linux/drivers/mtd/spi-nor/sfdp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2005, Intec Automation Inc.
   4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   5 */
   6
   7#include <linux/bitfield.h>
   8#include <linux/slab.h>
   9#include <linux/sort.h>
  10#include <linux/mtd/spi-nor.h>
  11
  12#include "core.h"
  13
  14#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
  15#define SFDP_PARAM_HEADER_PTP(p) \
  16        (((p)->parameter_table_pointer[2] << 16) | \
  17         ((p)->parameter_table_pointer[1] <<  8) | \
  18         ((p)->parameter_table_pointer[0] <<  0))
  19#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
  20
  21#define SFDP_BFPT_ID            0xff00  /* Basic Flash Parameter Table */
  22#define SFDP_SECTOR_MAP_ID      0xff81  /* Sector Map Table */
  23#define SFDP_4BAIT_ID           0xff84  /* 4-byte Address Instruction Table */
  24#define SFDP_PROFILE1_ID        0xff05  /* xSPI Profile 1.0 table. */
  25#define SFDP_SCCR_MAP_ID        0xff87  /*
  26                                         * Status, Control and Configuration
  27                                         * Register Map.
  28                                         */
  29
  30#define SFDP_SIGNATURE          0x50444653U
  31
  32struct sfdp_header {
  33        u32             signature; /* Ox50444653U <=> "SFDP" */
  34        u8              minor;
  35        u8              major;
  36        u8              nph; /* 0-base number of parameter headers */
  37        u8              unused;
  38
  39        /* Basic Flash Parameter Table. */
  40        struct sfdp_parameter_header    bfpt_header;
  41};
  42
  43/* Fast Read settings. */
  44struct sfdp_bfpt_read {
  45        /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
  46        u32                     hwcaps;
  47
  48        /*
  49         * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
  50         * whether the Fast Read x-y-z command is supported.
  51         */
  52        u32                     supported_dword;
  53        u32                     supported_bit;
  54
  55        /*
  56         * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
  57         * encodes the op code, the number of mode clocks and the number of wait
  58         * states to be used by Fast Read x-y-z command.
  59         */
  60        u32                     settings_dword;
  61        u32                     settings_shift;
  62
  63        /* The SPI protocol for this Fast Read x-y-z command. */
  64        enum spi_nor_protocol   proto;
  65};
  66
  67struct sfdp_bfpt_erase {
  68        /*
  69         * The half-word at offset <shift> in DWORD <dword> encodes the
  70         * op code and erase sector size to be used by Sector Erase commands.
  71         */
  72        u32                     dword;
  73        u32                     shift;
  74};
  75
  76#define SMPT_CMD_ADDRESS_LEN_MASK               GENMASK(23, 22)
  77#define SMPT_CMD_ADDRESS_LEN_0                  (0x0UL << 22)
  78#define SMPT_CMD_ADDRESS_LEN_3                  (0x1UL << 22)
  79#define SMPT_CMD_ADDRESS_LEN_4                  (0x2UL << 22)
  80#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT        (0x3UL << 22)
  81
  82#define SMPT_CMD_READ_DUMMY_MASK                GENMASK(19, 16)
  83#define SMPT_CMD_READ_DUMMY_SHIFT               16
  84#define SMPT_CMD_READ_DUMMY(_cmd) \
  85        (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
  86#define SMPT_CMD_READ_DUMMY_IS_VARIABLE         0xfUL
  87
  88#define SMPT_CMD_READ_DATA_MASK                 GENMASK(31, 24)
  89#define SMPT_CMD_READ_DATA_SHIFT                24
  90#define SMPT_CMD_READ_DATA(_cmd) \
  91        (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
  92
  93#define SMPT_CMD_OPCODE_MASK                    GENMASK(15, 8)
  94#define SMPT_CMD_OPCODE_SHIFT                   8
  95#define SMPT_CMD_OPCODE(_cmd) \
  96        (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
  97
  98#define SMPT_MAP_REGION_COUNT_MASK              GENMASK(23, 16)
  99#define SMPT_MAP_REGION_COUNT_SHIFT             16
 100#define SMPT_MAP_REGION_COUNT(_header) \
 101        ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
 102          SMPT_MAP_REGION_COUNT_SHIFT) + 1)
 103
 104#define SMPT_MAP_ID_MASK                        GENMASK(15, 8)
 105#define SMPT_MAP_ID_SHIFT                       8
 106#define SMPT_MAP_ID(_header) \
 107        (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
 108
 109#define SMPT_MAP_REGION_SIZE_MASK               GENMASK(31, 8)
 110#define SMPT_MAP_REGION_SIZE_SHIFT              8
 111#define SMPT_MAP_REGION_SIZE(_region) \
 112        (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
 113           SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
 114
 115#define SMPT_MAP_REGION_ERASE_TYPE_MASK         GENMASK(3, 0)
 116#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
 117        ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
 118
 119#define SMPT_DESC_TYPE_MAP                      BIT(1)
 120#define SMPT_DESC_END                           BIT(0)
 121
 122#define SFDP_4BAIT_DWORD_MAX    2
 123
 124struct sfdp_4bait {
 125        /* The hardware capability. */
 126        u32             hwcaps;
 127
 128        /*
 129         * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
 130         * the associated 4-byte address op code is supported.
 131         */
 132        u32             supported_bit;
 133};
 134
 135/**
 136 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
 137 *                      addr_width and read_dummy members of the struct spi_nor
 138 *                      should be previously
 139 * set.
 140 * @nor:        pointer to a 'struct spi_nor'
 141 * @addr:       offset in the serial flash memory
 142 * @len:        number of bytes to read
 143 * @buf:        buffer where the data is copied into (dma-safe memory)
 144 *
 145 * Return: 0 on success, -errno otherwise.
 146 */
 147static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
 148{
 149        ssize_t ret;
 150
 151        while (len) {
 152                ret = spi_nor_read_data(nor, addr, len, buf);
 153                if (ret < 0)
 154                        return ret;
 155                if (!ret || ret > len)
 156                        return -EIO;
 157
 158                buf += ret;
 159                addr += ret;
 160                len -= ret;
 161        }
 162        return 0;
 163}
 164
 165/**
 166 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 167 * @nor:        pointer to a 'struct spi_nor'
 168 * @addr:       offset in the SFDP area to start reading data from
 169 * @len:        number of bytes to read
 170 * @buf:        buffer where the SFDP data are copied into (dma-safe memory)
 171 *
 172 * Whatever the actual numbers of bytes for address and dummy cycles are
 173 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 174 * followed by a 3-byte address and 8 dummy clock cycles.
 175 *
 176 * Return: 0 on success, -errno otherwise.
 177 */
 178static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
 179                             size_t len, void *buf)
 180{
 181        u8 addr_width, read_opcode, read_dummy;
 182        int ret;
 183
 184        read_opcode = nor->read_opcode;
 185        addr_width = nor->addr_width;
 186        read_dummy = nor->read_dummy;
 187
 188        nor->read_opcode = SPINOR_OP_RDSFDP;
 189        nor->addr_width = 3;
 190        nor->read_dummy = 8;
 191
 192        ret = spi_nor_read_raw(nor, addr, len, buf);
 193
 194        nor->read_opcode = read_opcode;
 195        nor->addr_width = addr_width;
 196        nor->read_dummy = read_dummy;
 197
 198        return ret;
 199}
 200
 201/**
 202 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 203 * @nor:        pointer to a 'struct spi_nor'
 204 * @addr:       offset in the SFDP area to start reading data from
 205 * @len:        number of bytes to read
 206 * @buf:        buffer where the SFDP data are copied into
 207 *
 208 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 209 * guaranteed to be dma-safe.
 210 *
 211 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 212 *          otherwise.
 213 */
 214static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
 215                                        size_t len, void *buf)
 216{
 217        void *dma_safe_buf;
 218        int ret;
 219
 220        dma_safe_buf = kmalloc(len, GFP_KERNEL);
 221        if (!dma_safe_buf)
 222                return -ENOMEM;
 223
 224        ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
 225        memcpy(buf, dma_safe_buf, len);
 226        kfree(dma_safe_buf);
 227
 228        return ret;
 229}
 230
 231static void
 232spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
 233                                    u16 half,
 234                                    enum spi_nor_protocol proto)
 235{
 236        read->num_mode_clocks = (half >> 5) & 0x07;
 237        read->num_wait_states = (half >> 0) & 0x1f;
 238        read->opcode = (half >> 8) & 0xff;
 239        read->proto = proto;
 240}
 241
 242static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
 243        /* Fast Read 1-1-2 */
 244        {
 245                SNOR_HWCAPS_READ_1_1_2,
 246                BFPT_DWORD(1), BIT(16), /* Supported bit */
 247                BFPT_DWORD(4), 0,       /* Settings */
 248                SNOR_PROTO_1_1_2,
 249        },
 250
 251        /* Fast Read 1-2-2 */
 252        {
 253                SNOR_HWCAPS_READ_1_2_2,
 254                BFPT_DWORD(1), BIT(20), /* Supported bit */
 255                BFPT_DWORD(4), 16,      /* Settings */
 256                SNOR_PROTO_1_2_2,
 257        },
 258
 259        /* Fast Read 2-2-2 */
 260        {
 261                SNOR_HWCAPS_READ_2_2_2,
 262                BFPT_DWORD(5),  BIT(0), /* Supported bit */
 263                BFPT_DWORD(6), 16,      /* Settings */
 264                SNOR_PROTO_2_2_2,
 265        },
 266
 267        /* Fast Read 1-1-4 */
 268        {
 269                SNOR_HWCAPS_READ_1_1_4,
 270                BFPT_DWORD(1), BIT(22), /* Supported bit */
 271                BFPT_DWORD(3), 16,      /* Settings */
 272                SNOR_PROTO_1_1_4,
 273        },
 274
 275        /* Fast Read 1-4-4 */
 276        {
 277                SNOR_HWCAPS_READ_1_4_4,
 278                BFPT_DWORD(1), BIT(21), /* Supported bit */
 279                BFPT_DWORD(3), 0,       /* Settings */
 280                SNOR_PROTO_1_4_4,
 281        },
 282
 283        /* Fast Read 4-4-4 */
 284        {
 285                SNOR_HWCAPS_READ_4_4_4,
 286                BFPT_DWORD(5), BIT(4),  /* Supported bit */
 287                BFPT_DWORD(7), 16,      /* Settings */
 288                SNOR_PROTO_4_4_4,
 289        },
 290};
 291
 292static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
 293        /* Erase Type 1 in DWORD8 bits[15:0] */
 294        {BFPT_DWORD(8), 0},
 295
 296        /* Erase Type 2 in DWORD8 bits[31:16] */
 297        {BFPT_DWORD(8), 16},
 298
 299        /* Erase Type 3 in DWORD9 bits[15:0] */
 300        {BFPT_DWORD(9), 0},
 301
 302        /* Erase Type 4 in DWORD9 bits[31:16] */
 303        {BFPT_DWORD(9), 16},
 304};
 305
 306/**
 307 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
 308 * @erase:      pointer to a structure that describes a SPI NOR erase type
 309 * @size:       the size of the sector/block erased by the erase type
 310 * @opcode:     the SPI command op code to erase the sector/block
 311 * @i:          erase type index as sorted in the Basic Flash Parameter Table
 312 *
 313 * The supported Erase Types will be sorted at init in ascending order, with
 314 * the smallest Erase Type size being the first member in the erase_type array
 315 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
 316 * the Basic Flash Parameter Table since it will be used later on to
 317 * synchronize with the supported Erase Types defined in SFDP optional tables.
 318 */
 319static void
 320spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
 321                                     u32 size, u8 opcode, u8 i)
 322{
 323        erase->idx = i;
 324        spi_nor_set_erase_type(erase, size, opcode);
 325}
 326
 327/**
 328 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
 329 * @l:  member in the left half of the map's erase_type array
 330 * @r:  member in the right half of the map's erase_type array
 331 *
 332 * Comparison function used in the sort() call to sort in ascending order the
 333 * map's erase types, the smallest erase type size being the first member in the
 334 * sorted erase_type array.
 335 *
 336 * Return: the result of @l->size - @r->size
 337 */
 338static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
 339{
 340        const struct spi_nor_erase_type *left = l, *right = r;
 341
 342        return left->size - right->size;
 343}
 344
 345/**
 346 * spi_nor_sort_erase_mask() - sort erase mask
 347 * @map:        the erase map of the SPI NOR
 348 * @erase_mask: the erase type mask to be sorted
 349 *
 350 * Replicate the sort done for the map's erase types in BFPT: sort the erase
 351 * mask in ascending order with the smallest erase type size starting from
 352 * BIT(0) in the sorted erase mask.
 353 *
 354 * Return: sorted erase mask.
 355 */
 356static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
 357{
 358        struct spi_nor_erase_type *erase_type = map->erase_type;
 359        int i;
 360        u8 sorted_erase_mask = 0;
 361
 362        if (!erase_mask)
 363                return 0;
 364
 365        /* Replicate the sort done for the map's erase types. */
 366        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
 367                if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
 368                        sorted_erase_mask |= BIT(i);
 369
 370        return sorted_erase_mask;
 371}
 372
 373/**
 374 * spi_nor_regions_sort_erase_types() - sort erase types in each region
 375 * @map:        the erase map of the SPI NOR
 376 *
 377 * Function assumes that the erase types defined in the erase map are already
 378 * sorted in ascending order, with the smallest erase type size being the first
 379 * member in the erase_type array. It replicates the sort done for the map's
 380 * erase types. Each region's erase bitmask will indicate which erase types are
 381 * supported from the sorted erase types defined in the erase map.
 382 * Sort the all region's erase type at init in order to speed up the process of
 383 * finding the best erase command at runtime.
 384 */
 385static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
 386{
 387        struct spi_nor_erase_region *region = map->regions;
 388        u8 region_erase_mask, sorted_erase_mask;
 389
 390        while (region) {
 391                region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
 392
 393                sorted_erase_mask = spi_nor_sort_erase_mask(map,
 394                                                            region_erase_mask);
 395
 396                /* Overwrite erase mask. */
 397                region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
 398                                 sorted_erase_mask;
 399
 400                region = spi_nor_region_next(region);
 401        }
 402}
 403
 404/**
 405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 406 * @nor:                pointer to a 'struct spi_nor'
 407 * @bfpt_header:        pointer to the 'struct sfdp_parameter_header' describing
 408 *                      the Basic Flash Parameter Table length and version
 409 *
 410 * The Basic Flash Parameter Table is the main and only mandatory table as
 411 * defined by the SFDP (JESD216) specification.
 412 * It provides us with the total size (memory density) of the data array and
 413 * the number of address bytes for Fast Read, Page Program and Sector Erase
 414 * commands.
 415 * For Fast READ commands, it also gives the number of mode clock cycles and
 416 * wait states (regrouped in the number of dummy clock cycles) for each
 417 * supported instruction op code.
 418 * For Page Program, the page size is now available since JESD216 rev A, however
 419 * the supported instruction op codes are still not provided.
 420 * For Sector Erase commands, this table stores the supported instruction op
 421 * codes and the associated sector sizes.
 422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 423 * rev A. The QER bits encode the manufacturer dependent procedure to be
 424 * executed to set the Quad Enable (QE) bit in some internal register of the
 425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 426 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 428 * and IO3 hence enabling 4 (Quad) I/O lines.
 429 *
 430 * Return: 0 on success, -errno otherwise.
 431 */
 432static int spi_nor_parse_bfpt(struct spi_nor *nor,
 433                              const struct sfdp_parameter_header *bfpt_header)
 434{
 435        struct spi_nor_flash_parameter *params = nor->params;
 436        struct spi_nor_erase_map *map = &params->erase_map;
 437        struct spi_nor_erase_type *erase_type = map->erase_type;
 438        struct sfdp_bfpt bfpt;
 439        size_t len;
 440        int i, cmd, err;
 441        u32 addr, val;
 442        u16 half;
 443        u8 erase_mask;
 444
 445        /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
 446        if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
 447                return -EINVAL;
 448
 449        /* Read the Basic Flash Parameter Table. */
 450        len = min_t(size_t, sizeof(bfpt),
 451                    bfpt_header->length * sizeof(u32));
 452        addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
 453        memset(&bfpt, 0, sizeof(bfpt));
 454        err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
 455        if (err < 0)
 456                return err;
 457
 458        /* Fix endianness of the BFPT DWORDs. */
 459        le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
 460
 461        /* Number of address bytes. */
 462        switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
 463        case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
 464        case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
 465                nor->addr_width = 3;
 466                break;
 467
 468        case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
 469                nor->addr_width = 4;
 470                break;
 471
 472        default:
 473                break;
 474        }
 475
 476        /* Flash Memory Density (in bits). */
 477        val = bfpt.dwords[BFPT_DWORD(2)];
 478        if (val & BIT(31)) {
 479                val &= ~BIT(31);
 480
 481                /*
 482                 * Prevent overflows on params->size. Anyway, a NOR of 2^64
 483                 * bits is unlikely to exist so this error probably means
 484                 * the BFPT we are reading is corrupted/wrong.
 485                 */
 486                if (val > 63)
 487                        return -EINVAL;
 488
 489                params->size = 1ULL << val;
 490        } else {
 491                params->size = val + 1;
 492        }
 493        params->size >>= 3; /* Convert to bytes. */
 494
 495        /* Fast Read settings. */
 496        for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
 497                const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
 498                struct spi_nor_read_command *read;
 499
 500                if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
 501                        params->hwcaps.mask &= ~rd->hwcaps;
 502                        continue;
 503                }
 504
 505                params->hwcaps.mask |= rd->hwcaps;
 506                cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
 507                read = &params->reads[cmd];
 508                half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
 509                spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
 510        }
 511
 512        /*
 513         * Sector Erase settings. Reinitialize the uniform erase map using the
 514         * Erase Types defined in the bfpt table.
 515         */
 516        erase_mask = 0;
 517        memset(&params->erase_map, 0, sizeof(params->erase_map));
 518        for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
 519                const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
 520                u32 erasesize;
 521                u8 opcode;
 522
 523                half = bfpt.dwords[er->dword] >> er->shift;
 524                erasesize = half & 0xff;
 525
 526                /* erasesize == 0 means this Erase Type is not supported. */
 527                if (!erasesize)
 528                        continue;
 529
 530                erasesize = 1U << erasesize;
 531                opcode = (half >> 8) & 0xff;
 532                erase_mask |= BIT(i);
 533                spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
 534                                                     opcode, i);
 535        }
 536        spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
 537        /*
 538         * Sort all the map's Erase Types in ascending order with the smallest
 539         * erase size being the first member in the erase_type array.
 540         */
 541        sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
 542             spi_nor_map_cmp_erase_type, NULL);
 543        /*
 544         * Sort the erase types in the uniform region in order to update the
 545         * uniform_erase_type bitmask. The bitmask will be used later on when
 546         * selecting the uniform erase.
 547         */
 548        spi_nor_regions_sort_erase_types(map);
 549        map->uniform_erase_type = map->uniform_region.offset &
 550                                  SNOR_ERASE_TYPE_MASK;
 551
 552        /* Stop here if not JESD216 rev A or later. */
 553        if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
 554                return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 555
 556        /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
 557        val = bfpt.dwords[BFPT_DWORD(11)];
 558        val &= BFPT_DWORD11_PAGE_SIZE_MASK;
 559        val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
 560        params->page_size = 1U << val;
 561
 562        /* Quad Enable Requirements. */
 563        switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
 564        case BFPT_DWORD15_QER_NONE:
 565                params->quad_enable = NULL;
 566                break;
 567
 568        case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
 569                /*
 570                 * Writing only one byte to the Status Register has the
 571                 * side-effect of clearing Status Register 2.
 572                 */
 573        case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
 574                /*
 575                 * Read Configuration Register (35h) instruction is not
 576                 * supported.
 577                 */
 578                nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
 579                params->quad_enable = spi_nor_sr2_bit1_quad_enable;
 580                break;
 581
 582        case BFPT_DWORD15_QER_SR1_BIT6:
 583                nor->flags &= ~SNOR_F_HAS_16BIT_SR;
 584                params->quad_enable = spi_nor_sr1_bit6_quad_enable;
 585                break;
 586
 587        case BFPT_DWORD15_QER_SR2_BIT7:
 588                nor->flags &= ~SNOR_F_HAS_16BIT_SR;
 589                params->quad_enable = spi_nor_sr2_bit7_quad_enable;
 590                break;
 591
 592        case BFPT_DWORD15_QER_SR2_BIT1:
 593                /*
 594                 * JESD216 rev B or later does not specify if writing only one
 595                 * byte to the Status Register clears or not the Status
 596                 * Register 2, so let's be cautious and keep the default
 597                 * assumption of a 16-bit Write Status (01h) command.
 598                 */
 599                nor->flags |= SNOR_F_HAS_16BIT_SR;
 600
 601                params->quad_enable = spi_nor_sr2_bit1_quad_enable;
 602                break;
 603
 604        default:
 605                dev_dbg(nor->dev, "BFPT QER reserved value used\n");
 606                break;
 607        }
 608
 609        /* Soft Reset support. */
 610        if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
 611                nor->flags |= SNOR_F_SOFT_RESET;
 612
 613        /* Stop here if not JESD216 rev C or later. */
 614        if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
 615                return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 616
 617        /* 8D-8D-8D command extension. */
 618        switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
 619        case BFPT_DWORD18_CMD_EXT_REP:
 620                nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
 621                break;
 622
 623        case BFPT_DWORD18_CMD_EXT_INV:
 624                nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
 625                break;
 626
 627        case BFPT_DWORD18_CMD_EXT_RES:
 628                dev_dbg(nor->dev, "Reserved command extension used\n");
 629                break;
 630
 631        case BFPT_DWORD18_CMD_EXT_16B:
 632                dev_dbg(nor->dev, "16-bit opcodes not supported\n");
 633                return -EOPNOTSUPP;
 634        }
 635
 636        return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
 637}
 638
 639/**
 640 * spi_nor_smpt_addr_width() - return the address width used in the
 641 *                             configuration detection command.
 642 * @nor:        pointer to a 'struct spi_nor'
 643 * @settings:   configuration detection command descriptor, dword1
 644 */
 645static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
 646{
 647        switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
 648        case SMPT_CMD_ADDRESS_LEN_0:
 649                return 0;
 650        case SMPT_CMD_ADDRESS_LEN_3:
 651                return 3;
 652        case SMPT_CMD_ADDRESS_LEN_4:
 653                return 4;
 654        case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
 655        default:
 656                return nor->addr_width;
 657        }
 658}
 659
 660/**
 661 * spi_nor_smpt_read_dummy() - return the configuration detection command read
 662 *                             latency, in clock cycles.
 663 * @nor:        pointer to a 'struct spi_nor'
 664 * @settings:   configuration detection command descriptor, dword1
 665 *
 666 * Return: the number of dummy cycles for an SMPT read
 667 */
 668static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
 669{
 670        u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
 671
 672        if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
 673                return nor->read_dummy;
 674        return read_dummy;
 675}
 676
 677/**
 678 * spi_nor_get_map_in_use() - get the configuration map in use
 679 * @nor:        pointer to a 'struct spi_nor'
 680 * @smpt:       pointer to the sector map parameter table
 681 * @smpt_len:   sector map parameter table length
 682 *
 683 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
 684 */
 685static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
 686                                         u8 smpt_len)
 687{
 688        const u32 *ret;
 689        u8 *buf;
 690        u32 addr;
 691        int err;
 692        u8 i;
 693        u8 addr_width, read_opcode, read_dummy;
 694        u8 read_data_mask, map_id;
 695
 696        /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
 697        buf = kmalloc(sizeof(*buf), GFP_KERNEL);
 698        if (!buf)
 699                return ERR_PTR(-ENOMEM);
 700
 701        addr_width = nor->addr_width;
 702        read_dummy = nor->read_dummy;
 703        read_opcode = nor->read_opcode;
 704
 705        map_id = 0;
 706        /* Determine if there are any optional Detection Command Descriptors */
 707        for (i = 0; i < smpt_len; i += 2) {
 708                if (smpt[i] & SMPT_DESC_TYPE_MAP)
 709                        break;
 710
 711                read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
 712                nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
 713                nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
 714                nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
 715                addr = smpt[i + 1];
 716
 717                err = spi_nor_read_raw(nor, addr, 1, buf);
 718                if (err) {
 719                        ret = ERR_PTR(err);
 720                        goto out;
 721                }
 722
 723                /*
 724                 * Build an index value that is used to select the Sector Map
 725                 * Configuration that is currently in use.
 726                 */
 727                map_id = map_id << 1 | !!(*buf & read_data_mask);
 728        }
 729
 730        /*
 731         * If command descriptors are provided, they always precede map
 732         * descriptors in the table. There is no need to start the iteration
 733         * over smpt array all over again.
 734         *
 735         * Find the matching configuration map.
 736         */
 737        ret = ERR_PTR(-EINVAL);
 738        while (i < smpt_len) {
 739                if (SMPT_MAP_ID(smpt[i]) == map_id) {
 740                        ret = smpt + i;
 741                        break;
 742                }
 743
 744                /*
 745                 * If there are no more configuration map descriptors and no
 746                 * configuration ID matched the configuration identifier, the
 747                 * sector address map is unknown.
 748                 */
 749                if (smpt[i] & SMPT_DESC_END)
 750                        break;
 751
 752                /* increment the table index to the next map */
 753                i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
 754        }
 755
 756        /* fall through */
 757out:
 758        kfree(buf);
 759        nor->addr_width = addr_width;
 760        nor->read_dummy = read_dummy;
 761        nor->read_opcode = read_opcode;
 762        return ret;
 763}
 764
 765static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
 766{
 767        region->offset |= SNOR_LAST_REGION;
 768}
 769
 770static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
 771{
 772        region->offset |= SNOR_OVERLAID_REGION;
 773}
 774
 775/**
 776 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
 777 * @region:     pointer to a structure that describes a SPI NOR erase region
 778 * @erase:      pointer to a structure that describes a SPI NOR erase type
 779 * @erase_type: erase type bitmask
 780 */
 781static void
 782spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
 783                             const struct spi_nor_erase_type *erase,
 784                             const u8 erase_type)
 785{
 786        int i;
 787
 788        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
 789                if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
 790                        continue;
 791                if (region->size & erase[i].size_mask) {
 792                        spi_nor_region_mark_overlay(region);
 793                        return;
 794                }
 795        }
 796}
 797
 798/**
 799 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
 800 * @nor:        pointer to a 'struct spi_nor'
 801 * @smpt:       pointer to the sector map parameter table
 802 *
 803 * Return: 0 on success, -errno otherwise.
 804 */
 805static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
 806                                              const u32 *smpt)
 807{
 808        struct spi_nor_erase_map *map = &nor->params->erase_map;
 809        struct spi_nor_erase_type *erase = map->erase_type;
 810        struct spi_nor_erase_region *region;
 811        u64 offset;
 812        u32 region_count;
 813        int i, j;
 814        u8 uniform_erase_type, save_uniform_erase_type;
 815        u8 erase_type, regions_erase_type;
 816
 817        region_count = SMPT_MAP_REGION_COUNT(*smpt);
 818        /*
 819         * The regions will be freed when the driver detaches from the
 820         * device.
 821         */
 822        region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
 823                              GFP_KERNEL);
 824        if (!region)
 825                return -ENOMEM;
 826        map->regions = region;
 827
 828        uniform_erase_type = 0xff;
 829        regions_erase_type = 0;
 830        offset = 0;
 831        /* Populate regions. */
 832        for (i = 0; i < region_count; i++) {
 833                j = i + 1; /* index for the region dword */
 834                region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
 835                erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
 836                region[i].offset = offset | erase_type;
 837
 838                spi_nor_region_check_overlay(&region[i], erase, erase_type);
 839
 840                /*
 841                 * Save the erase types that are supported in all regions and
 842                 * can erase the entire flash memory.
 843                 */
 844                uniform_erase_type &= erase_type;
 845
 846                /*
 847                 * regions_erase_type mask will indicate all the erase types
 848                 * supported in this configuration map.
 849                 */
 850                regions_erase_type |= erase_type;
 851
 852                offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
 853                         region[i].size;
 854        }
 855        spi_nor_region_mark_end(&region[i - 1]);
 856
 857        save_uniform_erase_type = map->uniform_erase_type;
 858        map->uniform_erase_type = spi_nor_sort_erase_mask(map,
 859                                                          uniform_erase_type);
 860
 861        if (!regions_erase_type) {
 862                /*
 863                 * Roll back to the previous uniform_erase_type mask, SMPT is
 864                 * broken.
 865                 */
 866                map->uniform_erase_type = save_uniform_erase_type;
 867                return -EINVAL;
 868        }
 869
 870        /*
 871         * BFPT advertises all the erase types supported by all the possible
 872         * map configurations. Mask out the erase types that are not supported
 873         * by the current map configuration.
 874         */
 875        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
 876                if (!(regions_erase_type & BIT(erase[i].idx)))
 877                        spi_nor_set_erase_type(&erase[i], 0, 0xFF);
 878
 879        return 0;
 880}
 881
 882/**
 883 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
 884 * @nor:                pointer to a 'struct spi_nor'
 885 * @smpt_header:        sector map parameter table header
 886 *
 887 * This table is optional, but when available, we parse it to identify the
 888 * location and size of sectors within the main data array of the flash memory
 889 * device and to identify which Erase Types are supported by each sector.
 890 *
 891 * Return: 0 on success, -errno otherwise.
 892 */
 893static int spi_nor_parse_smpt(struct spi_nor *nor,
 894                              const struct sfdp_parameter_header *smpt_header)
 895{
 896        const u32 *sector_map;
 897        u32 *smpt;
 898        size_t len;
 899        u32 addr;
 900        int ret;
 901
 902        /* Read the Sector Map Parameter Table. */
 903        len = smpt_header->length * sizeof(*smpt);
 904        smpt = kmalloc(len, GFP_KERNEL);
 905        if (!smpt)
 906                return -ENOMEM;
 907
 908        addr = SFDP_PARAM_HEADER_PTP(smpt_header);
 909        ret = spi_nor_read_sfdp(nor, addr, len, smpt);
 910        if (ret)
 911                goto out;
 912
 913        /* Fix endianness of the SMPT DWORDs. */
 914        le32_to_cpu_array(smpt, smpt_header->length);
 915
 916        sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
 917        if (IS_ERR(sector_map)) {
 918                ret = PTR_ERR(sector_map);
 919                goto out;
 920        }
 921
 922        ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
 923        if (ret)
 924                goto out;
 925
 926        spi_nor_regions_sort_erase_types(&nor->params->erase_map);
 927        /* fall through */
 928out:
 929        kfree(smpt);
 930        return ret;
 931}
 932
 933/**
 934 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
 935 * @nor:                pointer to a 'struct spi_nor'.
 936 * @param_header:       pointer to the 'struct sfdp_parameter_header' describing
 937 *                      the 4-Byte Address Instruction Table length and version.
 938 *
 939 * Return: 0 on success, -errno otherwise.
 940 */
 941static int spi_nor_parse_4bait(struct spi_nor *nor,
 942                               const struct sfdp_parameter_header *param_header)
 943{
 944        static const struct sfdp_4bait reads[] = {
 945                { SNOR_HWCAPS_READ,             BIT(0) },
 946                { SNOR_HWCAPS_READ_FAST,        BIT(1) },
 947                { SNOR_HWCAPS_READ_1_1_2,       BIT(2) },
 948                { SNOR_HWCAPS_READ_1_2_2,       BIT(3) },
 949                { SNOR_HWCAPS_READ_1_1_4,       BIT(4) },
 950                { SNOR_HWCAPS_READ_1_4_4,       BIT(5) },
 951                { SNOR_HWCAPS_READ_1_1_1_DTR,   BIT(13) },
 952                { SNOR_HWCAPS_READ_1_2_2_DTR,   BIT(14) },
 953                { SNOR_HWCAPS_READ_1_4_4_DTR,   BIT(15) },
 954        };
 955        static const struct sfdp_4bait programs[] = {
 956                { SNOR_HWCAPS_PP,               BIT(6) },
 957                { SNOR_HWCAPS_PP_1_1_4,         BIT(7) },
 958                { SNOR_HWCAPS_PP_1_4_4,         BIT(8) },
 959        };
 960        static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
 961                { 0u /* not used */,            BIT(9) },
 962                { 0u /* not used */,            BIT(10) },
 963                { 0u /* not used */,            BIT(11) },
 964                { 0u /* not used */,            BIT(12) },
 965        };
 966        struct spi_nor_flash_parameter *params = nor->params;
 967        struct spi_nor_pp_command *params_pp = params->page_programs;
 968        struct spi_nor_erase_map *map = &params->erase_map;
 969        struct spi_nor_erase_type *erase_type = map->erase_type;
 970        u32 *dwords;
 971        size_t len;
 972        u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
 973        int i, ret;
 974
 975        if (param_header->major != SFDP_JESD216_MAJOR ||
 976            param_header->length < SFDP_4BAIT_DWORD_MAX)
 977                return -EINVAL;
 978
 979        /* Read the 4-byte Address Instruction Table. */
 980        len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
 981
 982        /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
 983        dwords = kmalloc(len, GFP_KERNEL);
 984        if (!dwords)
 985                return -ENOMEM;
 986
 987        addr = SFDP_PARAM_HEADER_PTP(param_header);
 988        ret = spi_nor_read_sfdp(nor, addr, len, dwords);
 989        if (ret)
 990                goto out;
 991
 992        /* Fix endianness of the 4BAIT DWORDs. */
 993        le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
 994
 995        /*
 996         * Compute the subset of (Fast) Read commands for which the 4-byte
 997         * version is supported.
 998         */
 999        discard_hwcaps = 0;
1000        read_hwcaps = 0;
1001        for (i = 0; i < ARRAY_SIZE(reads); i++) {
1002                const struct sfdp_4bait *read = &reads[i];
1003
1004                discard_hwcaps |= read->hwcaps;
1005                if ((params->hwcaps.mask & read->hwcaps) &&
1006                    (dwords[0] & read->supported_bit))
1007                        read_hwcaps |= read->hwcaps;
1008        }
1009
1010        /*
1011         * Compute the subset of Page Program commands for which the 4-byte
1012         * version is supported.
1013         */
1014        pp_hwcaps = 0;
1015        for (i = 0; i < ARRAY_SIZE(programs); i++) {
1016                const struct sfdp_4bait *program = &programs[i];
1017
1018                /*
1019                 * The 4 Byte Address Instruction (Optional) Table is the only
1020                 * SFDP table that indicates support for Page Program Commands.
1021                 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1022                 * authority for specifying Page Program support.
1023                 */
1024                discard_hwcaps |= program->hwcaps;
1025                if (dwords[0] & program->supported_bit)
1026                        pp_hwcaps |= program->hwcaps;
1027        }
1028
1029        /*
1030         * Compute the subset of Sector Erase commands for which the 4-byte
1031         * version is supported.
1032         */
1033        erase_mask = 0;
1034        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1035                const struct sfdp_4bait *erase = &erases[i];
1036
1037                if (dwords[0] & erase->supported_bit)
1038                        erase_mask |= BIT(i);
1039        }
1040
1041        /* Replicate the sort done for the map's erase types in BFPT. */
1042        erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1043
1044        /*
1045         * We need at least one 4-byte op code per read, program and erase
1046         * operation; the .read(), .write() and .erase() hooks share the
1047         * nor->addr_width value.
1048         */
1049        if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1050                goto out;
1051
1052        /*
1053         * Discard all operations from the 4-byte instruction set which are
1054         * not supported by this memory.
1055         */
1056        params->hwcaps.mask &= ~discard_hwcaps;
1057        params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1058
1059        /* Use the 4-byte address instruction set. */
1060        for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1061                struct spi_nor_read_command *read_cmd = &params->reads[i];
1062
1063                read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1064        }
1065
1066        /* 4BAIT is the only SFDP table that indicates page program support. */
1067        if (pp_hwcaps & SNOR_HWCAPS_PP) {
1068                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1069                                        SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1070                /*
1071                 * Since xSPI Page Program opcode is backward compatible with
1072                 * Legacy SPI, use Legacy SPI opcode there as well.
1073                 */
1074                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1075                                        SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1076        }
1077        if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1078                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1079                                        SPINOR_OP_PP_1_1_4_4B,
1080                                        SNOR_PROTO_1_1_4);
1081        if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1082                spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1083                                        SPINOR_OP_PP_1_4_4_4B,
1084                                        SNOR_PROTO_1_4_4);
1085
1086        for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1087                if (erase_mask & BIT(i))
1088                        erase_type[i].opcode = (dwords[1] >>
1089                                                erase_type[i].idx * 8) & 0xFF;
1090                else
1091                        spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1092        }
1093
1094        /*
1095         * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1096         * later because we already did the conversion to 4byte opcodes. Also,
1097         * this latest function implements a legacy quirk for the erase size of
1098         * Spansion memory. However this quirk is no longer needed with new
1099         * SFDP compliant memories.
1100         */
1101        nor->addr_width = 4;
1102        nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1103
1104        /* fall through */
1105out:
1106        kfree(dwords);
1107        return ret;
1108}
1109
1110#define PROFILE1_DWORD1_RDSR_ADDR_BYTES         BIT(29)
1111#define PROFILE1_DWORD1_RDSR_DUMMY              BIT(28)
1112#define PROFILE1_DWORD1_RD_FAST_CMD             GENMASK(15, 8)
1113#define PROFILE1_DWORD4_DUMMY_200MHZ            GENMASK(11, 7)
1114#define PROFILE1_DWORD5_DUMMY_166MHZ            GENMASK(31, 27)
1115#define PROFILE1_DWORD5_DUMMY_133MHZ            GENMASK(21, 17)
1116#define PROFILE1_DWORD5_DUMMY_100MHZ            GENMASK(11, 7)
1117
1118/**
1119 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1120 * @nor:                pointer to a 'struct spi_nor'
1121 * @profile1_header:    pointer to the 'struct sfdp_parameter_header' describing
1122 *                      the Profile 1.0 Table length and version.
1123 *
1124 * Return: 0 on success, -errno otherwise.
1125 */
1126static int spi_nor_parse_profile1(struct spi_nor *nor,
1127                                  const struct sfdp_parameter_header *profile1_header)
1128{
1129        u32 *dwords, addr;
1130        size_t len;
1131        int ret;
1132        u8 dummy, opcode;
1133
1134        len = profile1_header->length * sizeof(*dwords);
1135        dwords = kmalloc(len, GFP_KERNEL);
1136        if (!dwords)
1137                return -ENOMEM;
1138
1139        addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1140        ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1141        if (ret)
1142                goto out;
1143
1144        le32_to_cpu_array(dwords, profile1_header->length);
1145
1146        /* Get 8D-8D-8D fast read opcode and dummy cycles. */
1147        opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1148
1149         /* Set the Read Status Register dummy cycles and dummy address bytes. */
1150        if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1151                nor->params->rdsr_dummy = 8;
1152        else
1153                nor->params->rdsr_dummy = 4;
1154
1155        if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1156                nor->params->rdsr_addr_nbytes = 4;
1157        else
1158                nor->params->rdsr_addr_nbytes = 0;
1159
1160        /*
1161         * We don't know what speed the controller is running at. Find the
1162         * dummy cycles for the fastest frequency the flash can run at to be
1163         * sure we are never short of dummy cycles. A value of 0 means the
1164         * frequency is not supported.
1165         *
1166         * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1167         * flashes set the correct value if needed in their fixup hooks.
1168         */
1169        dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1170        if (!dummy)
1171                dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1172        if (!dummy)
1173                dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1174        if (!dummy)
1175                dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1176        if (!dummy)
1177                dev_dbg(nor->dev,
1178                        "Can't find dummy cycles from Profile 1.0 table\n");
1179
1180        /* Round up to an even value to avoid tripping controllers up. */
1181        dummy = round_up(dummy, 2);
1182
1183        /* Update the fast read settings. */
1184        spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1185                                  0, dummy, opcode,
1186                                  SNOR_PROTO_8_8_8_DTR);
1187
1188out:
1189        kfree(dwords);
1190        return ret;
1191}
1192
1193#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE              BIT(31)
1194
1195/**
1196 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1197 *                        Map.
1198 * @nor:                pointer to a 'struct spi_nor'
1199 * @sccr_header:        pointer to the 'struct sfdp_parameter_header' describing
1200 *                      the SCCR Map table length and version.
1201 *
1202 * Return: 0 on success, -errno otherwise.
1203 */
1204static int spi_nor_parse_sccr(struct spi_nor *nor,
1205                              const struct sfdp_parameter_header *sccr_header)
1206{
1207        u32 *dwords, addr;
1208        size_t len;
1209        int ret;
1210
1211        len = sccr_header->length * sizeof(*dwords);
1212        dwords = kmalloc(len, GFP_KERNEL);
1213        if (!dwords)
1214                return -ENOMEM;
1215
1216        addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1217        ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1218        if (ret)
1219                goto out;
1220
1221        le32_to_cpu_array(dwords, sccr_header->length);
1222
1223        if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1224                nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1225
1226out:
1227        kfree(dwords);
1228        return ret;
1229}
1230
1231/**
1232 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1233 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1234 * tables.
1235 * @nor:        pointer to a 'struct spi_nor'
1236 *
1237 * Used to tweak various flash parameters when information provided by the SFDP
1238 * tables are wrong.
1239 */
1240static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1241{
1242        if (nor->manufacturer && nor->manufacturer->fixups &&
1243            nor->manufacturer->fixups->post_sfdp)
1244                nor->manufacturer->fixups->post_sfdp(nor);
1245
1246        if (nor->info->fixups && nor->info->fixups->post_sfdp)
1247                nor->info->fixups->post_sfdp(nor);
1248}
1249
1250/**
1251 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1252 * @nor:                pointer to a 'struct spi_nor'
1253 *
1254 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1255 * specification. This is a standard which tends to supported by almost all
1256 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1257 * runtime the main parameters needed to perform basic SPI flash operations such
1258 * as Fast Read, Page Program or Sector Erase commands.
1259 *
1260 * Return: 0 on success, -errno otherwise.
1261 */
1262int spi_nor_parse_sfdp(struct spi_nor *nor)
1263{
1264        const struct sfdp_parameter_header *param_header, *bfpt_header;
1265        struct sfdp_parameter_header *param_headers = NULL;
1266        struct sfdp_header header;
1267        struct device *dev = nor->dev;
1268        struct sfdp *sfdp;
1269        size_t sfdp_size;
1270        size_t psize;
1271        int i, err;
1272
1273        /* Get the SFDP header. */
1274        err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1275        if (err < 0)
1276                return err;
1277
1278        /* Check the SFDP header version. */
1279        if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1280            header.major != SFDP_JESD216_MAJOR)
1281                return -EINVAL;
1282
1283        /*
1284         * Verify that the first and only mandatory parameter header is a
1285         * Basic Flash Parameter Table header as specified in JESD216.
1286         */
1287        bfpt_header = &header.bfpt_header;
1288        if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1289            bfpt_header->major != SFDP_JESD216_MAJOR)
1290                return -EINVAL;
1291
1292        sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1293                    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1294
1295        /*
1296         * Allocate memory then read all parameter headers with a single
1297         * Read SFDP command. These parameter headers will actually be parsed
1298         * twice: a first time to get the latest revision of the basic flash
1299         * parameter table, then a second time to handle the supported optional
1300         * tables.
1301         * Hence we read the parameter headers once for all to reduce the
1302         * processing time. Also we use kmalloc() instead of devm_kmalloc()
1303         * because we don't need to keep these parameter headers: the allocated
1304         * memory is always released with kfree() before exiting this function.
1305         */
1306        if (header.nph) {
1307                psize = header.nph * sizeof(*param_headers);
1308
1309                param_headers = kmalloc(psize, GFP_KERNEL);
1310                if (!param_headers)
1311                        return -ENOMEM;
1312
1313                err = spi_nor_read_sfdp(nor, sizeof(header),
1314                                        psize, param_headers);
1315                if (err < 0) {
1316                        dev_dbg(dev, "failed to read SFDP parameter headers\n");
1317                        goto exit;
1318                }
1319        }
1320
1321        /*
1322         * Cache the complete SFDP data. It is not (easily) possible to fetch
1323         * SFDP after probe time and we need it for the sysfs access.
1324         */
1325        for (i = 0; i < header.nph; i++) {
1326                param_header = &param_headers[i];
1327                sfdp_size = max_t(size_t, sfdp_size,
1328                                  SFDP_PARAM_HEADER_PTP(param_header) +
1329                                  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1330        }
1331
1332        /*
1333         * Limit the total size to a reasonable value to avoid allocating too
1334         * much memory just of because the flash returned some insane values.
1335         */
1336        if (sfdp_size > PAGE_SIZE) {
1337                dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1338                        sfdp_size);
1339                sfdp_size = PAGE_SIZE;
1340        }
1341
1342        sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1343        if (!sfdp) {
1344                err = -ENOMEM;
1345                goto exit;
1346        }
1347
1348        /*
1349         * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1350         * sfdp_size should be a multiple of DWORDs. But in case a flash
1351         * is not spec compliant, make sure that we have enough space to store
1352         * the complete SFDP data.
1353         */
1354        sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1355        sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1356                                    sizeof(*sfdp->dwords), GFP_KERNEL);
1357        if (!sfdp->dwords) {
1358                err = -ENOMEM;
1359                devm_kfree(dev, sfdp);
1360                goto exit;
1361        }
1362
1363        err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1364        if (err < 0) {
1365                dev_dbg(dev, "failed to read SFDP data\n");
1366                devm_kfree(dev, sfdp->dwords);
1367                devm_kfree(dev, sfdp);
1368                goto exit;
1369        }
1370
1371        nor->sfdp = sfdp;
1372
1373        /*
1374         * Check other parameter headers to get the latest revision of
1375         * the basic flash parameter table.
1376         */
1377        for (i = 0; i < header.nph; i++) {
1378                param_header = &param_headers[i];
1379
1380                if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1381                    param_header->major == SFDP_JESD216_MAJOR &&
1382                    (param_header->minor > bfpt_header->minor ||
1383                     (param_header->minor == bfpt_header->minor &&
1384                      param_header->length > bfpt_header->length)))
1385                        bfpt_header = param_header;
1386        }
1387
1388        err = spi_nor_parse_bfpt(nor, bfpt_header);
1389        if (err)
1390                goto exit;
1391
1392        /* Parse optional parameter tables. */
1393        for (i = 0; i < header.nph; i++) {
1394                param_header = &param_headers[i];
1395
1396                switch (SFDP_PARAM_HEADER_ID(param_header)) {
1397                case SFDP_SECTOR_MAP_ID:
1398                        err = spi_nor_parse_smpt(nor, param_header);
1399                        break;
1400
1401                case SFDP_4BAIT_ID:
1402                        err = spi_nor_parse_4bait(nor, param_header);
1403                        break;
1404
1405                case SFDP_PROFILE1_ID:
1406                        err = spi_nor_parse_profile1(nor, param_header);
1407                        break;
1408
1409                case SFDP_SCCR_MAP_ID:
1410                        err = spi_nor_parse_sccr(nor, param_header);
1411                        break;
1412
1413                default:
1414                        break;
1415                }
1416
1417                if (err) {
1418                        dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1419                                 SFDP_PARAM_HEADER_ID(param_header));
1420                        /*
1421                         * Let's not drop all information we extracted so far
1422                         * if optional table parsers fail. In case of failing,
1423                         * each optional parser is responsible to roll back to
1424                         * the previously known spi_nor data.
1425                         */
1426                        err = 0;
1427                }
1428        }
1429
1430        spi_nor_post_sfdp_fixups(nor);
1431exit:
1432        kfree(param_headers);
1433        return err;
1434}
1435