linux/drivers/net/ethernet/dlink/dl2k.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   3/*
   4    Copyright (c) 2001, 2002 by D-Link Corporation
   5    Written by Edward Peng.<edward_peng@dlink.com.tw>
   6    Created 03-May-2001, base on Linux' sundance.c.
   7
   8*/
   9
  10#include "dl2k.h"
  11#include <linux/dma-mapping.h>
  12
  13#define dw32(reg, val)  iowrite32(val, ioaddr + (reg))
  14#define dw16(reg, val)  iowrite16(val, ioaddr + (reg))
  15#define dw8(reg, val)   iowrite8(val, ioaddr + (reg))
  16#define dr32(reg)       ioread32(ioaddr + (reg))
  17#define dr16(reg)       ioread16(ioaddr + (reg))
  18#define dr8(reg)        ioread8(ioaddr + (reg))
  19
  20#define MAX_UNITS 8
  21static int mtu[MAX_UNITS];
  22static int vlan[MAX_UNITS];
  23static int jumbo[MAX_UNITS];
  24static char *media[MAX_UNITS];
  25static int tx_flow=-1;
  26static int rx_flow=-1;
  27static int copy_thresh;
  28static int rx_coalesce=10;      /* Rx frame count each interrupt */
  29static int rx_timeout=200;      /* Rx DMA wait time in 640ns increments */
  30static int tx_coalesce=16;      /* HW xmit count each TxDMAComplete */
  31
  32
  33MODULE_AUTHOR ("Edward Peng");
  34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  35MODULE_LICENSE("GPL");
  36module_param_array(mtu, int, NULL, 0);
  37module_param_array(media, charp, NULL, 0);
  38module_param_array(vlan, int, NULL, 0);
  39module_param_array(jumbo, int, NULL, 0);
  40module_param(tx_flow, int, 0);
  41module_param(rx_flow, int, 0);
  42module_param(copy_thresh, int, 0);
  43module_param(rx_coalesce, int, 0);      /* Rx frame count each interrupt */
  44module_param(rx_timeout, int, 0);       /* Rx DMA wait time in 64ns increments */
  45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  46
  47
  48/* Enable the default interrupts */
  49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  50       UpdateStats | LinkEvent)
  51
  52static void dl2k_enable_int(struct netdev_private *np)
  53{
  54        void __iomem *ioaddr = np->ioaddr;
  55
  56        dw16(IntEnable, DEFAULT_INTR);
  57}
  58
  59static const int max_intrloop = 50;
  60static const int multicast_filter_limit = 0x40;
  61
  62static int rio_open (struct net_device *dev);
  63static void rio_timer (struct timer_list *t);
  64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
  65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  67static void rio_free_tx (struct net_device *dev, int irq);
  68static void tx_error (struct net_device *dev, int tx_status);
  69static int receive_packet (struct net_device *dev);
  70static void rio_error (struct net_device *dev, int int_status);
  71static void set_multicast (struct net_device *dev);
  72static struct net_device_stats *get_stats (struct net_device *dev);
  73static int clear_stats (struct net_device *dev);
  74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  75static int rio_close (struct net_device *dev);
  76static int find_miiphy (struct net_device *dev);
  77static int parse_eeprom (struct net_device *dev);
  78static int read_eeprom (struct netdev_private *, int eep_addr);
  79static int mii_wait_link (struct net_device *dev, int wait);
  80static int mii_set_media (struct net_device *dev);
  81static int mii_get_media (struct net_device *dev);
  82static int mii_set_media_pcs (struct net_device *dev);
  83static int mii_get_media_pcs (struct net_device *dev);
  84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  86                      u16 data);
  87
  88static const struct ethtool_ops ethtool_ops;
  89
  90static const struct net_device_ops netdev_ops = {
  91        .ndo_open               = rio_open,
  92        .ndo_start_xmit = start_xmit,
  93        .ndo_stop               = rio_close,
  94        .ndo_get_stats          = get_stats,
  95        .ndo_validate_addr      = eth_validate_addr,
  96        .ndo_set_mac_address    = eth_mac_addr,
  97        .ndo_set_rx_mode        = set_multicast,
  98        .ndo_eth_ioctl          = rio_ioctl,
  99        .ndo_tx_timeout         = rio_tx_timeout,
 100};
 101
 102static int
 103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 104{
 105        struct net_device *dev;
 106        struct netdev_private *np;
 107        static int card_idx;
 108        int chip_idx = ent->driver_data;
 109        int err, irq;
 110        void __iomem *ioaddr;
 111        void *ring_space;
 112        dma_addr_t ring_dma;
 113
 114        err = pci_enable_device (pdev);
 115        if (err)
 116                return err;
 117
 118        irq = pdev->irq;
 119        err = pci_request_regions (pdev, "dl2k");
 120        if (err)
 121                goto err_out_disable;
 122
 123        pci_set_master (pdev);
 124
 125        err = -ENOMEM;
 126
 127        dev = alloc_etherdev (sizeof (*np));
 128        if (!dev)
 129                goto err_out_res;
 130        SET_NETDEV_DEV(dev, &pdev->dev);
 131
 132        np = netdev_priv(dev);
 133
 134        /* IO registers range. */
 135        ioaddr = pci_iomap(pdev, 0, 0);
 136        if (!ioaddr)
 137                goto err_out_dev;
 138        np->eeprom_addr = ioaddr;
 139
 140#ifdef MEM_MAPPING
 141        /* MM registers range. */
 142        ioaddr = pci_iomap(pdev, 1, 0);
 143        if (!ioaddr)
 144                goto err_out_iounmap;
 145#endif
 146        np->ioaddr = ioaddr;
 147        np->chip_id = chip_idx;
 148        np->pdev = pdev;
 149        spin_lock_init (&np->tx_lock);
 150        spin_lock_init (&np->rx_lock);
 151
 152        /* Parse manual configuration */
 153        np->an_enable = 1;
 154        np->tx_coalesce = 1;
 155        if (card_idx < MAX_UNITS) {
 156                if (media[card_idx] != NULL) {
 157                        np->an_enable = 0;
 158                        if (strcmp (media[card_idx], "auto") == 0 ||
 159                            strcmp (media[card_idx], "autosense") == 0 ||
 160                            strcmp (media[card_idx], "0") == 0 ) {
 161                                np->an_enable = 2;
 162                        } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 163                            strcmp (media[card_idx], "4") == 0) {
 164                                np->speed = 100;
 165                                np->full_duplex = 1;
 166                        } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 167                                   strcmp (media[card_idx], "3") == 0) {
 168                                np->speed = 100;
 169                                np->full_duplex = 0;
 170                        } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 171                                   strcmp (media[card_idx], "2") == 0) {
 172                                np->speed = 10;
 173                                np->full_duplex = 1;
 174                        } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 175                                   strcmp (media[card_idx], "1") == 0) {
 176                                np->speed = 10;
 177                                np->full_duplex = 0;
 178                        } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 179                                 strcmp (media[card_idx], "6") == 0) {
 180                                np->speed=1000;
 181                                np->full_duplex=1;
 182                        } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 183                                 strcmp (media[card_idx], "5") == 0) {
 184                                np->speed = 1000;
 185                                np->full_duplex = 0;
 186                        } else {
 187                                np->an_enable = 1;
 188                        }
 189                }
 190                if (jumbo[card_idx] != 0) {
 191                        np->jumbo = 1;
 192                        dev->mtu = MAX_JUMBO;
 193                } else {
 194                        np->jumbo = 0;
 195                        if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 196                                dev->mtu = mtu[card_idx];
 197                }
 198                np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 199                    vlan[card_idx] : 0;
 200                if (rx_coalesce > 0 && rx_timeout > 0) {
 201                        np->rx_coalesce = rx_coalesce;
 202                        np->rx_timeout = rx_timeout;
 203                        np->coalesce = 1;
 204                }
 205                np->tx_flow = (tx_flow == 0) ? 0 : 1;
 206                np->rx_flow = (rx_flow == 0) ? 0 : 1;
 207
 208                if (tx_coalesce < 1)
 209                        tx_coalesce = 1;
 210                else if (tx_coalesce > TX_RING_SIZE-1)
 211                        tx_coalesce = TX_RING_SIZE - 1;
 212        }
 213        dev->netdev_ops = &netdev_ops;
 214        dev->watchdog_timeo = TX_TIMEOUT;
 215        dev->ethtool_ops = &ethtool_ops;
 216#if 0
 217        dev->features = NETIF_F_IP_CSUM;
 218#endif
 219        /* MTU range: 68 - 1536 or 8000 */
 220        dev->min_mtu = ETH_MIN_MTU;
 221        dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 222
 223        pci_set_drvdata (pdev, dev);
 224
 225        ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 226                                        GFP_KERNEL);
 227        if (!ring_space)
 228                goto err_out_iounmap;
 229        np->tx_ring = ring_space;
 230        np->tx_ring_dma = ring_dma;
 231
 232        ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 233                                        GFP_KERNEL);
 234        if (!ring_space)
 235                goto err_out_unmap_tx;
 236        np->rx_ring = ring_space;
 237        np->rx_ring_dma = ring_dma;
 238
 239        /* Parse eeprom data */
 240        parse_eeprom (dev);
 241
 242        /* Find PHY address */
 243        err = find_miiphy (dev);
 244        if (err)
 245                goto err_out_unmap_rx;
 246
 247        /* Fiber device? */
 248        np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 249        np->link_status = 0;
 250        /* Set media and reset PHY */
 251        if (np->phy_media) {
 252                /* default Auto-Negotiation for fiber deivices */
 253                if (np->an_enable == 2) {
 254                        np->an_enable = 1;
 255                }
 256        } else {
 257                /* Auto-Negotiation is mandatory for 1000BASE-T,
 258                   IEEE 802.3ab Annex 28D page 14 */
 259                if (np->speed == 1000)
 260                        np->an_enable = 1;
 261        }
 262
 263        err = register_netdev (dev);
 264        if (err)
 265                goto err_out_unmap_rx;
 266
 267        card_idx++;
 268
 269        printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 270                dev->name, np->name, dev->dev_addr, irq);
 271        if (tx_coalesce > 1)
 272                printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 273                                tx_coalesce);
 274        if (np->coalesce)
 275                printk(KERN_INFO
 276                       "rx_coalesce:\t%d packets\n"
 277                       "rx_timeout: \t%d ns\n",
 278                                np->rx_coalesce, np->rx_timeout*640);
 279        if (np->vlan)
 280                printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 281        return 0;
 282
 283err_out_unmap_rx:
 284        dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
 285                          np->rx_ring_dma);
 286err_out_unmap_tx:
 287        dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
 288                          np->tx_ring_dma);
 289err_out_iounmap:
 290#ifdef MEM_MAPPING
 291        pci_iounmap(pdev, np->ioaddr);
 292#endif
 293        pci_iounmap(pdev, np->eeprom_addr);
 294err_out_dev:
 295        free_netdev (dev);
 296err_out_res:
 297        pci_release_regions (pdev);
 298err_out_disable:
 299        pci_disable_device (pdev);
 300        return err;
 301}
 302
 303static int
 304find_miiphy (struct net_device *dev)
 305{
 306        struct netdev_private *np = netdev_priv(dev);
 307        int i, phy_found = 0;
 308
 309        np->phy_addr = 1;
 310
 311        for (i = 31; i >= 0; i--) {
 312                int mii_status = mii_read (dev, i, 1);
 313                if (mii_status != 0xffff && mii_status != 0x0000) {
 314                        np->phy_addr = i;
 315                        phy_found++;
 316                }
 317        }
 318        if (!phy_found) {
 319                printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 320                return -ENODEV;
 321        }
 322        return 0;
 323}
 324
 325static int
 326parse_eeprom (struct net_device *dev)
 327{
 328        struct netdev_private *np = netdev_priv(dev);
 329        void __iomem *ioaddr = np->ioaddr;
 330        int i, j;
 331        u8 sromdata[256];
 332        u8 *psib;
 333        u32 crc;
 334        PSROM_t psrom = (PSROM_t) sromdata;
 335
 336        int cid, next;
 337
 338        for (i = 0; i < 128; i++)
 339                ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 340
 341        if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {  /* D-Link Only */
 342                /* Check CRC */
 343                crc = ~ether_crc_le (256 - 4, sromdata);
 344                if (psrom->crc != cpu_to_le32(crc)) {
 345                        printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 346                                        dev->name);
 347                        return -1;
 348                }
 349        }
 350
 351        /* Set MAC address */
 352        eth_hw_addr_set(dev, psrom->mac_addr);
 353
 354        if (np->chip_id == CHIP_IP1000A) {
 355                np->led_mode = psrom->led_mode;
 356                return 0;
 357        }
 358
 359        if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 360                return 0;
 361        }
 362
 363        /* Parse Software Information Block */
 364        i = 0x30;
 365        psib = (u8 *) sromdata;
 366        do {
 367                cid = psib[i++];
 368                next = psib[i++];
 369                if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 370                        printk (KERN_ERR "Cell data error\n");
 371                        return -1;
 372                }
 373                switch (cid) {
 374                case 0: /* Format version */
 375                        break;
 376                case 1: /* End of cell */
 377                        return 0;
 378                case 2: /* Duplex Polarity */
 379                        np->duplex_polarity = psib[i];
 380                        dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 381                        break;
 382                case 3: /* Wake Polarity */
 383                        np->wake_polarity = psib[i];
 384                        break;
 385                case 9: /* Adapter description */
 386                        j = (next - i > 255) ? 255 : next - i;
 387                        memcpy (np->name, &(psib[i]), j);
 388                        break;
 389                case 4:
 390                case 5:
 391                case 6:
 392                case 7:
 393                case 8: /* Reversed */
 394                        break;
 395                default:        /* Unknown cell */
 396                        return -1;
 397                }
 398                i = next;
 399        } while (1);
 400
 401        return 0;
 402}
 403
 404static void rio_set_led_mode(struct net_device *dev)
 405{
 406        struct netdev_private *np = netdev_priv(dev);
 407        void __iomem *ioaddr = np->ioaddr;
 408        u32 mode;
 409
 410        if (np->chip_id != CHIP_IP1000A)
 411                return;
 412
 413        mode = dr32(ASICCtrl);
 414        mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 415
 416        if (np->led_mode & 0x01)
 417                mode |= IPG_AC_LED_MODE;
 418        if (np->led_mode & 0x02)
 419                mode |= IPG_AC_LED_MODE_BIT_1;
 420        if (np->led_mode & 0x08)
 421                mode |= IPG_AC_LED_SPEED;
 422
 423        dw32(ASICCtrl, mode);
 424}
 425
 426static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 427{
 428        return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 429}
 430
 431static void free_list(struct net_device *dev)
 432{
 433        struct netdev_private *np = netdev_priv(dev);
 434        struct sk_buff *skb;
 435        int i;
 436
 437        /* Free all the skbuffs in the queue. */
 438        for (i = 0; i < RX_RING_SIZE; i++) {
 439                skb = np->rx_skbuff[i];
 440                if (skb) {
 441                        dma_unmap_single(&np->pdev->dev,
 442                                         desc_to_dma(&np->rx_ring[i]),
 443                                         skb->len, DMA_FROM_DEVICE);
 444                        dev_kfree_skb(skb);
 445                        np->rx_skbuff[i] = NULL;
 446                }
 447                np->rx_ring[i].status = 0;
 448                np->rx_ring[i].fraginfo = 0;
 449        }
 450        for (i = 0; i < TX_RING_SIZE; i++) {
 451                skb = np->tx_skbuff[i];
 452                if (skb) {
 453                        dma_unmap_single(&np->pdev->dev,
 454                                         desc_to_dma(&np->tx_ring[i]),
 455                                         skb->len, DMA_TO_DEVICE);
 456                        dev_kfree_skb(skb);
 457                        np->tx_skbuff[i] = NULL;
 458                }
 459        }
 460}
 461
 462static void rio_reset_ring(struct netdev_private *np)
 463{
 464        int i;
 465
 466        np->cur_rx = 0;
 467        np->cur_tx = 0;
 468        np->old_rx = 0;
 469        np->old_tx = 0;
 470
 471        for (i = 0; i < TX_RING_SIZE; i++)
 472                np->tx_ring[i].status = cpu_to_le64(TFDDone);
 473
 474        for (i = 0; i < RX_RING_SIZE; i++)
 475                np->rx_ring[i].status = 0;
 476}
 477
 478 /* allocate and initialize Tx and Rx descriptors */
 479static int alloc_list(struct net_device *dev)
 480{
 481        struct netdev_private *np = netdev_priv(dev);
 482        int i;
 483
 484        rio_reset_ring(np);
 485        np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 486
 487        /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 488        for (i = 0; i < TX_RING_SIZE; i++) {
 489                np->tx_skbuff[i] = NULL;
 490                np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 491                                              ((i + 1) % TX_RING_SIZE) *
 492                                              sizeof(struct netdev_desc));
 493        }
 494
 495        /* Initialize Rx descriptors & allocate buffers */
 496        for (i = 0; i < RX_RING_SIZE; i++) {
 497                /* Allocated fixed size of skbuff */
 498                struct sk_buff *skb;
 499
 500                skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 501                np->rx_skbuff[i] = skb;
 502                if (!skb) {
 503                        free_list(dev);
 504                        return -ENOMEM;
 505                }
 506
 507                np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 508                                                ((i + 1) % RX_RING_SIZE) *
 509                                                sizeof(struct netdev_desc));
 510                /* Rubicon now supports 40 bits of addressing space. */
 511                np->rx_ring[i].fraginfo =
 512                    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
 513                                               np->rx_buf_sz, DMA_FROM_DEVICE));
 514                np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 515        }
 516
 517        return 0;
 518}
 519
 520static void rio_hw_init(struct net_device *dev)
 521{
 522        struct netdev_private *np = netdev_priv(dev);
 523        void __iomem *ioaddr = np->ioaddr;
 524        int i;
 525        u16 macctrl;
 526
 527        /* Reset all logic functions */
 528        dw16(ASICCtrl + 2,
 529             GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 530        mdelay(10);
 531
 532        rio_set_led_mode(dev);
 533
 534        /* DebugCtrl bit 4, 5, 9 must set */
 535        dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 536
 537        if (np->chip_id == CHIP_IP1000A &&
 538            (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 539                /* PHY magic taken from ipg driver, undocumented registers */
 540                mii_write(dev, np->phy_addr, 31, 0x0001);
 541                mii_write(dev, np->phy_addr, 27, 0x01e0);
 542                mii_write(dev, np->phy_addr, 31, 0x0002);
 543                mii_write(dev, np->phy_addr, 27, 0xeb8e);
 544                mii_write(dev, np->phy_addr, 31, 0x0000);
 545                mii_write(dev, np->phy_addr, 30, 0x005e);
 546                /* advertise 1000BASE-T half & full duplex, prefer MASTER */
 547                mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 548        }
 549
 550        if (np->phy_media)
 551                mii_set_media_pcs(dev);
 552        else
 553                mii_set_media(dev);
 554
 555        /* Jumbo frame */
 556        if (np->jumbo != 0)
 557                dw16(MaxFrameSize, MAX_JUMBO+14);
 558
 559        /* Set RFDListPtr */
 560        dw32(RFDListPtr0, np->rx_ring_dma);
 561        dw32(RFDListPtr1, 0);
 562
 563        /* Set station address */
 564        /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 565         * too. However, it doesn't work on IP1000A so we use 16-bit access.
 566         */
 567        for (i = 0; i < 3; i++)
 568                dw16(StationAddr0 + 2 * i,
 569                     cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
 570
 571        set_multicast (dev);
 572        if (np->coalesce) {
 573                dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 574        }
 575        /* Set RIO to poll every N*320nsec. */
 576        dw8(RxDMAPollPeriod, 0x20);
 577        dw8(TxDMAPollPeriod, 0xff);
 578        dw8(RxDMABurstThresh, 0x30);
 579        dw8(RxDMAUrgentThresh, 0x30);
 580        dw32(RmonStatMask, 0x0007ffff);
 581        /* clear statistics */
 582        clear_stats (dev);
 583
 584        /* VLAN supported */
 585        if (np->vlan) {
 586                /* priority field in RxDMAIntCtrl  */
 587                dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 588                /* VLANId */
 589                dw16(VLANId, np->vlan);
 590                /* Length/Type should be 0x8100 */
 591                dw32(VLANTag, 0x8100 << 16 | np->vlan);
 592                /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 593                   VLAN information tagged by TFC' VID, CFI fields. */
 594                dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 595        }
 596
 597        /* Start Tx/Rx */
 598        dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 599
 600        macctrl = 0;
 601        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 602        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 603        macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 604        macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 605        dw16(MACCtrl, macctrl);
 606}
 607
 608static void rio_hw_stop(struct net_device *dev)
 609{
 610        struct netdev_private *np = netdev_priv(dev);
 611        void __iomem *ioaddr = np->ioaddr;
 612
 613        /* Disable interrupts */
 614        dw16(IntEnable, 0);
 615
 616        /* Stop Tx and Rx logics */
 617        dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 618}
 619
 620static int rio_open(struct net_device *dev)
 621{
 622        struct netdev_private *np = netdev_priv(dev);
 623        const int irq = np->pdev->irq;
 624        int i;
 625
 626        i = alloc_list(dev);
 627        if (i)
 628                return i;
 629
 630        rio_hw_init(dev);
 631
 632        i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 633        if (i) {
 634                rio_hw_stop(dev);
 635                free_list(dev);
 636                return i;
 637        }
 638
 639        timer_setup(&np->timer, rio_timer, 0);
 640        np->timer.expires = jiffies + 1 * HZ;
 641        add_timer(&np->timer);
 642
 643        netif_start_queue (dev);
 644
 645        dl2k_enable_int(np);
 646        return 0;
 647}
 648
 649static void
 650rio_timer (struct timer_list *t)
 651{
 652        struct netdev_private *np = from_timer(np, t, timer);
 653        struct net_device *dev = pci_get_drvdata(np->pdev);
 654        unsigned int entry;
 655        int next_tick = 1*HZ;
 656        unsigned long flags;
 657
 658        spin_lock_irqsave(&np->rx_lock, flags);
 659        /* Recover rx ring exhausted error */
 660        if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 661                printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 662                /* Re-allocate skbuffs to fill the descriptor ring */
 663                for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 664                        struct sk_buff *skb;
 665                        entry = np->old_rx % RX_RING_SIZE;
 666                        /* Dropped packets don't need to re-allocate */
 667                        if (np->rx_skbuff[entry] == NULL) {
 668                                skb = netdev_alloc_skb_ip_align(dev,
 669                                                                np->rx_buf_sz);
 670                                if (skb == NULL) {
 671                                        np->rx_ring[entry].fraginfo = 0;
 672                                        printk (KERN_INFO
 673                                                "%s: Still unable to re-allocate Rx skbuff.#%d\n",
 674                                                dev->name, entry);
 675                                        break;
 676                                }
 677                                np->rx_skbuff[entry] = skb;
 678                                np->rx_ring[entry].fraginfo =
 679                                    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 680                                                                np->rx_buf_sz, DMA_FROM_DEVICE));
 681                        }
 682                        np->rx_ring[entry].fraginfo |=
 683                            cpu_to_le64((u64)np->rx_buf_sz << 48);
 684                        np->rx_ring[entry].status = 0;
 685                } /* end for */
 686        } /* end if */
 687        spin_unlock_irqrestore (&np->rx_lock, flags);
 688        np->timer.expires = jiffies + next_tick;
 689        add_timer(&np->timer);
 690}
 691
 692static void
 693rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
 694{
 695        struct netdev_private *np = netdev_priv(dev);
 696        void __iomem *ioaddr = np->ioaddr;
 697
 698        printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 699                dev->name, dr32(TxStatus));
 700        rio_free_tx(dev, 0);
 701        dev->if_port = 0;
 702        netif_trans_update(dev); /* prevent tx timeout */
 703}
 704
 705static netdev_tx_t
 706start_xmit (struct sk_buff *skb, struct net_device *dev)
 707{
 708        struct netdev_private *np = netdev_priv(dev);
 709        void __iomem *ioaddr = np->ioaddr;
 710        struct netdev_desc *txdesc;
 711        unsigned entry;
 712        u64 tfc_vlan_tag = 0;
 713
 714        if (np->link_status == 0) {     /* Link Down */
 715                dev_kfree_skb(skb);
 716                return NETDEV_TX_OK;
 717        }
 718        entry = np->cur_tx % TX_RING_SIZE;
 719        np->tx_skbuff[entry] = skb;
 720        txdesc = &np->tx_ring[entry];
 721
 722#if 0
 723        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 724                txdesc->status |=
 725                    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 726                                 IPChecksumEnable);
 727        }
 728#endif
 729        if (np->vlan) {
 730                tfc_vlan_tag = VLANTagInsert |
 731                    ((u64)np->vlan << 32) |
 732                    ((u64)skb->priority << 45);
 733        }
 734        txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 735                                                       skb->len, DMA_TO_DEVICE));
 736        txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 737
 738        /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 739         * Work around: Always use 1 descriptor in 10Mbps mode */
 740        if (entry % np->tx_coalesce == 0 || np->speed == 10)
 741                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 742                                              WordAlignDisable |
 743                                              TxDMAIndicate |
 744                                              (1 << FragCountShift));
 745        else
 746                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 747                                              WordAlignDisable |
 748                                              (1 << FragCountShift));
 749
 750        /* TxDMAPollNow */
 751        dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 752        /* Schedule ISR */
 753        dw32(CountDown, 10000);
 754        np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 755        if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 756                        < TX_QUEUE_LEN - 1 && np->speed != 10) {
 757                /* do nothing */
 758        } else if (!netif_queue_stopped(dev)) {
 759                netif_stop_queue (dev);
 760        }
 761
 762        /* The first TFDListPtr */
 763        if (!dr32(TFDListPtr0)) {
 764                dw32(TFDListPtr0, np->tx_ring_dma +
 765                     entry * sizeof (struct netdev_desc));
 766                dw32(TFDListPtr1, 0);
 767        }
 768
 769        return NETDEV_TX_OK;
 770}
 771
 772static irqreturn_t
 773rio_interrupt (int irq, void *dev_instance)
 774{
 775        struct net_device *dev = dev_instance;
 776        struct netdev_private *np = netdev_priv(dev);
 777        void __iomem *ioaddr = np->ioaddr;
 778        unsigned int_status;
 779        int cnt = max_intrloop;
 780        int handled = 0;
 781
 782        while (1) {
 783                int_status = dr16(IntStatus);
 784                dw16(IntStatus, int_status);
 785                int_status &= DEFAULT_INTR;
 786                if (int_status == 0 || --cnt < 0)
 787                        break;
 788                handled = 1;
 789                /* Processing received packets */
 790                if (int_status & RxDMAComplete)
 791                        receive_packet (dev);
 792                /* TxDMAComplete interrupt */
 793                if ((int_status & (TxDMAComplete|IntRequested))) {
 794                        int tx_status;
 795                        tx_status = dr32(TxStatus);
 796                        if (tx_status & 0x01)
 797                                tx_error (dev, tx_status);
 798                        /* Free used tx skbuffs */
 799                        rio_free_tx (dev, 1);
 800                }
 801
 802                /* Handle uncommon events */
 803                if (int_status &
 804                    (HostError | LinkEvent | UpdateStats))
 805                        rio_error (dev, int_status);
 806        }
 807        if (np->cur_tx != np->old_tx)
 808                dw32(CountDown, 100);
 809        return IRQ_RETVAL(handled);
 810}
 811
 812static void
 813rio_free_tx (struct net_device *dev, int irq)
 814{
 815        struct netdev_private *np = netdev_priv(dev);
 816        int entry = np->old_tx % TX_RING_SIZE;
 817        int tx_use = 0;
 818        unsigned long flag = 0;
 819
 820        if (irq)
 821                spin_lock(&np->tx_lock);
 822        else
 823                spin_lock_irqsave(&np->tx_lock, flag);
 824
 825        /* Free used tx skbuffs */
 826        while (entry != np->cur_tx) {
 827                struct sk_buff *skb;
 828
 829                if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 830                        break;
 831                skb = np->tx_skbuff[entry];
 832                dma_unmap_single(&np->pdev->dev,
 833                                 desc_to_dma(&np->tx_ring[entry]), skb->len,
 834                                 DMA_TO_DEVICE);
 835                if (irq)
 836                        dev_consume_skb_irq(skb);
 837                else
 838                        dev_kfree_skb(skb);
 839
 840                np->tx_skbuff[entry] = NULL;
 841                entry = (entry + 1) % TX_RING_SIZE;
 842                tx_use++;
 843        }
 844        if (irq)
 845                spin_unlock(&np->tx_lock);
 846        else
 847                spin_unlock_irqrestore(&np->tx_lock, flag);
 848        np->old_tx = entry;
 849
 850        /* If the ring is no longer full, clear tx_full and
 851           call netif_wake_queue() */
 852
 853        if (netif_queue_stopped(dev) &&
 854            ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 855            < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 856                netif_wake_queue (dev);
 857        }
 858}
 859
 860static void
 861tx_error (struct net_device *dev, int tx_status)
 862{
 863        struct netdev_private *np = netdev_priv(dev);
 864        void __iomem *ioaddr = np->ioaddr;
 865        int frame_id;
 866        int i;
 867
 868        frame_id = (tx_status & 0xffff0000);
 869        printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 870                dev->name, tx_status, frame_id);
 871        dev->stats.tx_errors++;
 872        /* Ttransmit Underrun */
 873        if (tx_status & 0x10) {
 874                dev->stats.tx_fifo_errors++;
 875                dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 876                /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 877                dw16(ASICCtrl + 2,
 878                     TxReset | DMAReset | FIFOReset | NetworkReset);
 879                /* Wait for ResetBusy bit clear */
 880                for (i = 50; i > 0; i--) {
 881                        if (!(dr16(ASICCtrl + 2) & ResetBusy))
 882                                break;
 883                        mdelay (1);
 884                }
 885                rio_set_led_mode(dev);
 886                rio_free_tx (dev, 1);
 887                /* Reset TFDListPtr */
 888                dw32(TFDListPtr0, np->tx_ring_dma +
 889                     np->old_tx * sizeof (struct netdev_desc));
 890                dw32(TFDListPtr1, 0);
 891
 892                /* Let TxStartThresh stay default value */
 893        }
 894        /* Late Collision */
 895        if (tx_status & 0x04) {
 896                dev->stats.tx_fifo_errors++;
 897                /* TxReset and clear FIFO */
 898                dw16(ASICCtrl + 2, TxReset | FIFOReset);
 899                /* Wait reset done */
 900                for (i = 50; i > 0; i--) {
 901                        if (!(dr16(ASICCtrl + 2) & ResetBusy))
 902                                break;
 903                        mdelay (1);
 904                }
 905                rio_set_led_mode(dev);
 906                /* Let TxStartThresh stay default value */
 907        }
 908        /* Maximum Collisions */
 909        if (tx_status & 0x08)
 910                dev->stats.collisions++;
 911        /* Restart the Tx */
 912        dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 913}
 914
 915static int
 916receive_packet (struct net_device *dev)
 917{
 918        struct netdev_private *np = netdev_priv(dev);
 919        int entry = np->cur_rx % RX_RING_SIZE;
 920        int cnt = 30;
 921
 922        /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 923        while (1) {
 924                struct netdev_desc *desc = &np->rx_ring[entry];
 925                int pkt_len;
 926                u64 frame_status;
 927
 928                if (!(desc->status & cpu_to_le64(RFDDone)) ||
 929                    !(desc->status & cpu_to_le64(FrameStart)) ||
 930                    !(desc->status & cpu_to_le64(FrameEnd)))
 931                        break;
 932
 933                /* Chip omits the CRC. */
 934                frame_status = le64_to_cpu(desc->status);
 935                pkt_len = frame_status & 0xffff;
 936                if (--cnt < 0)
 937                        break;
 938                /* Update rx error statistics, drop packet. */
 939                if (frame_status & RFS_Errors) {
 940                        dev->stats.rx_errors++;
 941                        if (frame_status & (RxRuntFrame | RxLengthError))
 942                                dev->stats.rx_length_errors++;
 943                        if (frame_status & RxFCSError)
 944                                dev->stats.rx_crc_errors++;
 945                        if (frame_status & RxAlignmentError && np->speed != 1000)
 946                                dev->stats.rx_frame_errors++;
 947                        if (frame_status & RxFIFOOverrun)
 948                                dev->stats.rx_fifo_errors++;
 949                } else {
 950                        struct sk_buff *skb;
 951
 952                        /* Small skbuffs for short packets */
 953                        if (pkt_len > copy_thresh) {
 954                                dma_unmap_single(&np->pdev->dev,
 955                                                 desc_to_dma(desc),
 956                                                 np->rx_buf_sz,
 957                                                 DMA_FROM_DEVICE);
 958                                skb_put (skb = np->rx_skbuff[entry], pkt_len);
 959                                np->rx_skbuff[entry] = NULL;
 960                        } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 961                                dma_sync_single_for_cpu(&np->pdev->dev,
 962                                                        desc_to_dma(desc),
 963                                                        np->rx_buf_sz,
 964                                                        DMA_FROM_DEVICE);
 965                                skb_copy_to_linear_data (skb,
 966                                                  np->rx_skbuff[entry]->data,
 967                                                  pkt_len);
 968                                skb_put (skb, pkt_len);
 969                                dma_sync_single_for_device(&np->pdev->dev,
 970                                                           desc_to_dma(desc),
 971                                                           np->rx_buf_sz,
 972                                                           DMA_FROM_DEVICE);
 973                        }
 974                        skb->protocol = eth_type_trans (skb, dev);
 975#if 0
 976                        /* Checksum done by hw, but csum value unavailable. */
 977                        if (np->pdev->pci_rev_id >= 0x0c &&
 978                                !(frame_status & (TCPError | UDPError | IPError))) {
 979                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 980                        }
 981#endif
 982                        netif_rx (skb);
 983                }
 984                entry = (entry + 1) % RX_RING_SIZE;
 985        }
 986        spin_lock(&np->rx_lock);
 987        np->cur_rx = entry;
 988        /* Re-allocate skbuffs to fill the descriptor ring */
 989        entry = np->old_rx;
 990        while (entry != np->cur_rx) {
 991                struct sk_buff *skb;
 992                /* Dropped packets don't need to re-allocate */
 993                if (np->rx_skbuff[entry] == NULL) {
 994                        skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 995                        if (skb == NULL) {
 996                                np->rx_ring[entry].fraginfo = 0;
 997                                printk (KERN_INFO
 998                                        "%s: receive_packet: "
 999                                        "Unable to re-allocate Rx skbuff.#%d\n",
1000                                        dev->name, entry);
1001                                break;
1002                        }
1003                        np->rx_skbuff[entry] = skb;
1004                        np->rx_ring[entry].fraginfo =
1005                            cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1006                                                       np->rx_buf_sz, DMA_FROM_DEVICE));
1007                }
1008                np->rx_ring[entry].fraginfo |=
1009                    cpu_to_le64((u64)np->rx_buf_sz << 48);
1010                np->rx_ring[entry].status = 0;
1011                entry = (entry + 1) % RX_RING_SIZE;
1012        }
1013        np->old_rx = entry;
1014        spin_unlock(&np->rx_lock);
1015        return 0;
1016}
1017
1018static void
1019rio_error (struct net_device *dev, int int_status)
1020{
1021        struct netdev_private *np = netdev_priv(dev);
1022        void __iomem *ioaddr = np->ioaddr;
1023        u16 macctrl;
1024
1025        /* Link change event */
1026        if (int_status & LinkEvent) {
1027                if (mii_wait_link (dev, 10) == 0) {
1028                        printk (KERN_INFO "%s: Link up\n", dev->name);
1029                        if (np->phy_media)
1030                                mii_get_media_pcs (dev);
1031                        else
1032                                mii_get_media (dev);
1033                        if (np->speed == 1000)
1034                                np->tx_coalesce = tx_coalesce;
1035                        else
1036                                np->tx_coalesce = 1;
1037                        macctrl = 0;
1038                        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1039                        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1040                        macctrl |= (np->tx_flow) ?
1041                                TxFlowControlEnable : 0;
1042                        macctrl |= (np->rx_flow) ?
1043                                RxFlowControlEnable : 0;
1044                        dw16(MACCtrl, macctrl);
1045                        np->link_status = 1;
1046                        netif_carrier_on(dev);
1047                } else {
1048                        printk (KERN_INFO "%s: Link off\n", dev->name);
1049                        np->link_status = 0;
1050                        netif_carrier_off(dev);
1051                }
1052        }
1053
1054        /* UpdateStats statistics registers */
1055        if (int_status & UpdateStats) {
1056                get_stats (dev);
1057        }
1058
1059        /* PCI Error, a catastronphic error related to the bus interface
1060           occurs, set GlobalReset and HostReset to reset. */
1061        if (int_status & HostError) {
1062                printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1063                        dev->name, int_status);
1064                dw16(ASICCtrl + 2, GlobalReset | HostReset);
1065                mdelay (500);
1066                rio_set_led_mode(dev);
1067        }
1068}
1069
1070static struct net_device_stats *
1071get_stats (struct net_device *dev)
1072{
1073        struct netdev_private *np = netdev_priv(dev);
1074        void __iomem *ioaddr = np->ioaddr;
1075#ifdef MEM_MAPPING
1076        int i;
1077#endif
1078        unsigned int stat_reg;
1079
1080        /* All statistics registers need to be acknowledged,
1081           else statistic overflow could cause problems */
1082
1083        dev->stats.rx_packets += dr32(FramesRcvOk);
1084        dev->stats.tx_packets += dr32(FramesXmtOk);
1085        dev->stats.rx_bytes += dr32(OctetRcvOk);
1086        dev->stats.tx_bytes += dr32(OctetXmtOk);
1087
1088        dev->stats.multicast = dr32(McstFramesRcvdOk);
1089        dev->stats.collisions += dr32(SingleColFrames)
1090                             +  dr32(MultiColFrames);
1091
1092        /* detailed tx errors */
1093        stat_reg = dr16(FramesAbortXSColls);
1094        dev->stats.tx_aborted_errors += stat_reg;
1095        dev->stats.tx_errors += stat_reg;
1096
1097        stat_reg = dr16(CarrierSenseErrors);
1098        dev->stats.tx_carrier_errors += stat_reg;
1099        dev->stats.tx_errors += stat_reg;
1100
1101        /* Clear all other statistic register. */
1102        dr32(McstOctetXmtOk);
1103        dr16(BcstFramesXmtdOk);
1104        dr32(McstFramesXmtdOk);
1105        dr16(BcstFramesRcvdOk);
1106        dr16(MacControlFramesRcvd);
1107        dr16(FrameTooLongErrors);
1108        dr16(InRangeLengthErrors);
1109        dr16(FramesCheckSeqErrors);
1110        dr16(FramesLostRxErrors);
1111        dr32(McstOctetXmtOk);
1112        dr32(BcstOctetXmtOk);
1113        dr32(McstFramesXmtdOk);
1114        dr32(FramesWDeferredXmt);
1115        dr32(LateCollisions);
1116        dr16(BcstFramesXmtdOk);
1117        dr16(MacControlFramesXmtd);
1118        dr16(FramesWEXDeferal);
1119
1120#ifdef MEM_MAPPING
1121        for (i = 0x100; i <= 0x150; i += 4)
1122                dr32(i);
1123#endif
1124        dr16(TxJumboFrames);
1125        dr16(RxJumboFrames);
1126        dr16(TCPCheckSumErrors);
1127        dr16(UDPCheckSumErrors);
1128        dr16(IPCheckSumErrors);
1129        return &dev->stats;
1130}
1131
1132static int
1133clear_stats (struct net_device *dev)
1134{
1135        struct netdev_private *np = netdev_priv(dev);
1136        void __iomem *ioaddr = np->ioaddr;
1137#ifdef MEM_MAPPING
1138        int i;
1139#endif
1140
1141        /* All statistics registers need to be acknowledged,
1142           else statistic overflow could cause problems */
1143        dr32(FramesRcvOk);
1144        dr32(FramesXmtOk);
1145        dr32(OctetRcvOk);
1146        dr32(OctetXmtOk);
1147
1148        dr32(McstFramesRcvdOk);
1149        dr32(SingleColFrames);
1150        dr32(MultiColFrames);
1151        dr32(LateCollisions);
1152        /* detailed rx errors */
1153        dr16(FrameTooLongErrors);
1154        dr16(InRangeLengthErrors);
1155        dr16(FramesCheckSeqErrors);
1156        dr16(FramesLostRxErrors);
1157
1158        /* detailed tx errors */
1159        dr16(FramesAbortXSColls);
1160        dr16(CarrierSenseErrors);
1161
1162        /* Clear all other statistic register. */
1163        dr32(McstOctetXmtOk);
1164        dr16(BcstFramesXmtdOk);
1165        dr32(McstFramesXmtdOk);
1166        dr16(BcstFramesRcvdOk);
1167        dr16(MacControlFramesRcvd);
1168        dr32(McstOctetXmtOk);
1169        dr32(BcstOctetXmtOk);
1170        dr32(McstFramesXmtdOk);
1171        dr32(FramesWDeferredXmt);
1172        dr16(BcstFramesXmtdOk);
1173        dr16(MacControlFramesXmtd);
1174        dr16(FramesWEXDeferal);
1175#ifdef MEM_MAPPING
1176        for (i = 0x100; i <= 0x150; i += 4)
1177                dr32(i);
1178#endif
1179        dr16(TxJumboFrames);
1180        dr16(RxJumboFrames);
1181        dr16(TCPCheckSumErrors);
1182        dr16(UDPCheckSumErrors);
1183        dr16(IPCheckSumErrors);
1184        return 0;
1185}
1186
1187static void
1188set_multicast (struct net_device *dev)
1189{
1190        struct netdev_private *np = netdev_priv(dev);
1191        void __iomem *ioaddr = np->ioaddr;
1192        u32 hash_table[2];
1193        u16 rx_mode = 0;
1194
1195        hash_table[0] = hash_table[1] = 0;
1196        /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1197        hash_table[1] |= 0x02000000;
1198        if (dev->flags & IFF_PROMISC) {
1199                /* Receive all frames promiscuously. */
1200                rx_mode = ReceiveAllFrames;
1201        } else if ((dev->flags & IFF_ALLMULTI) ||
1202                        (netdev_mc_count(dev) > multicast_filter_limit)) {
1203                /* Receive broadcast and multicast frames */
1204                rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1205        } else if (!netdev_mc_empty(dev)) {
1206                struct netdev_hw_addr *ha;
1207                /* Receive broadcast frames and multicast frames filtering
1208                   by Hashtable */
1209                rx_mode =
1210                    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1211                netdev_for_each_mc_addr(ha, dev) {
1212                        int bit, index = 0;
1213                        int crc = ether_crc_le(ETH_ALEN, ha->addr);
1214                        /* The inverted high significant 6 bits of CRC are
1215                           used as an index to hashtable */
1216                        for (bit = 0; bit < 6; bit++)
1217                                if (crc & (1 << (31 - bit)))
1218                                        index |= (1 << bit);
1219                        hash_table[index / 32] |= (1 << (index % 32));
1220                }
1221        } else {
1222                rx_mode = ReceiveBroadcast | ReceiveUnicast;
1223        }
1224        if (np->vlan) {
1225                /* ReceiveVLANMatch field in ReceiveMode */
1226                rx_mode |= ReceiveVLANMatch;
1227        }
1228
1229        dw32(HashTable0, hash_table[0]);
1230        dw32(HashTable1, hash_table[1]);
1231        dw16(ReceiveMode, rx_mode);
1232}
1233
1234static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1235{
1236        struct netdev_private *np = netdev_priv(dev);
1237
1238        strlcpy(info->driver, "dl2k", sizeof(info->driver));
1239        strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1240}
1241
1242static int rio_get_link_ksettings(struct net_device *dev,
1243                                  struct ethtool_link_ksettings *cmd)
1244{
1245        struct netdev_private *np = netdev_priv(dev);
1246        u32 supported, advertising;
1247
1248        if (np->phy_media) {
1249                /* fiber device */
1250                supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1251                advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1252                cmd->base.port = PORT_FIBRE;
1253        } else {
1254                /* copper device */
1255                supported = SUPPORTED_10baseT_Half |
1256                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1257                        | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1258                        SUPPORTED_Autoneg | SUPPORTED_MII;
1259                advertising = ADVERTISED_10baseT_Half |
1260                        ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1261                        ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1262                        ADVERTISED_Autoneg | ADVERTISED_MII;
1263                cmd->base.port = PORT_MII;
1264        }
1265        if (np->link_status) {
1266                cmd->base.speed = np->speed;
1267                cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1268        } else {
1269                cmd->base.speed = SPEED_UNKNOWN;
1270                cmd->base.duplex = DUPLEX_UNKNOWN;
1271        }
1272        if (np->an_enable)
1273                cmd->base.autoneg = AUTONEG_ENABLE;
1274        else
1275                cmd->base.autoneg = AUTONEG_DISABLE;
1276
1277        cmd->base.phy_address = np->phy_addr;
1278
1279        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1280                                                supported);
1281        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1282                                                advertising);
1283
1284        return 0;
1285}
1286
1287static int rio_set_link_ksettings(struct net_device *dev,
1288                                  const struct ethtool_link_ksettings *cmd)
1289{
1290        struct netdev_private *np = netdev_priv(dev);
1291        u32 speed = cmd->base.speed;
1292        u8 duplex = cmd->base.duplex;
1293
1294        netif_carrier_off(dev);
1295        if (cmd->base.autoneg == AUTONEG_ENABLE) {
1296                if (np->an_enable) {
1297                        return 0;
1298                } else {
1299                        np->an_enable = 1;
1300                        mii_set_media(dev);
1301                        return 0;
1302                }
1303        } else {
1304                np->an_enable = 0;
1305                if (np->speed == 1000) {
1306                        speed = SPEED_100;
1307                        duplex = DUPLEX_FULL;
1308                        printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1309                }
1310                switch (speed) {
1311                case SPEED_10:
1312                        np->speed = 10;
1313                        np->full_duplex = (duplex == DUPLEX_FULL);
1314                        break;
1315                case SPEED_100:
1316                        np->speed = 100;
1317                        np->full_duplex = (duplex == DUPLEX_FULL);
1318                        break;
1319                case SPEED_1000: /* not supported */
1320                default:
1321                        return -EINVAL;
1322                }
1323                mii_set_media(dev);
1324        }
1325        return 0;
1326}
1327
1328static u32 rio_get_link(struct net_device *dev)
1329{
1330        struct netdev_private *np = netdev_priv(dev);
1331        return np->link_status;
1332}
1333
1334static const struct ethtool_ops ethtool_ops = {
1335        .get_drvinfo = rio_get_drvinfo,
1336        .get_link = rio_get_link,
1337        .get_link_ksettings = rio_get_link_ksettings,
1338        .set_link_ksettings = rio_set_link_ksettings,
1339};
1340
1341static int
1342rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1343{
1344        int phy_addr;
1345        struct netdev_private *np = netdev_priv(dev);
1346        struct mii_ioctl_data *miidata = if_mii(rq);
1347
1348        phy_addr = np->phy_addr;
1349        switch (cmd) {
1350        case SIOCGMIIPHY:
1351                miidata->phy_id = phy_addr;
1352                break;
1353        case SIOCGMIIREG:
1354                miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1355                break;
1356        case SIOCSMIIREG:
1357                if (!capable(CAP_NET_ADMIN))
1358                        return -EPERM;
1359                mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1360                break;
1361        default:
1362                return -EOPNOTSUPP;
1363        }
1364        return 0;
1365}
1366
1367#define EEP_READ 0x0200
1368#define EEP_BUSY 0x8000
1369/* Read the EEPROM word */
1370/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1371static int read_eeprom(struct netdev_private *np, int eep_addr)
1372{
1373        void __iomem *ioaddr = np->eeprom_addr;
1374        int i = 1000;
1375
1376        dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1377        while (i-- > 0) {
1378                if (!(dr16(EepromCtrl) & EEP_BUSY))
1379                        return dr16(EepromData);
1380        }
1381        return 0;
1382}
1383
1384enum phy_ctrl_bits {
1385        MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1386        MII_DUPLEX = 0x08,
1387};
1388
1389#define mii_delay() dr8(PhyCtrl)
1390static void
1391mii_sendbit (struct net_device *dev, u32 data)
1392{
1393        struct netdev_private *np = netdev_priv(dev);
1394        void __iomem *ioaddr = np->ioaddr;
1395
1396        data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1397        dw8(PhyCtrl, data);
1398        mii_delay ();
1399        dw8(PhyCtrl, data | MII_CLK);
1400        mii_delay ();
1401}
1402
1403static int
1404mii_getbit (struct net_device *dev)
1405{
1406        struct netdev_private *np = netdev_priv(dev);
1407        void __iomem *ioaddr = np->ioaddr;
1408        u8 data;
1409
1410        data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1411        dw8(PhyCtrl, data);
1412        mii_delay ();
1413        dw8(PhyCtrl, data | MII_CLK);
1414        mii_delay ();
1415        return (dr8(PhyCtrl) >> 1) & 1;
1416}
1417
1418static void
1419mii_send_bits (struct net_device *dev, u32 data, int len)
1420{
1421        int i;
1422
1423        for (i = len - 1; i >= 0; i--) {
1424                mii_sendbit (dev, data & (1 << i));
1425        }
1426}
1427
1428static int
1429mii_read (struct net_device *dev, int phy_addr, int reg_num)
1430{
1431        u32 cmd;
1432        int i;
1433        u32 retval = 0;
1434
1435        /* Preamble */
1436        mii_send_bits (dev, 0xffffffff, 32);
1437        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1438        /* ST,OP = 0110'b for read operation */
1439        cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1440        mii_send_bits (dev, cmd, 14);
1441        /* Turnaround */
1442        if (mii_getbit (dev))
1443                goto err_out;
1444        /* Read data */
1445        for (i = 0; i < 16; i++) {
1446                retval |= mii_getbit (dev);
1447                retval <<= 1;
1448        }
1449        /* End cycle */
1450        mii_getbit (dev);
1451        return (retval >> 1) & 0xffff;
1452
1453      err_out:
1454        return 0;
1455}
1456static int
1457mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1458{
1459        u32 cmd;
1460
1461        /* Preamble */
1462        mii_send_bits (dev, 0xffffffff, 32);
1463        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1464        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1465        cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1466        mii_send_bits (dev, cmd, 32);
1467        /* End cycle */
1468        mii_getbit (dev);
1469        return 0;
1470}
1471static int
1472mii_wait_link (struct net_device *dev, int wait)
1473{
1474        __u16 bmsr;
1475        int phy_addr;
1476        struct netdev_private *np;
1477
1478        np = netdev_priv(dev);
1479        phy_addr = np->phy_addr;
1480
1481        do {
1482                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1483                if (bmsr & BMSR_LSTATUS)
1484                        return 0;
1485                mdelay (1);
1486        } while (--wait > 0);
1487        return -1;
1488}
1489static int
1490mii_get_media (struct net_device *dev)
1491{
1492        __u16 negotiate;
1493        __u16 bmsr;
1494        __u16 mscr;
1495        __u16 mssr;
1496        int phy_addr;
1497        struct netdev_private *np;
1498
1499        np = netdev_priv(dev);
1500        phy_addr = np->phy_addr;
1501
1502        bmsr = mii_read (dev, phy_addr, MII_BMSR);
1503        if (np->an_enable) {
1504                if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1505                        /* Auto-Negotiation not completed */
1506                        return -1;
1507                }
1508                negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1509                        mii_read (dev, phy_addr, MII_LPA);
1510                mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1511                mssr = mii_read (dev, phy_addr, MII_STAT1000);
1512                if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1513                        np->speed = 1000;
1514                        np->full_duplex = 1;
1515                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1516                } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1517                        np->speed = 1000;
1518                        np->full_duplex = 0;
1519                        printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1520                } else if (negotiate & ADVERTISE_100FULL) {
1521                        np->speed = 100;
1522                        np->full_duplex = 1;
1523                        printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1524                } else if (negotiate & ADVERTISE_100HALF) {
1525                        np->speed = 100;
1526                        np->full_duplex = 0;
1527                        printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1528                } else if (negotiate & ADVERTISE_10FULL) {
1529                        np->speed = 10;
1530                        np->full_duplex = 1;
1531                        printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1532                } else if (negotiate & ADVERTISE_10HALF) {
1533                        np->speed = 10;
1534                        np->full_duplex = 0;
1535                        printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1536                }
1537                if (negotiate & ADVERTISE_PAUSE_CAP) {
1538                        np->tx_flow &= 1;
1539                        np->rx_flow &= 1;
1540                } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1541                        np->tx_flow = 0;
1542                        np->rx_flow &= 1;
1543                }
1544                /* else tx_flow, rx_flow = user select  */
1545        } else {
1546                __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1547                switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1548                case BMCR_SPEED1000:
1549                        printk (KERN_INFO "Operating at 1000 Mbps, ");
1550                        break;
1551                case BMCR_SPEED100:
1552                        printk (KERN_INFO "Operating at 100 Mbps, ");
1553                        break;
1554                case 0:
1555                        printk (KERN_INFO "Operating at 10 Mbps, ");
1556                }
1557                if (bmcr & BMCR_FULLDPLX) {
1558                        printk (KERN_CONT "Full duplex\n");
1559                } else {
1560                        printk (KERN_CONT "Half duplex\n");
1561                }
1562        }
1563        if (np->tx_flow)
1564                printk(KERN_INFO "Enable Tx Flow Control\n");
1565        else
1566                printk(KERN_INFO "Disable Tx Flow Control\n");
1567        if (np->rx_flow)
1568                printk(KERN_INFO "Enable Rx Flow Control\n");
1569        else
1570                printk(KERN_INFO "Disable Rx Flow Control\n");
1571
1572        return 0;
1573}
1574
1575static int
1576mii_set_media (struct net_device *dev)
1577{
1578        __u16 pscr;
1579        __u16 bmcr;
1580        __u16 bmsr;
1581        __u16 anar;
1582        int phy_addr;
1583        struct netdev_private *np;
1584        np = netdev_priv(dev);
1585        phy_addr = np->phy_addr;
1586
1587        /* Does user set speed? */
1588        if (np->an_enable) {
1589                /* Advertise capabilities */
1590                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1591                anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1592                        ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1593                          ADVERTISE_100HALF | ADVERTISE_10HALF |
1594                          ADVERTISE_100BASE4);
1595                if (bmsr & BMSR_100FULL)
1596                        anar |= ADVERTISE_100FULL;
1597                if (bmsr & BMSR_100HALF)
1598                        anar |= ADVERTISE_100HALF;
1599                if (bmsr & BMSR_100BASE4)
1600                        anar |= ADVERTISE_100BASE4;
1601                if (bmsr & BMSR_10FULL)
1602                        anar |= ADVERTISE_10FULL;
1603                if (bmsr & BMSR_10HALF)
1604                        anar |= ADVERTISE_10HALF;
1605                anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1606                mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1607
1608                /* Enable Auto crossover */
1609                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1610                pscr |= 3 << 5; /* 11'b */
1611                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1612
1613                /* Soft reset PHY */
1614                mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1615                bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1616                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1617                mdelay(1);
1618        } else {
1619                /* Force speed setting */
1620                /* 1) Disable Auto crossover */
1621                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1622                pscr &= ~(3 << 5);
1623                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1624
1625                /* 2) PHY Reset */
1626                bmcr = mii_read (dev, phy_addr, MII_BMCR);
1627                bmcr |= BMCR_RESET;
1628                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629
1630                /* 3) Power Down */
1631                bmcr = 0x1940;  /* must be 0x1940 */
1632                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1633                mdelay (100);   /* wait a certain time */
1634
1635                /* 4) Advertise nothing */
1636                mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1637
1638                /* 5) Set media and Power Up */
1639                bmcr = BMCR_PDOWN;
1640                if (np->speed == 100) {
1641                        bmcr |= BMCR_SPEED100;
1642                        printk (KERN_INFO "Manual 100 Mbps, ");
1643                } else if (np->speed == 10) {
1644                        printk (KERN_INFO "Manual 10 Mbps, ");
1645                }
1646                if (np->full_duplex) {
1647                        bmcr |= BMCR_FULLDPLX;
1648                        printk (KERN_CONT "Full duplex\n");
1649                } else {
1650                        printk (KERN_CONT "Half duplex\n");
1651                }
1652#if 0
1653                /* Set 1000BaseT Master/Slave setting */
1654                mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1655                mscr |= MII_MSCR_CFG_ENABLE;
1656                mscr &= ~MII_MSCR_CFG_VALUE = 0;
1657#endif
1658                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1659                mdelay(10);
1660        }
1661        return 0;
1662}
1663
1664static int
1665mii_get_media_pcs (struct net_device *dev)
1666{
1667        __u16 negotiate;
1668        __u16 bmsr;
1669        int phy_addr;
1670        struct netdev_private *np;
1671
1672        np = netdev_priv(dev);
1673        phy_addr = np->phy_addr;
1674
1675        bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1676        if (np->an_enable) {
1677                if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1678                        /* Auto-Negotiation not completed */
1679                        return -1;
1680                }
1681                negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1682                        mii_read (dev, phy_addr, PCS_ANLPAR);
1683                np->speed = 1000;
1684                if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1685                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1686                        np->full_duplex = 1;
1687                } else {
1688                        printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1689                        np->full_duplex = 0;
1690                }
1691                if (negotiate & PCS_ANAR_PAUSE) {
1692                        np->tx_flow &= 1;
1693                        np->rx_flow &= 1;
1694                } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1695                        np->tx_flow = 0;
1696                        np->rx_flow &= 1;
1697                }
1698                /* else tx_flow, rx_flow = user select  */
1699        } else {
1700                __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1701                printk (KERN_INFO "Operating at 1000 Mbps, ");
1702                if (bmcr & BMCR_FULLDPLX) {
1703                        printk (KERN_CONT "Full duplex\n");
1704                } else {
1705                        printk (KERN_CONT "Half duplex\n");
1706                }
1707        }
1708        if (np->tx_flow)
1709                printk(KERN_INFO "Enable Tx Flow Control\n");
1710        else
1711                printk(KERN_INFO "Disable Tx Flow Control\n");
1712        if (np->rx_flow)
1713                printk(KERN_INFO "Enable Rx Flow Control\n");
1714        else
1715                printk(KERN_INFO "Disable Rx Flow Control\n");
1716
1717        return 0;
1718}
1719
1720static int
1721mii_set_media_pcs (struct net_device *dev)
1722{
1723        __u16 bmcr;
1724        __u16 esr;
1725        __u16 anar;
1726        int phy_addr;
1727        struct netdev_private *np;
1728        np = netdev_priv(dev);
1729        phy_addr = np->phy_addr;
1730
1731        /* Auto-Negotiation? */
1732        if (np->an_enable) {
1733                /* Advertise capabilities */
1734                esr = mii_read (dev, phy_addr, PCS_ESR);
1735                anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1736                        ~PCS_ANAR_HALF_DUPLEX &
1737                        ~PCS_ANAR_FULL_DUPLEX;
1738                if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1739                        anar |= PCS_ANAR_HALF_DUPLEX;
1740                if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1741                        anar |= PCS_ANAR_FULL_DUPLEX;
1742                anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1743                mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1744
1745                /* Soft reset PHY */
1746                mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1747                bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1748                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1749                mdelay(1);
1750        } else {
1751                /* Force speed setting */
1752                /* PHY Reset */
1753                bmcr = BMCR_RESET;
1754                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1755                mdelay(10);
1756                if (np->full_duplex) {
1757                        bmcr = BMCR_FULLDPLX;
1758                        printk (KERN_INFO "Manual full duplex\n");
1759                } else {
1760                        bmcr = 0;
1761                        printk (KERN_INFO "Manual half duplex\n");
1762                }
1763                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1764                mdelay(10);
1765
1766                /*  Advertise nothing */
1767                mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1768        }
1769        return 0;
1770}
1771
1772
1773static int
1774rio_close (struct net_device *dev)
1775{
1776        struct netdev_private *np = netdev_priv(dev);
1777        struct pci_dev *pdev = np->pdev;
1778
1779        netif_stop_queue (dev);
1780
1781        rio_hw_stop(dev);
1782
1783        free_irq(pdev->irq, dev);
1784        del_timer_sync (&np->timer);
1785
1786        free_list(dev);
1787
1788        return 0;
1789}
1790
1791static void
1792rio_remove1 (struct pci_dev *pdev)
1793{
1794        struct net_device *dev = pci_get_drvdata (pdev);
1795
1796        if (dev) {
1797                struct netdev_private *np = netdev_priv(dev);
1798
1799                unregister_netdev (dev);
1800                dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1801                                  np->rx_ring_dma);
1802                dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1803                                  np->tx_ring_dma);
1804#ifdef MEM_MAPPING
1805                pci_iounmap(pdev, np->ioaddr);
1806#endif
1807                pci_iounmap(pdev, np->eeprom_addr);
1808                free_netdev (dev);
1809                pci_release_regions (pdev);
1810                pci_disable_device (pdev);
1811        }
1812}
1813
1814#ifdef CONFIG_PM_SLEEP
1815static int rio_suspend(struct device *device)
1816{
1817        struct net_device *dev = dev_get_drvdata(device);
1818        struct netdev_private *np = netdev_priv(dev);
1819
1820        if (!netif_running(dev))
1821                return 0;
1822
1823        netif_device_detach(dev);
1824        del_timer_sync(&np->timer);
1825        rio_hw_stop(dev);
1826
1827        return 0;
1828}
1829
1830static int rio_resume(struct device *device)
1831{
1832        struct net_device *dev = dev_get_drvdata(device);
1833        struct netdev_private *np = netdev_priv(dev);
1834
1835        if (!netif_running(dev))
1836                return 0;
1837
1838        rio_reset_ring(np);
1839        rio_hw_init(dev);
1840        np->timer.expires = jiffies + 1 * HZ;
1841        add_timer(&np->timer);
1842        netif_device_attach(dev);
1843        dl2k_enable_int(np);
1844
1845        return 0;
1846}
1847
1848static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1849#define RIO_PM_OPS    (&rio_pm_ops)
1850
1851#else
1852
1853#define RIO_PM_OPS      NULL
1854
1855#endif /* CONFIG_PM_SLEEP */
1856
1857static struct pci_driver rio_driver = {
1858        .name           = "dl2k",
1859        .id_table       = rio_pci_tbl,
1860        .probe          = rio_probe1,
1861        .remove         = rio_remove1,
1862        .driver.pm      = RIO_PM_OPS,
1863};
1864
1865module_pci_driver(rio_driver);
1866
1867/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1868