linux/drivers/most/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * core.c - Implementation of core module of MOST Linux driver stack
   4 *
   5 * Copyright (C) 2013-2020 Microchip Technology Germany II GmbH & Co. KG
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/fs.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/device.h>
  13#include <linux/list.h>
  14#include <linux/poll.h>
  15#include <linux/wait.h>
  16#include <linux/kobject.h>
  17#include <linux/mutex.h>
  18#include <linux/completion.h>
  19#include <linux/sysfs.h>
  20#include <linux/kthread.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/idr.h>
  23#include <linux/most.h>
  24
  25#define MAX_CHANNELS    64
  26#define STRING_SIZE     80
  27
  28static struct ida mdev_id;
  29static int dummy_num_buffers;
  30static struct list_head comp_list;
  31
  32struct pipe {
  33        struct most_component *comp;
  34        int refs;
  35        int num_buffers;
  36};
  37
  38struct most_channel {
  39        struct device dev;
  40        struct completion cleanup;
  41        atomic_t mbo_ref;
  42        atomic_t mbo_nq_level;
  43        u16 channel_id;
  44        char name[STRING_SIZE];
  45        bool is_poisoned;
  46        struct mutex start_mutex; /* channel activation synchronization */
  47        struct mutex nq_mutex; /* nq thread synchronization */
  48        int is_starving;
  49        struct most_interface *iface;
  50        struct most_channel_config cfg;
  51        bool keep_mbo;
  52        bool enqueue_halt;
  53        struct list_head fifo;
  54        spinlock_t fifo_lock; /* fifo access synchronization */
  55        struct list_head halt_fifo;
  56        struct list_head list;
  57        struct pipe pipe0;
  58        struct pipe pipe1;
  59        struct list_head trash_fifo;
  60        struct task_struct *hdm_enqueue_task;
  61        wait_queue_head_t hdm_fifo_wq;
  62
  63};
  64
  65#define to_channel(d) container_of(d, struct most_channel, dev)
  66
  67struct interface_private {
  68        int dev_id;
  69        char name[STRING_SIZE];
  70        struct most_channel *channel[MAX_CHANNELS];
  71        struct list_head channel_list;
  72};
  73
  74static const struct {
  75        int most_ch_data_type;
  76        const char *name;
  77} ch_data_type[] = {
  78        { MOST_CH_CONTROL, "control" },
  79        { MOST_CH_ASYNC, "async" },
  80        { MOST_CH_SYNC, "sync" },
  81        { MOST_CH_ISOC, "isoc"},
  82        { MOST_CH_ISOC, "isoc_avp"},
  83};
  84
  85/**
  86 * list_pop_mbo - retrieves the first MBO of the list and removes it
  87 * @ptr: the list head to grab the MBO from.
  88 */
  89#define list_pop_mbo(ptr)                                               \
  90({                                                                      \
  91        struct mbo *_mbo = list_first_entry(ptr, struct mbo, list);     \
  92        list_del(&_mbo->list);                                          \
  93        _mbo;                                                           \
  94})
  95
  96/**
  97 * most_free_mbo_coherent - free an MBO and its coherent buffer
  98 * @mbo: most buffer
  99 */
 100static void most_free_mbo_coherent(struct mbo *mbo)
 101{
 102        struct most_channel *c = mbo->context;
 103        u16 const coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
 104
 105        if (c->iface->dma_free)
 106                c->iface->dma_free(mbo, coherent_buf_size);
 107        else
 108                kfree(mbo->virt_address);
 109        kfree(mbo);
 110        if (atomic_sub_and_test(1, &c->mbo_ref))
 111                complete(&c->cleanup);
 112}
 113
 114/**
 115 * flush_channel_fifos - clear the channel fifos
 116 * @c: pointer to channel object
 117 */
 118static void flush_channel_fifos(struct most_channel *c)
 119{
 120        unsigned long flags, hf_flags;
 121        struct mbo *mbo, *tmp;
 122
 123        if (list_empty(&c->fifo) && list_empty(&c->halt_fifo))
 124                return;
 125
 126        spin_lock_irqsave(&c->fifo_lock, flags);
 127        list_for_each_entry_safe(mbo, tmp, &c->fifo, list) {
 128                list_del(&mbo->list);
 129                spin_unlock_irqrestore(&c->fifo_lock, flags);
 130                most_free_mbo_coherent(mbo);
 131                spin_lock_irqsave(&c->fifo_lock, flags);
 132        }
 133        spin_unlock_irqrestore(&c->fifo_lock, flags);
 134
 135        spin_lock_irqsave(&c->fifo_lock, hf_flags);
 136        list_for_each_entry_safe(mbo, tmp, &c->halt_fifo, list) {
 137                list_del(&mbo->list);
 138                spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
 139                most_free_mbo_coherent(mbo);
 140                spin_lock_irqsave(&c->fifo_lock, hf_flags);
 141        }
 142        spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
 143
 144        if (unlikely((!list_empty(&c->fifo) || !list_empty(&c->halt_fifo))))
 145                dev_warn(&c->dev, "Channel or trash fifo not empty\n");
 146}
 147
 148/**
 149 * flush_trash_fifo - clear the trash fifo
 150 * @c: pointer to channel object
 151 */
 152static int flush_trash_fifo(struct most_channel *c)
 153{
 154        struct mbo *mbo, *tmp;
 155        unsigned long flags;
 156
 157        spin_lock_irqsave(&c->fifo_lock, flags);
 158        list_for_each_entry_safe(mbo, tmp, &c->trash_fifo, list) {
 159                list_del(&mbo->list);
 160                spin_unlock_irqrestore(&c->fifo_lock, flags);
 161                most_free_mbo_coherent(mbo);
 162                spin_lock_irqsave(&c->fifo_lock, flags);
 163        }
 164        spin_unlock_irqrestore(&c->fifo_lock, flags);
 165        return 0;
 166}
 167
 168static ssize_t available_directions_show(struct device *dev,
 169                                         struct device_attribute *attr,
 170                                         char *buf)
 171{
 172        struct most_channel *c = to_channel(dev);
 173        unsigned int i = c->channel_id;
 174
 175        strcpy(buf, "");
 176        if (c->iface->channel_vector[i].direction & MOST_CH_RX)
 177                strcat(buf, "rx ");
 178        if (c->iface->channel_vector[i].direction & MOST_CH_TX)
 179                strcat(buf, "tx ");
 180        strcat(buf, "\n");
 181        return strlen(buf);
 182}
 183
 184static ssize_t available_datatypes_show(struct device *dev,
 185                                        struct device_attribute *attr,
 186                                        char *buf)
 187{
 188        struct most_channel *c = to_channel(dev);
 189        unsigned int i = c->channel_id;
 190
 191        strcpy(buf, "");
 192        if (c->iface->channel_vector[i].data_type & MOST_CH_CONTROL)
 193                strcat(buf, "control ");
 194        if (c->iface->channel_vector[i].data_type & MOST_CH_ASYNC)
 195                strcat(buf, "async ");
 196        if (c->iface->channel_vector[i].data_type & MOST_CH_SYNC)
 197                strcat(buf, "sync ");
 198        if (c->iface->channel_vector[i].data_type & MOST_CH_ISOC)
 199                strcat(buf, "isoc ");
 200        strcat(buf, "\n");
 201        return strlen(buf);
 202}
 203
 204static ssize_t number_of_packet_buffers_show(struct device *dev,
 205                                             struct device_attribute *attr,
 206                                             char *buf)
 207{
 208        struct most_channel *c = to_channel(dev);
 209        unsigned int i = c->channel_id;
 210
 211        return snprintf(buf, PAGE_SIZE, "%d\n",
 212                        c->iface->channel_vector[i].num_buffers_packet);
 213}
 214
 215static ssize_t number_of_stream_buffers_show(struct device *dev,
 216                                             struct device_attribute *attr,
 217                                             char *buf)
 218{
 219        struct most_channel *c = to_channel(dev);
 220        unsigned int i = c->channel_id;
 221
 222        return snprintf(buf, PAGE_SIZE, "%d\n",
 223                        c->iface->channel_vector[i].num_buffers_streaming);
 224}
 225
 226static ssize_t size_of_packet_buffer_show(struct device *dev,
 227                                          struct device_attribute *attr,
 228                                          char *buf)
 229{
 230        struct most_channel *c = to_channel(dev);
 231        unsigned int i = c->channel_id;
 232
 233        return snprintf(buf, PAGE_SIZE, "%d\n",
 234                        c->iface->channel_vector[i].buffer_size_packet);
 235}
 236
 237static ssize_t size_of_stream_buffer_show(struct device *dev,
 238                                          struct device_attribute *attr,
 239                                          char *buf)
 240{
 241        struct most_channel *c = to_channel(dev);
 242        unsigned int i = c->channel_id;
 243
 244        return snprintf(buf, PAGE_SIZE, "%d\n",
 245                        c->iface->channel_vector[i].buffer_size_streaming);
 246}
 247
 248static ssize_t channel_starving_show(struct device *dev,
 249                                     struct device_attribute *attr,
 250                                     char *buf)
 251{
 252        struct most_channel *c = to_channel(dev);
 253
 254        return snprintf(buf, PAGE_SIZE, "%d\n", c->is_starving);
 255}
 256
 257static ssize_t set_number_of_buffers_show(struct device *dev,
 258                                          struct device_attribute *attr,
 259                                          char *buf)
 260{
 261        struct most_channel *c = to_channel(dev);
 262
 263        return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.num_buffers);
 264}
 265
 266static ssize_t set_buffer_size_show(struct device *dev,
 267                                    struct device_attribute *attr,
 268                                    char *buf)
 269{
 270        struct most_channel *c = to_channel(dev);
 271
 272        return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.buffer_size);
 273}
 274
 275static ssize_t set_direction_show(struct device *dev,
 276                                  struct device_attribute *attr,
 277                                  char *buf)
 278{
 279        struct most_channel *c = to_channel(dev);
 280
 281        if (c->cfg.direction & MOST_CH_TX)
 282                return snprintf(buf, PAGE_SIZE, "tx\n");
 283        else if (c->cfg.direction & MOST_CH_RX)
 284                return snprintf(buf, PAGE_SIZE, "rx\n");
 285        return snprintf(buf, PAGE_SIZE, "unconfigured\n");
 286}
 287
 288static ssize_t set_datatype_show(struct device *dev,
 289                                 struct device_attribute *attr,
 290                                 char *buf)
 291{
 292        int i;
 293        struct most_channel *c = to_channel(dev);
 294
 295        for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
 296                if (c->cfg.data_type & ch_data_type[i].most_ch_data_type)
 297                        return snprintf(buf, PAGE_SIZE, "%s",
 298                                        ch_data_type[i].name);
 299        }
 300        return snprintf(buf, PAGE_SIZE, "unconfigured\n");
 301}
 302
 303static ssize_t set_subbuffer_size_show(struct device *dev,
 304                                       struct device_attribute *attr,
 305                                       char *buf)
 306{
 307        struct most_channel *c = to_channel(dev);
 308
 309        return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.subbuffer_size);
 310}
 311
 312static ssize_t set_packets_per_xact_show(struct device *dev,
 313                                         struct device_attribute *attr,
 314                                         char *buf)
 315{
 316        struct most_channel *c = to_channel(dev);
 317
 318        return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.packets_per_xact);
 319}
 320
 321static ssize_t set_dbr_size_show(struct device *dev,
 322                                 struct device_attribute *attr, char *buf)
 323{
 324        struct most_channel *c = to_channel(dev);
 325
 326        return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.dbr_size);
 327}
 328
 329#define to_dev_attr(a) container_of(a, struct device_attribute, attr)
 330static umode_t channel_attr_is_visible(struct kobject *kobj,
 331                                       struct attribute *attr, int index)
 332{
 333        struct device_attribute *dev_attr = to_dev_attr(attr);
 334        struct device *dev = kobj_to_dev(kobj);
 335        struct most_channel *c = to_channel(dev);
 336
 337        if (!strcmp(dev_attr->attr.name, "set_dbr_size") &&
 338            (c->iface->interface != ITYPE_MEDIALB_DIM2))
 339                return 0;
 340        if (!strcmp(dev_attr->attr.name, "set_packets_per_xact") &&
 341            (c->iface->interface != ITYPE_USB))
 342                return 0;
 343
 344        return attr->mode;
 345}
 346
 347#define DEV_ATTR(_name)  (&dev_attr_##_name.attr)
 348
 349static DEVICE_ATTR_RO(available_directions);
 350static DEVICE_ATTR_RO(available_datatypes);
 351static DEVICE_ATTR_RO(number_of_packet_buffers);
 352static DEVICE_ATTR_RO(number_of_stream_buffers);
 353static DEVICE_ATTR_RO(size_of_stream_buffer);
 354static DEVICE_ATTR_RO(size_of_packet_buffer);
 355static DEVICE_ATTR_RO(channel_starving);
 356static DEVICE_ATTR_RO(set_buffer_size);
 357static DEVICE_ATTR_RO(set_number_of_buffers);
 358static DEVICE_ATTR_RO(set_direction);
 359static DEVICE_ATTR_RO(set_datatype);
 360static DEVICE_ATTR_RO(set_subbuffer_size);
 361static DEVICE_ATTR_RO(set_packets_per_xact);
 362static DEVICE_ATTR_RO(set_dbr_size);
 363
 364static struct attribute *channel_attrs[] = {
 365        DEV_ATTR(available_directions),
 366        DEV_ATTR(available_datatypes),
 367        DEV_ATTR(number_of_packet_buffers),
 368        DEV_ATTR(number_of_stream_buffers),
 369        DEV_ATTR(size_of_stream_buffer),
 370        DEV_ATTR(size_of_packet_buffer),
 371        DEV_ATTR(channel_starving),
 372        DEV_ATTR(set_buffer_size),
 373        DEV_ATTR(set_number_of_buffers),
 374        DEV_ATTR(set_direction),
 375        DEV_ATTR(set_datatype),
 376        DEV_ATTR(set_subbuffer_size),
 377        DEV_ATTR(set_packets_per_xact),
 378        DEV_ATTR(set_dbr_size),
 379        NULL,
 380};
 381
 382static const struct attribute_group channel_attr_group = {
 383        .attrs = channel_attrs,
 384        .is_visible = channel_attr_is_visible,
 385};
 386
 387static const struct attribute_group *channel_attr_groups[] = {
 388        &channel_attr_group,
 389        NULL,
 390};
 391
 392static ssize_t description_show(struct device *dev,
 393                                struct device_attribute *attr,
 394                                char *buf)
 395{
 396        struct most_interface *iface = dev_get_drvdata(dev);
 397
 398        return snprintf(buf, PAGE_SIZE, "%s\n", iface->description);
 399}
 400
 401static ssize_t interface_show(struct device *dev,
 402                              struct device_attribute *attr,
 403                              char *buf)
 404{
 405        struct most_interface *iface = dev_get_drvdata(dev);
 406
 407        switch (iface->interface) {
 408        case ITYPE_LOOPBACK:
 409                return snprintf(buf, PAGE_SIZE, "loopback\n");
 410        case ITYPE_I2C:
 411                return snprintf(buf, PAGE_SIZE, "i2c\n");
 412        case ITYPE_I2S:
 413                return snprintf(buf, PAGE_SIZE, "i2s\n");
 414        case ITYPE_TSI:
 415                return snprintf(buf, PAGE_SIZE, "tsi\n");
 416        case ITYPE_HBI:
 417                return snprintf(buf, PAGE_SIZE, "hbi\n");
 418        case ITYPE_MEDIALB_DIM:
 419                return snprintf(buf, PAGE_SIZE, "mlb_dim\n");
 420        case ITYPE_MEDIALB_DIM2:
 421                return snprintf(buf, PAGE_SIZE, "mlb_dim2\n");
 422        case ITYPE_USB:
 423                return snprintf(buf, PAGE_SIZE, "usb\n");
 424        case ITYPE_PCIE:
 425                return snprintf(buf, PAGE_SIZE, "pcie\n");
 426        }
 427        return snprintf(buf, PAGE_SIZE, "unknown\n");
 428}
 429
 430static DEVICE_ATTR_RO(description);
 431static DEVICE_ATTR_RO(interface);
 432
 433static struct attribute *interface_attrs[] = {
 434        DEV_ATTR(description),
 435        DEV_ATTR(interface),
 436        NULL,
 437};
 438
 439static const struct attribute_group interface_attr_group = {
 440        .attrs = interface_attrs,
 441};
 442
 443static const struct attribute_group *interface_attr_groups[] = {
 444        &interface_attr_group,
 445        NULL,
 446};
 447
 448static struct most_component *match_component(char *name)
 449{
 450        struct most_component *comp;
 451
 452        list_for_each_entry(comp, &comp_list, list) {
 453                if (!strcmp(comp->name, name))
 454                        return comp;
 455        }
 456        return NULL;
 457}
 458
 459struct show_links_data {
 460        int offs;
 461        char *buf;
 462};
 463
 464static int print_links(struct device *dev, void *data)
 465{
 466        struct show_links_data *d = data;
 467        int offs = d->offs;
 468        char *buf = d->buf;
 469        struct most_channel *c;
 470        struct most_interface *iface = dev_get_drvdata(dev);
 471
 472        list_for_each_entry(c, &iface->p->channel_list, list) {
 473                if (c->pipe0.comp) {
 474                        offs += scnprintf(buf + offs,
 475                                         PAGE_SIZE - offs,
 476                                         "%s:%s:%s\n",
 477                                         c->pipe0.comp->name,
 478                                         dev_name(iface->dev),
 479                                         dev_name(&c->dev));
 480                }
 481                if (c->pipe1.comp) {
 482                        offs += scnprintf(buf + offs,
 483                                         PAGE_SIZE - offs,
 484                                         "%s:%s:%s\n",
 485                                         c->pipe1.comp->name,
 486                                         dev_name(iface->dev),
 487                                         dev_name(&c->dev));
 488                }
 489        }
 490        d->offs = offs;
 491        return 0;
 492}
 493
 494static int most_match(struct device *dev, struct device_driver *drv)
 495{
 496        if (!strcmp(dev_name(dev), "most"))
 497                return 0;
 498        else
 499                return 1;
 500}
 501
 502static struct bus_type mostbus = {
 503        .name = "most",
 504        .match = most_match,
 505};
 506
 507static ssize_t links_show(struct device_driver *drv, char *buf)
 508{
 509        struct show_links_data d = { .buf = buf };
 510
 511        bus_for_each_dev(&mostbus, NULL, &d, print_links);
 512        return d.offs;
 513}
 514
 515static ssize_t components_show(struct device_driver *drv, char *buf)
 516{
 517        struct most_component *comp;
 518        int offs = 0;
 519
 520        list_for_each_entry(comp, &comp_list, list) {
 521                offs += scnprintf(buf + offs, PAGE_SIZE - offs, "%s\n",
 522                                 comp->name);
 523        }
 524        return offs;
 525}
 526
 527/**
 528 * get_channel - get pointer to channel
 529 * @mdev: name of the device interface
 530 * @mdev_ch: name of channel
 531 */
 532static struct most_channel *get_channel(char *mdev, char *mdev_ch)
 533{
 534        struct device *dev = NULL;
 535        struct most_interface *iface;
 536        struct most_channel *c, *tmp;
 537
 538        dev = bus_find_device_by_name(&mostbus, NULL, mdev);
 539        if (!dev)
 540                return NULL;
 541        put_device(dev);
 542        iface = dev_get_drvdata(dev);
 543        list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
 544                if (!strcmp(dev_name(&c->dev), mdev_ch))
 545                        return c;
 546        }
 547        return NULL;
 548}
 549
 550static
 551inline int link_channel_to_component(struct most_channel *c,
 552                                     struct most_component *comp,
 553                                     char *name,
 554                                     char *comp_param)
 555{
 556        int ret;
 557        struct most_component **comp_ptr;
 558
 559        if (!c->pipe0.comp)
 560                comp_ptr = &c->pipe0.comp;
 561        else if (!c->pipe1.comp)
 562                comp_ptr = &c->pipe1.comp;
 563        else
 564                return -ENOSPC;
 565
 566        *comp_ptr = comp;
 567        ret = comp->probe_channel(c->iface, c->channel_id, &c->cfg, name,
 568                                  comp_param);
 569        if (ret) {
 570                *comp_ptr = NULL;
 571                return ret;
 572        }
 573        return 0;
 574}
 575
 576int most_set_cfg_buffer_size(char *mdev, char *mdev_ch, u16 val)
 577{
 578        struct most_channel *c = get_channel(mdev, mdev_ch);
 579
 580        if (!c)
 581                return -ENODEV;
 582        c->cfg.buffer_size = val;
 583        return 0;
 584}
 585
 586int most_set_cfg_subbuffer_size(char *mdev, char *mdev_ch, u16 val)
 587{
 588        struct most_channel *c = get_channel(mdev, mdev_ch);
 589
 590        if (!c)
 591                return -ENODEV;
 592        c->cfg.subbuffer_size = val;
 593        return 0;
 594}
 595
 596int most_set_cfg_dbr_size(char *mdev, char *mdev_ch, u16 val)
 597{
 598        struct most_channel *c = get_channel(mdev, mdev_ch);
 599
 600        if (!c)
 601                return -ENODEV;
 602        c->cfg.dbr_size = val;
 603        return 0;
 604}
 605
 606int most_set_cfg_num_buffers(char *mdev, char *mdev_ch, u16 val)
 607{
 608        struct most_channel *c = get_channel(mdev, mdev_ch);
 609
 610        if (!c)
 611                return -ENODEV;
 612        c->cfg.num_buffers = val;
 613        return 0;
 614}
 615
 616int most_set_cfg_datatype(char *mdev, char *mdev_ch, char *buf)
 617{
 618        int i;
 619        struct most_channel *c = get_channel(mdev, mdev_ch);
 620
 621        if (!c)
 622                return -ENODEV;
 623        for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
 624                if (!strcmp(buf, ch_data_type[i].name)) {
 625                        c->cfg.data_type = ch_data_type[i].most_ch_data_type;
 626                        break;
 627                }
 628        }
 629
 630        if (i == ARRAY_SIZE(ch_data_type))
 631                dev_warn(&c->dev, "Invalid attribute settings\n");
 632        return 0;
 633}
 634
 635int most_set_cfg_direction(char *mdev, char *mdev_ch, char *buf)
 636{
 637        struct most_channel *c = get_channel(mdev, mdev_ch);
 638
 639        if (!c)
 640                return -ENODEV;
 641        if (!strcmp(buf, "dir_rx")) {
 642                c->cfg.direction = MOST_CH_RX;
 643        } else if (!strcmp(buf, "rx")) {
 644                c->cfg.direction = MOST_CH_RX;
 645        } else if (!strcmp(buf, "dir_tx")) {
 646                c->cfg.direction = MOST_CH_TX;
 647        } else if (!strcmp(buf, "tx")) {
 648                c->cfg.direction = MOST_CH_TX;
 649        } else {
 650                dev_err(&c->dev, "Invalid direction\n");
 651                return -ENODATA;
 652        }
 653        return 0;
 654}
 655
 656int most_set_cfg_packets_xact(char *mdev, char *mdev_ch, u16 val)
 657{
 658        struct most_channel *c = get_channel(mdev, mdev_ch);
 659
 660        if (!c)
 661                return -ENODEV;
 662        c->cfg.packets_per_xact = val;
 663        return 0;
 664}
 665
 666int most_cfg_complete(char *comp_name)
 667{
 668        struct most_component *comp;
 669
 670        comp = match_component(comp_name);
 671        if (!comp)
 672                return -ENODEV;
 673
 674        return comp->cfg_complete();
 675}
 676
 677int most_add_link(char *mdev, char *mdev_ch, char *comp_name, char *link_name,
 678                  char *comp_param)
 679{
 680        struct most_channel *c = get_channel(mdev, mdev_ch);
 681        struct most_component *comp = match_component(comp_name);
 682
 683        if (!c || !comp)
 684                return -ENODEV;
 685
 686        return link_channel_to_component(c, comp, link_name, comp_param);
 687}
 688
 689int most_remove_link(char *mdev, char *mdev_ch, char *comp_name)
 690{
 691        struct most_channel *c;
 692        struct most_component *comp;
 693
 694        comp = match_component(comp_name);
 695        if (!comp)
 696                return -ENODEV;
 697        c = get_channel(mdev, mdev_ch);
 698        if (!c)
 699                return -ENODEV;
 700
 701        if (comp->disconnect_channel(c->iface, c->channel_id))
 702                return -EIO;
 703        if (c->pipe0.comp == comp)
 704                c->pipe0.comp = NULL;
 705        if (c->pipe1.comp == comp)
 706                c->pipe1.comp = NULL;
 707        return 0;
 708}
 709
 710#define DRV_ATTR(_name)  (&driver_attr_##_name.attr)
 711
 712static DRIVER_ATTR_RO(links);
 713static DRIVER_ATTR_RO(components);
 714
 715static struct attribute *mc_attrs[] = {
 716        DRV_ATTR(links),
 717        DRV_ATTR(components),
 718        NULL,
 719};
 720
 721static const struct attribute_group mc_attr_group = {
 722        .attrs = mc_attrs,
 723};
 724
 725static const struct attribute_group *mc_attr_groups[] = {
 726        &mc_attr_group,
 727        NULL,
 728};
 729
 730static struct device_driver mostbus_driver = {
 731        .name = "most_core",
 732        .bus = &mostbus,
 733        .groups = mc_attr_groups,
 734};
 735
 736static inline void trash_mbo(struct mbo *mbo)
 737{
 738        unsigned long flags;
 739        struct most_channel *c = mbo->context;
 740
 741        spin_lock_irqsave(&c->fifo_lock, flags);
 742        list_add(&mbo->list, &c->trash_fifo);
 743        spin_unlock_irqrestore(&c->fifo_lock, flags);
 744}
 745
 746static bool hdm_mbo_ready(struct most_channel *c)
 747{
 748        bool empty;
 749
 750        if (c->enqueue_halt)
 751                return false;
 752
 753        spin_lock_irq(&c->fifo_lock);
 754        empty = list_empty(&c->halt_fifo);
 755        spin_unlock_irq(&c->fifo_lock);
 756
 757        return !empty;
 758}
 759
 760static void nq_hdm_mbo(struct mbo *mbo)
 761{
 762        unsigned long flags;
 763        struct most_channel *c = mbo->context;
 764
 765        spin_lock_irqsave(&c->fifo_lock, flags);
 766        list_add_tail(&mbo->list, &c->halt_fifo);
 767        spin_unlock_irqrestore(&c->fifo_lock, flags);
 768        wake_up_interruptible(&c->hdm_fifo_wq);
 769}
 770
 771static int hdm_enqueue_thread(void *data)
 772{
 773        struct most_channel *c = data;
 774        struct mbo *mbo;
 775        int ret;
 776        typeof(c->iface->enqueue) enqueue = c->iface->enqueue;
 777
 778        while (likely(!kthread_should_stop())) {
 779                wait_event_interruptible(c->hdm_fifo_wq,
 780                                         hdm_mbo_ready(c) ||
 781                                         kthread_should_stop());
 782
 783                mutex_lock(&c->nq_mutex);
 784                spin_lock_irq(&c->fifo_lock);
 785                if (unlikely(c->enqueue_halt || list_empty(&c->halt_fifo))) {
 786                        spin_unlock_irq(&c->fifo_lock);
 787                        mutex_unlock(&c->nq_mutex);
 788                        continue;
 789                }
 790
 791                mbo = list_pop_mbo(&c->halt_fifo);
 792                spin_unlock_irq(&c->fifo_lock);
 793
 794                if (c->cfg.direction == MOST_CH_RX)
 795                        mbo->buffer_length = c->cfg.buffer_size;
 796
 797                ret = enqueue(mbo->ifp, mbo->hdm_channel_id, mbo);
 798                mutex_unlock(&c->nq_mutex);
 799
 800                if (unlikely(ret)) {
 801                        dev_err(&c->dev, "Buffer enqueue failed\n");
 802                        nq_hdm_mbo(mbo);
 803                        c->hdm_enqueue_task = NULL;
 804                        return 0;
 805                }
 806        }
 807
 808        return 0;
 809}
 810
 811static int run_enqueue_thread(struct most_channel *c, int channel_id)
 812{
 813        struct task_struct *task =
 814                kthread_run(hdm_enqueue_thread, c, "hdm_fifo_%d",
 815                            channel_id);
 816
 817        if (IS_ERR(task))
 818                return PTR_ERR(task);
 819
 820        c->hdm_enqueue_task = task;
 821        return 0;
 822}
 823
 824/**
 825 * arm_mbo - recycle MBO for further usage
 826 * @mbo: most buffer
 827 *
 828 * This puts an MBO back to the list to have it ready for up coming
 829 * tx transactions.
 830 *
 831 * In case the MBO belongs to a channel that recently has been
 832 * poisoned, the MBO is scheduled to be trashed.
 833 * Calls the completion handler of an attached component.
 834 */
 835static void arm_mbo(struct mbo *mbo)
 836{
 837        unsigned long flags;
 838        struct most_channel *c;
 839
 840        c = mbo->context;
 841
 842        if (c->is_poisoned) {
 843                trash_mbo(mbo);
 844                return;
 845        }
 846
 847        spin_lock_irqsave(&c->fifo_lock, flags);
 848        ++*mbo->num_buffers_ptr;
 849        list_add_tail(&mbo->list, &c->fifo);
 850        spin_unlock_irqrestore(&c->fifo_lock, flags);
 851
 852        if (c->pipe0.refs && c->pipe0.comp->tx_completion)
 853                c->pipe0.comp->tx_completion(c->iface, c->channel_id);
 854
 855        if (c->pipe1.refs && c->pipe1.comp->tx_completion)
 856                c->pipe1.comp->tx_completion(c->iface, c->channel_id);
 857}
 858
 859/**
 860 * arm_mbo_chain - helper function that arms an MBO chain for the HDM
 861 * @c: pointer to interface channel
 862 * @dir: direction of the channel
 863 * @compl: pointer to completion function
 864 *
 865 * This allocates buffer objects including the containing DMA coherent
 866 * buffer and puts them in the fifo.
 867 * Buffers of Rx channels are put in the kthread fifo, hence immediately
 868 * submitted to the HDM.
 869 *
 870 * Returns the number of allocated and enqueued MBOs.
 871 */
 872static int arm_mbo_chain(struct most_channel *c, int dir,
 873                         void (*compl)(struct mbo *))
 874{
 875        unsigned int i;
 876        struct mbo *mbo;
 877        unsigned long flags;
 878        u32 coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
 879
 880        atomic_set(&c->mbo_nq_level, 0);
 881
 882        for (i = 0; i < c->cfg.num_buffers; i++) {
 883                mbo = kzalloc(sizeof(*mbo), GFP_KERNEL);
 884                if (!mbo)
 885                        goto flush_fifos;
 886
 887                mbo->context = c;
 888                mbo->ifp = c->iface;
 889                mbo->hdm_channel_id = c->channel_id;
 890                if (c->iface->dma_alloc) {
 891                        mbo->virt_address =
 892                                c->iface->dma_alloc(mbo, coherent_buf_size);
 893                } else {
 894                        mbo->virt_address =
 895                                kzalloc(coherent_buf_size, GFP_KERNEL);
 896                }
 897                if (!mbo->virt_address)
 898                        goto release_mbo;
 899
 900                mbo->complete = compl;
 901                mbo->num_buffers_ptr = &dummy_num_buffers;
 902                if (dir == MOST_CH_RX) {
 903                        nq_hdm_mbo(mbo);
 904                        atomic_inc(&c->mbo_nq_level);
 905                } else {
 906                        spin_lock_irqsave(&c->fifo_lock, flags);
 907                        list_add_tail(&mbo->list, &c->fifo);
 908                        spin_unlock_irqrestore(&c->fifo_lock, flags);
 909                }
 910        }
 911        return c->cfg.num_buffers;
 912
 913release_mbo:
 914        kfree(mbo);
 915
 916flush_fifos:
 917        flush_channel_fifos(c);
 918        return 0;
 919}
 920
 921/**
 922 * most_submit_mbo - submits an MBO to fifo
 923 * @mbo: most buffer
 924 */
 925void most_submit_mbo(struct mbo *mbo)
 926{
 927        if (WARN_ONCE(!mbo || !mbo->context,
 928                      "Bad buffer or missing channel reference\n"))
 929                return;
 930
 931        nq_hdm_mbo(mbo);
 932}
 933EXPORT_SYMBOL_GPL(most_submit_mbo);
 934
 935/**
 936 * most_write_completion - write completion handler
 937 * @mbo: most buffer
 938 *
 939 * This recycles the MBO for further usage. In case the channel has been
 940 * poisoned, the MBO is scheduled to be trashed.
 941 */
 942static void most_write_completion(struct mbo *mbo)
 943{
 944        struct most_channel *c;
 945
 946        c = mbo->context;
 947        if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE)))
 948                trash_mbo(mbo);
 949        else
 950                arm_mbo(mbo);
 951}
 952
 953int channel_has_mbo(struct most_interface *iface, int id,
 954                    struct most_component *comp)
 955{
 956        struct most_channel *c = iface->p->channel[id];
 957        unsigned long flags;
 958        int empty;
 959
 960        if (unlikely(!c))
 961                return -EINVAL;
 962
 963        if (c->pipe0.refs && c->pipe1.refs &&
 964            ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
 965             (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
 966                return 0;
 967
 968        spin_lock_irqsave(&c->fifo_lock, flags);
 969        empty = list_empty(&c->fifo);
 970        spin_unlock_irqrestore(&c->fifo_lock, flags);
 971        return !empty;
 972}
 973EXPORT_SYMBOL_GPL(channel_has_mbo);
 974
 975/**
 976 * most_get_mbo - get pointer to an MBO of pool
 977 * @iface: pointer to interface instance
 978 * @id: channel ID
 979 * @comp: driver component
 980 *
 981 * This attempts to get a free buffer out of the channel fifo.
 982 * Returns a pointer to MBO on success or NULL otherwise.
 983 */
 984struct mbo *most_get_mbo(struct most_interface *iface, int id,
 985                         struct most_component *comp)
 986{
 987        struct mbo *mbo;
 988        struct most_channel *c;
 989        unsigned long flags;
 990        int *num_buffers_ptr;
 991
 992        c = iface->p->channel[id];
 993        if (unlikely(!c))
 994                return NULL;
 995
 996        if (c->pipe0.refs && c->pipe1.refs &&
 997            ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
 998             (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
 999                return NULL;
1000
1001        if (comp == c->pipe0.comp)
1002                num_buffers_ptr = &c->pipe0.num_buffers;
1003        else if (comp == c->pipe1.comp)
1004                num_buffers_ptr = &c->pipe1.num_buffers;
1005        else
1006                num_buffers_ptr = &dummy_num_buffers;
1007
1008        spin_lock_irqsave(&c->fifo_lock, flags);
1009        if (list_empty(&c->fifo)) {
1010                spin_unlock_irqrestore(&c->fifo_lock, flags);
1011                return NULL;
1012        }
1013        mbo = list_pop_mbo(&c->fifo);
1014        --*num_buffers_ptr;
1015        spin_unlock_irqrestore(&c->fifo_lock, flags);
1016
1017        mbo->num_buffers_ptr = num_buffers_ptr;
1018        mbo->buffer_length = c->cfg.buffer_size;
1019        return mbo;
1020}
1021EXPORT_SYMBOL_GPL(most_get_mbo);
1022
1023/**
1024 * most_put_mbo - return buffer to pool
1025 * @mbo: most buffer
1026 */
1027void most_put_mbo(struct mbo *mbo)
1028{
1029        struct most_channel *c = mbo->context;
1030
1031        if (c->cfg.direction == MOST_CH_TX) {
1032                arm_mbo(mbo);
1033                return;
1034        }
1035        nq_hdm_mbo(mbo);
1036        atomic_inc(&c->mbo_nq_level);
1037}
1038EXPORT_SYMBOL_GPL(most_put_mbo);
1039
1040/**
1041 * most_read_completion - read completion handler
1042 * @mbo: most buffer
1043 *
1044 * This function is called by the HDM when data has been received from the
1045 * hardware and copied to the buffer of the MBO.
1046 *
1047 * In case the channel has been poisoned it puts the buffer in the trash queue.
1048 * Otherwise, it passes the buffer to an component for further processing.
1049 */
1050static void most_read_completion(struct mbo *mbo)
1051{
1052        struct most_channel *c = mbo->context;
1053
1054        if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE))) {
1055                trash_mbo(mbo);
1056                return;
1057        }
1058
1059        if (mbo->status == MBO_E_INVAL) {
1060                nq_hdm_mbo(mbo);
1061                atomic_inc(&c->mbo_nq_level);
1062                return;
1063        }
1064
1065        if (atomic_sub_and_test(1, &c->mbo_nq_level))
1066                c->is_starving = 1;
1067
1068        if (c->pipe0.refs && c->pipe0.comp->rx_completion &&
1069            c->pipe0.comp->rx_completion(mbo) == 0)
1070                return;
1071
1072        if (c->pipe1.refs && c->pipe1.comp->rx_completion &&
1073            c->pipe1.comp->rx_completion(mbo) == 0)
1074                return;
1075
1076        most_put_mbo(mbo);
1077}
1078
1079/**
1080 * most_start_channel - prepares a channel for communication
1081 * @iface: pointer to interface instance
1082 * @id: channel ID
1083 * @comp: driver component
1084 *
1085 * This prepares the channel for usage. Cross-checks whether the
1086 * channel's been properly configured.
1087 *
1088 * Returns 0 on success or error code otherwise.
1089 */
1090int most_start_channel(struct most_interface *iface, int id,
1091                       struct most_component *comp)
1092{
1093        int num_buffer;
1094        int ret;
1095        struct most_channel *c = iface->p->channel[id];
1096
1097        if (unlikely(!c))
1098                return -EINVAL;
1099
1100        mutex_lock(&c->start_mutex);
1101        if (c->pipe0.refs + c->pipe1.refs > 0)
1102                goto out; /* already started by another component */
1103
1104        if (!try_module_get(iface->mod)) {
1105                dev_err(&c->dev, "Failed to acquire HDM lock\n");
1106                mutex_unlock(&c->start_mutex);
1107                return -ENOLCK;
1108        }
1109
1110        c->cfg.extra_len = 0;
1111        if (c->iface->configure(c->iface, c->channel_id, &c->cfg)) {
1112                dev_err(&c->dev, "Channel configuration failed. Go check settings...\n");
1113                ret = -EINVAL;
1114                goto err_put_module;
1115        }
1116
1117        init_waitqueue_head(&c->hdm_fifo_wq);
1118
1119        if (c->cfg.direction == MOST_CH_RX)
1120                num_buffer = arm_mbo_chain(c, c->cfg.direction,
1121                                           most_read_completion);
1122        else
1123                num_buffer = arm_mbo_chain(c, c->cfg.direction,
1124                                           most_write_completion);
1125        if (unlikely(!num_buffer)) {
1126                ret = -ENOMEM;
1127                goto err_put_module;
1128        }
1129
1130        ret = run_enqueue_thread(c, id);
1131        if (ret)
1132                goto err_put_module;
1133
1134        c->is_starving = 0;
1135        c->pipe0.num_buffers = c->cfg.num_buffers / 2;
1136        c->pipe1.num_buffers = c->cfg.num_buffers - c->pipe0.num_buffers;
1137        atomic_set(&c->mbo_ref, num_buffer);
1138
1139out:
1140        if (comp == c->pipe0.comp)
1141                c->pipe0.refs++;
1142        if (comp == c->pipe1.comp)
1143                c->pipe1.refs++;
1144        mutex_unlock(&c->start_mutex);
1145        return 0;
1146
1147err_put_module:
1148        module_put(iface->mod);
1149        mutex_unlock(&c->start_mutex);
1150        return ret;
1151}
1152EXPORT_SYMBOL_GPL(most_start_channel);
1153
1154/**
1155 * most_stop_channel - stops a running channel
1156 * @iface: pointer to interface instance
1157 * @id: channel ID
1158 * @comp: driver component
1159 */
1160int most_stop_channel(struct most_interface *iface, int id,
1161                      struct most_component *comp)
1162{
1163        struct most_channel *c;
1164
1165        if (unlikely((!iface) || (id >= iface->num_channels) || (id < 0))) {
1166                pr_err("Bad interface or index out of range\n");
1167                return -EINVAL;
1168        }
1169        c = iface->p->channel[id];
1170        if (unlikely(!c))
1171                return -EINVAL;
1172
1173        mutex_lock(&c->start_mutex);
1174        if (c->pipe0.refs + c->pipe1.refs >= 2)
1175                goto out;
1176
1177        if (c->hdm_enqueue_task)
1178                kthread_stop(c->hdm_enqueue_task);
1179        c->hdm_enqueue_task = NULL;
1180
1181        if (iface->mod)
1182                module_put(iface->mod);
1183
1184        c->is_poisoned = true;
1185        if (c->iface->poison_channel(c->iface, c->channel_id)) {
1186                dev_err(&c->dev, "Failed to stop channel %d of interface %s\n", c->channel_id,
1187                        c->iface->description);
1188                mutex_unlock(&c->start_mutex);
1189                return -EAGAIN;
1190        }
1191        flush_trash_fifo(c);
1192        flush_channel_fifos(c);
1193
1194#ifdef CMPL_INTERRUPTIBLE
1195        if (wait_for_completion_interruptible(&c->cleanup)) {
1196                dev_err(&c->dev, "Interrupted while cleaning up channel %d\n", c->channel_id);
1197                mutex_unlock(&c->start_mutex);
1198                return -EINTR;
1199        }
1200#else
1201        wait_for_completion(&c->cleanup);
1202#endif
1203        c->is_poisoned = false;
1204
1205out:
1206        if (comp == c->pipe0.comp)
1207                c->pipe0.refs--;
1208        if (comp == c->pipe1.comp)
1209                c->pipe1.refs--;
1210        mutex_unlock(&c->start_mutex);
1211        return 0;
1212}
1213EXPORT_SYMBOL_GPL(most_stop_channel);
1214
1215/**
1216 * most_register_component - registers a driver component with the core
1217 * @comp: driver component
1218 */
1219int most_register_component(struct most_component *comp)
1220{
1221        if (!comp) {
1222                pr_err("Bad component\n");
1223                return -EINVAL;
1224        }
1225        list_add_tail(&comp->list, &comp_list);
1226        return 0;
1227}
1228EXPORT_SYMBOL_GPL(most_register_component);
1229
1230static int disconnect_channels(struct device *dev, void *data)
1231{
1232        struct most_interface *iface;
1233        struct most_channel *c, *tmp;
1234        struct most_component *comp = data;
1235
1236        iface = dev_get_drvdata(dev);
1237        list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
1238                if (c->pipe0.comp == comp || c->pipe1.comp == comp)
1239                        comp->disconnect_channel(c->iface, c->channel_id);
1240                if (c->pipe0.comp == comp)
1241                        c->pipe0.comp = NULL;
1242                if (c->pipe1.comp == comp)
1243                        c->pipe1.comp = NULL;
1244        }
1245        return 0;
1246}
1247
1248/**
1249 * most_deregister_component - deregisters a driver component with the core
1250 * @comp: driver component
1251 */
1252int most_deregister_component(struct most_component *comp)
1253{
1254        if (!comp) {
1255                pr_err("Bad component\n");
1256                return -EINVAL;
1257        }
1258
1259        bus_for_each_dev(&mostbus, NULL, comp, disconnect_channels);
1260        list_del(&comp->list);
1261        return 0;
1262}
1263EXPORT_SYMBOL_GPL(most_deregister_component);
1264
1265static void release_channel(struct device *dev)
1266{
1267        struct most_channel *c = to_channel(dev);
1268
1269        kfree(c);
1270}
1271
1272/**
1273 * most_register_interface - registers an interface with core
1274 * @iface: device interface
1275 *
1276 * Allocates and initializes a new interface instance and all of its channels.
1277 * Returns a pointer to kobject or an error pointer.
1278 */
1279int most_register_interface(struct most_interface *iface)
1280{
1281        unsigned int i;
1282        int id;
1283        struct most_channel *c;
1284
1285        if (!iface || !iface->enqueue || !iface->configure ||
1286            !iface->poison_channel || (iface->num_channels > MAX_CHANNELS))
1287                return -EINVAL;
1288
1289        id = ida_simple_get(&mdev_id, 0, 0, GFP_KERNEL);
1290        if (id < 0) {
1291                dev_err(iface->dev, "Failed to allocate device ID\n");
1292                return id;
1293        }
1294
1295        iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL);
1296        if (!iface->p) {
1297                ida_simple_remove(&mdev_id, id);
1298                return -ENOMEM;
1299        }
1300
1301        INIT_LIST_HEAD(&iface->p->channel_list);
1302        iface->p->dev_id = id;
1303        strscpy(iface->p->name, iface->description, sizeof(iface->p->name));
1304        iface->dev->bus = &mostbus;
1305        iface->dev->groups = interface_attr_groups;
1306        dev_set_drvdata(iface->dev, iface);
1307        if (device_register(iface->dev)) {
1308                dev_err(iface->dev, "Failed to register interface device\n");
1309                kfree(iface->p);
1310                put_device(iface->dev);
1311                ida_simple_remove(&mdev_id, id);
1312                return -ENOMEM;
1313        }
1314
1315        for (i = 0; i < iface->num_channels; i++) {
1316                const char *name_suffix = iface->channel_vector[i].name_suffix;
1317
1318                c = kzalloc(sizeof(*c), GFP_KERNEL);
1319                if (!c)
1320                        goto err_free_resources;
1321                if (!name_suffix)
1322                        snprintf(c->name, STRING_SIZE, "ch%d", i);
1323                else
1324                        snprintf(c->name, STRING_SIZE, "%s", name_suffix);
1325                c->dev.init_name = c->name;
1326                c->dev.parent = iface->dev;
1327                c->dev.groups = channel_attr_groups;
1328                c->dev.release = release_channel;
1329                iface->p->channel[i] = c;
1330                c->is_starving = 0;
1331                c->iface = iface;
1332                c->channel_id = i;
1333                c->keep_mbo = false;
1334                c->enqueue_halt = false;
1335                c->is_poisoned = false;
1336                c->cfg.direction = 0;
1337                c->cfg.data_type = 0;
1338                c->cfg.num_buffers = 0;
1339                c->cfg.buffer_size = 0;
1340                c->cfg.subbuffer_size = 0;
1341                c->cfg.packets_per_xact = 0;
1342                spin_lock_init(&c->fifo_lock);
1343                INIT_LIST_HEAD(&c->fifo);
1344                INIT_LIST_HEAD(&c->trash_fifo);
1345                INIT_LIST_HEAD(&c->halt_fifo);
1346                init_completion(&c->cleanup);
1347                atomic_set(&c->mbo_ref, 0);
1348                mutex_init(&c->start_mutex);
1349                mutex_init(&c->nq_mutex);
1350                list_add_tail(&c->list, &iface->p->channel_list);
1351                if (device_register(&c->dev)) {
1352                        dev_err(&c->dev, "Failed to register channel device\n");
1353                        goto err_free_most_channel;
1354                }
1355        }
1356        most_interface_register_notify(iface->description);
1357        return 0;
1358
1359err_free_most_channel:
1360        put_device(&c->dev);
1361
1362err_free_resources:
1363        while (i > 0) {
1364                c = iface->p->channel[--i];
1365                device_unregister(&c->dev);
1366        }
1367        kfree(iface->p);
1368        device_unregister(iface->dev);
1369        ida_simple_remove(&mdev_id, id);
1370        return -ENOMEM;
1371}
1372EXPORT_SYMBOL_GPL(most_register_interface);
1373
1374/**
1375 * most_deregister_interface - deregisters an interface with core
1376 * @iface: device interface
1377 *
1378 * Before removing an interface instance from the list, all running
1379 * channels are stopped and poisoned.
1380 */
1381void most_deregister_interface(struct most_interface *iface)
1382{
1383        int i;
1384        struct most_channel *c;
1385
1386        for (i = 0; i < iface->num_channels; i++) {
1387                c = iface->p->channel[i];
1388                if (c->pipe0.comp)
1389                        c->pipe0.comp->disconnect_channel(c->iface,
1390                                                        c->channel_id);
1391                if (c->pipe1.comp)
1392                        c->pipe1.comp->disconnect_channel(c->iface,
1393                                                        c->channel_id);
1394                c->pipe0.comp = NULL;
1395                c->pipe1.comp = NULL;
1396                list_del(&c->list);
1397                device_unregister(&c->dev);
1398        }
1399
1400        ida_simple_remove(&mdev_id, iface->p->dev_id);
1401        kfree(iface->p);
1402        device_unregister(iface->dev);
1403}
1404EXPORT_SYMBOL_GPL(most_deregister_interface);
1405
1406/**
1407 * most_stop_enqueue - prevents core from enqueueing MBOs
1408 * @iface: pointer to interface
1409 * @id: channel id
1410 *
1411 * This is called by an HDM that _cannot_ attend to its duties and
1412 * is imminent to get run over by the core. The core is not going to
1413 * enqueue any further packets unless the flagging HDM calls
1414 * most_resume enqueue().
1415 */
1416void most_stop_enqueue(struct most_interface *iface, int id)
1417{
1418        struct most_channel *c = iface->p->channel[id];
1419
1420        if (!c)
1421                return;
1422
1423        mutex_lock(&c->nq_mutex);
1424        c->enqueue_halt = true;
1425        mutex_unlock(&c->nq_mutex);
1426}
1427EXPORT_SYMBOL_GPL(most_stop_enqueue);
1428
1429/**
1430 * most_resume_enqueue - allow core to enqueue MBOs again
1431 * @iface: pointer to interface
1432 * @id: channel id
1433 *
1434 * This clears the enqueue halt flag and enqueues all MBOs currently
1435 * sitting in the wait fifo.
1436 */
1437void most_resume_enqueue(struct most_interface *iface, int id)
1438{
1439        struct most_channel *c = iface->p->channel[id];
1440
1441        if (!c)
1442                return;
1443
1444        mutex_lock(&c->nq_mutex);
1445        c->enqueue_halt = false;
1446        mutex_unlock(&c->nq_mutex);
1447
1448        wake_up_interruptible(&c->hdm_fifo_wq);
1449}
1450EXPORT_SYMBOL_GPL(most_resume_enqueue);
1451
1452static int __init most_init(void)
1453{
1454        int err;
1455
1456        INIT_LIST_HEAD(&comp_list);
1457        ida_init(&mdev_id);
1458
1459        err = bus_register(&mostbus);
1460        if (err) {
1461                pr_err("Failed to register most bus\n");
1462                return err;
1463        }
1464        err = driver_register(&mostbus_driver);
1465        if (err) {
1466                pr_err("Failed to register core driver\n");
1467                goto err_unregister_bus;
1468        }
1469        configfs_init();
1470        return 0;
1471
1472err_unregister_bus:
1473        bus_unregister(&mostbus);
1474        return err;
1475}
1476
1477static void __exit most_exit(void)
1478{
1479        driver_unregister(&mostbus_driver);
1480        bus_unregister(&mostbus);
1481        ida_destroy(&mdev_id);
1482}
1483
1484subsys_initcall(most_init);
1485module_exit(most_exit);
1486MODULE_LICENSE("GPL");
1487MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1488MODULE_DESCRIPTION("Core module of stacked MOST Linux driver");
1489