                 * opposite applies to the completion phase (post_commit).
2038                 */
2039                if (prepare_bandwidth_transition) {
2040                        new_avg_bw = max(old_avg_bw, new_avg_bw);
2041                        new_peak_bw = max(old_peak_bw, new_peak_bw);
2042
2043                        if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2044                                window = old_window;
2045                }
2046
2047                icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2048
2049                if (tegra_plane_use_vertical_filtering(tegra, &window))
2050                        icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2051                else
2052                        icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2053        }
2054}
2055
2056static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2057                                      struct drm_atomic_state *state)
2058{
2059        struct tegra_dc *dc = to_tegra_dc(crtc);
2060        u32 value;
2061        int err;
2062
2063        if (!tegra_dc_idle(dc)) {
2064                tegra_dc_stop(dc);
2065
2066                /*
2067                 * Ignore the return value, there isn't anything useful to do
2068                 * in case this fails.
2069                 */
2070                tegra_dc_wait_idle(dc, 100);
2071        }
2072
2073        /*
2074         * This should really be part of the RGB encoder driver, but clearing
2075         * these bits has the side-effect of stopping the display controller.
2076         * When that happens no VBLANK interrupts will be raised. At the same
2077         * time the encoder is disabled before the display controller, so the
2078         * above code is always going to timeout waiting for the controller
2079         * to go idle.
2080         *
2081         * Given the close coupling between the RGB encoder and the display
2082         * controller doing it here is still kind of okay. None of the other
2083         * encoder drivers require these bits to be cleared.
2084         *
2085         * XXX: Perhaps given that the display controller is switched off at
2086         * this point anyway maybe clearing these bits isn't even useful for
2087         * the RGB encoder?
2088         */
2089        if (dc->rgb) {
2090                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2091                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2092                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2093                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2094        }
2095
2096        tegra_dc_stats_reset(&dc->stats);
2097        drm_crtc_vblank_off(crtc);
2098
2099        spin_lock_irq(&crtc->dev->event_lock);
2100
2101        if (crtc->state->event) {
2102                drm_crtc_send_vblank_event(crtc, crtc->state->event);
2103                crtc->state->event = NULL;
2104        }
2105
2106        spin_unlock_irq(&crtc->dev->event_lock);
2107
2108        err = host1x_client_suspend(&dc->client);
2109        if (err < 0)
2110                dev_err(dc->dev, "failed to suspend: %d\n", err);
2111
2112        if (dc->has_opp_table) {
2113                err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2114                if (err)
2115                        dev_err(dc->dev,
2116                                "failed to clear power domain state: %d\n", err);
2117        }
2118}
2119
2120static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2121                                     struct drm_atomic_state *state)
2122{
2123        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2124        struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2125        struct tegra_dc *dc = to_tegra_dc(crtc);
2126        u32 value;
2127        int err;
2128
2129        /* apply PLL changes */
2130        tegra_dc_set_clock_rate(dc, crtc_state);
2131
2132        err = host1x_client_resume(&dc->client);
2133        if (err < 0) {
2134                dev_err(dc->dev, "failed to resume: %d\n", err);
2135                return;
2136        }
2137
2138        /* initialize display controller */
2139        if (dc->syncpt) {
2140                u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2141
2142                if (dc->soc->has_nvdisplay)
2143                        enable = 1 << 31;
2144                else
2145                        enable = 1 << 8;
2146
2147                value = SYNCPT_CNTRL_NO_STALL;
2148                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2149
2150                value = enable | syncpt;
2151                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2152        }
2153
2154        if (dc->soc->has_nvdisplay) {
2155                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2156                        DSC_OBUF_UF_INT;
2157                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2158
2159                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2160                        DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2161                        HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2162                        REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2163                        VBLANK_INT | FRAME_END_INT;
2164                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2165
2166                value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2167                        FRAME_END_INT;
2168                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2169
2170                value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2171                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2172
2173                tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2174        } else {
2175                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2176                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2177                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2178
2179                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2180                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2181                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2182
2183                /* initialize timer */
2184                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2185                        WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2186                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2187
2188                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2189                        WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2190                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2191
2192                value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2193                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2194                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2195
2196                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2197                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2198                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2199        }
2200
2201        if (dc->soc->supports_background_color)
2202                tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2203        else
2204                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2205
2206        /* apply pixel clock changes */
2207        if (!dc->soc->has_nvdisplay) {
2208                value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2209                tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2210        }
2211
2212        /* program display mode */
2213        tegra_dc_set_timings(dc, mode);
2214
2215        /* interlacing isn't supported yet, so disable it */
2216        if (dc->soc->supports_interlacing) {
2217                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2218                value &= ~INTERLACE_ENABLE;
2219                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2220        }
2221
2222        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2223        value &= ~DISP_CTRL_MODE_MASK;
2224        value |= DISP_CTRL_MODE_C_DISPLAY;
2225        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2226
2227        if (!dc->soc->has_nvdisplay) {
2228                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2229                value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2230                         PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2231                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2232        }
2233
2234        /* enable underflow reporting and display red for missing pixels */
2235        if (dc->soc->has_nvdisplay) {
2236                value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2237                tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2238        }
2239
2240        if (dc->rgb) {
2241                /* XXX: parameterize? */
2242                value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2243                tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2244        }
2245
2246        tegra_dc_commit(dc);
2247
2248        drm_crtc_vblank_on(crtc);
2249}
2250
2251static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2252                                    struct drm_atomic_state *state)
2253{
2254        unsigned long flags;
2255
2256        tegra_crtc_update_memory_bandwidth(crtc, state, true);
2257
2258        if (crtc->state->event) {
2259                spin_lock_irqsave(&crtc->dev->event_lock, flags);
2260
2261                if (drm_crtc_vblank_get(crtc) != 0)
2262                        drm_crtc_send_vblank_event(crtc, crtc->state->event);
2263                else
2264                        drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2265
2266                spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2267
2268                crtc->state->event = NULL;
2269        }
2270}
2271
2272static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2273                                    struct drm_atomic_state *state)
2274{
2275        struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2276                                                                          crtc);
2277        struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2278        struct tegra_dc *dc = to_tegra_dc(crtc);
2279        u32 value;
2280
2281        value = dc_state->planes << 8 | GENERAL_UPDATE;
2282        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2283        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2284
2285        value = dc_state->planes | GENERAL_ACT_REQ;
2286        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2287        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2288}
2289
2290static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2291{
2292        const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2293        const struct drm_format_info *fmt = state->fb->format;
2294        unsigned int src_w = drm_rect_width(&state->src) >> 16;
2295        unsigned int dst_w = drm_rect_width(&state->dst);
2296
2297        if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2298                return false;
2299
2300        if (soc->supports_cursor)
2301                return true;
2302
2303        if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2304                return false;
2305
2306        return true;
2307}
2308
2309static unsigned long
2310tegra_plane_overlap_mask(struct drm_crtc_state *state,
2311                         const struct drm_plane_state *plane_state)
2312{
2313        const struct drm_plane_state *other_state;
2314        const struct tegra_plane *tegra;
2315        unsigned long overlap_mask = 0;
2316        struct drm_plane *plane;
2317        struct drm_rect rect;
2318
2319        if (!plane_state->visible || !plane_state->fb)
2320                return 0;
2321
2322        /*
2323         * Data-prefetch FIFO will easily help to overcome temporal memory
2324         * pressure if other plane overlaps with the cursor plane.
2325         */
2326        if (tegra_plane_is_cursor(plane_state))
2327                return 0;
2328
2329        drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2330                rect = plane_state->dst;
2331
2332                tegra = to_tegra_plane(other_state->plane);
2333
2334                if (!other_state->visible || !other_state->fb)
2335                        continue;
2336
2337                /*
2338                 * Ignore cursor plane overlaps because it's not practical to
2339                 * assume that it contributes to the bandwidth in overlapping
2340                 * area if window width is small.
2341                 */
2342                if (tegra_plane_is_cursor(other_state))
2343                        continue;
2344
2345                if (drm_rect_intersect(&rect, &other_state->dst))
2346                        overlap_mask |= BIT(tegra->index);
2347        }
2348
2349        return overlap_mask;
2350}
2351
2352static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2353                                                 struct drm_atomic_state *state)
2354{
2355        ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2356        u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2357        bool all_planes_overlap_simultaneously = true;
2358        const struct tegra_plane_state *tegra_state;
2359        const struct drm_plane_state *plane_state;
2360        struct tegra_dc *dc = to_tegra_dc(crtc);
2361        const struct drm_crtc_state *old_state;
2362        struct drm_crtc_state *new_state;
2363        struct tegra_plane *tegra;
2364        struct drm_plane *plane;
2365
2366        /*
2367         * The nv-display uses shared planes.  The algorithm below assumes
2368         * maximum 3 planes per-CRTC, this assumption isn't applicable to
2369         * the nv-display.  Note that T124 support has additional windows,
2370         * but currently they aren't supported by the driver.
2371         */
2372        if (dc->soc->has_nvdisplay)
2373                return 0;
2374
2375        new_state = drm_atomic_get_new_crtc_state(state, crtc);
2376        old_state = drm_atomic_get_old_crtc_state(state, crtc);
2377
2378        /*
2379         * For overlapping planes pixel's data is fetched for each plane at
2380         * the same time, hence bandwidths are accumulated in this case.
2381         * This needs to be taken into account for calculating total bandwidth
2382         * consumed by all planes.
2383         *
2384         * Here we get the overlapping state of each plane, which is a
2385         * bitmask of plane indices telling with what planes there is an
2386         * overlap. Note that bitmask[plane] includes BIT(plane) in order
2387         * to make further code nicer and simpler.
2388         */
2389        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2390                tegra_state = to_const_tegra_plane_state(plane_state);
2391                tegra = to_tegra_plane(plane);
2392
2393                if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2394                        return -EINVAL;
2395
2396                plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2397                mask = tegra_plane_overlap_mask(new_state, plane_state);
2398                overlap_mask[tegra->index] = mask;
2399
2400                if (hweight_long(mask) != 3)
2401                        all_planes_overlap_simultaneously = false;
2402        }
2403
2404        /*
2405         * Then we calculate maximum bandwidth of each plane state.
2406         * The bandwidth includes the plane BW + BW of the "simultaneously"
2407         * overlapping planes, where "simultaneously" means areas where DC
2408         * fetches from the planes simultaneously during of scan-out process.
2409         *
2410         * For example, if plane A overlaps with planes B and C, but B and C
2411         * don't overlap, then the peak bandwidth will be either in area where
2412         * A-and-B or A-and-C planes overlap.
2413         *
2414         * The plane_peak_bw[] contains peak memory bandwidth values of
2415         * each plane, this information is needed by interconnect provider
2416         * in order to set up latency allowance based on the peak BW, see
2417         * tegra_crtc_update_memory_bandwidth().
2418         */
2419        drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2420                u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2421
2422                /*
2423                 * Note that plane's atomic check doesn't touch the
2424                 * total_peak_memory_bandwidth of enabled plane, hence the
2425                 * current state contains the old bandwidth state from the
2426                 * previous CRTC commit.
2427                 */
2428                tegra_state = to_const_tegra_plane_state(plane_state);
2429                tegra = to_tegra_plane(plane);
2430
2431                for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2432                        if (i == tegra->index)
2433                                continue;
2434
2435                        if (all_planes_overlap_simultaneously)
2436                                overlap_bw += plane_peak_bw[i];
2437                        else
2438                                overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2439                }
2440
2441                new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2442                old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2443
2444                /*
2445                 * If plane's peak bandwidth changed (for example plane isn't
2446                 * overlapped anymore) and plane isn't in the atomic state,
2447                 * then add plane to the state in order to have the bandwidth
2448                 * updated.
2449                 */
2450                if (old_peak_bw != new_peak_bw) {
2451                        struct tegra_plane_state *new_tegra_state;
2452                        struct drm_plane_state *new_plane_state;
2453
2454                        new_plane_state = drm_atomic_get_plane_state(state, plane);
2455                        if (IS_ERR(new_plane_state))
2456                                return PTR_ERR(new_plane_state);
2457
2458                        new_tegra_state = to_tegra_plane_state(new_plane_state);
2459                        new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2460                }
2461        }
2462
2463        return 0;
2464}
2465
2466static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2467                                   struct drm_atomic_state *state)
2468{
2469        int err;
2470
2471        err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2472        if (err)
2473                return err;
2474
2475        return 0;
2476}
2477
2478void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2479                                   struct drm_atomic_state *state)
2480{
2481        /*
2482         * Display bandwidth is allowed to go down only once hardware state
2483         * is known to be armed, i.e. state was committed and VBLANK event
2484         * received.
2485         */
2486        tegra_crtc_update_memory_bandwidth(crtc, state, false);
2487}
2488
2489static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2490        .atomic_check = tegra_crtc_atomic_check,
2491        .atomic_begin = tegra_crtc_atomic_begin,
2492        .atomic_flush = tegra_crtc_atomic_flush,
2493        .atomic_enable = tegra_crtc_atomic_enable,
2494        .atomic_disable = tegra_crtc_atomic_disable,
2495};
2496
2497static irqreturn_t tegra_dc_irq(int irq, void *data)
2498{
2499        struct tegra_dc *dc = data;
2500        unsigned long status;
2501
2502        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2503        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2504
2505        if (status & FRAME_END_INT) {
2506                /*
2507                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2508                */
2509                dc->stats.frames_total++;
2510                dc->stats.frames++;
2511        }
2512
2513        if (status & VBLANK_INT) {
2514                /*
2515                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2516                */
2517                drm_crtc_handle_vblank(&dc->base);
2518                dc->stats.vblank_total++;
2519                dc->stats.vblank++;
2520        }
2521
2522        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2523                /*
2524                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2525                */
2526                dc->stats.underflow_total++;
2527                dc->stats.underflow++;
2528        }
2529
2530        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2531                /*
2532                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2533                */
2534                dc->stats.overflow_total++;
2535                dc->stats.overflow++;
2536        }
2537
2538        if (status & HEAD_UF_INT) {
2539                dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2540                dc->stats.underflow_total++;
2541                dc->stats.underflow++;
2542        }
2543
2544        return IRQ_HANDLED;
2545}
2546
2547static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2548{
2549        unsigned int i;
2550
2551        if (!dc->soc->wgrps)
2552                return true;
2553
2554        for (i = 0; i < dc->soc->num_wgrps; i++) {
2555                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2556
2557                if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2558                        return true;
2559        }
2560
2561        return false;
2562}
2563
2564static int tegra_dc_early_init(struct host1x_client *client)
2565{
2566        struct drm_device *drm = dev_get_drvdata(client->host);
2567        struct tegra_drm *tegra = drm->dev_private;
2568
2569        tegra->num_crtcs++;
2570
2571        return 0;
2572}
2573
2574static int tegra_dc_init(struct host1x_client *client)
2575{
2576        struct drm_device *drm = dev_get_drvdata(client->host);
2577        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2578        struct tegra_dc *dc = host1x_client_to_dc(client);
2579        struct tegra_drm *tegra = drm->dev_private;
2580        struct drm_plane *primary = NULL;
2581        struct drm_plane *cursor = NULL;
2582        int err;
2583
2584        /*
2585         * DC has been reset by now, so VBLANK syncpoint can be released
2586         * for general use.
2587         */
2588        host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2589
2590        /*
2591         * XXX do not register DCs with no window groups because we cannot
2592         * assign a primary plane to them, which in turn will cause KMS to
2593         * crash.
2594         */
2595        if (!tegra_dc_has_window_groups(dc))
2596                return 0;
2597
2598        /*
2599         * Set the display hub as the host1x client parent for the display
2600         * controller. This is needed for the runtime reference counting that
2601         * ensures the display hub is always powered when any of the display
2602         * controllers are.
2603         */
2604        if (dc->soc->has_nvdisplay)
2605                client->parent = &tegra->hub->client;
2606
2607        dc->syncpt = host1x_syncpt_request(client, flags);
2608        if (!dc->syncpt)
2609                dev_warn(dc->dev, "failed to allocate syncpoint\n");
2610
2611        err = host1x_client_iommu_attach(client);
2612        if (err < 0 && err != -ENODEV) {
2613                dev_err(client->dev, "failed to attach to domain: %d\n", err);
2614                return err;
2615        }
2616
2617        if (dc->soc->wgrps)
2618                primary = tegra_dc_add_shared_planes(drm, dc);
2619        else
2620                primary = tegra_dc_add_planes(drm, dc);
2621
2622        if (IS_ERR(primary)) {
2623                err = PTR_ERR(primary);
2624                goto cleanup;
2625        }
2626
2627        if (dc->soc->supports_cursor) {
2628                cursor = tegra_dc_cursor_plane_create(drm, dc);
2629                if (IS_ERR(cursor)) {
2630                        err = PTR_ERR(cursor);
2631                        goto cleanup;
2632                }
2633        } else {
2634                /* dedicate one overlay to mouse cursor */
2635                cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2636                if (IS_ERR(cursor)) {
2637                        err = PTR_ERR(cursor);
2638                        goto cleanup;
2639                }
2640        }
2641
2642        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2643                                        &tegra_crtc_funcs, NULL);
2644        if (err < 0)
2645                goto cleanup;
2646
2647        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2648
2649        /*
2650         * Keep track of the minimum pitch alignment across all display
2651         * controllers.
2652         */
2653        if (dc->soc->pitch_align > tegra->pitch_align)
2654                tegra->pitch_align = dc->soc->pitch_align;
2655
2656        /* track maximum resolution */
2657        if (dc->soc->has_nvdisplay)
2658                drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2659        else
2660                drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2661
2662        err = tegra_dc_rgb_init(drm, dc);
2663        if (err < 0 && err != -ENODEV) {
2664                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2665                goto cleanup;
2666        }
2667
2668        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2669                               dev_name(dc->dev), dc);
2670        if (err < 0) {
2671                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2672                        err);
2673                goto cleanup;
2674        }
2675
2676        /*
2677         * Inherit the DMA parameters (such as maximum segment size) from the
2678         * parent host1x device.
2679         */
2680        client->dev->dma_parms = client->host->dma_parms;
2681
2682        return 0;
2683
2684cleanup:
2685        if (!IS_ERR_OR_NULL(cursor))
2686                drm_plane_cleanup(cursor);
2687
2688        if (!IS_ERR(primary))
2689                drm_plane_cleanup(primary);
2690
2691        host1x_client_iommu_detach(client);
2692        host1x_syncpt_put(dc->syncpt);
2693
2694        return err;
2695}
2696
2697static int tegra_dc_exit(struct host1x_client *client)
2698{
2699        struct tegra_dc *dc = host1x_client_to_dc(client);
2700        int err;
2701
2702        if (!tegra_dc_has_window_groups(dc))
2703                return 0;
2704
2705        /* avoid a dangling pointer just in case this disappears */
2706        client->dev->dma_parms = NULL;
2707
2708        devm_free_irq(dc->dev, dc->irq, dc);
2709
2710        err = tegra_dc_rgb_exit(dc);
2711        if (err) {
2712                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2713                return err;
2714        }
2715
2716        host1x_client_iommu_detach(client);
2717        host1x_syncpt_put(dc->syncpt);
2718
2719        return 0;
2720}
2721
2722static int tegra_dc_late_exit(struct host1x_client *client)
2723{
2724        struct drm_device *drm = dev_get_drvdata(client->host);
2725        struct tegra_drm *tegra = drm->dev_private;
2726
2727        tegra->num_crtcs--;
2728
2729        return 0;
2730}
2731
2732static int tegra_dc_runtime_suspend(struct host1x_client *client)
2733{
2734        struct tegra_dc *dc = host1x_client_to_dc(client);
2735        struct device *dev = client->dev;
2736        int err;
2737
2738        err = reset_control_assert(dc->rst);
2739        if (err < 0) {
2740                dev_err(dev, "failed to assert reset: %d\n", err);
2741                return err;
2742        }
2743
2744        if (dc->soc->has_powergate)
2745                tegra_powergate_power_off(dc->powergate);
2746
2747        clk_disable_unprepare(dc->clk);
2748        pm_runtime_put_sync(dev);
2749
2750        return 0;
2751}
2752
2753static int tegra_dc_runtime_resume(struct host1x_client *client)
2754{
2755        struct tegra_dc *dc = host1x_client_to_dc(client);
2756        struct device *dev = client->dev;
2757        int err;
2758
2759        err = pm_runtime_resume_and_get(dev);
2760        if (err < 0) {
2761                dev_err(dev, "failed to get runtime PM: %d\n", err);
2762                return err;
2763        }
2764
2765        if (dc->soc->has_powergate) {
2766                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2767                                                        dc->rst);
2768                if (err < 0) {
2769                        dev_err(dev, "failed to power partition: %d\n", err);
2770                        goto put_rpm;
2771                }
2772        } else {
2773                err = clk_prepare_enable(dc->clk);
2774                if (err < 0) {
2775                        dev_err(dev, "failed to enable clock: %d\n", err);
2776                        goto put_rpm;
2777                }
2778
2779                err = reset_control_deassert(dc->rst);
2780                if (err < 0) {
2781                        dev_err(dev, "failed to deassert reset: %d\n", err);
2782                        goto disable_clk;
2783                }
2784        }
2785
2786        return 0;
2787
2788disable_clk:
2789        clk_disable_unprepare(dc->clk);
2790put_rpm:
2791        pm_runtime_put_sync(dev);
2792        return err;
2793}
2794
2795static const struct host1x_client_ops dc_client_ops = {
2796        .early_init = tegra_dc_early_init,
2797        .init = tegra_dc_init,
2798        .exit = tegra_dc_exit,
2799        .late_exit = tegra_dc_late_exit,
2800        .suspend = tegra_dc_runtime_suspend,
2801        .resume = tegra_dc_runtime_resume,
2802};
2803
2804static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2805        .supports_background_color = false,
2806        .supports_interlacing = false,
2807        .supports_cursor = false,
2808        .supports_block_linear = false,
2809        .supports_sector_layout = false,
2810        .has_legacy_blending = true,
2811        .pitch_align = 8,
2812        .has_powergate = false,
2813        .coupled_pm = true,
2814        .has_nvdisplay = false,
2815        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2816        .primary_formats = tegra20_primary_formats,
2817        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2818        .overlay_formats = tegra20_overlay_formats,
2819        .modifiers = tegra20_modifiers,
2820        .has_win_a_without_filters = true,
2821        .has_win_b_vfilter_mem_client = true,
2822        .has_win_c_without_vert_filter = true,
2823        .plane_tiled_memory_bandwidth_x2 = false,
2824        .has_pll_d2_out0 = false,
2825};
2826
2827static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2828        .supports_background_color = false,
2829        .supports_interlacing = false,
2830        .supports_cursor = false,
2831        .supports_block_linear = false,
2832        .supports_sector_layout = false,
2833        .has_legacy_blending = true,
2834        .pitch_align = 8,
2835        .has_powergate = false,
2836        .coupled_pm = false,
2837        .has_nvdisplay = false,
2838        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2839        .primary_formats = tegra20_primary_formats,
2840        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2841        .overlay_formats = tegra20_overlay_formats,
2842        .modifiers = tegra20_modifiers,
2843        .has_win_a_without_filters = false,
2844        .has_win_b_vfilter_mem_client = true,
2845        .has_win_c_without_vert_filter = false,
2846        .plane_tiled_memory_bandwidth_x2 = true,
2847        .has_pll_d2_out0 = true,
2848};
2849
2850static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2851        .supports_background_color = false,
2852        .supports_interlacing = false,
2853        .supports_cursor = false,
2854        .supports_block_linear = false,
2855        .supports_sector_layout = false,
2856        .has_legacy_blending = true,
2857        .pitch_align = 64,
2858        .has_powergate = true,
2859        .coupled_pm = false,
2860        .has_nvdisplay = false,
2861        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2862        .primary_formats = tegra114_primary_formats,
2863        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2864        .overlay_formats = tegra114_overlay_formats,
2865        .modifiers = tegra20_modifiers,
2866        .has_win_a_without_filters = false,
2867        .has_win_b_vfilter_mem_client = false,
2868        .has_win_c_without_vert_filter = false,
2869        .plane_tiled_memory_bandwidth_x2 = true,
2870        .has_pll_d2_out0 = true,
2871};
2872
2873static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2874        .supports_background_color = true,
2875        .supports_interlacing = true,
2876        .supports_cursor = true,
2877        .supports_block_linear = true,
2878        .supports_sector_layout = false,
2879        .has_legacy_blending = false,
2880        .pitch_align = 64,
2881        .has_powergate = true,
2882        .coupled_pm = false,
2883        .has_nvdisplay = false,
2884        .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2885        .primary_formats = tegra124_primary_formats,
2886        .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2887        .overlay_formats = tegra124_overlay_formats,
2888        .modifiers = tegra124_modifiers,
2889        .has_win_a_without_filters = false,
2890        .has_win_b_vfilter_mem_client = false,
2891        .has_win_c_without_vert_filter = false,
2892        .plane_tiled_memory_bandwidth_x2 = false,
2893        .has_pll_d2_out0 = true,
2894};
2895
2896static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2897        .supports_background_color = true,
2898        .supports_interlacing = true,
2899        .supports_cursor = true,
2900        .supports_block_linear = true,
2901        .supports_sector_layout = false,
2902        .has_legacy_blending = false,
2903        .pitch_align = 64,
2904        .has_powergate = true,
2905        .coupled_pm = false,
2906        .has_nvdisplay = false,
2907        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2908        .primary_formats = tegra114_primary_formats,
2909        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2910        .overlay_formats = tegra114_overlay_formats,
2911        .modifiers = tegra124_modifiers,
2912        .has_win_a_without_filters = false,
2913        .has_win_b_vfilter_mem_client = false,
2914        .has_win_c_without_vert_filter = false,
2915        .plane_tiled_memory_bandwidth_x2 = false,
2916        .has_pll_d2_out0 = true,
2917};
2918
2919static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2920        {
2921                .index = 0,
2922                .dc = 0,
2923                .windows = (const unsigned int[]) { 0 },
2924                .num_windows = 1,
2925        }, {
2926                .index = 1,
2927                .dc = 1,
2928                .windows = (const unsigned int[]) { 1 },
2929                .num_windows = 1,
2930        }, {
2931                .index = 2,
2932                .dc = 1,
2933                .windows = (const unsigned int[]) { 2 },
2934                .num_windows = 1,
2935        }, {
2936                .index = 3,
2937                .dc = 2,
2938                .windows = (const unsigned int[]) { 3 },
2939                .num_windows = 1,
2940        }, {
2941                .index = 4,
2942                .dc = 2,
2943                .windows = (const unsigned int[]) { 4 },
2944                .num_windows = 1,
2945        }, {
2946                .index = 5,
2947                .dc = 2,
2948                .windows = (const unsigned int[]) { 5 },
2949                .num_windows = 1,
2950        },
2951};
2952
2953static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2954        .supports_background_color = true,
2955        .supports_interlacing = true,
2956        .supports_cursor = true,
2957        .supports_block_linear = true,
2958        .supports_sector_layout = false,
2959        .has_legacy_blending = false,
2960        .pitch_align = 64,
2961        .has_powergate = false,
2962        .coupled_pm = false,
2963        .has_nvdisplay = true,
2964        .wgrps = tegra186_dc_wgrps,
2965        .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2966        .plane_tiled_memory_bandwidth_x2 = false,
2967        .has_pll_d2_out0 = false,
2968};
2969
2970static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2971        {
2972                .index = 0,
2973                .dc = 0,
2974                .windows = (const unsigned int[]) { 0 },
2975                .num_windows = 1,
2976        }, {
2977                .index = 1,
2978                .dc = 1,
2979                .windows = (const unsigned int[]) { 1 },
2980                .num_windows = 1,
2981        }, {
2982                .index = 2,
2983                .dc = 1,
2984                .windows = (const unsigned int[]) { 2 },
2985                .num_windows = 1,
2986        }, {
2987                .index = 3,
2988                .dc = 2,
2989                .windows = (const unsigned int[]) { 3 },
2990                .num_windows = 1,
2991        }, {
2992                .index = 4,
2993                .dc = 2,
2994                .windows = (const unsigned int[]) { 4 },
2995                .num_windows = 1,
2996        }, {
2997                .index = 5,
2998                .dc = 2,
2999                .windows = (const unsigned int[]) { 5 },
3000                .num_windows = 1,
3001        },
3002};
3003
3004static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3005        .supports_background_color = true,
3006        .supports_interlacing = true,
3007        .supports_cursor = true,
3008        .supports_block_linear = true,
3009        .supports_sector_layout = true,
3010        .has_legacy_blending = false,
3011        .pitch_align = 64,
3012        .has_powergate = false,
3013        .coupled_pm = false,
3014        .has_nvdisplay = true,
3015        .wgrps = tegra194_dc_wgrps,
3016        .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3017        .plane_tiled_memory_bandwidth_x2 = false,
3018        .has_pll_d2_out0 = false,
3019};
3020
3021static const struct of_device_id tegra_dc_of_match[] = {
3022        {
3023                .compatible = "nvidia,tegra194-dc",
3024                .data = &tegra194_dc_soc_info,
3025        }, {
3026                .compatible = "nvidia,tegra186-dc",
3027                .data = &tegra186_dc_soc_info,
3028        }, {
3029                .compatible = "nvidia,tegra210-dc",
3030                .data = &tegra210_dc_soc_info,
3031        }, {
3032                .compatible = "nvidia,tegra124-dc",
3033                .data = &tegra124_dc_soc_info,
3034        }, {
3035                .compatible = "nvidia,tegra114-dc",
3036                .data = &tegra114_dc_soc_info,
3037        }, {
3038                .compatible = "nvidia,tegra30-dc",
3039                .data = &tegra30_dc_soc_info,
3040        }, {
3041                .compatible = "nvidia,tegra20-dc",
3042                .data = &tegra20_dc_soc_info,
3043        }, {
3044                /* sentinel */
3045        }
3046};
3047MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3048
3049static int tegra_dc_parse_dt(struct tegra_dc *dc)
3050{
3051        struct device_node *np;
3052        u32 value = 0;
3053        int err;
3054
3055        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3056        if (err < 0) {
3057                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3058
3059                /*
3060                 * If the nvidia,head property isn't present, try to find the
3061                 * correct head number by looking up the position of this
3062                 * display controller's node within the device tree. Assuming
3063                 * that the nodes are ordered properly in the DTS file and
3064                 * that the translation into a flattened device tree blob
3065                 * preserves that ordering this will actually yield the right
3066                 * head number.
3067                 *
3068                 * If those assumptions don't hold, this will still work for
3069                 * cases where only a single display controller is used.
3070                 */
3071                for_each_matching_node(np, tegra_dc_of_match) {
3072                        if (np == dc->dev->of_node) {
3073                                of_node_put(np);
3074                                break;
3075                        }
3076
3077                        value++;
3078                }
3079        }
3080
3081        dc->pipe = value;
3082
3083        return 0;
3084}
3085
3086static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3087{
3088        struct tegra_dc *dc = dev_get_drvdata(dev);
3089        unsigned int pipe = (unsigned long)(void *)data;
3090
3091        return dc->pipe == pipe;
3092}
3093
3094static int tegra_dc_couple(struct tegra_dc *dc)
3095{
3096        /*
3097         * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3098         * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3099         * POWER_CONTROL registers during CRTC enabling.
3100         */
3101        if (dc->soc->coupled_pm && dc->pipe == 1) {
3102                struct device *companion;
3103                struct tegra_dc *parent;
3104
3105                companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3106                                               tegra_dc_match_by_pipe);
3107                if (!companion)
3108                        return -EPROBE_DEFER;
3109
3110                parent = dev_get_drvdata(companion);
3111                dc->client.parent = &parent->client;
3112
3113                dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3114        }
3115
3116        return 0;
3117}
3118
3119static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3120{
3121        struct tegra_core_opp_params opp_params = {};
3122        int err;
3123
3124        err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3125        if (err && err != -ENODEV)
3126                return err;
3127
3128        if (err)
3129                dc->has_opp_table = false;
3130        else
3131                dc->has_opp_table = true;
3132
3133        return 0;
3134}
3135
3136static int tegra_dc_probe(struct platform_device *pdev)
3137{
3138        u64 dma_mask = dma_get_mask(pdev->dev.parent);
3139        struct tegra_dc *dc;
3140        int err;
3141
3142        err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3143        if (err < 0) {
3144                dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3145                return err;
3146        }
3147
3148        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3149        if (!dc)
3150                return -ENOMEM;
3151
3152        dc->soc = of_device_get_match_data(&pdev->dev);
3153
3154        INIT_LIST_HEAD(&dc->list);
3155        dc->dev = &pdev->dev;
3156
3157        err = tegra_dc_parse_dt(dc);
3158        if (err < 0)
3159                return err;
3160
3161        err = tegra_dc_couple(dc);
3162        if (err < 0)
3163                return err;
3164
3165        dc->clk = devm_clk_get(&pdev->dev, NULL);
3166        if (IS_ERR(dc->clk)) {
3167                dev_err(&pdev->dev, "failed to get clock\n");
3168                return PTR_ERR(dc->clk);
3169        }
3170
3171        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3172        if (IS_ERR(dc->rst)) {
3173                dev_err(&pdev->dev, "failed to get reset\n");
3174                return PTR_ERR(dc->rst);
3175        }
3176
3177        /* assert reset and disable clock */
3178        err = clk_prepare_enable(dc->clk);
3179        if (err < 0)
3180                return err;
3181
3182        usleep_range(2000, 4000);
3183
3184        err = reset_control_assert(dc->rst);
3185        if (err < 0)
3186                return err;
3187
3188        usleep_range(2000, 4000);
3189
3190        clk_disable_unprepare(dc->clk);
3191
3192        if (dc->soc->has_powergate) {
3193                if (dc->pipe == 0)
3194                        dc->powergate = TEGRA_POWERGATE_DIS;
3195                else
3196                        dc->powergate = TEGRA_POWERGATE_DISB;
3197
3198                tegra_powergate_power_off(dc->powergate);
3199        }
3200
3201        err = tegra_dc_init_opp_table(dc);
3202        if (err < 0)
3203                return err;
3204
3205        dc->regs = devm_platform_ioremap_resource(pdev, 0);
3206        if (IS_ERR(dc->regs))
3207                return PTR_ERR(dc->regs);
3208
3209        dc->irq = platform_get_irq(pdev, 0);
3210        if (dc->irq < 0)
3211                return -ENXIO;
3212
3213        err = tegra_dc_rgb_probe(dc);
3214        if (err < 0 && err != -ENODEV) {
3215                const char *level = KERN_ERR;
3216
3217                if (err == -EPROBE_DEFER)
3218                        level = KERN_DEBUG;
3219
3220                dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
3221                           err);
3222                return err;
3223        }
3224
3225        platform_set_drvdata(pdev, dc);
3226        pm_runtime_enable(&pdev->dev);
3227
3228        INIT_LIST_HEAD(&dc->client.list);
3229        dc->client.ops = &dc_client_ops;
3230        dc->client.dev = &pdev->dev;
3231
3232        err = host1x_client_register(&dc->client);
3233        if (err < 0) {
3234                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3235                        err);
3236                goto disable_pm;
3237        }
3238
3239        return 0;
3240
3241disable_pm:
3242        pm_runtime_disable(&pdev->dev);
3243        tegra_dc_rgb_remove(dc);
3244
3245        return err;
3246}
3247
3248static int tegra_dc_remove(struct platform_device *pdev)
3249{
3250        struct tegra_dc *dc = platform_get_drvdata(pdev);
3251        int err;
3252
3253        err = host1x_client_unregister(&dc->client);
3254        if (err < 0) {
3255                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3256                        err);
3257                return err;
3258        }
3259
3260        err = tegra_dc_rgb_remove(dc);
3261        if (err < 0) {
3262                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3263                return err;
3264        }
3265
3266        pm_runtime_disable(&pdev->dev);
3267
3268        return 0;
3269}
3270
3271struct platform_driver tegra_dc_driver = {
3272        .driver = {
3273                .name = "tegra-dc",
3274                .of_match_table = tegra_dc_of_match,
3275        },
3276        .probe = tegra_dc_probe,
3277        .remove = tegra_dc_remove,
3278};
3279