linux/drivers/net/dsa/sja1105/sja1105_tas.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
   3 */
   4#include "sja1105.h"
   5
   6#define SJA1105_TAS_CLKSRC_DISABLED     0
   7#define SJA1105_TAS_CLKSRC_STANDALONE   1
   8#define SJA1105_TAS_CLKSRC_AS6802       2
   9#define SJA1105_TAS_CLKSRC_PTP          3
  10#define SJA1105_GATE_MASK               GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
  11
  12#define work_to_sja1105_tas(d) \
  13        container_of((d), struct sja1105_tas_data, tas_work)
  14#define tas_to_sja1105(d) \
  15        container_of((d), struct sja1105_private, tas_data)
  16
  17static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
  18{
  19        struct sja1105_tas_data *tas_data = &priv->tas_data;
  20        struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
  21        struct dsa_switch *ds = priv->ds;
  22        s64 earliest_base_time = S64_MAX;
  23        s64 latest_base_time = 0;
  24        s64 its_cycle_time = 0;
  25        s64 max_cycle_time = 0;
  26        int port;
  27
  28        tas_data->enabled = false;
  29
  30        for (port = 0; port < ds->num_ports; port++) {
  31                const struct tc_taprio_qopt_offload *offload;
  32
  33                offload = tas_data->offload[port];
  34                if (!offload)
  35                        continue;
  36
  37                tas_data->enabled = true;
  38
  39                if (max_cycle_time < offload->cycle_time)
  40                        max_cycle_time = offload->cycle_time;
  41                if (latest_base_time < offload->base_time)
  42                        latest_base_time = offload->base_time;
  43                if (earliest_base_time > offload->base_time) {
  44                        earliest_base_time = offload->base_time;
  45                        its_cycle_time = offload->cycle_time;
  46                }
  47        }
  48
  49        if (!list_empty(&gating_cfg->entries)) {
  50                tas_data->enabled = true;
  51
  52                if (max_cycle_time < gating_cfg->cycle_time)
  53                        max_cycle_time = gating_cfg->cycle_time;
  54                if (latest_base_time < gating_cfg->base_time)
  55                        latest_base_time = gating_cfg->base_time;
  56                if (earliest_base_time > gating_cfg->base_time) {
  57                        earliest_base_time = gating_cfg->base_time;
  58                        its_cycle_time = gating_cfg->cycle_time;
  59                }
  60        }
  61
  62        if (!tas_data->enabled)
  63                return 0;
  64
  65        /* Roll the earliest base time over until it is in a comparable
  66         * time base with the latest, then compare their deltas.
  67         * We want to enforce that all ports' base times are within
  68         * SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
  69         */
  70        earliest_base_time = future_base_time(earliest_base_time,
  71                                              its_cycle_time,
  72                                              latest_base_time);
  73        while (earliest_base_time > latest_base_time)
  74                earliest_base_time -= its_cycle_time;
  75        if (latest_base_time - earliest_base_time >
  76            sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
  77                dev_err(ds->dev,
  78                        "Base times too far apart: min %llu max %llu\n",
  79                        earliest_base_time, latest_base_time);
  80                return -ERANGE;
  81        }
  82
  83        tas_data->earliest_base_time = earliest_base_time;
  84        tas_data->max_cycle_time = max_cycle_time;
  85
  86        dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
  87        dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
  88        dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
  89
  90        return 0;
  91}
  92
  93/* Lo and behold: the egress scheduler from hell.
  94 *
  95 * At the hardware level, the Time-Aware Shaper holds a global linear arrray of
  96 * all schedule entries for all ports. These are the Gate Control List (GCL)
  97 * entries, let's call them "timeslots" for short. This linear array of
  98 * timeslots is held in BLK_IDX_SCHEDULE.
  99 *
 100 * Then there are a maximum of 8 "execution threads" inside the switch, which
 101 * iterate cyclically through the "schedule". Each "cycle" has an entry point
 102 * and an exit point, both being timeslot indices in the schedule table. The
 103 * hardware calls each cycle a "subschedule".
 104 *
 105 * Subschedule (cycle) i starts when
 106 *   ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
 107 *
 108 * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
 109 *   k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
 110 *   k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
 111 *
 112 * For each schedule entry (timeslot) k, the engine executes the gate control
 113 * list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
 114 *
 115 *         +---------+
 116 *         |         | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
 117 *         +---------+
 118 *              |
 119 *              +-----------------+
 120 *                                | .actsubsch
 121 *  BLK_IDX_SCHEDULE_ENTRY_POINTS v
 122 *                 +-------+-------+
 123 *                 |cycle 0|cycle 1|
 124 *                 +-------+-------+
 125 *                   |  |      |  |
 126 *  +----------------+  |      |  +-------------------------------------+
 127 *  |   .subschindx     |      |             .subschindx                |
 128 *  |                   |      +---------------+                        |
 129 *  |          .address |        .address      |                        |
 130 *  |                   |                      |                        |
 131 *  |                   |                      |                        |
 132 *  |  BLK_IDX_SCHEDULE v                      v                        |
 133 *  |              +-------+-------+-------+-------+-------+------+     |
 134 *  |              |entry 0|entry 1|entry 2|entry 3|entry 4|entry5|     |
 135 *  |              +-------+-------+-------+-------+-------+------+     |
 136 *  |                                  ^                    ^  ^  ^     |
 137 *  |                                  |                    |  |  |     |
 138 *  |        +-------------------------+                    |  |  |     |
 139 *  |        |              +-------------------------------+  |  |     |
 140 *  |        |              |              +-------------------+  |     |
 141 *  |        |              |              |                      |     |
 142 *  | +---------------------------------------------------------------+ |
 143 *  | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
 144 *  | +---------------------------------------------------------------+ |
 145 *  |        ^              ^                BLK_IDX_SCHEDULE_PARAMS    |
 146 *  |        |              |                                           |
 147 *  +--------+              +-------------------------------------------+
 148 *
 149 *  In the above picture there are two subschedules (cycles):
 150 *
 151 *  - cycle 0: iterates the schedule table from 0 to 2 (and back)
 152 *  - cycle 1: iterates the schedule table from 3 to 5 (and back)
 153 *
 154 *  All other possible execution threads must be marked as unused by making
 155 *  their "subschedule end index" (subscheind) equal to the last valid
 156 *  subschedule's end index (in this case 5).
 157 */
 158int sja1105_init_scheduling(struct sja1105_private *priv)
 159{
 160        struct sja1105_schedule_entry_points_entry *schedule_entry_points;
 161        struct sja1105_schedule_entry_points_params_entry
 162                                        *schedule_entry_points_params;
 163        struct sja1105_schedule_params_entry *schedule_params;
 164        struct sja1105_tas_data *tas_data = &priv->tas_data;
 165        struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg;
 166        struct sja1105_schedule_entry *schedule;
 167        struct dsa_switch *ds = priv->ds;
 168        struct sja1105_table *table;
 169        int schedule_start_idx;
 170        s64 entry_point_delta;
 171        int schedule_end_idx;
 172        int num_entries = 0;
 173        int num_cycles = 0;
 174        int cycle = 0;
 175        int i, k = 0;
 176        int port, rc;
 177
 178        rc = sja1105_tas_set_runtime_params(priv);
 179        if (rc < 0)
 180                return rc;
 181
 182        /* Discard previous Schedule Table */
 183        table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
 184        if (table->entry_count) {
 185                kfree(table->entries);
 186                table->entry_count = 0;
 187        }
 188
 189        /* Discard previous Schedule Entry Points Parameters Table */
 190        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
 191        if (table->entry_count) {
 192                kfree(table->entries);
 193                table->entry_count = 0;
 194        }
 195
 196        /* Discard previous Schedule Parameters Table */
 197        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
 198        if (table->entry_count) {
 199                kfree(table->entries);
 200                table->entry_count = 0;
 201        }
 202
 203        /* Discard previous Schedule Entry Points Table */
 204        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
 205        if (table->entry_count) {
 206                kfree(table->entries);
 207                table->entry_count = 0;
 208        }
 209
 210        /* Figure out the dimensioning of the problem */
 211        for (port = 0; port < ds->num_ports; port++) {
 212                if (tas_data->offload[port]) {
 213                        num_entries += tas_data->offload[port]->num_entries;
 214                        num_cycles++;
 215                }
 216        }
 217
 218        if (!list_empty(&gating_cfg->entries)) {
 219                num_entries += gating_cfg->num_entries;
 220                num_cycles++;
 221        }
 222
 223        /* Nothing to do */
 224        if (!num_cycles)
 225                return 0;
 226
 227        /* Pre-allocate space in the static config tables */
 228
 229        /* Schedule Table */
 230        table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
 231        table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
 232                                 GFP_KERNEL);
 233        if (!table->entries)
 234                return -ENOMEM;
 235        table->entry_count = num_entries;
 236        schedule = table->entries;
 237
 238        /* Schedule Points Parameters Table */
 239        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
 240        table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
 241                                 table->ops->unpacked_entry_size, GFP_KERNEL);
 242        if (!table->entries)
 243                /* Previously allocated memory will be freed automatically in
 244                 * sja1105_static_config_free. This is true for all early
 245                 * returns below.
 246                 */
 247                return -ENOMEM;
 248        table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
 249        schedule_entry_points_params = table->entries;
 250
 251        /* Schedule Parameters Table */
 252        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
 253        table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
 254                                 table->ops->unpacked_entry_size, GFP_KERNEL);
 255        if (!table->entries)
 256                return -ENOMEM;
 257        table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
 258        schedule_params = table->entries;
 259
 260        /* Schedule Entry Points Table */
 261        table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
 262        table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
 263                                 GFP_KERNEL);
 264        if (!table->entries)
 265                return -ENOMEM;
 266        table->entry_count = num_cycles;
 267        schedule_entry_points = table->entries;
 268
 269        /* Finally start populating the static config tables */
 270        schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
 271        schedule_entry_points_params->actsubsch = num_cycles - 1;
 272
 273        for (port = 0; port < ds->num_ports; port++) {
 274                const struct tc_taprio_qopt_offload *offload;
 275                /* Relative base time */
 276                s64 rbt;
 277
 278                offload = tas_data->offload[port];
 279                if (!offload)
 280                        continue;
 281
 282                schedule_start_idx = k;
 283                schedule_end_idx = k + offload->num_entries - 1;
 284                /* This is the base time expressed as a number of TAS ticks
 285                 * relative to PTPSCHTM, which we'll (perhaps improperly) call
 286                 * the operational base time.
 287                 */
 288                rbt = future_base_time(offload->base_time,
 289                                       offload->cycle_time,
 290                                       tas_data->earliest_base_time);
 291                rbt -= tas_data->earliest_base_time;
 292                /* UM10944.pdf 4.2.2. Schedule Entry Points table says that
 293                 * delta cannot be zero, which is shitty. Advance all relative
 294                 * base times by 1 TAS delta, so that even the earliest base
 295                 * time becomes 1 in relative terms. Then start the operational
 296                 * base time (PTPSCHTM) one TAS delta earlier than planned.
 297                 */
 298                entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
 299
 300                schedule_entry_points[cycle].subschindx = cycle;
 301                schedule_entry_points[cycle].delta = entry_point_delta;
 302                schedule_entry_points[cycle].address = schedule_start_idx;
 303
 304                /* The subschedule end indices need to be
 305                 * monotonically increasing.
 306                 */
 307                for (i = cycle; i < 8; i++)
 308                        schedule_params->subscheind[i] = schedule_end_idx;
 309
 310                for (i = 0; i < offload->num_entries; i++, k++) {
 311                        s64 delta_ns = offload->entries[i].interval;
 312
 313                        schedule[k].delta = ns_to_sja1105_delta(delta_ns);
 314                        schedule[k].destports = BIT(port);
 315                        schedule[k].resmedia_en = true;
 316                        schedule[k].resmedia = SJA1105_GATE_MASK &
 317                                        ~offload->entries[i].gate_mask;
 318                }
 319                cycle++;
 320        }
 321
 322        if (!list_empty(&gating_cfg->entries)) {
 323                struct sja1105_gate_entry *e;
 324
 325                /* Relative base time */
 326                s64 rbt;
 327
 328                schedule_start_idx = k;
 329                schedule_end_idx = k + gating_cfg->num_entries - 1;
 330                rbt = future_base_time(gating_cfg->base_time,
 331                                       gating_cfg->cycle_time,
 332                                       tas_data->earliest_base_time);
 333                rbt -= tas_data->earliest_base_time;
 334                entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
 335
 336                schedule_entry_points[cycle].subschindx = cycle;
 337                schedule_entry_points[cycle].delta = entry_point_delta;
 338                schedule_entry_points[cycle].address = schedule_start_idx;
 339
 340                for (i = cycle; i < 8; i++)
 341                        schedule_params->subscheind[i] = schedule_end_idx;
 342
 343                list_for_each_entry(e, &gating_cfg->entries, list) {
 344                        schedule[k].delta = ns_to_sja1105_delta(e->interval);
 345                        schedule[k].destports = e->rule->vl.destports;
 346                        schedule[k].setvalid = true;
 347                        schedule[k].txen = true;
 348                        schedule[k].vlindex = e->rule->vl.sharindx;
 349                        schedule[k].winstindex = e->rule->vl.sharindx;
 350                        if (e->gate_state) /* Gate open */
 351                                schedule[k].winst = true;
 352                        else /* Gate closed */
 353                                schedule[k].winend = true;
 354                        k++;
 355                }
 356        }
 357
 358        return 0;
 359}
 360
 361/* Be there 2 port subschedules, each executing an arbitrary number of gate
 362 * open/close events cyclically.
 363 * None of those gate events must ever occur at the exact same time, otherwise
 364 * the switch is known to act in exotically strange ways.
 365 * However the hardware doesn't bother performing these integrity checks.
 366 * So here we are with the task of validating whether the new @admin offload
 367 * has any conflict with the already established TAS configuration in
 368 * tas_data->offload.  We already know the other ports are in harmony with one
 369 * another, otherwise we wouldn't have saved them.
 370 * Each gate event executes periodically, with a period of @cycle_time and a
 371 * phase given by its cycle's @base_time plus its offset within the cycle
 372 * (which in turn is given by the length of the events prior to it).
 373 * There are two aspects to possible collisions:
 374 * - Collisions within one cycle's (actually the longest cycle's) time frame.
 375 *   For that, we need to compare the cartesian product of each possible
 376 *   occurrence of each event within one cycle time.
 377 * - Collisions in the future. Events may not collide within one cycle time,
 378 *   but if two port schedules don't have the same periodicity (aka the cycle
 379 *   times aren't multiples of one another), they surely will some time in the
 380 *   future (actually they will collide an infinite amount of times).
 381 */
 382static bool
 383sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
 384                            const struct tc_taprio_qopt_offload *admin)
 385{
 386        struct sja1105_tas_data *tas_data = &priv->tas_data;
 387        const struct tc_taprio_qopt_offload *offload;
 388        s64 max_cycle_time, min_cycle_time;
 389        s64 delta1, delta2;
 390        s64 rbt1, rbt2;
 391        s64 stop_time;
 392        s64 t1, t2;
 393        int i, j;
 394        s32 rem;
 395
 396        offload = tas_data->offload[port];
 397        if (!offload)
 398                return false;
 399
 400        /* Check if the two cycle times are multiples of one another.
 401         * If they aren't, then they will surely collide.
 402         */
 403        max_cycle_time = max(offload->cycle_time, admin->cycle_time);
 404        min_cycle_time = min(offload->cycle_time, admin->cycle_time);
 405        div_s64_rem(max_cycle_time, min_cycle_time, &rem);
 406        if (rem)
 407                return true;
 408
 409        /* Calculate the "reduced" base time of each of the two cycles
 410         * (transposed back as close to 0 as possible) by dividing to
 411         * the cycle time.
 412         */
 413        div_s64_rem(offload->base_time, offload->cycle_time, &rem);
 414        rbt1 = rem;
 415
 416        div_s64_rem(admin->base_time, admin->cycle_time, &rem);
 417        rbt2 = rem;
 418
 419        stop_time = max_cycle_time + max(rbt1, rbt2);
 420
 421        /* delta1 is the relative base time of each GCL entry within
 422         * the established ports' TAS config.
 423         */
 424        for (i = 0, delta1 = 0;
 425             i < offload->num_entries;
 426             delta1 += offload->entries[i].interval, i++) {
 427                /* delta2 is the relative base time of each GCL entry
 428                 * within the newly added TAS config.
 429                 */
 430                for (j = 0, delta2 = 0;
 431                     j < admin->num_entries;
 432                     delta2 += admin->entries[j].interval, j++) {
 433                        /* t1 follows all possible occurrences of the
 434                         * established ports' GCL entry i within the
 435                         * first cycle time.
 436                         */
 437                        for (t1 = rbt1 + delta1;
 438                             t1 <= stop_time;
 439                             t1 += offload->cycle_time) {
 440                                /* t2 follows all possible occurrences
 441                                 * of the newly added GCL entry j
 442                                 * within the first cycle time.
 443                                 */
 444                                for (t2 = rbt2 + delta2;
 445                                     t2 <= stop_time;
 446                                     t2 += admin->cycle_time) {
 447                                        if (t1 == t2) {
 448                                                dev_warn(priv->ds->dev,
 449                                                         "GCL entry %d collides with entry %d of port %d\n",
 450                                                         j, i, port);
 451                                                return true;
 452                                        }
 453                                }
 454                        }
 455                }
 456        }
 457
 458        return false;
 459}
 460
 461/* Check the tc-taprio configuration on @port for conflicts with the tc-gate
 462 * global subschedule. If @port is -1, check it against all ports.
 463 * To reuse the sja1105_tas_check_conflicts logic without refactoring it,
 464 * convert the gating configuration to a dummy tc-taprio offload structure.
 465 */
 466bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port,
 467                                    struct netlink_ext_ack *extack)
 468{
 469        struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg;
 470        size_t num_entries = gating_cfg->num_entries;
 471        struct tc_taprio_qopt_offload *dummy;
 472        struct dsa_switch *ds = priv->ds;
 473        struct sja1105_gate_entry *e;
 474        bool conflict;
 475        int i = 0;
 476
 477        if (list_empty(&gating_cfg->entries))
 478                return false;
 479
 480        dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL);
 481        if (!dummy) {
 482                NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory");
 483                return true;
 484        }
 485
 486        dummy->num_entries = num_entries;
 487        dummy->base_time = gating_cfg->base_time;
 488        dummy->cycle_time = gating_cfg->cycle_time;
 489
 490        list_for_each_entry(e, &gating_cfg->entries, list)
 491                dummy->entries[i++].interval = e->interval;
 492
 493        if (port != -1) {
 494                conflict = sja1105_tas_check_conflicts(priv, port, dummy);
 495        } else {
 496                for (port = 0; port < ds->num_ports; port++) {
 497                        conflict = sja1105_tas_check_conflicts(priv, port,
 498                                                               dummy);
 499                        if (conflict)
 500                                break;
 501                }
 502        }
 503
 504        kfree(dummy);
 505
 506        return conflict;
 507}
 508
 509int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
 510                            struct tc_taprio_qopt_offload *admin)
 511{
 512        struct sja1105_private *priv = ds->priv;
 513        struct sja1105_tas_data *tas_data = &priv->tas_data;
 514        int other_port, rc, i;
 515
 516        /* Can't change an already configured port (must delete qdisc first).
 517         * Can't delete the qdisc from an unconfigured port.
 518         */
 519        if (!!tas_data->offload[port] == admin->enable)
 520                return -EINVAL;
 521
 522        if (!admin->enable) {
 523                taprio_offload_free(tas_data->offload[port]);
 524                tas_data->offload[port] = NULL;
 525
 526                rc = sja1105_init_scheduling(priv);
 527                if (rc < 0)
 528                        return rc;
 529
 530                return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
 531        }
 532
 533        /* The cycle time extension is the amount of time the last cycle from
 534         * the old OPER needs to be extended in order to phase-align with the
 535         * base time of the ADMIN when that becomes the new OPER.
 536         * But of course our switch needs to be reset to switch-over between
 537         * the ADMIN and the OPER configs - so much for a seamless transition.
 538         * So don't add insult over injury and just say we don't support cycle
 539         * time extension.
 540         */
 541        if (admin->cycle_time_extension)
 542                return -ENOTSUPP;
 543
 544        for (i = 0; i < admin->num_entries; i++) {
 545                s64 delta_ns = admin->entries[i].interval;
 546                s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
 547                bool too_long, too_short;
 548
 549                too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
 550                too_short = (delta_cycles == 0);
 551                if (too_long || too_short) {
 552                        dev_err(priv->ds->dev,
 553                                "Interval %llu too %s for GCL entry %d\n",
 554                                delta_ns, too_long ? "long" : "short", i);
 555                        return -ERANGE;
 556                }
 557        }
 558
 559        for (other_port = 0; other_port < ds->num_ports; other_port++) {
 560                if (other_port == port)
 561                        continue;
 562
 563                if (sja1105_tas_check_conflicts(priv, other_port, admin))
 564                        return -ERANGE;
 565        }
 566
 567        if (sja1105_gating_check_conflicts(priv, port, NULL)) {
 568                dev_err(ds->dev, "Conflict with tc-gate schedule\n");
 569                return -ERANGE;
 570        }
 571
 572        tas_data->offload[port] = taprio_offload_get(admin);
 573
 574        rc = sja1105_init_scheduling(priv);
 575        if (rc < 0)
 576                return rc;
 577
 578        return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
 579}
 580
 581static int sja1105_tas_check_running(struct sja1105_private *priv)
 582{
 583        struct sja1105_tas_data *tas_data = &priv->tas_data;
 584        struct dsa_switch *ds = priv->ds;
 585        struct sja1105_ptp_cmd cmd = {0};
 586        int rc;
 587
 588        rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
 589        if (rc < 0)
 590                return rc;
 591
 592        if (cmd.ptpstrtsch == 1)
 593                /* Schedule successfully started */
 594                tas_data->state = SJA1105_TAS_STATE_RUNNING;
 595        else if (cmd.ptpstopsch == 1)
 596                /* Schedule is stopped */
 597                tas_data->state = SJA1105_TAS_STATE_DISABLED;
 598        else
 599                /* Schedule is probably not configured with PTP clock source */
 600                rc = -EINVAL;
 601
 602        return rc;
 603}
 604
 605/* Write to PTPCLKCORP */
 606static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
 607                                    u64 correction)
 608{
 609        const struct sja1105_regs *regs = priv->info->regs;
 610        u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
 611
 612        return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
 613                                &ptpclkcorp, NULL);
 614}
 615
 616/* Write to PTPSCHTM */
 617static int sja1105_tas_set_base_time(struct sja1105_private *priv,
 618                                     u64 base_time)
 619{
 620        const struct sja1105_regs *regs = priv->info->regs;
 621        u64 ptpschtm = ns_to_sja1105_ticks(base_time);
 622
 623        return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
 624                                &ptpschtm, NULL);
 625}
 626
 627static int sja1105_tas_start(struct sja1105_private *priv)
 628{
 629        struct sja1105_tas_data *tas_data = &priv->tas_data;
 630        struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
 631        struct dsa_switch *ds = priv->ds;
 632        int rc;
 633
 634        dev_dbg(ds->dev, "Starting the TAS\n");
 635
 636        if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
 637            tas_data->state == SJA1105_TAS_STATE_RUNNING) {
 638                dev_err(ds->dev, "TAS already started\n");
 639                return -EINVAL;
 640        }
 641
 642        cmd->ptpstrtsch = 1;
 643        cmd->ptpstopsch = 0;
 644
 645        rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
 646        if (rc < 0)
 647                return rc;
 648
 649        tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
 650
 651        return 0;
 652}
 653
 654static int sja1105_tas_stop(struct sja1105_private *priv)
 655{
 656        struct sja1105_tas_data *tas_data = &priv->tas_data;
 657        struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
 658        struct dsa_switch *ds = priv->ds;
 659        int rc;
 660
 661        dev_dbg(ds->dev, "Stopping the TAS\n");
 662
 663        if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
 664                dev_err(ds->dev, "TAS already disabled\n");
 665                return -EINVAL;
 666        }
 667
 668        cmd->ptpstopsch = 1;
 669        cmd->ptpstrtsch = 0;
 670
 671        rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
 672        if (rc < 0)
 673                return rc;
 674
 675        tas_data->state = SJA1105_TAS_STATE_DISABLED;
 676
 677        return 0;
 678}
 679
 680/* The schedule engine and the PTP clock are driven by the same oscillator, and
 681 * they run in parallel. But whilst the PTP clock can keep an absolute
 682 * time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
 683 * up a delta, which is 200ns), and wrapping around at the end of each cycle.
 684 * The schedule engine is started when the PTP clock reaches the PTPSCHTM time
 685 * (in PTP domain).
 686 * Because the PTP clock can be rate-corrected (accelerated or slowed down) by
 687 * a software servo, and the schedule engine clock runs in parallel to the PTP
 688 * clock, there is logic internal to the switch that periodically keeps the
 689 * schedule engine from drifting away. The frequency with which this internal
 690 * syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
 691 * a value also in the PTP clock domain, and is also rate-corrected.
 692 * To be precise, during a correction period, there is logic to determine by
 693 * how many scheduler clock ticks has the PTP clock drifted. At the end of each
 694 * correction period/beginning of new one, the length of a delta is shrunk or
 695 * expanded with an integer number of ticks, compared with the typical 25.
 696 * So a delta lasts for 200ns (or 25 ticks) only on average.
 697 * Sometimes it is longer, sometimes it is shorter. The internal syntonization
 698 * logic can adjust for at most 5 ticks each 20 ticks.
 699 *
 700 * The first implication is that you should choose your schedule correction
 701 * period to be an integer multiple of the schedule length. Preferably one.
 702 * In case there are schedules of multiple ports active, then the correction
 703 * period needs to be a multiple of them all. Given the restriction that the
 704 * cycle times have to be multiples of one another anyway, this means the
 705 * correction period can simply be the largest cycle time, hence the current
 706 * choice. This way, the updates are always synchronous to the transmission
 707 * cycle, and therefore predictable.
 708 *
 709 * The second implication is that at the beginning of a correction period, the
 710 * first few deltas will be modulated in time, until the schedule engine is
 711 * properly phase-aligned with the PTP clock. For this reason, you should place
 712 * your best-effort traffic at the beginning of a cycle, and your
 713 * time-triggered traffic afterwards.
 714 *
 715 * The third implication is that once the schedule engine is started, it can
 716 * only adjust for so much drift within a correction period. In the servo you
 717 * can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
 718 * want to do the latter, you need to stop and restart the schedule engine,
 719 * which is what the state machine handles.
 720 */
 721static void sja1105_tas_state_machine(struct work_struct *work)
 722{
 723        struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
 724        struct sja1105_private *priv = tas_to_sja1105(tas_data);
 725        struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
 726        struct timespec64 base_time_ts, now_ts;
 727        struct dsa_switch *ds = priv->ds;
 728        struct timespec64 diff;
 729        s64 base_time, now;
 730        int rc = 0;
 731
 732        mutex_lock(&ptp_data->lock);
 733
 734        switch (tas_data->state) {
 735        case SJA1105_TAS_STATE_DISABLED:
 736                /* Can't do anything at all if clock is still being stepped */
 737                if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
 738                        break;
 739
 740                rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
 741                if (rc < 0)
 742                        break;
 743
 744                rc = __sja1105_ptp_gettimex(ds, &now, NULL);
 745                if (rc < 0)
 746                        break;
 747
 748                /* Plan to start the earliest schedule first. The others
 749                 * will be started in hardware, by way of their respective
 750                 * entry points delta.
 751                 * Try our best to avoid fringe cases (race condition between
 752                 * ptpschtm and ptpstrtsch) by pushing the oper_base_time at
 753                 * least one second in the future from now. This is not ideal,
 754                 * but this only needs to buy us time until the
 755                 * sja1105_tas_start command below gets executed.
 756                 */
 757                base_time = future_base_time(tas_data->earliest_base_time,
 758                                             tas_data->max_cycle_time,
 759                                             now + 1ull * NSEC_PER_SEC);
 760                base_time -= sja1105_delta_to_ns(1);
 761
 762                rc = sja1105_tas_set_base_time(priv, base_time);
 763                if (rc < 0)
 764                        break;
 765
 766                tas_data->oper_base_time = base_time;
 767
 768                rc = sja1105_tas_start(priv);
 769                if (rc < 0)
 770                        break;
 771
 772                base_time_ts = ns_to_timespec64(base_time);
 773                now_ts = ns_to_timespec64(now);
 774
 775                dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
 776                        base_time_ts.tv_sec, base_time_ts.tv_nsec,
 777                        now_ts.tv_sec, now_ts.tv_nsec);
 778
 779                break;
 780
 781        case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
 782                if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
 783                        /* Clock was stepped.. bad news for TAS */
 784                        sja1105_tas_stop(priv);
 785                        break;
 786                }
 787
 788                /* Check if TAS has actually started, by comparing the
 789                 * scheduled start time with the SJA1105 PTP clock
 790                 */
 791                rc = __sja1105_ptp_gettimex(ds, &now, NULL);
 792                if (rc < 0)
 793                        break;
 794
 795                if (now < tas_data->oper_base_time) {
 796                        /* TAS has not started yet */
 797                        diff = ns_to_timespec64(tas_data->oper_base_time - now);
 798                        dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
 799                                diff.tv_sec, diff.tv_nsec);
 800                        break;
 801                }
 802
 803                /* Time elapsed, what happened? */
 804                rc = sja1105_tas_check_running(priv);
 805                if (rc < 0)
 806                        break;
 807
 808                if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
 809                        /* TAS has started */
 810                        dev_err(ds->dev,
 811                                "TAS not started despite time elapsed\n");
 812
 813                break;
 814
 815        case SJA1105_TAS_STATE_RUNNING:
 816                /* Clock was stepped.. bad news for TAS */
 817                if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
 818                        sja1105_tas_stop(priv);
 819                        break;
 820                }
 821
 822                rc = sja1105_tas_check_running(priv);
 823                if (rc < 0)
 824                        break;
 825
 826                if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
 827                        dev_err(ds->dev, "TAS surprisingly stopped\n");
 828
 829                break;
 830
 831        default:
 832                if (net_ratelimit())
 833                        dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
 834        }
 835
 836        if (rc && net_ratelimit())
 837                dev_err(ds->dev, "An operation returned %d\n", rc);
 838
 839        mutex_unlock(&ptp_data->lock);
 840}
 841
 842void sja1105_tas_clockstep(struct dsa_switch *ds)
 843{
 844        struct sja1105_private *priv = ds->priv;
 845        struct sja1105_tas_data *tas_data = &priv->tas_data;
 846
 847        if (!tas_data->enabled)
 848                return;
 849
 850        tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
 851        schedule_work(&tas_data->tas_work);
 852}
 853
 854void sja1105_tas_adjfreq(struct dsa_switch *ds)
 855{
 856        struct sja1105_private *priv = ds->priv;
 857        struct sja1105_tas_data *tas_data = &priv->tas_data;
 858
 859        if (!tas_data->enabled)
 860                return;
 861
 862        /* No reason to schedule the workqueue, nothing changed */
 863        if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
 864                return;
 865
 866        tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
 867        schedule_work(&tas_data->tas_work);
 868}
 869
 870void sja1105_tas_setup(struct dsa_switch *ds)
 871{
 872        struct sja1105_private *priv = ds->priv;
 873        struct sja1105_tas_data *tas_data = &priv->tas_data;
 874
 875        INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
 876        tas_data->state = SJA1105_TAS_STATE_DISABLED;
 877        tas_data->last_op = SJA1105_PTP_NONE;
 878
 879        INIT_LIST_HEAD(&tas_data->gating_cfg.entries);
 880}
 881
 882void sja1105_tas_teardown(struct dsa_switch *ds)
 883{
 884        struct sja1105_private *priv = ds->priv;
 885        struct tc_taprio_qopt_offload *offload;
 886        int port;
 887
 888        cancel_work_sync(&priv->tas_data.tas_work);
 889
 890        for (port = 0; port < ds->num_ports; port++) {
 891                offload = priv->tas_data.offload[port];
 892                if (!offload)
 893                        continue;
 894
 895                taprio_offload_free(offload);
 896        }
 897}
 898