linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
   3
   4/* ethtool support for e1000 */
   5
   6#include "e1000.h"
   7#include <linux/jiffies.h>
   8#include <linux/uaccess.h>
   9
  10enum {NETDEV_STATS, E1000_STATS};
  11
  12struct e1000_stats {
  13        char stat_string[ETH_GSTRING_LEN];
  14        int type;
  15        int sizeof_stat;
  16        int stat_offset;
  17};
  18
  19#define E1000_STAT(m)           E1000_STATS, \
  20                                sizeof(((struct e1000_adapter *)0)->m), \
  21                                offsetof(struct e1000_adapter, m)
  22#define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
  23                                sizeof(((struct net_device *)0)->m), \
  24                                offsetof(struct net_device, m)
  25
  26static const struct e1000_stats e1000_gstrings_stats[] = {
  27        { "rx_packets", E1000_STAT(stats.gprc) },
  28        { "tx_packets", E1000_STAT(stats.gptc) },
  29        { "rx_bytes", E1000_STAT(stats.gorcl) },
  30        { "tx_bytes", E1000_STAT(stats.gotcl) },
  31        { "rx_broadcast", E1000_STAT(stats.bprc) },
  32        { "tx_broadcast", E1000_STAT(stats.bptc) },
  33        { "rx_multicast", E1000_STAT(stats.mprc) },
  34        { "tx_multicast", E1000_STAT(stats.mptc) },
  35        { "rx_errors", E1000_STAT(stats.rxerrc) },
  36        { "tx_errors", E1000_STAT(stats.txerrc) },
  37        { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  38        { "multicast", E1000_STAT(stats.mprc) },
  39        { "collisions", E1000_STAT(stats.colc) },
  40        { "rx_length_errors", E1000_STAT(stats.rlerrc) },
  41        { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  42        { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  43        { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  44        { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  45        { "rx_missed_errors", E1000_STAT(stats.mpc) },
  46        { "tx_aborted_errors", E1000_STAT(stats.ecol) },
  47        { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  48        { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  49        { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  50        { "tx_window_errors", E1000_STAT(stats.latecol) },
  51        { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  52        { "tx_deferred_ok", E1000_STAT(stats.dc) },
  53        { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  54        { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  55        { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  56        { "tx_restart_queue", E1000_STAT(restart_queue) },
  57        { "rx_long_length_errors", E1000_STAT(stats.roc) },
  58        { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  59        { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  60        { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  61        { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  62        { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  63        { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  64        { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  65        { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  66        { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  67        { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  68        { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  69        { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  70        { "tx_smbus", E1000_STAT(stats.mgptc) },
  71        { "rx_smbus", E1000_STAT(stats.mgprc) },
  72        { "dropped_smbus", E1000_STAT(stats.mgpdc) },
  73};
  74
  75#define E1000_QUEUE_STATS_LEN 0
  76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  79        "Register test  (offline)", "Eeprom test    (offline)",
  80        "Interrupt test (offline)", "Loopback test  (offline)",
  81        "Link test   (on/offline)"
  82};
  83
  84#define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
  85
  86static int e1000_get_link_ksettings(struct net_device *netdev,
  87                                    struct ethtool_link_ksettings *cmd)
  88{
  89        struct e1000_adapter *adapter = netdev_priv(netdev);
  90        struct e1000_hw *hw = &adapter->hw;
  91        u32 supported, advertising;
  92
  93        if (hw->media_type == e1000_media_type_copper) {
  94                supported = (SUPPORTED_10baseT_Half |
  95                             SUPPORTED_10baseT_Full |
  96                             SUPPORTED_100baseT_Half |
  97                             SUPPORTED_100baseT_Full |
  98                             SUPPORTED_1000baseT_Full|
  99                             SUPPORTED_Autoneg |
 100                             SUPPORTED_TP);
 101                advertising = ADVERTISED_TP;
 102
 103                if (hw->autoneg == 1) {
 104                        advertising |= ADVERTISED_Autoneg;
 105                        /* the e1000 autoneg seems to match ethtool nicely */
 106                        advertising |= hw->autoneg_advertised;
 107                }
 108
 109                cmd->base.port = PORT_TP;
 110                cmd->base.phy_address = hw->phy_addr;
 111        } else {
 112                supported   = (SUPPORTED_1000baseT_Full |
 113                               SUPPORTED_FIBRE |
 114                               SUPPORTED_Autoneg);
 115
 116                advertising = (ADVERTISED_1000baseT_Full |
 117                               ADVERTISED_FIBRE |
 118                               ADVERTISED_Autoneg);
 119
 120                cmd->base.port = PORT_FIBRE;
 121        }
 122
 123        if (er32(STATUS) & E1000_STATUS_LU) {
 124                e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 125                                           &adapter->link_duplex);
 126                cmd->base.speed = adapter->link_speed;
 127
 128                /* unfortunately FULL_DUPLEX != DUPLEX_FULL
 129                 * and HALF_DUPLEX != DUPLEX_HALF
 130                 */
 131                if (adapter->link_duplex == FULL_DUPLEX)
 132                        cmd->base.duplex = DUPLEX_FULL;
 133                else
 134                        cmd->base.duplex = DUPLEX_HALF;
 135        } else {
 136                cmd->base.speed = SPEED_UNKNOWN;
 137                cmd->base.duplex = DUPLEX_UNKNOWN;
 138        }
 139
 140        cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 141                         hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 142
 143        /* MDI-X => 1; MDI => 0 */
 144        if ((hw->media_type == e1000_media_type_copper) &&
 145            netif_carrier_ok(netdev))
 146                cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 147                                     ETH_TP_MDI_X : ETH_TP_MDI);
 148        else
 149                cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 150
 151        if (hw->mdix == AUTO_ALL_MODES)
 152                cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 153        else
 154                cmd->base.eth_tp_mdix_ctrl = hw->mdix;
 155
 156        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 157                                                supported);
 158        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 159                                                advertising);
 160
 161        return 0;
 162}
 163
 164static int e1000_set_link_ksettings(struct net_device *netdev,
 165                                    const struct ethtool_link_ksettings *cmd)
 166{
 167        struct e1000_adapter *adapter = netdev_priv(netdev);
 168        struct e1000_hw *hw = &adapter->hw;
 169        u32 advertising;
 170
 171        ethtool_convert_link_mode_to_legacy_u32(&advertising,
 172                                                cmd->link_modes.advertising);
 173
 174        /* MDI setting is only allowed when autoneg enabled because
 175         * some hardware doesn't allow MDI setting when speed or
 176         * duplex is forced.
 177         */
 178        if (cmd->base.eth_tp_mdix_ctrl) {
 179                if (hw->media_type != e1000_media_type_copper)
 180                        return -EOPNOTSUPP;
 181
 182                if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 183                    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 184                        e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 185                        return -EINVAL;
 186                }
 187        }
 188
 189        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 190                msleep(1);
 191
 192        if (cmd->base.autoneg == AUTONEG_ENABLE) {
 193                hw->autoneg = 1;
 194                if (hw->media_type == e1000_media_type_fiber)
 195                        hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 196                                                 ADVERTISED_FIBRE |
 197                                                 ADVERTISED_Autoneg;
 198                else
 199                        hw->autoneg_advertised = advertising |
 200                                                 ADVERTISED_TP |
 201                                                 ADVERTISED_Autoneg;
 202        } else {
 203                u32 speed = cmd->base.speed;
 204                /* calling this overrides forced MDI setting */
 205                if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 206                        clear_bit(__E1000_RESETTING, &adapter->flags);
 207                        return -EINVAL;
 208                }
 209        }
 210
 211        /* MDI-X => 2; MDI => 1; Auto => 3 */
 212        if (cmd->base.eth_tp_mdix_ctrl) {
 213                if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 214                        hw->mdix = AUTO_ALL_MODES;
 215                else
 216                        hw->mdix = cmd->base.eth_tp_mdix_ctrl;
 217        }
 218
 219        /* reset the link */
 220
 221        if (netif_running(adapter->netdev)) {
 222                e1000_down(adapter);
 223                e1000_up(adapter);
 224        } else {
 225                e1000_reset(adapter);
 226        }
 227        clear_bit(__E1000_RESETTING, &adapter->flags);
 228        return 0;
 229}
 230
 231static u32 e1000_get_link(struct net_device *netdev)
 232{
 233        struct e1000_adapter *adapter = netdev_priv(netdev);
 234
 235        /* If the link is not reported up to netdev, interrupts are disabled,
 236         * and so the physical link state may have changed since we last
 237         * looked. Set get_link_status to make sure that the true link
 238         * state is interrogated, rather than pulling a cached and possibly
 239         * stale link state from the driver.
 240         */
 241        if (!netif_carrier_ok(netdev))
 242                adapter->hw.get_link_status = 1;
 243
 244        return e1000_has_link(adapter);
 245}
 246
 247static void e1000_get_pauseparam(struct net_device *netdev,
 248                                 struct ethtool_pauseparam *pause)
 249{
 250        struct e1000_adapter *adapter = netdev_priv(netdev);
 251        struct e1000_hw *hw = &adapter->hw;
 252
 253        pause->autoneg =
 254                (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 255
 256        if (hw->fc == E1000_FC_RX_PAUSE) {
 257                pause->rx_pause = 1;
 258        } else if (hw->fc == E1000_FC_TX_PAUSE) {
 259                pause->tx_pause = 1;
 260        } else if (hw->fc == E1000_FC_FULL) {
 261                pause->rx_pause = 1;
 262                pause->tx_pause = 1;
 263        }
 264}
 265
 266static int e1000_set_pauseparam(struct net_device *netdev,
 267                                struct ethtool_pauseparam *pause)
 268{
 269        struct e1000_adapter *adapter = netdev_priv(netdev);
 270        struct e1000_hw *hw = &adapter->hw;
 271        int retval = 0;
 272
 273        adapter->fc_autoneg = pause->autoneg;
 274
 275        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 276                msleep(1);
 277
 278        if (pause->rx_pause && pause->tx_pause)
 279                hw->fc = E1000_FC_FULL;
 280        else if (pause->rx_pause && !pause->tx_pause)
 281                hw->fc = E1000_FC_RX_PAUSE;
 282        else if (!pause->rx_pause && pause->tx_pause)
 283                hw->fc = E1000_FC_TX_PAUSE;
 284        else if (!pause->rx_pause && !pause->tx_pause)
 285                hw->fc = E1000_FC_NONE;
 286
 287        hw->original_fc = hw->fc;
 288
 289        if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 290                if (netif_running(adapter->netdev)) {
 291                        e1000_down(adapter);
 292                        e1000_up(adapter);
 293                } else {
 294                        e1000_reset(adapter);
 295                }
 296        } else
 297                retval = ((hw->media_type == e1000_media_type_fiber) ?
 298                          e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 299
 300        clear_bit(__E1000_RESETTING, &adapter->flags);
 301        return retval;
 302}
 303
 304static u32 e1000_get_msglevel(struct net_device *netdev)
 305{
 306        struct e1000_adapter *adapter = netdev_priv(netdev);
 307
 308        return adapter->msg_enable;
 309}
 310
 311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 312{
 313        struct e1000_adapter *adapter = netdev_priv(netdev);
 314
 315        adapter->msg_enable = data;
 316}
 317
 318static int e1000_get_regs_len(struct net_device *netdev)
 319{
 320#define E1000_REGS_LEN 32
 321        return E1000_REGS_LEN * sizeof(u32);
 322}
 323
 324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 325                           void *p)
 326{
 327        struct e1000_adapter *adapter = netdev_priv(netdev);
 328        struct e1000_hw *hw = &adapter->hw;
 329        u32 *regs_buff = p;
 330        u16 phy_data;
 331
 332        memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 333
 334        regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 335
 336        regs_buff[0]  = er32(CTRL);
 337        regs_buff[1]  = er32(STATUS);
 338
 339        regs_buff[2]  = er32(RCTL);
 340        regs_buff[3]  = er32(RDLEN);
 341        regs_buff[4]  = er32(RDH);
 342        regs_buff[5]  = er32(RDT);
 343        regs_buff[6]  = er32(RDTR);
 344
 345        regs_buff[7]  = er32(TCTL);
 346        regs_buff[8]  = er32(TDLEN);
 347        regs_buff[9]  = er32(TDH);
 348        regs_buff[10] = er32(TDT);
 349        regs_buff[11] = er32(TIDV);
 350
 351        regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 352        if (hw->phy_type == e1000_phy_igp) {
 353                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 354                                    IGP01E1000_PHY_AGC_A);
 355                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 356                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 357                regs_buff[13] = (u32)phy_data; /* cable length */
 358                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 359                                    IGP01E1000_PHY_AGC_B);
 360                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 361                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 362                regs_buff[14] = (u32)phy_data; /* cable length */
 363                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 364                                    IGP01E1000_PHY_AGC_C);
 365                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 366                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 367                regs_buff[15] = (u32)phy_data; /* cable length */
 368                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 369                                    IGP01E1000_PHY_AGC_D);
 370                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 371                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 372                regs_buff[16] = (u32)phy_data; /* cable length */
 373                regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 374                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 375                e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 376                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 377                regs_buff[18] = (u32)phy_data; /* cable polarity */
 378                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 379                                    IGP01E1000_PHY_PCS_INIT_REG);
 380                e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 381                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 382                regs_buff[19] = (u32)phy_data; /* cable polarity */
 383                regs_buff[20] = 0; /* polarity correction enabled (always) */
 384                regs_buff[22] = 0; /* phy receive errors (unavailable) */
 385                regs_buff[23] = regs_buff[18]; /* mdix mode */
 386                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 387        } else {
 388                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 389                regs_buff[13] = (u32)phy_data; /* cable length */
 390                regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 391                regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 392                regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 393                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 394                regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 395                regs_buff[18] = regs_buff[13]; /* cable polarity */
 396                regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 397                regs_buff[20] = regs_buff[17]; /* polarity correction */
 398                /* phy receive errors */
 399                regs_buff[22] = adapter->phy_stats.receive_errors;
 400                regs_buff[23] = regs_buff[13]; /* mdix mode */
 401        }
 402        regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 403        e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 404        regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 405        regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 406        if (hw->mac_type >= e1000_82540 &&
 407            hw->media_type == e1000_media_type_copper) {
 408                regs_buff[26] = er32(MANC);
 409        }
 410}
 411
 412static int e1000_get_eeprom_len(struct net_device *netdev)
 413{
 414        struct e1000_adapter *adapter = netdev_priv(netdev);
 415        struct e1000_hw *hw = &adapter->hw;
 416
 417        return hw->eeprom.word_size * 2;
 418}
 419
 420static int e1000_get_eeprom(struct net_device *netdev,
 421                            struct ethtool_eeprom *eeprom, u8 *bytes)
 422{
 423        struct e1000_adapter *adapter = netdev_priv(netdev);
 424        struct e1000_hw *hw = &adapter->hw;
 425        u16 *eeprom_buff;
 426        int first_word, last_word;
 427        int ret_val = 0;
 428        u16 i;
 429
 430        if (eeprom->len == 0)
 431                return -EINVAL;
 432
 433        eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 434
 435        first_word = eeprom->offset >> 1;
 436        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 437
 438        eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 439                                    GFP_KERNEL);
 440        if (!eeprom_buff)
 441                return -ENOMEM;
 442
 443        if (hw->eeprom.type == e1000_eeprom_spi)
 444                ret_val = e1000_read_eeprom(hw, first_word,
 445                                            last_word - first_word + 1,
 446                                            eeprom_buff);
 447        else {
 448                for (i = 0; i < last_word - first_word + 1; i++) {
 449                        ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 450                                                    &eeprom_buff[i]);
 451                        if (ret_val)
 452                                break;
 453                }
 454        }
 455
 456        /* Device's eeprom is always little-endian, word addressable */
 457        for (i = 0; i < last_word - first_word + 1; i++)
 458                le16_to_cpus(&eeprom_buff[i]);
 459
 460        memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 461               eeprom->len);
 462        kfree(eeprom_buff);
 463
 464        return ret_val;
 465}
 466
 467static int e1000_set_eeprom(struct net_device *netdev,
 468                            struct ethtool_eeprom *eeprom, u8 *bytes)
 469{
 470        struct e1000_adapter *adapter = netdev_priv(netdev);
 471        struct e1000_hw *hw = &adapter->hw;
 472        u16 *eeprom_buff;
 473        void *ptr;
 474        int max_len, first_word, last_word, ret_val = 0;
 475        u16 i;
 476
 477        if (eeprom->len == 0)
 478                return -EOPNOTSUPP;
 479
 480        if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 481                return -EFAULT;
 482
 483        max_len = hw->eeprom.word_size * 2;
 484
 485        first_word = eeprom->offset >> 1;
 486        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 487        eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 488        if (!eeprom_buff)
 489                return -ENOMEM;
 490
 491        ptr = (void *)eeprom_buff;
 492
 493        if (eeprom->offset & 1) {
 494                /* need read/modify/write of first changed EEPROM word
 495                 * only the second byte of the word is being modified
 496                 */
 497                ret_val = e1000_read_eeprom(hw, first_word, 1,
 498                                            &eeprom_buff[0]);
 499                ptr++;
 500        }
 501        if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 502                /* need read/modify/write of last changed EEPROM word
 503                 * only the first byte of the word is being modified
 504                 */
 505                ret_val = e1000_read_eeprom(hw, last_word, 1,
 506                                            &eeprom_buff[last_word - first_word]);
 507        }
 508
 509        /* Device's eeprom is always little-endian, word addressable */
 510        for (i = 0; i < last_word - first_word + 1; i++)
 511                le16_to_cpus(&eeprom_buff[i]);
 512
 513        memcpy(ptr, bytes, eeprom->len);
 514
 515        for (i = 0; i < last_word - first_word + 1; i++)
 516                cpu_to_le16s(&eeprom_buff[i]);
 517
 518        ret_val = e1000_write_eeprom(hw, first_word,
 519                                     last_word - first_word + 1, eeprom_buff);
 520
 521        /* Update the checksum over the first part of the EEPROM if needed */
 522        if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 523                e1000_update_eeprom_checksum(hw);
 524
 525        kfree(eeprom_buff);
 526        return ret_val;
 527}
 528
 529static void e1000_get_drvinfo(struct net_device *netdev,
 530                              struct ethtool_drvinfo *drvinfo)
 531{
 532        struct e1000_adapter *adapter = netdev_priv(netdev);
 533
 534        strlcpy(drvinfo->driver,  e1000_driver_name,
 535                sizeof(drvinfo->driver));
 536
 537        strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 538                sizeof(drvinfo->bus_info));
 539}
 540
 541static void e1000_get_ringparam(struct net_device *netdev,
 542                                struct ethtool_ringparam *ring,
 543                                struct kernel_ethtool_ringparam *kernel_ring,
 544                                struct netlink_ext_ack *extack)
 545{
 546        struct e1000_adapter *adapter = netdev_priv(netdev);
 547        struct e1000_hw *hw = &adapter->hw;
 548        e1000_mac_type mac_type = hw->mac_type;
 549        struct e1000_tx_ring *txdr = adapter->tx_ring;
 550        struct e1000_rx_ring *rxdr = adapter->rx_ring;
 551
 552        ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 553                E1000_MAX_82544_RXD;
 554        ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 555                E1000_MAX_82544_TXD;
 556        ring->rx_pending = rxdr->count;
 557        ring->tx_pending = txdr->count;
 558}
 559
 560static int e1000_set_ringparam(struct net_device *netdev,
 561                               struct ethtool_ringparam *ring,
 562                               struct kernel_ethtool_ringparam *kernel_ring,
 563                               struct netlink_ext_ack *extack)
 564{
 565        struct e1000_adapter *adapter = netdev_priv(netdev);
 566        struct e1000_hw *hw = &adapter->hw;
 567        e1000_mac_type mac_type = hw->mac_type;
 568        struct e1000_tx_ring *txdr, *tx_old;
 569        struct e1000_rx_ring *rxdr, *rx_old;
 570        int i, err;
 571
 572        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 573                return -EINVAL;
 574
 575        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 576                msleep(1);
 577
 578        if (netif_running(adapter->netdev))
 579                e1000_down(adapter);
 580
 581        tx_old = adapter->tx_ring;
 582        rx_old = adapter->rx_ring;
 583
 584        err = -ENOMEM;
 585        txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 586                       GFP_KERNEL);
 587        if (!txdr)
 588                goto err_alloc_tx;
 589
 590        rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 591                       GFP_KERNEL);
 592        if (!rxdr)
 593                goto err_alloc_rx;
 594
 595        adapter->tx_ring = txdr;
 596        adapter->rx_ring = rxdr;
 597
 598        rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
 599        rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
 600                          E1000_MAX_RXD : E1000_MAX_82544_RXD));
 601        rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 602        txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
 603        txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
 604                          E1000_MAX_TXD : E1000_MAX_82544_TXD));
 605        txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 606
 607        for (i = 0; i < adapter->num_tx_queues; i++)
 608                txdr[i].count = txdr->count;
 609        for (i = 0; i < adapter->num_rx_queues; i++)
 610                rxdr[i].count = rxdr->count;
 611
 612        err = 0;
 613        if (netif_running(adapter->netdev)) {
 614                /* Try to get new resources before deleting old */
 615                err = e1000_setup_all_rx_resources(adapter);
 616                if (err)
 617                        goto err_setup_rx;
 618                err = e1000_setup_all_tx_resources(adapter);
 619                if (err)
 620                        goto err_setup_tx;
 621
 622                /* save the new, restore the old in order to free it,
 623                 * then restore the new back again
 624                 */
 625
 626                adapter->rx_ring = rx_old;
 627                adapter->tx_ring = tx_old;
 628                e1000_free_all_rx_resources(adapter);
 629                e1000_free_all_tx_resources(adapter);
 630                adapter->rx_ring = rxdr;
 631                adapter->tx_ring = txdr;
 632                err = e1000_up(adapter);
 633        }
 634        kfree(tx_old);
 635        kfree(rx_old);
 636
 637        clear_bit(__E1000_RESETTING, &adapter->flags);
 638        return err;
 639
 640err_setup_tx:
 641        e1000_free_all_rx_resources(adapter);
 642err_setup_rx:
 643        adapter->rx_ring = rx_old;
 644        adapter->tx_ring = tx_old;
 645        kfree(rxdr);
 646err_alloc_rx:
 647        kfree(txdr);
 648err_alloc_tx:
 649        if (netif_running(adapter->netdev))
 650                e1000_up(adapter);
 651        clear_bit(__E1000_RESETTING, &adapter->flags);
 652        return err;
 653}
 654
 655static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 656                             u32 mask, u32 write)
 657{
 658        struct e1000_hw *hw = &adapter->hw;
 659        static const u32 test[] = {
 660                0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 661        };
 662        u8 __iomem *address = hw->hw_addr + reg;
 663        u32 read;
 664        int i;
 665
 666        for (i = 0; i < ARRAY_SIZE(test); i++) {
 667                writel(write & test[i], address);
 668                read = readl(address);
 669                if (read != (write & test[i] & mask)) {
 670                        e_err(drv, "pattern test reg %04X failed: "
 671                              "got 0x%08X expected 0x%08X\n",
 672                              reg, read, (write & test[i] & mask));
 673                        *data = reg;
 674                        return true;
 675                }
 676        }
 677        return false;
 678}
 679
 680static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 681                              u32 mask, u32 write)
 682{
 683        struct e1000_hw *hw = &adapter->hw;
 684        u8 __iomem *address = hw->hw_addr + reg;
 685        u32 read;
 686
 687        writel(write & mask, address);
 688        read = readl(address);
 689        if ((read & mask) != (write & mask)) {
 690                e_err(drv, "set/check reg %04X test failed: "
 691                      "got 0x%08X expected 0x%08X\n",
 692                      reg, (read & mask), (write & mask));
 693                *data = reg;
 694                return true;
 695        }
 696        return false;
 697}
 698
 699#define REG_PATTERN_TEST(reg, mask, write)                           \
 700        do {                                                         \
 701                if (reg_pattern_test(adapter, data,                  \
 702                             (hw->mac_type >= e1000_82543)   \
 703                             ? E1000_##reg : E1000_82542_##reg,      \
 704                             mask, write))                           \
 705                        return 1;                                    \
 706        } while (0)
 707
 708#define REG_SET_AND_CHECK(reg, mask, write)                          \
 709        do {                                                         \
 710                if (reg_set_and_check(adapter, data,                 \
 711                              (hw->mac_type >= e1000_82543)  \
 712                              ? E1000_##reg : E1000_82542_##reg,     \
 713                              mask, write))                          \
 714                        return 1;                                    \
 715        } while (0)
 716
 717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 718{
 719        u32 value, before, after;
 720        u32 i, toggle;
 721        struct e1000_hw *hw = &adapter->hw;
 722
 723        /* The status register is Read Only, so a write should fail.
 724         * Some bits that get toggled are ignored.
 725         */
 726
 727        /* there are several bits on newer hardware that are r/w */
 728        toggle = 0xFFFFF833;
 729
 730        before = er32(STATUS);
 731        value = (er32(STATUS) & toggle);
 732        ew32(STATUS, toggle);
 733        after = er32(STATUS) & toggle;
 734        if (value != after) {
 735                e_err(drv, "failed STATUS register test got: "
 736                      "0x%08X expected: 0x%08X\n", after, value);
 737                *data = 1;
 738                return 1;
 739        }
 740        /* restore previous status */
 741        ew32(STATUS, before);
 742
 743        REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 744        REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 745        REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 746        REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 747
 748        REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 749        REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 750        REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 751        REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 752        REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 753        REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 754        REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 755        REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 756        REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 757        REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 758
 759        REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 760
 761        before = 0x06DFB3FE;
 762        REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 763        REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 764
 765        if (hw->mac_type >= e1000_82543) {
 766                REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 767                REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 768                REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 769                REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 770                REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 771                value = E1000_RAR_ENTRIES;
 772                for (i = 0; i < value; i++) {
 773                        REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
 774                                         0x8003FFFF, 0xFFFFFFFF);
 775                }
 776        } else {
 777                REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 778                REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 779                REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 780                REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 781        }
 782
 783        value = E1000_MC_TBL_SIZE;
 784        for (i = 0; i < value; i++)
 785                REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 786
 787        *data = 0;
 788        return 0;
 789}
 790
 791static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 792{
 793        struct e1000_hw *hw = &adapter->hw;
 794        u16 temp;
 795        u16 checksum = 0;
 796        u16 i;
 797
 798        *data = 0;
 799        /* Read and add up the contents of the EEPROM */
 800        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 801                if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 802                        *data = 1;
 803                        break;
 804                }
 805                checksum += temp;
 806        }
 807
 808        /* If Checksum is not Correct return error else test passed */
 809        if ((checksum != (u16)EEPROM_SUM) && !(*data))
 810                *data = 2;
 811
 812        return *data;
 813}
 814
 815static irqreturn_t e1000_test_intr(int irq, void *data)
 816{
 817        struct net_device *netdev = (struct net_device *)data;
 818        struct e1000_adapter *adapter = netdev_priv(netdev);
 819        struct e1000_hw *hw = &adapter->hw;
 820
 821        adapter->test_icr |= er32(ICR);
 822
 823        return IRQ_HANDLED;
 824}
 825
 826static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 827{
 828        struct net_device *netdev = adapter->netdev;
 829        u32 mask, i = 0;
 830        bool shared_int = true;
 831        u32 irq = adapter->pdev->irq;
 832        struct e1000_hw *hw = &adapter->hw;
 833
 834        *data = 0;
 835
 836        /* NOTE: we don't test MSI interrupts here, yet
 837         * Hook up test interrupt handler just for this test
 838         */
 839        if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 840                         netdev))
 841                shared_int = false;
 842        else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 843                             netdev->name, netdev)) {
 844                *data = 1;
 845                return -1;
 846        }
 847        e_info(hw, "testing %s interrupt\n", (shared_int ?
 848               "shared" : "unshared"));
 849
 850        /* Disable all the interrupts */
 851        ew32(IMC, 0xFFFFFFFF);
 852        E1000_WRITE_FLUSH();
 853        msleep(10);
 854
 855        /* Test each interrupt */
 856        for (; i < 10; i++) {
 857                /* Interrupt to test */
 858                mask = 1 << i;
 859
 860                if (!shared_int) {
 861                        /* Disable the interrupt to be reported in
 862                         * the cause register and then force the same
 863                         * interrupt and see if one gets posted.  If
 864                         * an interrupt was posted to the bus, the
 865                         * test failed.
 866                         */
 867                        adapter->test_icr = 0;
 868                        ew32(IMC, mask);
 869                        ew32(ICS, mask);
 870                        E1000_WRITE_FLUSH();
 871                        msleep(10);
 872
 873                        if (adapter->test_icr & mask) {
 874                                *data = 3;
 875                                break;
 876                        }
 877                }
 878
 879                /* Enable the interrupt to be reported in
 880                 * the cause register and then force the same
 881                 * interrupt and see if one gets posted.  If
 882                 * an interrupt was not posted to the bus, the
 883                 * test failed.
 884                 */
 885                adapter->test_icr = 0;
 886                ew32(IMS, mask);
 887                ew32(ICS, mask);
 888                E1000_WRITE_FLUSH();
 889                msleep(10);
 890
 891                if (!(adapter->test_icr & mask)) {
 892                        *data = 4;
 893                        break;
 894                }
 895
 896                if (!shared_int) {
 897                        /* Disable the other interrupts to be reported in
 898                         * the cause register and then force the other
 899                         * interrupts and see if any get posted.  If
 900                         * an interrupt was posted to the bus, the
 901                         * test failed.
 902                         */
 903                        adapter->test_icr = 0;
 904                        ew32(IMC, ~mask & 0x00007FFF);
 905                        ew32(ICS, ~mask & 0x00007FFF);
 906                        E1000_WRITE_FLUSH();
 907                        msleep(10);
 908
 909                        if (adapter->test_icr) {
 910                                *data = 5;
 911                                break;
 912                        }
 913                }
 914        }
 915
 916        /* Disable all the interrupts */
 917        ew32(IMC, 0xFFFFFFFF);
 918        E1000_WRITE_FLUSH();
 919        msleep(10);
 920
 921        /* Unhook test interrupt handler */
 922        free_irq(irq, netdev);
 923
 924        return *data;
 925}
 926
 927static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 928{
 929        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 930        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 931        struct pci_dev *pdev = adapter->pdev;
 932        int i;
 933
 934        if (txdr->desc && txdr->buffer_info) {
 935                for (i = 0; i < txdr->count; i++) {
 936                        if (txdr->buffer_info[i].dma)
 937                                dma_unmap_single(&pdev->dev,
 938                                                 txdr->buffer_info[i].dma,
 939                                                 txdr->buffer_info[i].length,
 940                                                 DMA_TO_DEVICE);
 941                        dev_kfree_skb(txdr->buffer_info[i].skb);
 942                }
 943        }
 944
 945        if (rxdr->desc && rxdr->buffer_info) {
 946                for (i = 0; i < rxdr->count; i++) {
 947                        if (rxdr->buffer_info[i].dma)
 948                                dma_unmap_single(&pdev->dev,
 949                                                 rxdr->buffer_info[i].dma,
 950                                                 E1000_RXBUFFER_2048,
 951                                                 DMA_FROM_DEVICE);
 952                        kfree(rxdr->buffer_info[i].rxbuf.data);
 953                }
 954        }
 955
 956        if (txdr->desc) {
 957                dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 958                                  txdr->dma);
 959                txdr->desc = NULL;
 960        }
 961        if (rxdr->desc) {
 962                dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 963                                  rxdr->dma);
 964                rxdr->desc = NULL;
 965        }
 966
 967        kfree(txdr->buffer_info);
 968        txdr->buffer_info = NULL;
 969        kfree(rxdr->buffer_info);
 970        rxdr->buffer_info = NULL;
 971}
 972
 973static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 974{
 975        struct e1000_hw *hw = &adapter->hw;
 976        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 977        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 978        struct pci_dev *pdev = adapter->pdev;
 979        u32 rctl;
 980        int i, ret_val;
 981
 982        /* Setup Tx descriptor ring and Tx buffers */
 983
 984        if (!txdr->count)
 985                txdr->count = E1000_DEFAULT_TXD;
 986
 987        txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
 988                                    GFP_KERNEL);
 989        if (!txdr->buffer_info) {
 990                ret_val = 1;
 991                goto err_nomem;
 992        }
 993
 994        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 995        txdr->size = ALIGN(txdr->size, 4096);
 996        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 997                                        GFP_KERNEL);
 998        if (!txdr->desc) {
 999                ret_val = 2;
1000                goto err_nomem;
1001        }
1002        txdr->next_to_use = txdr->next_to_clean = 0;
1003
1004        ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005        ew32(TDBAH, ((u64)txdr->dma >> 32));
1006        ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007        ew32(TDH, 0);
1008        ew32(TDT, 0);
1009        ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010             E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011             E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012
1013        for (i = 0; i < txdr->count; i++) {
1014                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015                struct sk_buff *skb;
1016                unsigned int size = 1024;
1017
1018                skb = alloc_skb(size, GFP_KERNEL);
1019                if (!skb) {
1020                        ret_val = 3;
1021                        goto err_nomem;
1022                }
1023                skb_put(skb, size);
1024                txdr->buffer_info[i].skb = skb;
1025                txdr->buffer_info[i].length = skb->len;
1026                txdr->buffer_info[i].dma =
1027                        dma_map_single(&pdev->dev, skb->data, skb->len,
1028                                       DMA_TO_DEVICE);
1029                if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1030                        ret_val = 4;
1031                        goto err_nomem;
1032                }
1033                tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034                tx_desc->lower.data = cpu_to_le32(skb->len);
1035                tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036                                                   E1000_TXD_CMD_IFCS |
1037                                                   E1000_TXD_CMD_RPS);
1038                tx_desc->upper.data = 0;
1039        }
1040
1041        /* Setup Rx descriptor ring and Rx buffers */
1042
1043        if (!rxdr->count)
1044                rxdr->count = E1000_DEFAULT_RXD;
1045
1046        rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1047                                    GFP_KERNEL);
1048        if (!rxdr->buffer_info) {
1049                ret_val = 5;
1050                goto err_nomem;
1051        }
1052
1053        rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1055                                        GFP_KERNEL);
1056        if (!rxdr->desc) {
1057                ret_val = 6;
1058                goto err_nomem;
1059        }
1060        rxdr->next_to_use = rxdr->next_to_clean = 0;
1061
1062        rctl = er32(RCTL);
1063        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064        ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065        ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066        ew32(RDLEN, rxdr->size);
1067        ew32(RDH, 0);
1068        ew32(RDT, 0);
1069        rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072        ew32(RCTL, rctl);
1073
1074        for (i = 0; i < rxdr->count; i++) {
1075                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076                u8 *buf;
1077
1078                buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079                              GFP_KERNEL);
1080                if (!buf) {
1081                        ret_val = 7;
1082                        goto err_nomem;
1083                }
1084                rxdr->buffer_info[i].rxbuf.data = buf;
1085
1086                rxdr->buffer_info[i].dma =
1087                        dma_map_single(&pdev->dev,
1088                                       buf + NET_SKB_PAD + NET_IP_ALIGN,
1089                                       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090                if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1091                        ret_val = 8;
1092                        goto err_nomem;
1093                }
1094                rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1095        }
1096
1097        return 0;
1098
1099err_nomem:
1100        e1000_free_desc_rings(adapter);
1101        return ret_val;
1102}
1103
1104static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105{
1106        struct e1000_hw *hw = &adapter->hw;
1107
1108        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109        e1000_write_phy_reg(hw, 29, 0x001F);
1110        e1000_write_phy_reg(hw, 30, 0x8FFC);
1111        e1000_write_phy_reg(hw, 29, 0x001A);
1112        e1000_write_phy_reg(hw, 30, 0x8FF0);
1113}
1114
1115static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116{
1117        struct e1000_hw *hw = &adapter->hw;
1118        u16 phy_reg;
1119
1120        /* Because we reset the PHY above, we need to re-force TX_CLK in the
1121         * Extended PHY Specific Control Register to 25MHz clock.  This
1122         * value defaults back to a 2.5MHz clock when the PHY is reset.
1123         */
1124        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125        phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126        e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1127
1128        /* In addition, because of the s/w reset above, we need to enable
1129         * CRS on TX.  This must be set for both full and half duplex
1130         * operation.
1131         */
1132        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1133        phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134        e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1135}
1136
1137static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138{
1139        struct e1000_hw *hw = &adapter->hw;
1140        u32 ctrl_reg;
1141        u16 phy_reg;
1142
1143        /* Setup the Device Control Register for PHY loopback test. */
1144
1145        ctrl_reg = er32(CTRL);
1146        ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1147                     E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1148                     E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1149                     E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1150                     E1000_CTRL_FD);            /* Force Duplex to FULL */
1151
1152        ew32(CTRL, ctrl_reg);
1153
1154        /* Read the PHY Specific Control Register (0x10) */
1155        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1156
1157        /* Clear Auto-Crossover bits in PHY Specific Control Register
1158         * (bits 6:5).
1159         */
1160        phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161        e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1162
1163        /* Perform software reset on the PHY */
1164        e1000_phy_reset(hw);
1165
1166        /* Have to setup TX_CLK and TX_CRS after software reset */
1167        e1000_phy_reset_clk_and_crs(adapter);
1168
1169        e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1170
1171        /* Wait for reset to complete. */
1172        udelay(500);
1173
1174        /* Have to setup TX_CLK and TX_CRS after software reset */
1175        e1000_phy_reset_clk_and_crs(adapter);
1176
1177        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178        e1000_phy_disable_receiver(adapter);
1179
1180        /* Set the loopback bit in the PHY control register. */
1181        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1182        phy_reg |= MII_CR_LOOPBACK;
1183        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1184
1185        /* Setup TX_CLK and TX_CRS one more time. */
1186        e1000_phy_reset_clk_and_crs(adapter);
1187
1188        /* Check Phy Configuration */
1189        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1190        if (phy_reg != 0x4100)
1191                return 9;
1192
1193        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194        if (phy_reg != 0x0070)
1195                return 10;
1196
1197        e1000_read_phy_reg(hw, 29, &phy_reg);
1198        if (phy_reg != 0x001A)
1199                return 11;
1200
1201        return 0;
1202}
1203
1204static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205{
1206        struct e1000_hw *hw = &adapter->hw;
1207        u32 ctrl_reg = 0;
1208        u32 stat_reg = 0;
1209
1210        hw->autoneg = false;
1211
1212        if (hw->phy_type == e1000_phy_m88) {
1213                /* Auto-MDI/MDIX Off */
1214                e1000_write_phy_reg(hw,
1215                                    M88E1000_PHY_SPEC_CTRL, 0x0808);
1216                /* reset to update Auto-MDI/MDIX */
1217                e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1218                /* autoneg off */
1219                e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1220        }
1221
1222        ctrl_reg = er32(CTRL);
1223
1224        /* force 1000, set loopback */
1225        e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1226
1227        /* Now set up the MAC to the same speed/duplex as the PHY. */
1228        ctrl_reg = er32(CTRL);
1229        ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1230        ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1231                        E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1232                        E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1233                        E1000_CTRL_FD); /* Force Duplex to FULL */
1234
1235        if (hw->media_type == e1000_media_type_copper &&
1236            hw->phy_type == e1000_phy_m88)
1237                ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1238        else {
1239                /* Set the ILOS bit on the fiber Nic is half
1240                 * duplex link is detected.
1241                 */
1242                stat_reg = er32(STATUS);
1243                if ((stat_reg & E1000_STATUS_FD) == 0)
1244                        ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245        }
1246
1247        ew32(CTRL, ctrl_reg);
1248
1249        /* Disable the receiver on the PHY so when a cable is plugged in, the
1250         * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1251         */
1252        if (hw->phy_type == e1000_phy_m88)
1253                e1000_phy_disable_receiver(adapter);
1254
1255        udelay(500);
1256
1257        return 0;
1258}
1259
1260static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261{
1262        struct e1000_hw *hw = &adapter->hw;
1263        u16 phy_reg = 0;
1264        u16 count = 0;
1265
1266        switch (hw->mac_type) {
1267        case e1000_82543:
1268                if (hw->media_type == e1000_media_type_copper) {
1269                        /* Attempt to setup Loopback mode on Non-integrated PHY.
1270                         * Some PHY registers get corrupted at random, so
1271                         * attempt this 10 times.
1272                         */
1273                        while (e1000_nonintegrated_phy_loopback(adapter) &&
1274                               count++ < 10);
1275                        if (count < 11)
1276                                return 0;
1277                }
1278                break;
1279
1280        case e1000_82544:
1281        case e1000_82540:
1282        case e1000_82545:
1283        case e1000_82545_rev_3:
1284        case e1000_82546:
1285        case e1000_82546_rev_3:
1286        case e1000_82541:
1287        case e1000_82541_rev_2:
1288        case e1000_82547:
1289        case e1000_82547_rev_2:
1290                return e1000_integrated_phy_loopback(adapter);
1291        default:
1292                /* Default PHY loopback work is to read the MII
1293                 * control register and assert bit 14 (loopback mode).
1294                 */
1295                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1296                phy_reg |= MII_CR_LOOPBACK;
1297                e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1298                return 0;
1299        }
1300
1301        return 8;
1302}
1303
1304static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305{
1306        struct e1000_hw *hw = &adapter->hw;
1307        u32 rctl;
1308
1309        if (hw->media_type == e1000_media_type_fiber ||
1310            hw->media_type == e1000_media_type_internal_serdes) {
1311                switch (hw->mac_type) {
1312                case e1000_82545:
1313                case e1000_82546:
1314                case e1000_82545_rev_3:
1315                case e1000_82546_rev_3:
1316                        return e1000_set_phy_loopback(adapter);
1317                default:
1318                        rctl = er32(RCTL);
1319                        rctl |= E1000_RCTL_LBM_TCVR;
1320                        ew32(RCTL, rctl);
1321                        return 0;
1322                }
1323        } else if (hw->media_type == e1000_media_type_copper) {
1324                return e1000_set_phy_loopback(adapter);
1325        }
1326
1327        return 7;
1328}
1329
1330static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331{
1332        struct e1000_hw *hw = &adapter->hw;
1333        u32 rctl;
1334        u16 phy_reg;
1335
1336        rctl = er32(RCTL);
1337        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338        ew32(RCTL, rctl);
1339
1340        switch (hw->mac_type) {
1341        case e1000_82545:
1342        case e1000_82546:
1343        case e1000_82545_rev_3:
1344        case e1000_82546_rev_3:
1345        default:
1346                hw->autoneg = true;
1347                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1348                if (phy_reg & MII_CR_LOOPBACK) {
1349                        phy_reg &= ~MII_CR_LOOPBACK;
1350                        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1351                        e1000_phy_reset(hw);
1352                }
1353                break;
1354        }
1355}
1356
1357static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358                                      unsigned int frame_size)
1359{
1360        memset(skb->data, 0xFF, frame_size);
1361        frame_size &= ~1;
1362        memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363        skb->data[frame_size / 2 + 10] = 0xBE;
1364        skb->data[frame_size / 2 + 12] = 0xAF;
1365}
1366
1367static int e1000_check_lbtest_frame(const unsigned char *data,
1368                                    unsigned int frame_size)
1369{
1370        frame_size &= ~1;
1371        if (*(data + 3) == 0xFF) {
1372                if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373                    (*(data + frame_size / 2 + 12) == 0xAF)) {
1374                        return 0;
1375                }
1376        }
1377        return 13;
1378}
1379
1380static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381{
1382        struct e1000_hw *hw = &adapter->hw;
1383        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385        struct pci_dev *pdev = adapter->pdev;
1386        int i, j, k, l, lc, good_cnt, ret_val = 0;
1387        unsigned long time;
1388
1389        ew32(RDT, rxdr->count - 1);
1390
1391        /* Calculate the loop count based on the largest descriptor ring
1392         * The idea is to wrap the largest ring a number of times using 64
1393         * send/receive pairs during each loop
1394         */
1395
1396        if (rxdr->count <= txdr->count)
1397                lc = ((txdr->count / 64) * 2) + 1;
1398        else
1399                lc = ((rxdr->count / 64) * 2) + 1;
1400
1401        k = l = 0;
1402        for (j = 0; j <= lc; j++) { /* loop count loop */
1403                for (i = 0; i < 64; i++) { /* send the packets */
1404                        e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1405                                                  1024);
1406                        dma_sync_single_for_device(&pdev->dev,
1407                                                   txdr->buffer_info[k].dma,
1408                                                   txdr->buffer_info[k].length,
1409                                                   DMA_TO_DEVICE);
1410                        if (unlikely(++k == txdr->count))
1411                                k = 0;
1412                }
1413                ew32(TDT, k);
1414                E1000_WRITE_FLUSH();
1415                msleep(200);
1416                time = jiffies; /* set the start time for the receive */
1417                good_cnt = 0;
1418                do { /* receive the sent packets */
1419                        dma_sync_single_for_cpu(&pdev->dev,
1420                                                rxdr->buffer_info[l].dma,
1421                                                E1000_RXBUFFER_2048,
1422                                                DMA_FROM_DEVICE);
1423
1424                        ret_val = e1000_check_lbtest_frame(
1425                                        rxdr->buffer_info[l].rxbuf.data +
1426                                        NET_SKB_PAD + NET_IP_ALIGN,
1427                                        1024);
1428                        if (!ret_val)
1429                                good_cnt++;
1430                        if (unlikely(++l == rxdr->count))
1431                                l = 0;
1432                        /* time + 20 msecs (200 msecs on 2.4) is more than
1433                         * enough time to complete the receives, if it's
1434                         * exceeded, break and error off
1435                         */
1436                } while (good_cnt < 64 && time_after(time + 20, jiffies));
1437
1438                if (good_cnt != 64) {
1439                        ret_val = 13; /* ret_val is the same as mis-compare */
1440                        break;
1441                }
1442                if (time_after_eq(jiffies, time + 2)) {
1443                        ret_val = 14; /* error code for time out error */
1444                        break;
1445                }
1446        } /* end loop count loop */
1447        return ret_val;
1448}
1449
1450static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451{
1452        *data = e1000_setup_desc_rings(adapter);
1453        if (*data)
1454                goto out;
1455        *data = e1000_setup_loopback_test(adapter);
1456        if (*data)
1457                goto err_loopback;
1458        *data = e1000_run_loopback_test(adapter);
1459        e1000_loopback_cleanup(adapter);
1460
1461err_loopback:
1462        e1000_free_desc_rings(adapter);
1463out:
1464        return *data;
1465}
1466
1467static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468{
1469        struct e1000_hw *hw = &adapter->hw;
1470        *data = 0;
1471        if (hw->media_type == e1000_media_type_internal_serdes) {
1472                int i = 0;
1473
1474                hw->serdes_has_link = false;
1475
1476                /* On some blade server designs, link establishment
1477                 * could take as long as 2-3 minutes
1478                 */
1479                do {
1480                        e1000_check_for_link(hw);
1481                        if (hw->serdes_has_link)
1482                                return *data;
1483                        msleep(20);
1484                } while (i++ < 3750);
1485
1486                *data = 1;
1487        } else {
1488                e1000_check_for_link(hw);
1489                if (hw->autoneg)  /* if auto_neg is set wait for it */
1490                        msleep(4000);
1491
1492                if (!(er32(STATUS) & E1000_STATUS_LU))
1493                        *data = 1;
1494        }
1495        return *data;
1496}
1497
1498static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499{
1500        switch (sset) {
1501        case ETH_SS_TEST:
1502                return E1000_TEST_LEN;
1503        case ETH_SS_STATS:
1504                return E1000_STATS_LEN;
1505        default:
1506                return -EOPNOTSUPP;
1507        }
1508}
1509
1510static void e1000_diag_test(struct net_device *netdev,
1511                            struct ethtool_test *eth_test, u64 *data)
1512{
1513        struct e1000_adapter *adapter = netdev_priv(netdev);
1514        struct e1000_hw *hw = &adapter->hw;
1515        bool if_running = netif_running(netdev);
1516
1517        set_bit(__E1000_TESTING, &adapter->flags);
1518        if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519                /* Offline tests */
1520
1521                /* save speed, duplex, autoneg settings */
1522                u16 autoneg_advertised = hw->autoneg_advertised;
1523                u8 forced_speed_duplex = hw->forced_speed_duplex;
1524                u8 autoneg = hw->autoneg;
1525
1526                e_info(hw, "offline testing starting\n");
1527
1528                /* Link test performed before hardware reset so autoneg doesn't
1529                 * interfere with test result
1530                 */
1531                if (e1000_link_test(adapter, &data[4]))
1532                        eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534                if (if_running)
1535                        /* indicate we're in test mode */
1536                        e1000_close(netdev);
1537                else
1538                        e1000_reset(adapter);
1539
1540                if (e1000_reg_test(adapter, &data[0]))
1541                        eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543                e1000_reset(adapter);
1544                if (e1000_eeprom_test(adapter, &data[1]))
1545                        eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547                e1000_reset(adapter);
1548                if (e1000_intr_test(adapter, &data[2]))
1549                        eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551                e1000_reset(adapter);
1552                /* make sure the phy is powered up */
1553                e1000_power_up_phy(adapter);
1554                if (e1000_loopback_test(adapter, &data[3]))
1555                        eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557                /* restore speed, duplex, autoneg settings */
1558                hw->autoneg_advertised = autoneg_advertised;
1559                hw->forced_speed_duplex = forced_speed_duplex;
1560                hw->autoneg = autoneg;
1561
1562                e1000_reset(adapter);
1563                clear_bit(__E1000_TESTING, &adapter->flags);
1564                if (if_running)
1565                        e1000_open(netdev);
1566        } else {
1567                e_info(hw, "online testing starting\n");
1568                /* Online tests */
1569                if (e1000_link_test(adapter, &data[4]))
1570                        eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572                /* Online tests aren't run; pass by default */
1573                data[0] = 0;
1574                data[1] = 0;
1575                data[2] = 0;
1576                data[3] = 0;
1577
1578                clear_bit(__E1000_TESTING, &adapter->flags);
1579        }
1580        msleep_interruptible(4 * 1000);
1581}
1582
1583static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584                               struct ethtool_wolinfo *wol)
1585{
1586        struct e1000_hw *hw = &adapter->hw;
1587        int retval = 1; /* fail by default */
1588
1589        switch (hw->device_id) {
1590        case E1000_DEV_ID_82542:
1591        case E1000_DEV_ID_82543GC_FIBER:
1592        case E1000_DEV_ID_82543GC_COPPER:
1593        case E1000_DEV_ID_82544EI_FIBER:
1594        case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595        case E1000_DEV_ID_82545EM_FIBER:
1596        case E1000_DEV_ID_82545EM_COPPER:
1597        case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598        case E1000_DEV_ID_82546GB_PCIE:
1599                /* these don't support WoL at all */
1600                wol->supported = 0;
1601                break;
1602        case E1000_DEV_ID_82546EB_FIBER:
1603        case E1000_DEV_ID_82546GB_FIBER:
1604                /* Wake events not supported on port B */
1605                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606                        wol->supported = 0;
1607                        break;
1608                }
1609                /* return success for non excluded adapter ports */
1610                retval = 0;
1611                break;
1612        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613                /* quad port adapters only support WoL on port A */
1614                if (!adapter->quad_port_a) {
1615                        wol->supported = 0;
1616                        break;
1617                }
1618                /* return success for non excluded adapter ports */
1619                retval = 0;
1620                break;
1621        default:
1622                /* dual port cards only support WoL on port A from now on
1623                 * unless it was enabled in the eeprom for port B
1624                 * so exclude FUNC_1 ports from having WoL enabled
1625                 */
1626                if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627                    !adapter->eeprom_wol) {
1628                        wol->supported = 0;
1629                        break;
1630                }
1631
1632                retval = 0;
1633        }
1634
1635        return retval;
1636}
1637
1638static void e1000_get_wol(struct net_device *netdev,
1639                          struct ethtool_wolinfo *wol)
1640{
1641        struct e1000_adapter *adapter = netdev_priv(netdev);
1642        struct e1000_hw *hw = &adapter->hw;
1643
1644        wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1645        wol->wolopts = 0;
1646
1647        /* this function will set ->supported = 0 and return 1 if wol is not
1648         * supported by this hardware
1649         */
1650        if (e1000_wol_exclusion(adapter, wol) ||
1651            !device_can_wakeup(&adapter->pdev->dev))
1652                return;
1653
1654        /* apply any specific unsupported masks here */
1655        switch (hw->device_id) {
1656        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657                /* KSP3 does not support UCAST wake-ups */
1658                wol->supported &= ~WAKE_UCAST;
1659
1660                if (adapter->wol & E1000_WUFC_EX)
1661                        e_err(drv, "Interface does not support directed "
1662                              "(unicast) frame wake-up packets\n");
1663                break;
1664        default:
1665                break;
1666        }
1667
1668        if (adapter->wol & E1000_WUFC_EX)
1669                wol->wolopts |= WAKE_UCAST;
1670        if (adapter->wol & E1000_WUFC_MC)
1671                wol->wolopts |= WAKE_MCAST;
1672        if (adapter->wol & E1000_WUFC_BC)
1673                wol->wolopts |= WAKE_BCAST;
1674        if (adapter->wol & E1000_WUFC_MAG)
1675                wol->wolopts |= WAKE_MAGIC;
1676}
1677
1678static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679{
1680        struct e1000_adapter *adapter = netdev_priv(netdev);
1681        struct e1000_hw *hw = &adapter->hw;
1682
1683        if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684                return -EOPNOTSUPP;
1685
1686        if (e1000_wol_exclusion(adapter, wol) ||
1687            !device_can_wakeup(&adapter->pdev->dev))
1688                return wol->wolopts ? -EOPNOTSUPP : 0;
1689
1690        switch (hw->device_id) {
1691        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692                if (wol->wolopts & WAKE_UCAST) {
1693                        e_err(drv, "Interface does not support directed "
1694                              "(unicast) frame wake-up packets\n");
1695                        return -EOPNOTSUPP;
1696                }
1697                break;
1698        default:
1699                break;
1700        }
1701
1702        /* these settings will always override what we currently have */
1703        adapter->wol = 0;
1704
1705        if (wol->wolopts & WAKE_UCAST)
1706                adapter->wol |= E1000_WUFC_EX;
1707        if (wol->wolopts & WAKE_MCAST)
1708                adapter->wol |= E1000_WUFC_MC;
1709        if (wol->wolopts & WAKE_BCAST)
1710                adapter->wol |= E1000_WUFC_BC;
1711        if (wol->wolopts & WAKE_MAGIC)
1712                adapter->wol |= E1000_WUFC_MAG;
1713
1714        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1715
1716        return 0;
1717}
1718
1719static int e1000_set_phys_id(struct net_device *netdev,
1720                             enum ethtool_phys_id_state state)
1721{
1722        struct e1000_adapter *adapter = netdev_priv(netdev);
1723        struct e1000_hw *hw = &adapter->hw;
1724
1725        switch (state) {
1726        case ETHTOOL_ID_ACTIVE:
1727                e1000_setup_led(hw);
1728                return 2;
1729
1730        case ETHTOOL_ID_ON:
1731                e1000_led_on(hw);
1732                break;
1733
1734        case ETHTOOL_ID_OFF:
1735                e1000_led_off(hw);
1736                break;
1737
1738        case ETHTOOL_ID_INACTIVE:
1739                e1000_cleanup_led(hw);
1740        }
1741
1742        return 0;
1743}
1744
1745static int e1000_get_coalesce(struct net_device *netdev,
1746                              struct ethtool_coalesce *ec,
1747                              struct kernel_ethtool_coalesce *kernel_coal,
1748                              struct netlink_ext_ack *extack)
1749{
1750        struct e1000_adapter *adapter = netdev_priv(netdev);
1751
1752        if (adapter->hw.mac_type < e1000_82545)
1753                return -EOPNOTSUPP;
1754
1755        if (adapter->itr_setting <= 4)
1756                ec->rx_coalesce_usecs = adapter->itr_setting;
1757        else
1758                ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1759
1760        return 0;
1761}
1762
1763static int e1000_set_coalesce(struct net_device *netdev,
1764                              struct ethtool_coalesce *ec,
1765                              struct kernel_ethtool_coalesce *kernel_coal,
1766                              struct netlink_ext_ack *extack)
1767{
1768        struct e1000_adapter *adapter = netdev_priv(netdev);
1769        struct e1000_hw *hw = &adapter->hw;
1770
1771        if (hw->mac_type < e1000_82545)
1772                return -EOPNOTSUPP;
1773
1774        if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1775            ((ec->rx_coalesce_usecs > 4) &&
1776             (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1777            (ec->rx_coalesce_usecs == 2))
1778                return -EINVAL;
1779
1780        if (ec->rx_coalesce_usecs == 4) {
1781                adapter->itr = adapter->itr_setting = 4;
1782        } else if (ec->rx_coalesce_usecs <= 3) {
1783                adapter->itr = 20000;
1784                adapter->itr_setting = ec->rx_coalesce_usecs;
1785        } else {
1786                adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1787                adapter->itr_setting = adapter->itr & ~3;
1788        }
1789
1790        if (adapter->itr_setting != 0)
1791                ew32(ITR, 1000000000 / (adapter->itr * 256));
1792        else
1793                ew32(ITR, 0);
1794
1795        return 0;
1796}
1797
1798static int e1000_nway_reset(struct net_device *netdev)
1799{
1800        struct e1000_adapter *adapter = netdev_priv(netdev);
1801
1802        if (netif_running(netdev))
1803                e1000_reinit_locked(adapter);
1804        return 0;
1805}
1806
1807static void e1000_get_ethtool_stats(struct net_device *netdev,
1808                                    struct ethtool_stats *stats, u64 *data)
1809{
1810        struct e1000_adapter *adapter = netdev_priv(netdev);
1811        int i;
1812        const struct e1000_stats *stat = e1000_gstrings_stats;
1813
1814        e1000_update_stats(adapter);
1815        for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1816                char *p;
1817
1818                switch (stat->type) {
1819                case NETDEV_STATS:
1820                        p = (char *)netdev + stat->stat_offset;
1821                        break;
1822                case E1000_STATS:
1823                        p = (char *)adapter + stat->stat_offset;
1824                        break;
1825                default:
1826                        netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1827                                         stat->type, i);
1828                        continue;
1829                }
1830
1831                if (stat->sizeof_stat == sizeof(u64))
1832                        data[i] = *(u64 *)p;
1833                else
1834                        data[i] = *(u32 *)p;
1835        }
1836/* BUG_ON(i != E1000_STATS_LEN); */
1837}
1838
1839static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1840                              u8 *data)
1841{
1842        u8 *p = data;
1843        int i;
1844
1845        switch (stringset) {
1846        case ETH_SS_TEST:
1847                memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1848                break;
1849        case ETH_SS_STATS:
1850                for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851                        memcpy(p, e1000_gstrings_stats[i].stat_string,
1852                               ETH_GSTRING_LEN);
1853                        p += ETH_GSTRING_LEN;
1854                }
1855                /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856                break;
1857        }
1858}
1859
1860static const struct ethtool_ops e1000_ethtool_ops = {
1861        .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1862        .get_drvinfo            = e1000_get_drvinfo,
1863        .get_regs_len           = e1000_get_regs_len,
1864        .get_regs               = e1000_get_regs,
1865        .get_wol                = e1000_get_wol,
1866        .set_wol                = e1000_set_wol,
1867        .get_msglevel           = e1000_get_msglevel,
1868        .set_msglevel           = e1000_set_msglevel,
1869        .nway_reset             = e1000_nway_reset,
1870        .get_link               = e1000_get_link,
1871        .get_eeprom_len         = e1000_get_eeprom_len,
1872        .get_eeprom             = e1000_get_eeprom,
1873        .set_eeprom             = e1000_set_eeprom,
1874        .get_ringparam          = e1000_get_ringparam,
1875        .set_ringparam          = e1000_set_ringparam,
1876        .get_pauseparam         = e1000_get_pauseparam,
1877        .set_pauseparam         = e1000_set_pauseparam,
1878        .self_test              = e1000_diag_test,
1879        .get_strings            = e1000_get_strings,
1880        .set_phys_id            = e1000_set_phys_id,
1881        .get_ethtool_stats      = e1000_get_ethtool_stats,
1882        .get_sset_count         = e1000_get_sset_count,
1883        .get_coalesce           = e1000_get_coalesce,
1884        .set_coalesce           = e1000_set_coalesce,
1885        .get_ts_info            = ethtool_op_get_ts_info,
1886        .get_link_ksettings     = e1000_get_link_ksettings,
1887        .set_link_ksettings     = e1000_set_link_ksettings,
1888};
1889
1890void e1000_set_ethtool_ops(struct net_device *netdev)
1891{
1892        netdev->ethtool_ops = &e1000_ethtool_ops;
1893}
1894