linux/drivers/net/ethernet/intel/ice/ice_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
   8
   9#define ICE_PF_RESET_WAIT_COUNT 300
  10
  11/**
  12 * ice_set_mac_type - Sets MAC type
  13 * @hw: pointer to the HW structure
  14 *
  15 * This function sets the MAC type of the adapter based on the
  16 * vendor ID and device ID stored in the HW structure.
  17 */
  18static int ice_set_mac_type(struct ice_hw *hw)
  19{
  20        if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  21                return -ENODEV;
  22
  23        switch (hw->device_id) {
  24        case ICE_DEV_ID_E810C_BACKPLANE:
  25        case ICE_DEV_ID_E810C_QSFP:
  26        case ICE_DEV_ID_E810C_SFP:
  27        case ICE_DEV_ID_E810_XXV_BACKPLANE:
  28        case ICE_DEV_ID_E810_XXV_QSFP:
  29        case ICE_DEV_ID_E810_XXV_SFP:
  30                hw->mac_type = ICE_MAC_E810;
  31                break;
  32        case ICE_DEV_ID_E823C_10G_BASE_T:
  33        case ICE_DEV_ID_E823C_BACKPLANE:
  34        case ICE_DEV_ID_E823C_QSFP:
  35        case ICE_DEV_ID_E823C_SFP:
  36        case ICE_DEV_ID_E823C_SGMII:
  37        case ICE_DEV_ID_E822C_10G_BASE_T:
  38        case ICE_DEV_ID_E822C_BACKPLANE:
  39        case ICE_DEV_ID_E822C_QSFP:
  40        case ICE_DEV_ID_E822C_SFP:
  41        case ICE_DEV_ID_E822C_SGMII:
  42        case ICE_DEV_ID_E822L_10G_BASE_T:
  43        case ICE_DEV_ID_E822L_BACKPLANE:
  44        case ICE_DEV_ID_E822L_SFP:
  45        case ICE_DEV_ID_E822L_SGMII:
  46        case ICE_DEV_ID_E823L_10G_BASE_T:
  47        case ICE_DEV_ID_E823L_1GBE:
  48        case ICE_DEV_ID_E823L_BACKPLANE:
  49        case ICE_DEV_ID_E823L_QSFP:
  50        case ICE_DEV_ID_E823L_SFP:
  51                hw->mac_type = ICE_MAC_GENERIC;
  52                break;
  53        default:
  54                hw->mac_type = ICE_MAC_UNKNOWN;
  55                break;
  56        }
  57
  58        ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
  59        return 0;
  60}
  61
  62/**
  63 * ice_is_e810
  64 * @hw: pointer to the hardware structure
  65 *
  66 * returns true if the device is E810 based, false if not.
  67 */
  68bool ice_is_e810(struct ice_hw *hw)
  69{
  70        return hw->mac_type == ICE_MAC_E810;
  71}
  72
  73/**
  74 * ice_is_e810t
  75 * @hw: pointer to the hardware structure
  76 *
  77 * returns true if the device is E810T based, false if not.
  78 */
  79bool ice_is_e810t(struct ice_hw *hw)
  80{
  81        switch (hw->device_id) {
  82        case ICE_DEV_ID_E810C_SFP:
  83                if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
  84                    hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
  85                        return true;
  86                break;
  87        default:
  88                break;
  89        }
  90
  91        return false;
  92}
  93
  94/**
  95 * ice_clear_pf_cfg - Clear PF configuration
  96 * @hw: pointer to the hardware structure
  97 *
  98 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  99 * configuration, flow director filters, etc.).
 100 */
 101int ice_clear_pf_cfg(struct ice_hw *hw)
 102{
 103        struct ice_aq_desc desc;
 104
 105        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 106
 107        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 108}
 109
 110/**
 111 * ice_aq_manage_mac_read - manage MAC address read command
 112 * @hw: pointer to the HW struct
 113 * @buf: a virtual buffer to hold the manage MAC read response
 114 * @buf_size: Size of the virtual buffer
 115 * @cd: pointer to command details structure or NULL
 116 *
 117 * This function is used to return per PF station MAC address (0x0107).
 118 * NOTE: Upon successful completion of this command, MAC address information
 119 * is returned in user specified buffer. Please interpret user specified
 120 * buffer as "manage_mac_read" response.
 121 * Response such as various MAC addresses are stored in HW struct (port.mac)
 122 * ice_discover_dev_caps is expected to be called before this function is
 123 * called.
 124 */
 125static int
 126ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 127                       struct ice_sq_cd *cd)
 128{
 129        struct ice_aqc_manage_mac_read_resp *resp;
 130        struct ice_aqc_manage_mac_read *cmd;
 131        struct ice_aq_desc desc;
 132        int status;
 133        u16 flags;
 134        u8 i;
 135
 136        cmd = &desc.params.mac_read;
 137
 138        if (buf_size < sizeof(*resp))
 139                return -EINVAL;
 140
 141        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 142
 143        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 144        if (status)
 145                return status;
 146
 147        resp = buf;
 148        flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 149
 150        if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 151                ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 152                return -EIO;
 153        }
 154
 155        /* A single port can report up to two (LAN and WoL) addresses */
 156        for (i = 0; i < cmd->num_addr; i++)
 157                if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 158                        ether_addr_copy(hw->port_info->mac.lan_addr,
 159                                        resp[i].mac_addr);
 160                        ether_addr_copy(hw->port_info->mac.perm_addr,
 161                                        resp[i].mac_addr);
 162                        break;
 163                }
 164
 165        return 0;
 166}
 167
 168/**
 169 * ice_aq_get_phy_caps - returns PHY capabilities
 170 * @pi: port information structure
 171 * @qual_mods: report qualified modules
 172 * @report_mode: report mode capabilities
 173 * @pcaps: structure for PHY capabilities to be filled
 174 * @cd: pointer to command details structure or NULL
 175 *
 176 * Returns the various PHY capabilities supported on the Port (0x0600)
 177 */
 178int
 179ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 180                    struct ice_aqc_get_phy_caps_data *pcaps,
 181                    struct ice_sq_cd *cd)
 182{
 183        struct ice_aqc_get_phy_caps *cmd;
 184        u16 pcaps_size = sizeof(*pcaps);
 185        struct ice_aq_desc desc;
 186        struct ice_hw *hw;
 187        int status;
 188
 189        cmd = &desc.params.get_phy;
 190
 191        if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 192                return -EINVAL;
 193        hw = pi->hw;
 194
 195        if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 196            !ice_fw_supports_report_dflt_cfg(hw))
 197                return -EINVAL;
 198
 199        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 200
 201        if (qual_mods)
 202                cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 203
 204        cmd->param0 |= cpu_to_le16(report_mode);
 205        status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 206
 207        ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
 208                  report_mode);
 209        ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
 210                  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
 211        ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
 212                  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
 213        ice_debug(hw, ICE_DBG_LINK, "   caps = 0x%x\n", pcaps->caps);
 214        ice_debug(hw, ICE_DBG_LINK, "   low_power_ctrl_an = 0x%x\n",
 215                  pcaps->low_power_ctrl_an);
 216        ice_debug(hw, ICE_DBG_LINK, "   eee_cap = 0x%x\n", pcaps->eee_cap);
 217        ice_debug(hw, ICE_DBG_LINK, "   eeer_value = 0x%x\n",
 218                  pcaps->eeer_value);
 219        ice_debug(hw, ICE_DBG_LINK, "   link_fec_options = 0x%x\n",
 220                  pcaps->link_fec_options);
 221        ice_debug(hw, ICE_DBG_LINK, "   module_compliance_enforcement = 0x%x\n",
 222                  pcaps->module_compliance_enforcement);
 223        ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
 224                  pcaps->extended_compliance_code);
 225        ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
 226                  pcaps->module_type[0]);
 227        ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
 228                  pcaps->module_type[1]);
 229        ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
 230                  pcaps->module_type[2]);
 231
 232        if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 233                pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 234                pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 235                memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 236                       sizeof(pi->phy.link_info.module_type));
 237        }
 238
 239        return status;
 240}
 241
 242/**
 243 * ice_aq_get_link_topo_handle - get link topology node return status
 244 * @pi: port information structure
 245 * @node_type: requested node type
 246 * @cd: pointer to command details structure or NULL
 247 *
 248 * Get link topology node return status for specified node type (0x06E0)
 249 *
 250 * Node type cage can be used to determine if cage is present. If AQC
 251 * returns error (ENOENT), then no cage present. If no cage present, then
 252 * connection type is backplane or BASE-T.
 253 */
 254static int
 255ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 256                            struct ice_sq_cd *cd)
 257{
 258        struct ice_aqc_get_link_topo *cmd;
 259        struct ice_aq_desc desc;
 260
 261        cmd = &desc.params.get_link_topo;
 262
 263        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 264
 265        cmd->addr.topo_params.node_type_ctx =
 266                (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 267                 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 268
 269        /* set node type */
 270        cmd->addr.topo_params.node_type_ctx |=
 271                (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 272
 273        return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 274}
 275
 276/**
 277 * ice_is_media_cage_present
 278 * @pi: port information structure
 279 *
 280 * Returns true if media cage is present, else false. If no cage, then
 281 * media type is backplane or BASE-T.
 282 */
 283static bool ice_is_media_cage_present(struct ice_port_info *pi)
 284{
 285        /* Node type cage can be used to determine if cage is present. If AQC
 286         * returns error (ENOENT), then no cage present. If no cage present then
 287         * connection type is backplane or BASE-T.
 288         */
 289        return !ice_aq_get_link_topo_handle(pi,
 290                                            ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 291                                            NULL);
 292}
 293
 294/**
 295 * ice_get_media_type - Gets media type
 296 * @pi: port information structure
 297 */
 298static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 299{
 300        struct ice_link_status *hw_link_info;
 301
 302        if (!pi)
 303                return ICE_MEDIA_UNKNOWN;
 304
 305        hw_link_info = &pi->phy.link_info;
 306        if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 307                /* If more than one media type is selected, report unknown */
 308                return ICE_MEDIA_UNKNOWN;
 309
 310        if (hw_link_info->phy_type_low) {
 311                /* 1G SGMII is a special case where some DA cable PHYs
 312                 * may show this as an option when it really shouldn't
 313                 * be since SGMII is meant to be between a MAC and a PHY
 314                 * in a backplane. Try to detect this case and handle it
 315                 */
 316                if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 317                    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 318                    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 319                    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 320                    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 321                        return ICE_MEDIA_DA;
 322
 323                switch (hw_link_info->phy_type_low) {
 324                case ICE_PHY_TYPE_LOW_1000BASE_SX:
 325                case ICE_PHY_TYPE_LOW_1000BASE_LX:
 326                case ICE_PHY_TYPE_LOW_10GBASE_SR:
 327                case ICE_PHY_TYPE_LOW_10GBASE_LR:
 328                case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 329                case ICE_PHY_TYPE_LOW_25GBASE_SR:
 330                case ICE_PHY_TYPE_LOW_25GBASE_LR:
 331                case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 332                case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 333                case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 334                case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 335                case ICE_PHY_TYPE_LOW_50GBASE_SR:
 336                case ICE_PHY_TYPE_LOW_50GBASE_FR:
 337                case ICE_PHY_TYPE_LOW_50GBASE_LR:
 338                case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 339                case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 340                case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 341                case ICE_PHY_TYPE_LOW_100GBASE_DR:
 342                case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 343                case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 344                case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 345                case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 346                case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 347                case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 348                case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 349                case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 350                        return ICE_MEDIA_FIBER;
 351                case ICE_PHY_TYPE_LOW_100BASE_TX:
 352                case ICE_PHY_TYPE_LOW_1000BASE_T:
 353                case ICE_PHY_TYPE_LOW_2500BASE_T:
 354                case ICE_PHY_TYPE_LOW_5GBASE_T:
 355                case ICE_PHY_TYPE_LOW_10GBASE_T:
 356                case ICE_PHY_TYPE_LOW_25GBASE_T:
 357                        return ICE_MEDIA_BASET;
 358                case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 359                case ICE_PHY_TYPE_LOW_25GBASE_CR:
 360                case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 361                case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 362                case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 363                case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 364                case ICE_PHY_TYPE_LOW_50GBASE_CP:
 365                case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 366                case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 367                case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 368                        return ICE_MEDIA_DA;
 369                case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 370                case ICE_PHY_TYPE_LOW_40G_XLAUI:
 371                case ICE_PHY_TYPE_LOW_50G_LAUI2:
 372                case ICE_PHY_TYPE_LOW_50G_AUI2:
 373                case ICE_PHY_TYPE_LOW_50G_AUI1:
 374                case ICE_PHY_TYPE_LOW_100G_AUI4:
 375                case ICE_PHY_TYPE_LOW_100G_CAUI4:
 376                        if (ice_is_media_cage_present(pi))
 377                                return ICE_MEDIA_DA;
 378                        fallthrough;
 379                case ICE_PHY_TYPE_LOW_1000BASE_KX:
 380                case ICE_PHY_TYPE_LOW_2500BASE_KX:
 381                case ICE_PHY_TYPE_LOW_2500BASE_X:
 382                case ICE_PHY_TYPE_LOW_5GBASE_KR:
 383                case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 384                case ICE_PHY_TYPE_LOW_25GBASE_KR:
 385                case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 386                case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 387                case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 388                case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 389                case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 390                case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 391                case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 392                        return ICE_MEDIA_BACKPLANE;
 393                }
 394        } else {
 395                switch (hw_link_info->phy_type_high) {
 396                case ICE_PHY_TYPE_HIGH_100G_AUI2:
 397                case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 398                        if (ice_is_media_cage_present(pi))
 399                                return ICE_MEDIA_DA;
 400                        fallthrough;
 401                case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 402                        return ICE_MEDIA_BACKPLANE;
 403                case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 404                case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 405                        return ICE_MEDIA_FIBER;
 406                }
 407        }
 408        return ICE_MEDIA_UNKNOWN;
 409}
 410
 411/**
 412 * ice_aq_get_link_info
 413 * @pi: port information structure
 414 * @ena_lse: enable/disable LinkStatusEvent reporting
 415 * @link: pointer to link status structure - optional
 416 * @cd: pointer to command details structure or NULL
 417 *
 418 * Get Link Status (0x607). Returns the link status of the adapter.
 419 */
 420int
 421ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 422                     struct ice_link_status *link, struct ice_sq_cd *cd)
 423{
 424        struct ice_aqc_get_link_status_data link_data = { 0 };
 425        struct ice_aqc_get_link_status *resp;
 426        struct ice_link_status *li_old, *li;
 427        enum ice_media_type *hw_media_type;
 428        struct ice_fc_info *hw_fc_info;
 429        bool tx_pause, rx_pause;
 430        struct ice_aq_desc desc;
 431        struct ice_hw *hw;
 432        u16 cmd_flags;
 433        int status;
 434
 435        if (!pi)
 436                return -EINVAL;
 437        hw = pi->hw;
 438        li_old = &pi->phy.link_info_old;
 439        hw_media_type = &pi->phy.media_type;
 440        li = &pi->phy.link_info;
 441        hw_fc_info = &pi->fc;
 442
 443        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 444        cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 445        resp = &desc.params.get_link_status;
 446        resp->cmd_flags = cpu_to_le16(cmd_flags);
 447        resp->lport_num = pi->lport;
 448
 449        status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 450
 451        if (status)
 452                return status;
 453
 454        /* save off old link status information */
 455        *li_old = *li;
 456
 457        /* update current link status information */
 458        li->link_speed = le16_to_cpu(link_data.link_speed);
 459        li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 460        li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 461        *hw_media_type = ice_get_media_type(pi);
 462        li->link_info = link_data.link_info;
 463        li->link_cfg_err = link_data.link_cfg_err;
 464        li->an_info = link_data.an_info;
 465        li->ext_info = link_data.ext_info;
 466        li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 467        li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 468        li->topo_media_conflict = link_data.topo_media_conflict;
 469        li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 470                                      ICE_AQ_CFG_PACING_TYPE_M);
 471
 472        /* update fc info */
 473        tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 474        rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 475        if (tx_pause && rx_pause)
 476                hw_fc_info->current_mode = ICE_FC_FULL;
 477        else if (tx_pause)
 478                hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 479        else if (rx_pause)
 480                hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 481        else
 482                hw_fc_info->current_mode = ICE_FC_NONE;
 483
 484        li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 485
 486        ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 487        ice_debug(hw, ICE_DBG_LINK, "   link_speed = 0x%x\n", li->link_speed);
 488        ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
 489                  (unsigned long long)li->phy_type_low);
 490        ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
 491                  (unsigned long long)li->phy_type_high);
 492        ice_debug(hw, ICE_DBG_LINK, "   media_type = 0x%x\n", *hw_media_type);
 493        ice_debug(hw, ICE_DBG_LINK, "   link_info = 0x%x\n", li->link_info);
 494        ice_debug(hw, ICE_DBG_LINK, "   link_cfg_err = 0x%x\n", li->link_cfg_err);
 495        ice_debug(hw, ICE_DBG_LINK, "   an_info = 0x%x\n", li->an_info);
 496        ice_debug(hw, ICE_DBG_LINK, "   ext_info = 0x%x\n", li->ext_info);
 497        ice_debug(hw, ICE_DBG_LINK, "   fec_info = 0x%x\n", li->fec_info);
 498        ice_debug(hw, ICE_DBG_LINK, "   lse_ena = 0x%x\n", li->lse_ena);
 499        ice_debug(hw, ICE_DBG_LINK, "   max_frame = 0x%x\n",
 500                  li->max_frame_size);
 501        ice_debug(hw, ICE_DBG_LINK, "   pacing = 0x%x\n", li->pacing);
 502
 503        /* save link status information */
 504        if (link)
 505                *link = *li;
 506
 507        /* flag cleared so calling functions don't call AQ again */
 508        pi->phy.get_link_info = false;
 509
 510        return 0;
 511}
 512
 513/**
 514 * ice_fill_tx_timer_and_fc_thresh
 515 * @hw: pointer to the HW struct
 516 * @cmd: pointer to MAC cfg structure
 517 *
 518 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 519 * descriptor
 520 */
 521static void
 522ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 523                                struct ice_aqc_set_mac_cfg *cmd)
 524{
 525        u16 fc_thres_val, tx_timer_val;
 526        u32 val;
 527
 528        /* We read back the transmit timer and FC threshold value of
 529         * LFC. Thus, we will use index =
 530         * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 531         *
 532         * Also, because we are operating on transmit timer and FC
 533         * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 534         */
 535#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
 536
 537        /* Retrieve the transmit timer */
 538        val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
 539        tx_timer_val = val &
 540                PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
 541        cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
 542
 543        /* Retrieve the FC threshold */
 544        val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
 545        fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
 546
 547        cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
 548}
 549
 550/**
 551 * ice_aq_set_mac_cfg
 552 * @hw: pointer to the HW struct
 553 * @max_frame_size: Maximum Frame Size to be supported
 554 * @cd: pointer to command details structure or NULL
 555 *
 556 * Set MAC configuration (0x0603)
 557 */
 558int
 559ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 560{
 561        struct ice_aqc_set_mac_cfg *cmd;
 562        struct ice_aq_desc desc;
 563
 564        cmd = &desc.params.set_mac_cfg;
 565
 566        if (max_frame_size == 0)
 567                return -EINVAL;
 568
 569        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 570
 571        cmd->max_frame_size = cpu_to_le16(max_frame_size);
 572
 573        ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 574
 575        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 576}
 577
 578/**
 579 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 580 * @hw: pointer to the HW struct
 581 */
 582static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 583{
 584        struct ice_switch_info *sw;
 585        int status;
 586
 587        hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 588                                       sizeof(*hw->switch_info), GFP_KERNEL);
 589        sw = hw->switch_info;
 590
 591        if (!sw)
 592                return -ENOMEM;
 593
 594        INIT_LIST_HEAD(&sw->vsi_list_map_head);
 595        sw->prof_res_bm_init = 0;
 596
 597        status = ice_init_def_sw_recp(hw);
 598        if (status) {
 599                devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 600                return status;
 601        }
 602        return 0;
 603}
 604
 605/**
 606 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 607 * @hw: pointer to the HW struct
 608 */
 609static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 610{
 611        struct ice_switch_info *sw = hw->switch_info;
 612        struct ice_vsi_list_map_info *v_pos_map;
 613        struct ice_vsi_list_map_info *v_tmp_map;
 614        struct ice_sw_recipe *recps;
 615        u8 i;
 616
 617        list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 618                                 list_entry) {
 619                list_del(&v_pos_map->list_entry);
 620                devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 621        }
 622        recps = sw->recp_list;
 623        for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 624                struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
 625
 626                recps[i].root_rid = i;
 627                list_for_each_entry_safe(rg_entry, tmprg_entry,
 628                                         &recps[i].rg_list, l_entry) {
 629                        list_del(&rg_entry->l_entry);
 630                        devm_kfree(ice_hw_to_dev(hw), rg_entry);
 631                }
 632
 633                if (recps[i].adv_rule) {
 634                        struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 635                        struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 636
 637                        mutex_destroy(&recps[i].filt_rule_lock);
 638                        list_for_each_entry_safe(lst_itr, tmp_entry,
 639                                                 &recps[i].filt_rules,
 640                                                 list_entry) {
 641                                list_del(&lst_itr->list_entry);
 642                                devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 643                                devm_kfree(ice_hw_to_dev(hw), lst_itr);
 644                        }
 645                } else {
 646                        struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 647
 648                        mutex_destroy(&recps[i].filt_rule_lock);
 649                        list_for_each_entry_safe(lst_itr, tmp_entry,
 650                                                 &recps[i].filt_rules,
 651                                                 list_entry) {
 652                                list_del(&lst_itr->list_entry);
 653                                devm_kfree(ice_hw_to_dev(hw), lst_itr);
 654                        }
 655                }
 656                if (recps[i].root_buf)
 657                        devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
 658        }
 659        ice_rm_all_sw_replay_rule_info(hw);
 660        devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 661        devm_kfree(ice_hw_to_dev(hw), sw);
 662}
 663
 664/**
 665 * ice_get_fw_log_cfg - get FW logging configuration
 666 * @hw: pointer to the HW struct
 667 */
 668static int ice_get_fw_log_cfg(struct ice_hw *hw)
 669{
 670        struct ice_aq_desc desc;
 671        __le16 *config;
 672        int status;
 673        u16 size;
 674
 675        size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
 676        config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 677        if (!config)
 678                return -ENOMEM;
 679
 680        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 681
 682        status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 683        if (!status) {
 684                u16 i;
 685
 686                /* Save FW logging information into the HW structure */
 687                for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 688                        u16 v, m, flgs;
 689
 690                        v = le16_to_cpu(config[i]);
 691                        m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 692                        flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 693
 694                        if (m < ICE_AQC_FW_LOG_ID_MAX)
 695                                hw->fw_log.evnts[m].cur = flgs;
 696                }
 697        }
 698
 699        devm_kfree(ice_hw_to_dev(hw), config);
 700
 701        return status;
 702}
 703
 704/**
 705 * ice_cfg_fw_log - configure FW logging
 706 * @hw: pointer to the HW struct
 707 * @enable: enable certain FW logging events if true, disable all if false
 708 *
 709 * This function enables/disables the FW logging via Rx CQ events and a UART
 710 * port based on predetermined configurations. FW logging via the Rx CQ can be
 711 * enabled/disabled for individual PF's. However, FW logging via the UART can
 712 * only be enabled/disabled for all PFs on the same device.
 713 *
 714 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 715 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 716 * before initializing the device.
 717 *
 718 * When re/configuring FW logging, callers need to update the "cfg" elements of
 719 * the hw->fw_log.evnts array with the desired logging event configurations for
 720 * modules of interest. When disabling FW logging completely, the callers can
 721 * just pass false in the "enable" parameter. On completion, the function will
 722 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 723 * logging event configurations of the modules that are being re/configured. FW
 724 * logging modules that are not part of a reconfiguration operation retain their
 725 * previous states.
 726 *
 727 * Before resetting the device, it is recommended that the driver disables FW
 728 * logging before shutting down the control queue. When disabling FW logging
 729 * ("enable" = false), the latest configurations of FW logging events stored in
 730 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 731 * a device reset.
 732 *
 733 * When enabling FW logging to emit log messages via the Rx CQ during the
 734 * device's initialization phase, a mechanism alternative to interrupt handlers
 735 * needs to be used to extract FW log messages from the Rx CQ periodically and
 736 * to prevent the Rx CQ from being full and stalling other types of control
 737 * messages from FW to SW. Interrupts are typically disabled during the device's
 738 * initialization phase.
 739 */
 740static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 741{
 742        struct ice_aqc_fw_logging *cmd;
 743        u16 i, chgs = 0, len = 0;
 744        struct ice_aq_desc desc;
 745        __le16 *data = NULL;
 746        u8 actv_evnts = 0;
 747        void *buf = NULL;
 748        int status = 0;
 749
 750        if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 751                return 0;
 752
 753        /* Disable FW logging only when the control queue is still responsive */
 754        if (!enable &&
 755            (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 756                return 0;
 757
 758        /* Get current FW log settings */
 759        status = ice_get_fw_log_cfg(hw);
 760        if (status)
 761                return status;
 762
 763        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 764        cmd = &desc.params.fw_logging;
 765
 766        /* Indicate which controls are valid */
 767        if (hw->fw_log.cq_en)
 768                cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 769
 770        if (hw->fw_log.uart_en)
 771                cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 772
 773        if (enable) {
 774                /* Fill in an array of entries with FW logging modules and
 775                 * logging events being reconfigured.
 776                 */
 777                for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 778                        u16 val;
 779
 780                        /* Keep track of enabled event types */
 781                        actv_evnts |= hw->fw_log.evnts[i].cfg;
 782
 783                        if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 784                                continue;
 785
 786                        if (!data) {
 787                                data = devm_kcalloc(ice_hw_to_dev(hw),
 788                                                    ICE_AQC_FW_LOG_ID_MAX,
 789                                                    sizeof(*data),
 790                                                    GFP_KERNEL);
 791                                if (!data)
 792                                        return -ENOMEM;
 793                        }
 794
 795                        val = i << ICE_AQC_FW_LOG_ID_S;
 796                        val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 797                        data[chgs++] = cpu_to_le16(val);
 798                }
 799
 800                /* Only enable FW logging if at least one module is specified.
 801                 * If FW logging is currently enabled but all modules are not
 802                 * enabled to emit log messages, disable FW logging altogether.
 803                 */
 804                if (actv_evnts) {
 805                        /* Leave if there is effectively no change */
 806                        if (!chgs)
 807                                goto out;
 808
 809                        if (hw->fw_log.cq_en)
 810                                cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 811
 812                        if (hw->fw_log.uart_en)
 813                                cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 814
 815                        buf = data;
 816                        len = sizeof(*data) * chgs;
 817                        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 818                }
 819        }
 820
 821        status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 822        if (!status) {
 823                /* Update the current configuration to reflect events enabled.
 824                 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 825                 * logging mode is enabled for the device. They do not reflect
 826                 * actual modules being enabled to emit log messages. So, their
 827                 * values remain unchanged even when all modules are disabled.
 828                 */
 829                u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 830
 831                hw->fw_log.actv_evnts = actv_evnts;
 832                for (i = 0; i < cnt; i++) {
 833                        u16 v, m;
 834
 835                        if (!enable) {
 836                                /* When disabling all FW logging events as part
 837                                 * of device's de-initialization, the original
 838                                 * configurations are retained, and can be used
 839                                 * to reconfigure FW logging later if the device
 840                                 * is re-initialized.
 841                                 */
 842                                hw->fw_log.evnts[i].cur = 0;
 843                                continue;
 844                        }
 845
 846                        v = le16_to_cpu(data[i]);
 847                        m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 848                        hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 849                }
 850        }
 851
 852out:
 853        if (data)
 854                devm_kfree(ice_hw_to_dev(hw), data);
 855
 856        return status;
 857}
 858
 859/**
 860 * ice_output_fw_log
 861 * @hw: pointer to the HW struct
 862 * @desc: pointer to the AQ message descriptor
 863 * @buf: pointer to the buffer accompanying the AQ message
 864 *
 865 * Formats a FW Log message and outputs it via the standard driver logs.
 866 */
 867void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 868{
 869        ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
 870        ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
 871                        le16_to_cpu(desc->datalen));
 872        ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
 873}
 874
 875/**
 876 * ice_get_itr_intrl_gran
 877 * @hw: pointer to the HW struct
 878 *
 879 * Determines the ITR/INTRL granularities based on the maximum aggregate
 880 * bandwidth according to the device's configuration during power-on.
 881 */
 882static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 883{
 884        u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 885                         GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 886                        GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 887
 888        switch (max_agg_bw) {
 889        case ICE_MAX_AGG_BW_200G:
 890        case ICE_MAX_AGG_BW_100G:
 891        case ICE_MAX_AGG_BW_50G:
 892                hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 893                hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 894                break;
 895        case ICE_MAX_AGG_BW_25G:
 896                hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 897                hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 898                break;
 899        }
 900}
 901
 902/**
 903 * ice_init_hw - main hardware initialization routine
 904 * @hw: pointer to the hardware structure
 905 */
 906int ice_init_hw(struct ice_hw *hw)
 907{
 908        struct ice_aqc_get_phy_caps_data *pcaps;
 909        u16 mac_buf_len;
 910        void *mac_buf;
 911        int status;
 912
 913        /* Set MAC type based on DeviceID */
 914        status = ice_set_mac_type(hw);
 915        if (status)
 916                return status;
 917
 918        hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 919                         PF_FUNC_RID_FUNC_NUM_M) >>
 920                PF_FUNC_RID_FUNC_NUM_S;
 921
 922        status = ice_reset(hw, ICE_RESET_PFR);
 923        if (status)
 924                return status;
 925
 926        ice_get_itr_intrl_gran(hw);
 927
 928        status = ice_create_all_ctrlq(hw);
 929        if (status)
 930                goto err_unroll_cqinit;
 931
 932        /* Enable FW logging. Not fatal if this fails. */
 933        status = ice_cfg_fw_log(hw, true);
 934        if (status)
 935                ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 936
 937        status = ice_clear_pf_cfg(hw);
 938        if (status)
 939                goto err_unroll_cqinit;
 940
 941        /* Set bit to enable Flow Director filters */
 942        wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
 943        INIT_LIST_HEAD(&hw->fdir_list_head);
 944
 945        ice_clear_pxe_mode(hw);
 946
 947        status = ice_init_nvm(hw);
 948        if (status)
 949                goto err_unroll_cqinit;
 950
 951        status = ice_get_caps(hw);
 952        if (status)
 953                goto err_unroll_cqinit;
 954
 955        hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 956                                     sizeof(*hw->port_info), GFP_KERNEL);
 957        if (!hw->port_info) {
 958                status = -ENOMEM;
 959                goto err_unroll_cqinit;
 960        }
 961
 962        /* set the back pointer to HW */
 963        hw->port_info->hw = hw;
 964
 965        /* Initialize port_info struct with switch configuration data */
 966        status = ice_get_initial_sw_cfg(hw);
 967        if (status)
 968                goto err_unroll_alloc;
 969
 970        hw->evb_veb = true;
 971
 972        /* Query the allocated resources for Tx scheduler */
 973        status = ice_sched_query_res_alloc(hw);
 974        if (status) {
 975                ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
 976                goto err_unroll_alloc;
 977        }
 978        ice_sched_get_psm_clk_freq(hw);
 979
 980        /* Initialize port_info struct with scheduler data */
 981        status = ice_sched_init_port(hw->port_info);
 982        if (status)
 983                goto err_unroll_sched;
 984
 985        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 986        if (!pcaps) {
 987                status = -ENOMEM;
 988                goto err_unroll_sched;
 989        }
 990
 991        /* Initialize port_info struct with PHY capabilities */
 992        status = ice_aq_get_phy_caps(hw->port_info, false,
 993                                     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
 994                                     NULL);
 995        devm_kfree(ice_hw_to_dev(hw), pcaps);
 996        if (status)
 997                dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
 998                         status);
 999
1000        /* Initialize port_info struct with link information */
1001        status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1002        if (status)
1003                goto err_unroll_sched;
1004
1005        /* need a valid SW entry point to build a Tx tree */
1006        if (!hw->sw_entry_point_layer) {
1007                ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1008                status = -EIO;
1009                goto err_unroll_sched;
1010        }
1011        INIT_LIST_HEAD(&hw->agg_list);
1012        /* Initialize max burst size */
1013        if (!hw->max_burst_size)
1014                ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1015
1016        status = ice_init_fltr_mgmt_struct(hw);
1017        if (status)
1018                goto err_unroll_sched;
1019
1020        /* Get MAC information */
1021        /* A single port can report up to two (LAN and WoL) addresses */
1022        mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1023                               sizeof(struct ice_aqc_manage_mac_read_resp),
1024                               GFP_KERNEL);
1025        mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1026
1027        if (!mac_buf) {
1028                status = -ENOMEM;
1029                goto err_unroll_fltr_mgmt_struct;
1030        }
1031
1032        status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1033        devm_kfree(ice_hw_to_dev(hw), mac_buf);
1034
1035        if (status)
1036                goto err_unroll_fltr_mgmt_struct;
1037        /* enable jumbo frame support at MAC level */
1038        status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1039        if (status)
1040                goto err_unroll_fltr_mgmt_struct;
1041        /* Obtain counter base index which would be used by flow director */
1042        status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1043        if (status)
1044                goto err_unroll_fltr_mgmt_struct;
1045        status = ice_init_hw_tbls(hw);
1046        if (status)
1047                goto err_unroll_fltr_mgmt_struct;
1048        mutex_init(&hw->tnl_lock);
1049        return 0;
1050
1051err_unroll_fltr_mgmt_struct:
1052        ice_cleanup_fltr_mgmt_struct(hw);
1053err_unroll_sched:
1054        ice_sched_cleanup_all(hw);
1055err_unroll_alloc:
1056        devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1057err_unroll_cqinit:
1058        ice_destroy_all_ctrlq(hw);
1059        return status;
1060}
1061
1062/**
1063 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1064 * @hw: pointer to the hardware structure
1065 *
1066 * This should be called only during nominal operation, not as a result of
1067 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1068 * applicable initializations if it fails for any reason.
1069 */
1070void ice_deinit_hw(struct ice_hw *hw)
1071{
1072        ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1073        ice_cleanup_fltr_mgmt_struct(hw);
1074
1075        ice_sched_cleanup_all(hw);
1076        ice_sched_clear_agg(hw);
1077        ice_free_seg(hw);
1078        ice_free_hw_tbls(hw);
1079        mutex_destroy(&hw->tnl_lock);
1080
1081        if (hw->port_info) {
1082                devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1083                hw->port_info = NULL;
1084        }
1085
1086        /* Attempt to disable FW logging before shutting down control queues */
1087        ice_cfg_fw_log(hw, false);
1088        ice_destroy_all_ctrlq(hw);
1089
1090        /* Clear VSI contexts if not already cleared */
1091        ice_clear_all_vsi_ctx(hw);
1092}
1093
1094/**
1095 * ice_check_reset - Check to see if a global reset is complete
1096 * @hw: pointer to the hardware structure
1097 */
1098int ice_check_reset(struct ice_hw *hw)
1099{
1100        u32 cnt, reg = 0, grst_timeout, uld_mask;
1101
1102        /* Poll for Device Active state in case a recent CORER, GLOBR,
1103         * or EMPR has occurred. The grst delay value is in 100ms units.
1104         * Add 1sec for outstanding AQ commands that can take a long time.
1105         */
1106        grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1107                        GLGEN_RSTCTL_GRSTDEL_S) + 10;
1108
1109        for (cnt = 0; cnt < grst_timeout; cnt++) {
1110                mdelay(100);
1111                reg = rd32(hw, GLGEN_RSTAT);
1112                if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1113                        break;
1114        }
1115
1116        if (cnt == grst_timeout) {
1117                ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1118                return -EIO;
1119        }
1120
1121#define ICE_RESET_DONE_MASK     (GLNVM_ULD_PCIER_DONE_M |\
1122                                 GLNVM_ULD_PCIER_DONE_1_M |\
1123                                 GLNVM_ULD_CORER_DONE_M |\
1124                                 GLNVM_ULD_GLOBR_DONE_M |\
1125                                 GLNVM_ULD_POR_DONE_M |\
1126                                 GLNVM_ULD_POR_DONE_1_M |\
1127                                 GLNVM_ULD_PCIER_DONE_2_M)
1128
1129        uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1130                                          GLNVM_ULD_PE_DONE_M : 0);
1131
1132        /* Device is Active; check Global Reset processes are done */
1133        for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1134                reg = rd32(hw, GLNVM_ULD) & uld_mask;
1135                if (reg == uld_mask) {
1136                        ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1137                        break;
1138                }
1139                mdelay(10);
1140        }
1141
1142        if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1143                ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1144                          reg);
1145                return -EIO;
1146        }
1147
1148        return 0;
1149}
1150
1151/**
1152 * ice_pf_reset - Reset the PF
1153 * @hw: pointer to the hardware structure
1154 *
1155 * If a global reset has been triggered, this function checks
1156 * for its completion and then issues the PF reset
1157 */
1158static int ice_pf_reset(struct ice_hw *hw)
1159{
1160        u32 cnt, reg;
1161
1162        /* If at function entry a global reset was already in progress, i.e.
1163         * state is not 'device active' or any of the reset done bits are not
1164         * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1165         * global reset is done.
1166         */
1167        if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1168            (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1169                /* poll on global reset currently in progress until done */
1170                if (ice_check_reset(hw))
1171                        return -EIO;
1172
1173                return 0;
1174        }
1175
1176        /* Reset the PF */
1177        reg = rd32(hw, PFGEN_CTRL);
1178
1179        wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1180
1181        /* Wait for the PFR to complete. The wait time is the global config lock
1182         * timeout plus the PFR timeout which will account for a possible reset
1183         * that is occurring during a download package operation.
1184         */
1185        for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1186             ICE_PF_RESET_WAIT_COUNT; cnt++) {
1187                reg = rd32(hw, PFGEN_CTRL);
1188                if (!(reg & PFGEN_CTRL_PFSWR_M))
1189                        break;
1190
1191                mdelay(1);
1192        }
1193
1194        if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1195                ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1196                return -EIO;
1197        }
1198
1199        return 0;
1200}
1201
1202/**
1203 * ice_reset - Perform different types of reset
1204 * @hw: pointer to the hardware structure
1205 * @req: reset request
1206 *
1207 * This function triggers a reset as specified by the req parameter.
1208 *
1209 * Note:
1210 * If anything other than a PF reset is triggered, PXE mode is restored.
1211 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1212 * interface has been restored in the rebuild flow.
1213 */
1214int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1215{
1216        u32 val = 0;
1217
1218        switch (req) {
1219        case ICE_RESET_PFR:
1220                return ice_pf_reset(hw);
1221        case ICE_RESET_CORER:
1222                ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1223                val = GLGEN_RTRIG_CORER_M;
1224                break;
1225        case ICE_RESET_GLOBR:
1226                ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1227                val = GLGEN_RTRIG_GLOBR_M;
1228                break;
1229        default:
1230                return -EINVAL;
1231        }
1232
1233        val |= rd32(hw, GLGEN_RTRIG);
1234        wr32(hw, GLGEN_RTRIG, val);
1235        ice_flush(hw);
1236
1237        /* wait for the FW to be ready */
1238        return ice_check_reset(hw);
1239}
1240
1241/**
1242 * ice_copy_rxq_ctx_to_hw
1243 * @hw: pointer to the hardware structure
1244 * @ice_rxq_ctx: pointer to the rxq context
1245 * @rxq_index: the index of the Rx queue
1246 *
1247 * Copies rxq context from dense structure to HW register space
1248 */
1249static int
1250ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1251{
1252        u8 i;
1253
1254        if (!ice_rxq_ctx)
1255                return -EINVAL;
1256
1257        if (rxq_index > QRX_CTRL_MAX_INDEX)
1258                return -EINVAL;
1259
1260        /* Copy each dword separately to HW */
1261        for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1262                wr32(hw, QRX_CONTEXT(i, rxq_index),
1263                     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1264
1265                ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1266                          *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1267        }
1268
1269        return 0;
1270}
1271
1272/* LAN Rx Queue Context */
1273static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1274        /* Field                Width   LSB */
1275        ICE_CTX_STORE(ice_rlan_ctx, head,               13,     0),
1276        ICE_CTX_STORE(ice_rlan_ctx, cpuid,              8,      13),
1277        ICE_CTX_STORE(ice_rlan_ctx, base,               57,     32),
1278        ICE_CTX_STORE(ice_rlan_ctx, qlen,               13,     89),
1279        ICE_CTX_STORE(ice_rlan_ctx, dbuf,               7,      102),
1280        ICE_CTX_STORE(ice_rlan_ctx, hbuf,               5,      109),
1281        ICE_CTX_STORE(ice_rlan_ctx, dtype,              2,      114),
1282        ICE_CTX_STORE(ice_rlan_ctx, dsize,              1,      116),
1283        ICE_CTX_STORE(ice_rlan_ctx, crcstrip,           1,      117),
1284        ICE_CTX_STORE(ice_rlan_ctx, l2tsel,             1,      119),
1285        ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,           4,      120),
1286        ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,           2,      124),
1287        ICE_CTX_STORE(ice_rlan_ctx, showiv,             1,      127),
1288        ICE_CTX_STORE(ice_rlan_ctx, rxmax,              14,     174),
1289        ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,       1,      193),
1290        ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,       1,      194),
1291        ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,        1,      195),
1292        ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,        1,      196),
1293        ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,         3,      198),
1294        ICE_CTX_STORE(ice_rlan_ctx, prefena,            1,      201),
1295        { 0 }
1296};
1297
1298/**
1299 * ice_write_rxq_ctx
1300 * @hw: pointer to the hardware structure
1301 * @rlan_ctx: pointer to the rxq context
1302 * @rxq_index: the index of the Rx queue
1303 *
1304 * Converts rxq context from sparse to dense structure and then writes
1305 * it to HW register space and enables the hardware to prefetch descriptors
1306 * instead of only fetching them on demand
1307 */
1308int
1309ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1310                  u32 rxq_index)
1311{
1312        u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1313
1314        if (!rlan_ctx)
1315                return -EINVAL;
1316
1317        rlan_ctx->prefena = 1;
1318
1319        ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1320        return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1321}
1322
1323/* LAN Tx Queue Context */
1324const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1325                                    /* Field                    Width   LSB */
1326        ICE_CTX_STORE(ice_tlan_ctx, base,                       57,     0),
1327        ICE_CTX_STORE(ice_tlan_ctx, port_num,                   3,      57),
1328        ICE_CTX_STORE(ice_tlan_ctx, cgd_num,                    5,      60),
1329        ICE_CTX_STORE(ice_tlan_ctx, pf_num,                     3,      65),
1330        ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,                   10,     68),
1331        ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,                  2,      78),
1332        ICE_CTX_STORE(ice_tlan_ctx, src_vsi,                    10,     80),
1333        ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,                   1,      90),
1334        ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,        1,      91),
1335        ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,                   1,      92),
1336        ICE_CTX_STORE(ice_tlan_ctx, cpuid,                      8,      93),
1337        ICE_CTX_STORE(ice_tlan_ctx, wb_mode,                    1,      101),
1338        ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,                 1,      102),
1339        ICE_CTX_STORE(ice_tlan_ctx, tphrd,                      1,      103),
1340        ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,                 1,      104),
1341        ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,                    9,      105),
1342        ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,               14,     114),
1343        ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,      1,      128),
1344        ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,             6,      129),
1345        ICE_CTX_STORE(ice_tlan_ctx, qlen,                       13,     135),
1346        ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,            4,      148),
1347        ICE_CTX_STORE(ice_tlan_ctx, tso_ena,                    1,      152),
1348        ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,                   11,     153),
1349        ICE_CTX_STORE(ice_tlan_ctx, legacy_int,                 1,      164),
1350        ICE_CTX_STORE(ice_tlan_ctx, drop_ena,                   1,      165),
1351        ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,             2,      166),
1352        ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,        3,      168),
1353        ICE_CTX_STORE(ice_tlan_ctx, int_q_state,                122,    171),
1354        { 0 }
1355};
1356
1357/* Sideband Queue command wrappers */
1358
1359/**
1360 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1361 * @hw: pointer to the HW struct
1362 * @desc: descriptor describing the command
1363 * @buf: buffer to use for indirect commands (NULL for direct commands)
1364 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1365 * @cd: pointer to command details structure
1366 */
1367static int
1368ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1369                 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1370{
1371        return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1372                               (struct ice_aq_desc *)desc, buf, buf_size, cd);
1373}
1374
1375/**
1376 * ice_sbq_rw_reg - Fill Sideband Queue command
1377 * @hw: pointer to the HW struct
1378 * @in: message info to be filled in descriptor
1379 */
1380int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1381{
1382        struct ice_sbq_cmd_desc desc = {0};
1383        struct ice_sbq_msg_req msg = {0};
1384        u16 msg_len;
1385        int status;
1386
1387        msg_len = sizeof(msg);
1388
1389        msg.dest_dev = in->dest_dev;
1390        msg.opcode = in->opcode;
1391        msg.flags = ICE_SBQ_MSG_FLAGS;
1392        msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1393        msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1394        msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1395
1396        if (in->opcode)
1397                msg.data = cpu_to_le32(in->data);
1398        else
1399                /* data read comes back in completion, so shorten the struct by
1400                 * sizeof(msg.data)
1401                 */
1402                msg_len -= sizeof(msg.data);
1403
1404        desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1405        desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1406        desc.param0.cmd_len = cpu_to_le16(msg_len);
1407        status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1408        if (!status && !in->opcode)
1409                in->data = le32_to_cpu
1410                        (((struct ice_sbq_msg_cmpl *)&msg)->data);
1411        return status;
1412}
1413
1414/* FW Admin Queue command wrappers */
1415
1416/* Software lock/mutex that is meant to be held while the Global Config Lock
1417 * in firmware is acquired by the software to prevent most (but not all) types
1418 * of AQ commands from being sent to FW
1419 */
1420DEFINE_MUTEX(ice_global_cfg_lock_sw);
1421
1422/**
1423 * ice_should_retry_sq_send_cmd
1424 * @opcode: AQ opcode
1425 *
1426 * Decide if we should retry the send command routine for the ATQ, depending
1427 * on the opcode.
1428 */
1429static bool ice_should_retry_sq_send_cmd(u16 opcode)
1430{
1431        switch (opcode) {
1432        case ice_aqc_opc_get_link_topo:
1433        case ice_aqc_opc_lldp_stop:
1434        case ice_aqc_opc_lldp_start:
1435        case ice_aqc_opc_lldp_filter_ctrl:
1436                return true;
1437        }
1438
1439        return false;
1440}
1441
1442/**
1443 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1444 * @hw: pointer to the HW struct
1445 * @cq: pointer to the specific Control queue
1446 * @desc: prefilled descriptor describing the command
1447 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1448 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1449 * @cd: pointer to command details structure
1450 *
1451 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1452 * Queue if the EBUSY AQ error is returned.
1453 */
1454static int
1455ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1456                      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1457                      struct ice_sq_cd *cd)
1458{
1459        struct ice_aq_desc desc_cpy;
1460        bool is_cmd_for_retry;
1461        u8 *buf_cpy = NULL;
1462        u8 idx = 0;
1463        u16 opcode;
1464        int status;
1465
1466        opcode = le16_to_cpu(desc->opcode);
1467        is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1468        memset(&desc_cpy, 0, sizeof(desc_cpy));
1469
1470        if (is_cmd_for_retry) {
1471                if (buf) {
1472                        buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1473                        if (!buf_cpy)
1474                                return -ENOMEM;
1475                }
1476
1477                memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1478        }
1479
1480        do {
1481                status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1482
1483                if (!is_cmd_for_retry || !status ||
1484                    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1485                        break;
1486
1487                if (buf_cpy)
1488                        memcpy(buf, buf_cpy, buf_size);
1489
1490                memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1491
1492                mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1493
1494        } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1495
1496        kfree(buf_cpy);
1497
1498        return status;
1499}
1500
1501/**
1502 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1503 * @hw: pointer to the HW struct
1504 * @desc: descriptor describing the command
1505 * @buf: buffer to use for indirect commands (NULL for direct commands)
1506 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1507 * @cd: pointer to command details structure
1508 *
1509 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1510 */
1511int
1512ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1513                u16 buf_size, struct ice_sq_cd *cd)
1514{
1515        struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1516        bool lock_acquired = false;
1517        int status;
1518
1519        /* When a package download is in process (i.e. when the firmware's
1520         * Global Configuration Lock resource is held), only the Download
1521         * Package, Get Version, Get Package Info List and Release Resource
1522         * (with resource ID set to Global Config Lock) AdminQ commands are
1523         * allowed; all others must block until the package download completes
1524         * and the Global Config Lock is released.  See also
1525         * ice_acquire_global_cfg_lock().
1526         */
1527        switch (le16_to_cpu(desc->opcode)) {
1528        case ice_aqc_opc_download_pkg:
1529        case ice_aqc_opc_get_pkg_info_list:
1530        case ice_aqc_opc_get_ver:
1531                break;
1532        case ice_aqc_opc_release_res:
1533                if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1534                        break;
1535                fallthrough;
1536        default:
1537                mutex_lock(&ice_global_cfg_lock_sw);
1538                lock_acquired = true;
1539                break;
1540        }
1541
1542        status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1543        if (lock_acquired)
1544                mutex_unlock(&ice_global_cfg_lock_sw);
1545
1546        return status;
1547}
1548
1549/**
1550 * ice_aq_get_fw_ver
1551 * @hw: pointer to the HW struct
1552 * @cd: pointer to command details structure or NULL
1553 *
1554 * Get the firmware version (0x0001) from the admin queue commands
1555 */
1556int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1557{
1558        struct ice_aqc_get_ver *resp;
1559        struct ice_aq_desc desc;
1560        int status;
1561
1562        resp = &desc.params.get_ver;
1563
1564        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1565
1566        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1567
1568        if (!status) {
1569                hw->fw_branch = resp->fw_branch;
1570                hw->fw_maj_ver = resp->fw_major;
1571                hw->fw_min_ver = resp->fw_minor;
1572                hw->fw_patch = resp->fw_patch;
1573                hw->fw_build = le32_to_cpu(resp->fw_build);
1574                hw->api_branch = resp->api_branch;
1575                hw->api_maj_ver = resp->api_major;
1576                hw->api_min_ver = resp->api_minor;
1577                hw->api_patch = resp->api_patch;
1578        }
1579
1580        return status;
1581}
1582
1583/**
1584 * ice_aq_send_driver_ver
1585 * @hw: pointer to the HW struct
1586 * @dv: driver's major, minor version
1587 * @cd: pointer to command details structure or NULL
1588 *
1589 * Send the driver version (0x0002) to the firmware
1590 */
1591int
1592ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1593                       struct ice_sq_cd *cd)
1594{
1595        struct ice_aqc_driver_ver *cmd;
1596        struct ice_aq_desc desc;
1597        u16 len;
1598
1599        cmd = &desc.params.driver_ver;
1600
1601        if (!dv)
1602                return -EINVAL;
1603
1604        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1605
1606        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1607        cmd->major_ver = dv->major_ver;
1608        cmd->minor_ver = dv->minor_ver;
1609        cmd->build_ver = dv->build_ver;
1610        cmd->subbuild_ver = dv->subbuild_ver;
1611
1612        len = 0;
1613        while (len < sizeof(dv->driver_string) &&
1614               isascii(dv->driver_string[len]) && dv->driver_string[len])
1615                len++;
1616
1617        return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1618}
1619
1620/**
1621 * ice_aq_q_shutdown
1622 * @hw: pointer to the HW struct
1623 * @unloading: is the driver unloading itself
1624 *
1625 * Tell the Firmware that we're shutting down the AdminQ and whether
1626 * or not the driver is unloading as well (0x0003).
1627 */
1628int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1629{
1630        struct ice_aqc_q_shutdown *cmd;
1631        struct ice_aq_desc desc;
1632
1633        cmd = &desc.params.q_shutdown;
1634
1635        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1636
1637        if (unloading)
1638                cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1639
1640        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1641}
1642
1643/**
1644 * ice_aq_req_res
1645 * @hw: pointer to the HW struct
1646 * @res: resource ID
1647 * @access: access type
1648 * @sdp_number: resource number
1649 * @timeout: the maximum time in ms that the driver may hold the resource
1650 * @cd: pointer to command details structure or NULL
1651 *
1652 * Requests common resource using the admin queue commands (0x0008).
1653 * When attempting to acquire the Global Config Lock, the driver can
1654 * learn of three states:
1655 *  1) 0 -         acquired lock, and can perform download package
1656 *  2) -EIO -      did not get lock, driver should fail to load
1657 *  3) -EALREADY - did not get lock, but another driver has
1658 *                 successfully downloaded the package; the driver does
1659 *                 not have to download the package and can continue
1660 *                 loading
1661 *
1662 * Note that if the caller is in an acquire lock, perform action, release lock
1663 * phase of operation, it is possible that the FW may detect a timeout and issue
1664 * a CORER. In this case, the driver will receive a CORER interrupt and will
1665 * have to determine its cause. The calling thread that is handling this flow
1666 * will likely get an error propagated back to it indicating the Download
1667 * Package, Update Package or the Release Resource AQ commands timed out.
1668 */
1669static int
1670ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1671               enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1672               struct ice_sq_cd *cd)
1673{
1674        struct ice_aqc_req_res *cmd_resp;
1675        struct ice_aq_desc desc;
1676        int status;
1677
1678        cmd_resp = &desc.params.res_owner;
1679
1680        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1681
1682        cmd_resp->res_id = cpu_to_le16(res);
1683        cmd_resp->access_type = cpu_to_le16(access);
1684        cmd_resp->res_number = cpu_to_le32(sdp_number);
1685        cmd_resp->timeout = cpu_to_le32(*timeout);
1686        *timeout = 0;
1687
1688        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1689
1690        /* The completion specifies the maximum time in ms that the driver
1691         * may hold the resource in the Timeout field.
1692         */
1693
1694        /* Global config lock response utilizes an additional status field.
1695         *
1696         * If the Global config lock resource is held by some other driver, the
1697         * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1698         * and the timeout field indicates the maximum time the current owner
1699         * of the resource has to free it.
1700         */
1701        if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1702                if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1703                        *timeout = le32_to_cpu(cmd_resp->timeout);
1704                        return 0;
1705                } else if (le16_to_cpu(cmd_resp->status) ==
1706                           ICE_AQ_RES_GLBL_IN_PROG) {
1707                        *timeout = le32_to_cpu(cmd_resp->timeout);
1708                        return -EIO;
1709                } else if (le16_to_cpu(cmd_resp->status) ==
1710                           ICE_AQ_RES_GLBL_DONE) {
1711                        return -EALREADY;
1712                }
1713
1714                /* invalid FW response, force a timeout immediately */
1715                *timeout = 0;
1716                return -EIO;
1717        }
1718
1719        /* If the resource is held by some other driver, the command completes
1720         * with a busy return value and the timeout field indicates the maximum
1721         * time the current owner of the resource has to free it.
1722         */
1723        if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1724                *timeout = le32_to_cpu(cmd_resp->timeout);
1725
1726        return status;
1727}
1728
1729/**
1730 * ice_aq_release_res
1731 * @hw: pointer to the HW struct
1732 * @res: resource ID
1733 * @sdp_number: resource number
1734 * @cd: pointer to command details structure or NULL
1735 *
1736 * release common resource using the admin queue commands (0x0009)
1737 */
1738static int
1739ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1740                   struct ice_sq_cd *cd)
1741{
1742        struct ice_aqc_req_res *cmd;
1743        struct ice_aq_desc desc;
1744
1745        cmd = &desc.params.res_owner;
1746
1747        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1748
1749        cmd->res_id = cpu_to_le16(res);
1750        cmd->res_number = cpu_to_le32(sdp_number);
1751
1752        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1753}
1754
1755/**
1756 * ice_acquire_res
1757 * @hw: pointer to the HW structure
1758 * @res: resource ID
1759 * @access: access type (read or write)
1760 * @timeout: timeout in milliseconds
1761 *
1762 * This function will attempt to acquire the ownership of a resource.
1763 */
1764int
1765ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1766                enum ice_aq_res_access_type access, u32 timeout)
1767{
1768#define ICE_RES_POLLING_DELAY_MS        10
1769        u32 delay = ICE_RES_POLLING_DELAY_MS;
1770        u32 time_left = timeout;
1771        int status;
1772
1773        status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1774
1775        /* A return code of -EALREADY means that another driver has
1776         * previously acquired the resource and performed any necessary updates;
1777         * in this case the caller does not obtain the resource and has no
1778         * further work to do.
1779         */
1780        if (status == -EALREADY)
1781                goto ice_acquire_res_exit;
1782
1783        if (status)
1784                ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1785
1786        /* If necessary, poll until the current lock owner timeouts */
1787        timeout = time_left;
1788        while (status && timeout && time_left) {
1789                mdelay(delay);
1790                timeout = (timeout > delay) ? timeout - delay : 0;
1791                status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1792
1793                if (status == -EALREADY)
1794                        /* lock free, but no work to do */
1795                        break;
1796
1797                if (!status)
1798                        /* lock acquired */
1799                        break;
1800        }
1801        if (status && status != -EALREADY)
1802                ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1803
1804ice_acquire_res_exit:
1805        if (status == -EALREADY) {
1806                if (access == ICE_RES_WRITE)
1807                        ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1808                else
1809                        ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1810        }
1811        return status;
1812}
1813
1814/**
1815 * ice_release_res
1816 * @hw: pointer to the HW structure
1817 * @res: resource ID
1818 *
1819 * This function will release a resource using the proper Admin Command.
1820 */
1821void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1822{
1823        u32 total_delay = 0;
1824        int status;
1825
1826        status = ice_aq_release_res(hw, res, 0, NULL);
1827
1828        /* there are some rare cases when trying to release the resource
1829         * results in an admin queue timeout, so handle them correctly
1830         */
1831        while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1832                mdelay(1);
1833                status = ice_aq_release_res(hw, res, 0, NULL);
1834                total_delay++;
1835        }
1836}
1837
1838/**
1839 * ice_aq_alloc_free_res - command to allocate/free resources
1840 * @hw: pointer to the HW struct
1841 * @num_entries: number of resource entries in buffer
1842 * @buf: Indirect buffer to hold data parameters and response
1843 * @buf_size: size of buffer for indirect commands
1844 * @opc: pass in the command opcode
1845 * @cd: pointer to command details structure or NULL
1846 *
1847 * Helper function to allocate/free resources using the admin queue commands
1848 */
1849int
1850ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1851                      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1852                      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1853{
1854        struct ice_aqc_alloc_free_res_cmd *cmd;
1855        struct ice_aq_desc desc;
1856
1857        cmd = &desc.params.sw_res_ctrl;
1858
1859        if (!buf)
1860                return -EINVAL;
1861
1862        if (buf_size < flex_array_size(buf, elem, num_entries))
1863                return -EINVAL;
1864
1865        ice_fill_dflt_direct_cmd_desc(&desc, opc);
1866
1867        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1868
1869        cmd->num_entries = cpu_to_le16(num_entries);
1870
1871        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1872}
1873
1874/**
1875 * ice_alloc_hw_res - allocate resource
1876 * @hw: pointer to the HW struct
1877 * @type: type of resource
1878 * @num: number of resources to allocate
1879 * @btm: allocate from bottom
1880 * @res: pointer to array that will receive the resources
1881 */
1882int
1883ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1884{
1885        struct ice_aqc_alloc_free_res_elem *buf;
1886        u16 buf_len;
1887        int status;
1888
1889        buf_len = struct_size(buf, elem, num);
1890        buf = kzalloc(buf_len, GFP_KERNEL);
1891        if (!buf)
1892                return -ENOMEM;
1893
1894        /* Prepare buffer to allocate resource. */
1895        buf->num_elems = cpu_to_le16(num);
1896        buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1897                                    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1898        if (btm)
1899                buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1900
1901        status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1902                                       ice_aqc_opc_alloc_res, NULL);
1903        if (status)
1904                goto ice_alloc_res_exit;
1905
1906        memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1907
1908ice_alloc_res_exit:
1909        kfree(buf);
1910        return status;
1911}
1912
1913/**
1914 * ice_free_hw_res - free allocated HW resource
1915 * @hw: pointer to the HW struct
1916 * @type: type of resource to free
1917 * @num: number of resources
1918 * @res: pointer to array that contains the resources to free
1919 */
1920int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1921{
1922        struct ice_aqc_alloc_free_res_elem *buf;
1923        u16 buf_len;
1924        int status;
1925
1926        buf_len = struct_size(buf, elem, num);
1927        buf = kzalloc(buf_len, GFP_KERNEL);
1928        if (!buf)
1929                return -ENOMEM;
1930
1931        /* Prepare buffer to free resource. */
1932        buf->num_elems = cpu_to_le16(num);
1933        buf->res_type = cpu_to_le16(type);
1934        memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1935
1936        status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1937                                       ice_aqc_opc_free_res, NULL);
1938        if (status)
1939                ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1940
1941        kfree(buf);
1942        return status;
1943}
1944
1945/**
1946 * ice_get_num_per_func - determine number of resources per PF
1947 * @hw: pointer to the HW structure
1948 * @max: value to be evenly split between each PF
1949 *
1950 * Determine the number of valid functions by going through the bitmap returned
1951 * from parsing capabilities and use this to calculate the number of resources
1952 * per PF based on the max value passed in.
1953 */
1954static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1955{
1956        u8 funcs;
1957
1958#define ICE_CAPS_VALID_FUNCS_M  0xFF
1959        funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1960                         ICE_CAPS_VALID_FUNCS_M);
1961
1962        if (!funcs)
1963                return 0;
1964
1965        return max / funcs;
1966}
1967
1968/**
1969 * ice_parse_common_caps - parse common device/function capabilities
1970 * @hw: pointer to the HW struct
1971 * @caps: pointer to common capabilities structure
1972 * @elem: the capability element to parse
1973 * @prefix: message prefix for tracing capabilities
1974 *
1975 * Given a capability element, extract relevant details into the common
1976 * capability structure.
1977 *
1978 * Returns: true if the capability matches one of the common capability ids,
1979 * false otherwise.
1980 */
1981static bool
1982ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1983                      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1984{
1985        u32 logical_id = le32_to_cpu(elem->logical_id);
1986        u32 phys_id = le32_to_cpu(elem->phys_id);
1987        u32 number = le32_to_cpu(elem->number);
1988        u16 cap = le16_to_cpu(elem->cap);
1989        bool found = true;
1990
1991        switch (cap) {
1992        case ICE_AQC_CAPS_VALID_FUNCTIONS:
1993                caps->valid_functions = number;
1994                ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1995                          caps->valid_functions);
1996                break;
1997        case ICE_AQC_CAPS_SRIOV:
1998                caps->sr_iov_1_1 = (number == 1);
1999                ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2000                          caps->sr_iov_1_1);
2001                break;
2002        case ICE_AQC_CAPS_DCB:
2003                caps->dcb = (number == 1);
2004                caps->active_tc_bitmap = logical_id;
2005                caps->maxtc = phys_id;
2006                ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2007                ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2008                          caps->active_tc_bitmap);
2009                ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2010                break;
2011        case ICE_AQC_CAPS_RSS:
2012                caps->rss_table_size = number;
2013                caps->rss_table_entry_width = logical_id;
2014                ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2015                          caps->rss_table_size);
2016                ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2017                          caps->rss_table_entry_width);
2018                break;
2019        case ICE_AQC_CAPS_RXQS:
2020                caps->num_rxq = number;
2021                caps->rxq_first_id = phys_id;
2022                ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2023                          caps->num_rxq);
2024                ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2025                          caps->rxq_first_id);
2026                break;
2027        case ICE_AQC_CAPS_TXQS:
2028                caps->num_txq = number;
2029                caps->txq_first_id = phys_id;
2030                ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2031                          caps->num_txq);
2032                ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2033                          caps->txq_first_id);
2034                break;
2035        case ICE_AQC_CAPS_MSIX:
2036                caps->num_msix_vectors = number;
2037                caps->msix_vector_first_id = phys_id;
2038                ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2039                          caps->num_msix_vectors);
2040                ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2041                          caps->msix_vector_first_id);
2042                break;
2043        case ICE_AQC_CAPS_PENDING_NVM_VER:
2044                caps->nvm_update_pending_nvm = true;
2045                ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2046                break;
2047        case ICE_AQC_CAPS_PENDING_OROM_VER:
2048                caps->nvm_update_pending_orom = true;
2049                ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2050                break;
2051        case ICE_AQC_CAPS_PENDING_NET_VER:
2052                caps->nvm_update_pending_netlist = true;
2053                ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2054                break;
2055        case ICE_AQC_CAPS_NVM_MGMT:
2056                caps->nvm_unified_update =
2057                        (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2058                        true : false;
2059                ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2060                          caps->nvm_unified_update);
2061                break;
2062        case ICE_AQC_CAPS_RDMA:
2063                caps->rdma = (number == 1);
2064                ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2065                break;
2066        case ICE_AQC_CAPS_MAX_MTU:
2067                caps->max_mtu = number;
2068                ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2069                          prefix, caps->max_mtu);
2070                break;
2071        case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2072                caps->pcie_reset_avoidance = (number > 0);
2073                ice_debug(hw, ICE_DBG_INIT,
2074                          "%s: pcie_reset_avoidance = %d\n", prefix,
2075                          caps->pcie_reset_avoidance);
2076                break;
2077        case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2078                caps->reset_restrict_support = (number == 1);
2079                ice_debug(hw, ICE_DBG_INIT,
2080                          "%s: reset_restrict_support = %d\n", prefix,
2081                          caps->reset_restrict_support);
2082                break;
2083        default:
2084                /* Not one of the recognized common capabilities */
2085                found = false;
2086        }
2087
2088        return found;
2089}
2090
2091/**
2092 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2093 * @hw: pointer to the HW structure
2094 * @caps: pointer to capabilities structure to fix
2095 *
2096 * Re-calculate the capabilities that are dependent on the number of physical
2097 * ports; i.e. some features are not supported or function differently on
2098 * devices with more than 4 ports.
2099 */
2100static void
2101ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2102{
2103        /* This assumes device capabilities are always scanned before function
2104         * capabilities during the initialization flow.
2105         */
2106        if (hw->dev_caps.num_funcs > 4) {
2107                /* Max 4 TCs per port */
2108                caps->maxtc = 4;
2109                ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2110                          caps->maxtc);
2111                if (caps->rdma) {
2112                        ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2113                        caps->rdma = 0;
2114                }
2115
2116                /* print message only when processing device capabilities
2117                 * during initialization.
2118                 */
2119                if (caps == &hw->dev_caps.common_cap)
2120                        dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2121        }
2122}
2123
2124/**
2125 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2126 * @hw: pointer to the HW struct
2127 * @func_p: pointer to function capabilities structure
2128 * @cap: pointer to the capability element to parse
2129 *
2130 * Extract function capabilities for ICE_AQC_CAPS_VF.
2131 */
2132static void
2133ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2134                       struct ice_aqc_list_caps_elem *cap)
2135{
2136        u32 logical_id = le32_to_cpu(cap->logical_id);
2137        u32 number = le32_to_cpu(cap->number);
2138
2139        func_p->num_allocd_vfs = number;
2140        func_p->vf_base_id = logical_id;
2141        ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2142                  func_p->num_allocd_vfs);
2143        ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2144                  func_p->vf_base_id);
2145}
2146
2147/**
2148 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2149 * @hw: pointer to the HW struct
2150 * @func_p: pointer to function capabilities structure
2151 * @cap: pointer to the capability element to parse
2152 *
2153 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2154 */
2155static void
2156ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2157                        struct ice_aqc_list_caps_elem *cap)
2158{
2159        func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2160        ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2161                  le32_to_cpu(cap->number));
2162        ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2163                  func_p->guar_num_vsi);
2164}
2165
2166/**
2167 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2168 * @hw: pointer to the HW struct
2169 * @func_p: pointer to function capabilities structure
2170 * @cap: pointer to the capability element to parse
2171 *
2172 * Extract function capabilities for ICE_AQC_CAPS_1588.
2173 */
2174static void
2175ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2176                         struct ice_aqc_list_caps_elem *cap)
2177{
2178        struct ice_ts_func_info *info = &func_p->ts_func_info;
2179        u32 number = le32_to_cpu(cap->number);
2180
2181        info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2182        func_p->common_cap.ieee_1588 = info->ena;
2183
2184        info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2185        info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2186        info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2187        info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2188
2189        info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2190        info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2191
2192        if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2193                info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2194        } else {
2195                /* Unknown clock frequency, so assume a (probably incorrect)
2196                 * default to avoid out-of-bounds look ups of frequency
2197                 * related information.
2198                 */
2199                ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2200                          info->clk_freq);
2201                info->time_ref = ICE_TIME_REF_FREQ_25_000;
2202        }
2203
2204        ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2205                  func_p->common_cap.ieee_1588);
2206        ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2207                  info->src_tmr_owned);
2208        ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2209                  info->tmr_ena);
2210        ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2211                  info->tmr_index_owned);
2212        ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2213                  info->tmr_index_assoc);
2214        ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2215                  info->clk_freq);
2216        ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2217                  info->clk_src);
2218}
2219
2220/**
2221 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2222 * @hw: pointer to the HW struct
2223 * @func_p: pointer to function capabilities structure
2224 *
2225 * Extract function capabilities for ICE_AQC_CAPS_FD.
2226 */
2227static void
2228ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2229{
2230        u32 reg_val, val;
2231
2232        reg_val = rd32(hw, GLQF_FD_SIZE);
2233        val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2234                GLQF_FD_SIZE_FD_GSIZE_S;
2235        func_p->fd_fltr_guar =
2236                ice_get_num_per_func(hw, val);
2237        val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2238                GLQF_FD_SIZE_FD_BSIZE_S;
2239        func_p->fd_fltr_best_effort = val;
2240
2241        ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2242                  func_p->fd_fltr_guar);
2243        ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2244                  func_p->fd_fltr_best_effort);
2245}
2246
2247/**
2248 * ice_parse_func_caps - Parse function capabilities
2249 * @hw: pointer to the HW struct
2250 * @func_p: pointer to function capabilities structure
2251 * @buf: buffer containing the function capability records
2252 * @cap_count: the number of capabilities
2253 *
2254 * Helper function to parse function (0x000A) capabilities list. For
2255 * capabilities shared between device and function, this relies on
2256 * ice_parse_common_caps.
2257 *
2258 * Loop through the list of provided capabilities and extract the relevant
2259 * data into the function capabilities structured.
2260 */
2261static void
2262ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2263                    void *buf, u32 cap_count)
2264{
2265        struct ice_aqc_list_caps_elem *cap_resp;
2266        u32 i;
2267
2268        cap_resp = buf;
2269
2270        memset(func_p, 0, sizeof(*func_p));
2271
2272        for (i = 0; i < cap_count; i++) {
2273                u16 cap = le16_to_cpu(cap_resp[i].cap);
2274                bool found;
2275
2276                found = ice_parse_common_caps(hw, &func_p->common_cap,
2277                                              &cap_resp[i], "func caps");
2278
2279                switch (cap) {
2280                case ICE_AQC_CAPS_VF:
2281                        ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2282                        break;
2283                case ICE_AQC_CAPS_VSI:
2284                        ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2285                        break;
2286                case ICE_AQC_CAPS_1588:
2287                        ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2288                        break;
2289                case ICE_AQC_CAPS_FD:
2290                        ice_parse_fdir_func_caps(hw, func_p);
2291                        break;
2292                default:
2293                        /* Don't list common capabilities as unknown */
2294                        if (!found)
2295                                ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2296                                          i, cap);
2297                        break;
2298                }
2299        }
2300
2301        ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2302}
2303
2304/**
2305 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2306 * @hw: pointer to the HW struct
2307 * @dev_p: pointer to device capabilities structure
2308 * @cap: capability element to parse
2309 *
2310 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2311 */
2312static void
2313ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2314                              struct ice_aqc_list_caps_elem *cap)
2315{
2316        u32 number = le32_to_cpu(cap->number);
2317
2318        dev_p->num_funcs = hweight32(number);
2319        ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2320                  dev_p->num_funcs);
2321}
2322
2323/**
2324 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2325 * @hw: pointer to the HW struct
2326 * @dev_p: pointer to device capabilities structure
2327 * @cap: capability element to parse
2328 *
2329 * Parse ICE_AQC_CAPS_VF for device capabilities.
2330 */
2331static void
2332ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2333                      struct ice_aqc_list_caps_elem *cap)
2334{
2335        u32 number = le32_to_cpu(cap->number);
2336
2337        dev_p->num_vfs_exposed = number;
2338        ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2339                  dev_p->num_vfs_exposed);
2340}
2341
2342/**
2343 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2344 * @hw: pointer to the HW struct
2345 * @dev_p: pointer to device capabilities structure
2346 * @cap: capability element to parse
2347 *
2348 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2349 */
2350static void
2351ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2352                       struct ice_aqc_list_caps_elem *cap)
2353{
2354        u32 number = le32_to_cpu(cap->number);
2355
2356        dev_p->num_vsi_allocd_to_host = number;
2357        ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2358                  dev_p->num_vsi_allocd_to_host);
2359}
2360
2361/**
2362 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2363 * @hw: pointer to the HW struct
2364 * @dev_p: pointer to device capabilities structure
2365 * @cap: capability element to parse
2366 *
2367 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2368 */
2369static void
2370ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2371                        struct ice_aqc_list_caps_elem *cap)
2372{
2373        struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2374        u32 logical_id = le32_to_cpu(cap->logical_id);
2375        u32 phys_id = le32_to_cpu(cap->phys_id);
2376        u32 number = le32_to_cpu(cap->number);
2377
2378        info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2379        dev_p->common_cap.ieee_1588 = info->ena;
2380
2381        info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2382        info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2383        info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2384
2385        info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2386        info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2387        info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2388
2389        info->ena_ports = logical_id;
2390        info->tmr_own_map = phys_id;
2391
2392        ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2393                  dev_p->common_cap.ieee_1588);
2394        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2395                  info->tmr0_owner);
2396        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2397                  info->tmr0_owned);
2398        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2399                  info->tmr0_ena);
2400        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2401                  info->tmr1_owner);
2402        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2403                  info->tmr1_owned);
2404        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2405                  info->tmr1_ena);
2406        ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2407                  info->ena_ports);
2408        ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2409                  info->tmr_own_map);
2410}
2411
2412/**
2413 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2414 * @hw: pointer to the HW struct
2415 * @dev_p: pointer to device capabilities structure
2416 * @cap: capability element to parse
2417 *
2418 * Parse ICE_AQC_CAPS_FD for device capabilities.
2419 */
2420static void
2421ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2422                        struct ice_aqc_list_caps_elem *cap)
2423{
2424        u32 number = le32_to_cpu(cap->number);
2425
2426        dev_p->num_flow_director_fltr = number;
2427        ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2428                  dev_p->num_flow_director_fltr);
2429}
2430
2431/**
2432 * ice_parse_dev_caps - Parse device capabilities
2433 * @hw: pointer to the HW struct
2434 * @dev_p: pointer to device capabilities structure
2435 * @buf: buffer containing the device capability records
2436 * @cap_count: the number of capabilities
2437 *
2438 * Helper device to parse device (0x000B) capabilities list. For
2439 * capabilities shared between device and function, this relies on
2440 * ice_parse_common_caps.
2441 *
2442 * Loop through the list of provided capabilities and extract the relevant
2443 * data into the device capabilities structured.
2444 */
2445static void
2446ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2447                   void *buf, u32 cap_count)
2448{
2449        struct ice_aqc_list_caps_elem *cap_resp;
2450        u32 i;
2451
2452        cap_resp = buf;
2453
2454        memset(dev_p, 0, sizeof(*dev_p));
2455
2456        for (i = 0; i < cap_count; i++) {
2457                u16 cap = le16_to_cpu(cap_resp[i].cap);
2458                bool found;
2459
2460                found = ice_parse_common_caps(hw, &dev_p->common_cap,
2461                                              &cap_resp[i], "dev caps");
2462
2463                switch (cap) {
2464                case ICE_AQC_CAPS_VALID_FUNCTIONS:
2465                        ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2466                        break;
2467                case ICE_AQC_CAPS_VF:
2468                        ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2469                        break;
2470                case ICE_AQC_CAPS_VSI:
2471                        ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2472                        break;
2473                case ICE_AQC_CAPS_1588:
2474                        ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2475                        break;
2476                case  ICE_AQC_CAPS_FD:
2477                        ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2478                        break;
2479                default:
2480                        /* Don't list common capabilities as unknown */
2481                        if (!found)
2482                                ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2483                                          i, cap);
2484                        break;
2485                }
2486        }
2487
2488        ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2489}
2490
2491/**
2492 * ice_aq_list_caps - query function/device capabilities
2493 * @hw: pointer to the HW struct
2494 * @buf: a buffer to hold the capabilities
2495 * @buf_size: size of the buffer
2496 * @cap_count: if not NULL, set to the number of capabilities reported
2497 * @opc: capabilities type to discover, device or function
2498 * @cd: pointer to command details structure or NULL
2499 *
2500 * Get the function (0x000A) or device (0x000B) capabilities description from
2501 * firmware and store it in the buffer.
2502 *
2503 * If the cap_count pointer is not NULL, then it is set to the number of
2504 * capabilities firmware will report. Note that if the buffer size is too
2505 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2506 * cap_count will still be updated in this case. It is recommended that the
2507 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2508 * firmware could return) to avoid this.
2509 */
2510int
2511ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2512                 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2513{
2514        struct ice_aqc_list_caps *cmd;
2515        struct ice_aq_desc desc;
2516        int status;
2517
2518        cmd = &desc.params.get_cap;
2519
2520        if (opc != ice_aqc_opc_list_func_caps &&
2521            opc != ice_aqc_opc_list_dev_caps)
2522                return -EINVAL;
2523
2524        ice_fill_dflt_direct_cmd_desc(&desc, opc);
2525        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2526
2527        if (cap_count)
2528                *cap_count = le32_to_cpu(cmd->count);
2529
2530        return status;
2531}
2532
2533/**
2534 * ice_discover_dev_caps - Read and extract device capabilities
2535 * @hw: pointer to the hardware structure
2536 * @dev_caps: pointer to device capabilities structure
2537 *
2538 * Read the device capabilities and extract them into the dev_caps structure
2539 * for later use.
2540 */
2541int
2542ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2543{
2544        u32 cap_count = 0;
2545        void *cbuf;
2546        int status;
2547
2548        cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2549        if (!cbuf)
2550                return -ENOMEM;
2551
2552        /* Although the driver doesn't know the number of capabilities the
2553         * device will return, we can simply send a 4KB buffer, the maximum
2554         * possible size that firmware can return.
2555         */
2556        cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2557
2558        status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2559                                  ice_aqc_opc_list_dev_caps, NULL);
2560        if (!status)
2561                ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2562        kfree(cbuf);
2563
2564        return status;
2565}
2566
2567/**
2568 * ice_discover_func_caps - Read and extract function capabilities
2569 * @hw: pointer to the hardware structure
2570 * @func_caps: pointer to function capabilities structure
2571 *
2572 * Read the function capabilities and extract them into the func_caps structure
2573 * for later use.
2574 */
2575static int
2576ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2577{
2578        u32 cap_count = 0;
2579        void *cbuf;
2580        int status;
2581
2582        cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2583        if (!cbuf)
2584                return -ENOMEM;
2585
2586        /* Although the driver doesn't know the number of capabilities the
2587         * device will return, we can simply send a 4KB buffer, the maximum
2588         * possible size that firmware can return.
2589         */
2590        cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2591
2592        status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2593                                  ice_aqc_opc_list_func_caps, NULL);
2594        if (!status)
2595                ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2596        kfree(cbuf);
2597
2598        return status;
2599}
2600
2601/**
2602 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2603 * @hw: pointer to the hardware structure
2604 */
2605void ice_set_safe_mode_caps(struct ice_hw *hw)
2606{
2607        struct ice_hw_func_caps *func_caps = &hw->func_caps;
2608        struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2609        struct ice_hw_common_caps cached_caps;
2610        u32 num_funcs;
2611
2612        /* cache some func_caps values that should be restored after memset */
2613        cached_caps = func_caps->common_cap;
2614
2615        /* unset func capabilities */
2616        memset(func_caps, 0, sizeof(*func_caps));
2617
2618#define ICE_RESTORE_FUNC_CAP(name) \
2619        func_caps->common_cap.name = cached_caps.name
2620
2621        /* restore cached values */
2622        ICE_RESTORE_FUNC_CAP(valid_functions);
2623        ICE_RESTORE_FUNC_CAP(txq_first_id);
2624        ICE_RESTORE_FUNC_CAP(rxq_first_id);
2625        ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2626        ICE_RESTORE_FUNC_CAP(max_mtu);
2627        ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2628        ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2629        ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2630        ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2631
2632        /* one Tx and one Rx queue in safe mode */
2633        func_caps->common_cap.num_rxq = 1;
2634        func_caps->common_cap.num_txq = 1;
2635
2636        /* two MSIX vectors, one for traffic and one for misc causes */
2637        func_caps->common_cap.num_msix_vectors = 2;
2638        func_caps->guar_num_vsi = 1;
2639
2640        /* cache some dev_caps values that should be restored after memset */
2641        cached_caps = dev_caps->common_cap;
2642        num_funcs = dev_caps->num_funcs;
2643
2644        /* unset dev capabilities */
2645        memset(dev_caps, 0, sizeof(*dev_caps));
2646
2647#define ICE_RESTORE_DEV_CAP(name) \
2648        dev_caps->common_cap.name = cached_caps.name
2649
2650        /* restore cached values */
2651        ICE_RESTORE_DEV_CAP(valid_functions);
2652        ICE_RESTORE_DEV_CAP(txq_first_id);
2653        ICE_RESTORE_DEV_CAP(rxq_first_id);
2654        ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2655        ICE_RESTORE_DEV_CAP(max_mtu);
2656        ICE_RESTORE_DEV_CAP(nvm_unified_update);
2657        ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2658        ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2659        ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2660        dev_caps->num_funcs = num_funcs;
2661
2662        /* one Tx and one Rx queue per function in safe mode */
2663        dev_caps->common_cap.num_rxq = num_funcs;
2664        dev_caps->common_cap.num_txq = num_funcs;
2665
2666        /* two MSIX vectors per function */
2667        dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2668}
2669
2670/**
2671 * ice_get_caps - get info about the HW
2672 * @hw: pointer to the hardware structure
2673 */
2674int ice_get_caps(struct ice_hw *hw)
2675{
2676        int status;
2677
2678        status = ice_discover_dev_caps(hw, &hw->dev_caps);
2679        if (status)
2680                return status;
2681
2682        return ice_discover_func_caps(hw, &hw->func_caps);
2683}
2684
2685/**
2686 * ice_aq_manage_mac_write - manage MAC address write command
2687 * @hw: pointer to the HW struct
2688 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2689 * @flags: flags to control write behavior
2690 * @cd: pointer to command details structure or NULL
2691 *
2692 * This function is used to write MAC address to the NVM (0x0108).
2693 */
2694int
2695ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2696                        struct ice_sq_cd *cd)
2697{
2698        struct ice_aqc_manage_mac_write *cmd;
2699        struct ice_aq_desc desc;
2700
2701        cmd = &desc.params.mac_write;
2702        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2703
2704        cmd->flags = flags;
2705        ether_addr_copy(cmd->mac_addr, mac_addr);
2706
2707        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2708}
2709
2710/**
2711 * ice_aq_clear_pxe_mode
2712 * @hw: pointer to the HW struct
2713 *
2714 * Tell the firmware that the driver is taking over from PXE (0x0110).
2715 */
2716static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2717{
2718        struct ice_aq_desc desc;
2719
2720        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2721        desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2722
2723        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2724}
2725
2726/**
2727 * ice_clear_pxe_mode - clear pxe operations mode
2728 * @hw: pointer to the HW struct
2729 *
2730 * Make sure all PXE mode settings are cleared, including things
2731 * like descriptor fetch/write-back mode.
2732 */
2733void ice_clear_pxe_mode(struct ice_hw *hw)
2734{
2735        if (ice_check_sq_alive(hw, &hw->adminq))
2736                ice_aq_clear_pxe_mode(hw);
2737}
2738
2739/**
2740 * ice_get_link_speed_based_on_phy_type - returns link speed
2741 * @phy_type_low: lower part of phy_type
2742 * @phy_type_high: higher part of phy_type
2743 *
2744 * This helper function will convert an entry in PHY type structure
2745 * [phy_type_low, phy_type_high] to its corresponding link speed.
2746 * Note: In the structure of [phy_type_low, phy_type_high], there should
2747 * be one bit set, as this function will convert one PHY type to its
2748 * speed.
2749 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2750 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2751 */
2752static u16
2753ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2754{
2755        u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2756        u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2757
2758        switch (phy_type_low) {
2759        case ICE_PHY_TYPE_LOW_100BASE_TX:
2760        case ICE_PHY_TYPE_LOW_100M_SGMII:
2761                speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2762                break;
2763        case ICE_PHY_TYPE_LOW_1000BASE_T:
2764        case ICE_PHY_TYPE_LOW_1000BASE_SX:
2765        case ICE_PHY_TYPE_LOW_1000BASE_LX:
2766        case ICE_PHY_TYPE_LOW_1000BASE_KX:
2767        case ICE_PHY_TYPE_LOW_1G_SGMII:
2768                speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2769                break;
2770        case ICE_PHY_TYPE_LOW_2500BASE_T:
2771        case ICE_PHY_TYPE_LOW_2500BASE_X:
2772        case ICE_PHY_TYPE_LOW_2500BASE_KX:
2773                speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2774                break;
2775        case ICE_PHY_TYPE_LOW_5GBASE_T:
2776        case ICE_PHY_TYPE_LOW_5GBASE_KR:
2777                speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2778                break;
2779        case ICE_PHY_TYPE_LOW_10GBASE_T:
2780        case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2781        case ICE_PHY_TYPE_LOW_10GBASE_SR:
2782        case ICE_PHY_TYPE_LOW_10GBASE_LR:
2783        case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2784        case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2785        case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2786                speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2787                break;
2788        case ICE_PHY_TYPE_LOW_25GBASE_T:
2789        case ICE_PHY_TYPE_LOW_25GBASE_CR:
2790        case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2791        case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2792        case ICE_PHY_TYPE_LOW_25GBASE_SR:
2793        case ICE_PHY_TYPE_LOW_25GBASE_LR:
2794        case ICE_PHY_TYPE_LOW_25GBASE_KR:
2795        case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2796        case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2797        case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2798        case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2799                speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2800                break;
2801        case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2802        case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2803        case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2804        case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2805        case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2806        case ICE_PHY_TYPE_LOW_40G_XLAUI:
2807                speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2808                break;
2809        case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2810        case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2811        case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2812        case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2813        case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2814        case ICE_PHY_TYPE_LOW_50G_LAUI2:
2815        case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2816        case ICE_PHY_TYPE_LOW_50G_AUI2:
2817        case ICE_PHY_TYPE_LOW_50GBASE_CP:
2818        case ICE_PHY_TYPE_LOW_50GBASE_SR:
2819        case ICE_PHY_TYPE_LOW_50GBASE_FR:
2820        case ICE_PHY_TYPE_LOW_50GBASE_LR:
2821        case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2822        case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2823        case ICE_PHY_TYPE_LOW_50G_AUI1:
2824                speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2825                break;
2826        case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2827        case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2828        case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2829        case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2830        case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2831        case ICE_PHY_TYPE_LOW_100G_CAUI4:
2832        case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2833        case ICE_PHY_TYPE_LOW_100G_AUI4:
2834        case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2835        case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2836        case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2837        case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2838        case ICE_PHY_TYPE_LOW_100GBASE_DR:
2839                speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2840                break;
2841        default:
2842                speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2843                break;
2844        }
2845
2846        switch (phy_type_high) {
2847        case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2848        case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2849        case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2850        case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2851        case ICE_PHY_TYPE_HIGH_100G_AUI2:
2852                speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2853                break;
2854        default:
2855                speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2856                break;
2857        }
2858
2859        if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2860            speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2861                return ICE_AQ_LINK_SPEED_UNKNOWN;
2862        else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2863                 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2864                return ICE_AQ_LINK_SPEED_UNKNOWN;
2865        else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2866                 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2867                return speed_phy_type_low;
2868        else
2869                return speed_phy_type_high;
2870}
2871
2872/**
2873 * ice_update_phy_type
2874 * @phy_type_low: pointer to the lower part of phy_type
2875 * @phy_type_high: pointer to the higher part of phy_type
2876 * @link_speeds_bitmap: targeted link speeds bitmap
2877 *
2878 * Note: For the link_speeds_bitmap structure, you can check it at
2879 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2880 * link_speeds_bitmap include multiple speeds.
2881 *
2882 * Each entry in this [phy_type_low, phy_type_high] structure will
2883 * present a certain link speed. This helper function will turn on bits
2884 * in [phy_type_low, phy_type_high] structure based on the value of
2885 * link_speeds_bitmap input parameter.
2886 */
2887void
2888ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2889                    u16 link_speeds_bitmap)
2890{
2891        u64 pt_high;
2892        u64 pt_low;
2893        int index;
2894        u16 speed;
2895
2896        /* We first check with low part of phy_type */
2897        for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2898                pt_low = BIT_ULL(index);
2899                speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2900
2901                if (link_speeds_bitmap & speed)
2902                        *phy_type_low |= BIT_ULL(index);
2903        }
2904
2905        /* We then check with high part of phy_type */
2906        for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2907                pt_high = BIT_ULL(index);
2908                speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2909
2910                if (link_speeds_bitmap & speed)
2911                        *phy_type_high |= BIT_ULL(index);
2912        }
2913}
2914
2915/**
2916 * ice_aq_set_phy_cfg
2917 * @hw: pointer to the HW struct
2918 * @pi: port info structure of the interested logical port
2919 * @cfg: structure with PHY configuration data to be set
2920 * @cd: pointer to command details structure or NULL
2921 *
2922 * Set the various PHY configuration parameters supported on the Port.
2923 * One or more of the Set PHY config parameters may be ignored in an MFP
2924 * mode as the PF may not have the privilege to set some of the PHY Config
2925 * parameters. This status will be indicated by the command response (0x0601).
2926 */
2927int
2928ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2929                   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2930{
2931        struct ice_aq_desc desc;
2932        int status;
2933
2934        if (!cfg)
2935                return -EINVAL;
2936
2937        /* Ensure that only valid bits of cfg->caps can be turned on. */
2938        if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2939                ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2940                          cfg->caps);
2941
2942                cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2943        }
2944
2945        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2946        desc.params.set_phy.lport_num = pi->lport;
2947        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2948
2949        ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2950        ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
2951                  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2952        ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
2953                  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2954        ice_debug(hw, ICE_DBG_LINK, "   caps = 0x%x\n", cfg->caps);
2955        ice_debug(hw, ICE_DBG_LINK, "   low_power_ctrl_an = 0x%x\n",
2956                  cfg->low_power_ctrl_an);
2957        ice_debug(hw, ICE_DBG_LINK, "   eee_cap = 0x%x\n", cfg->eee_cap);
2958        ice_debug(hw, ICE_DBG_LINK, "   eeer_value = 0x%x\n", cfg->eeer_value);
2959        ice_debug(hw, ICE_DBG_LINK, "   link_fec_opt = 0x%x\n",
2960                  cfg->link_fec_opt);
2961
2962        status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2963        if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2964                status = 0;
2965
2966        if (!status)
2967                pi->phy.curr_user_phy_cfg = *cfg;
2968
2969        return status;
2970}
2971
2972/**
2973 * ice_update_link_info - update status of the HW network link
2974 * @pi: port info structure of the interested logical port
2975 */
2976int ice_update_link_info(struct ice_port_info *pi)
2977{
2978        struct ice_link_status *li;
2979        int status;
2980
2981        if (!pi)
2982                return -EINVAL;
2983
2984        li = &pi->phy.link_info;
2985
2986        status = ice_aq_get_link_info(pi, true, NULL, NULL);
2987        if (status)
2988                return status;
2989
2990        if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2991                struct ice_aqc_get_phy_caps_data *pcaps;
2992                struct ice_hw *hw;
2993
2994                hw = pi->hw;
2995                pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2996                                     GFP_KERNEL);
2997                if (!pcaps)
2998                        return -ENOMEM;
2999
3000                status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3001                                             pcaps, NULL);
3002
3003                devm_kfree(ice_hw_to_dev(hw), pcaps);
3004        }
3005
3006        return status;
3007}
3008
3009/**
3010 * ice_cache_phy_user_req
3011 * @pi: port information structure
3012 * @cache_data: PHY logging data
3013 * @cache_mode: PHY logging mode
3014 *
3015 * Log the user request on (FC, FEC, SPEED) for later use.
3016 */
3017static void
3018ice_cache_phy_user_req(struct ice_port_info *pi,
3019                       struct ice_phy_cache_mode_data cache_data,
3020                       enum ice_phy_cache_mode cache_mode)
3021{
3022        if (!pi)
3023                return;
3024
3025        switch (cache_mode) {
3026        case ICE_FC_MODE:
3027                pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3028                break;
3029        case ICE_SPEED_MODE:
3030                pi->phy.curr_user_speed_req =
3031                        cache_data.data.curr_user_speed_req;
3032                break;
3033        case ICE_FEC_MODE:
3034                pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3035                break;
3036        default:
3037                break;
3038        }
3039}
3040
3041/**
3042 * ice_caps_to_fc_mode
3043 * @caps: PHY capabilities
3044 *
3045 * Convert PHY FC capabilities to ice FC mode
3046 */
3047enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3048{
3049        if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3050            caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3051                return ICE_FC_FULL;
3052
3053        if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3054                return ICE_FC_TX_PAUSE;
3055
3056        if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3057                return ICE_FC_RX_PAUSE;
3058
3059        return ICE_FC_NONE;
3060}
3061
3062/**
3063 * ice_caps_to_fec_mode
3064 * @caps: PHY capabilities
3065 * @fec_options: Link FEC options
3066 *
3067 * Convert PHY FEC capabilities to ice FEC mode
3068 */
3069enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3070{
3071        if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3072                return ICE_FEC_AUTO;
3073
3074        if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3075                           ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3076                           ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3077                           ICE_AQC_PHY_FEC_25G_KR_REQ))
3078                return ICE_FEC_BASER;
3079
3080        if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3081                           ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3082                           ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3083                return ICE_FEC_RS;
3084
3085        return ICE_FEC_NONE;
3086}
3087
3088/**
3089 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3090 * @pi: port information structure
3091 * @cfg: PHY configuration data to set FC mode
3092 * @req_mode: FC mode to configure
3093 */
3094int
3095ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3096               enum ice_fc_mode req_mode)
3097{
3098        struct ice_phy_cache_mode_data cache_data;
3099        u8 pause_mask = 0x0;
3100
3101        if (!pi || !cfg)
3102                return -EINVAL;
3103
3104        switch (req_mode) {
3105        case ICE_FC_FULL:
3106                pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3107                pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3108                break;
3109        case ICE_FC_RX_PAUSE:
3110                pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3111                break;
3112        case ICE_FC_TX_PAUSE:
3113                pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3114                break;
3115        default:
3116                break;
3117        }
3118
3119        /* clear the old pause settings */
3120        cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3121                ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3122
3123        /* set the new capabilities */
3124        cfg->caps |= pause_mask;
3125
3126        /* Cache user FC request */
3127        cache_data.data.curr_user_fc_req = req_mode;
3128        ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3129
3130        return 0;
3131}
3132
3133/**
3134 * ice_set_fc
3135 * @pi: port information structure
3136 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3137 * @ena_auto_link_update: enable automatic link update
3138 *
3139 * Set the requested flow control mode.
3140 */
3141int
3142ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3143{
3144        struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3145        struct ice_aqc_get_phy_caps_data *pcaps;
3146        struct ice_hw *hw;
3147        int status;
3148
3149        if (!pi || !aq_failures)
3150                return -EINVAL;
3151
3152        *aq_failures = 0;
3153        hw = pi->hw;
3154
3155        pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3156        if (!pcaps)
3157                return -ENOMEM;
3158
3159        /* Get the current PHY config */
3160        status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3161                                     pcaps, NULL);
3162        if (status) {
3163                *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3164                goto out;
3165        }
3166
3167        ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3168
3169        /* Configure the set PHY data */
3170        status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3171        if (status)
3172                goto out;
3173
3174        /* If the capabilities have changed, then set the new config */
3175        if (cfg.caps != pcaps->caps) {
3176                int retry_count, retry_max = 10;
3177
3178                /* Auto restart link so settings take effect */
3179                if (ena_auto_link_update)
3180                        cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3181
3182                status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3183                if (status) {
3184                        *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3185                        goto out;
3186                }
3187
3188                /* Update the link info
3189                 * It sometimes takes a really long time for link to
3190                 * come back from the atomic reset. Thus, we wait a
3191                 * little bit.
3192                 */
3193                for (retry_count = 0; retry_count < retry_max; retry_count++) {
3194                        status = ice_update_link_info(pi);
3195
3196                        if (!status)
3197                                break;
3198
3199                        mdelay(100);
3200                }
3201
3202                if (status)
3203                        *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3204        }
3205
3206out:
3207        devm_kfree(ice_hw_to_dev(hw), pcaps);
3208        return status;
3209}
3210
3211/**
3212 * ice_phy_caps_equals_cfg
3213 * @phy_caps: PHY capabilities
3214 * @phy_cfg: PHY configuration
3215 *
3216 * Helper function to determine if PHY capabilities matches PHY
3217 * configuration
3218 */
3219bool
3220ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3221                        struct ice_aqc_set_phy_cfg_data *phy_cfg)
3222{
3223        u8 caps_mask, cfg_mask;
3224
3225        if (!phy_caps || !phy_cfg)
3226                return false;
3227
3228        /* These bits are not common between capabilities and configuration.
3229         * Do not use them to determine equality.
3230         */
3231        caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3232                                              ICE_AQC_GET_PHY_EN_MOD_QUAL);
3233        cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3234
3235        if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3236            phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3237            ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3238            phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3239            phy_caps->eee_cap != phy_cfg->eee_cap ||
3240            phy_caps->eeer_value != phy_cfg->eeer_value ||
3241            phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3242                return false;
3243
3244        return true;
3245}
3246
3247/**
3248 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3249 * @pi: port information structure
3250 * @caps: PHY ability structure to copy date from
3251 * @cfg: PHY configuration structure to copy data to
3252 *
3253 * Helper function to copy AQC PHY get ability data to PHY set configuration
3254 * data structure
3255 */
3256void
3257ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3258                         struct ice_aqc_get_phy_caps_data *caps,
3259                         struct ice_aqc_set_phy_cfg_data *cfg)
3260{
3261        if (!pi || !caps || !cfg)
3262                return;
3263
3264        memset(cfg, 0, sizeof(*cfg));
3265        cfg->phy_type_low = caps->phy_type_low;
3266        cfg->phy_type_high = caps->phy_type_high;
3267        cfg->caps = caps->caps;
3268        cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3269        cfg->eee_cap = caps->eee_cap;
3270        cfg->eeer_value = caps->eeer_value;
3271        cfg->link_fec_opt = caps->link_fec_options;
3272        cfg->module_compliance_enforcement =
3273                caps->module_compliance_enforcement;
3274}
3275
3276/**
3277 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3278 * @pi: port information structure
3279 * @cfg: PHY configuration data to set FEC mode
3280 * @fec: FEC mode to configure
3281 */
3282int
3283ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3284                enum ice_fec_mode fec)
3285{
3286        struct ice_aqc_get_phy_caps_data *pcaps;
3287        struct ice_hw *hw;
3288        int status;
3289
3290        if (!pi || !cfg)
3291                return -EINVAL;
3292
3293        hw = pi->hw;
3294
3295        pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3296        if (!pcaps)
3297                return -ENOMEM;
3298
3299        status = ice_aq_get_phy_caps(pi, false,
3300                                     (ice_fw_supports_report_dflt_cfg(hw) ?
3301                                      ICE_AQC_REPORT_DFLT_CFG :
3302                                      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3303        if (status)
3304                goto out;
3305
3306        cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3307        cfg->link_fec_opt = pcaps->link_fec_options;
3308
3309        switch (fec) {
3310        case ICE_FEC_BASER:
3311                /* Clear RS bits, and AND BASE-R ability
3312                 * bits and OR request bits.
3313                 */
3314                cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3315                        ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3316                cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3317                        ICE_AQC_PHY_FEC_25G_KR_REQ;
3318                break;
3319        case ICE_FEC_RS:
3320                /* Clear BASE-R bits, and AND RS ability
3321                 * bits and OR request bits.
3322                 */
3323                cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3324                cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3325                        ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3326                break;
3327        case ICE_FEC_NONE:
3328                /* Clear all FEC option bits. */
3329                cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3330                break;
3331        case ICE_FEC_AUTO:
3332                /* AND auto FEC bit, and all caps bits. */
3333                cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3334                cfg->link_fec_opt |= pcaps->link_fec_options;
3335                break;
3336        default:
3337                status = -EINVAL;
3338                break;
3339        }
3340
3341        if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3342            !ice_fw_supports_report_dflt_cfg(hw)) {
3343                struct ice_link_default_override_tlv tlv = { 0 };
3344
3345                status = ice_get_link_default_override(&tlv, pi);
3346                if (status)
3347                        goto out;
3348
3349                if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3350                    (tlv.options & ICE_LINK_OVERRIDE_EN))
3351                        cfg->link_fec_opt = tlv.fec_options;
3352        }
3353
3354out:
3355        kfree(pcaps);
3356
3357        return status;
3358}
3359
3360/**
3361 * ice_get_link_status - get status of the HW network link
3362 * @pi: port information structure
3363 * @link_up: pointer to bool (true/false = linkup/linkdown)
3364 *
3365 * Variable link_up is true if link is up, false if link is down.
3366 * The variable link_up is invalid if status is non zero. As a
3367 * result of this call, link status reporting becomes enabled
3368 */
3369int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3370{
3371        struct ice_phy_info *phy_info;
3372        int status = 0;
3373
3374        if (!pi || !link_up)
3375                return -EINVAL;
3376
3377        phy_info = &pi->phy;
3378
3379        if (phy_info->get_link_info) {
3380                status = ice_update_link_info(pi);
3381
3382                if (status)
3383                        ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3384                                  status);
3385        }
3386
3387        *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3388
3389        return status;
3390}
3391
3392/**
3393 * ice_aq_set_link_restart_an
3394 * @pi: pointer to the port information structure
3395 * @ena_link: if true: enable link, if false: disable link
3396 * @cd: pointer to command details structure or NULL
3397 *
3398 * Sets up the link and restarts the Auto-Negotiation over the link.
3399 */
3400int
3401ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3402                           struct ice_sq_cd *cd)
3403{
3404        struct ice_aqc_restart_an *cmd;
3405        struct ice_aq_desc desc;
3406
3407        cmd = &desc.params.restart_an;
3408
3409        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3410
3411        cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3412        cmd->lport_num = pi->lport;
3413        if (ena_link)
3414                cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3415        else
3416                cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3417
3418        return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3419}
3420
3421/**
3422 * ice_aq_set_event_mask
3423 * @hw: pointer to the HW struct
3424 * @port_num: port number of the physical function
3425 * @mask: event mask to be set
3426 * @cd: pointer to command details structure or NULL
3427 *
3428 * Set event mask (0x0613)
3429 */
3430int
3431ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3432                      struct ice_sq_cd *cd)
3433{
3434        struct ice_aqc_set_event_mask *cmd;
3435        struct ice_aq_desc desc;
3436
3437        cmd = &desc.params.set_event_mask;
3438
3439        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3440
3441        cmd->lport_num = port_num;
3442
3443        cmd->event_mask = cpu_to_le16(mask);
3444        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3445}
3446
3447/**
3448 * ice_aq_set_mac_loopback
3449 * @hw: pointer to the HW struct
3450 * @ena_lpbk: Enable or Disable loopback
3451 * @cd: pointer to command details structure or NULL
3452 *
3453 * Enable/disable loopback on a given port
3454 */
3455int
3456ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3457{
3458        struct ice_aqc_set_mac_lb *cmd;
3459        struct ice_aq_desc desc;
3460
3461        cmd = &desc.params.set_mac_lb;
3462
3463        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3464        if (ena_lpbk)
3465                cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3466
3467        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3468}
3469
3470/**
3471 * ice_aq_set_port_id_led
3472 * @pi: pointer to the port information
3473 * @is_orig_mode: is this LED set to original mode (by the net-list)
3474 * @cd: pointer to command details structure or NULL
3475 *
3476 * Set LED value for the given port (0x06e9)
3477 */
3478int
3479ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3480                       struct ice_sq_cd *cd)
3481{
3482        struct ice_aqc_set_port_id_led *cmd;
3483        struct ice_hw *hw = pi->hw;
3484        struct ice_aq_desc desc;
3485
3486        cmd = &desc.params.set_port_id_led;
3487
3488        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3489
3490        if (is_orig_mode)
3491                cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3492        else
3493                cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3494
3495        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3496}
3497
3498/**
3499 * ice_aq_sff_eeprom
3500 * @hw: pointer to the HW struct
3501 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3502 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3503 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3504 * @page: QSFP page
3505 * @set_page: set or ignore the page
3506 * @data: pointer to data buffer to be read/written to the I2C device.
3507 * @length: 1-16 for read, 1 for write.
3508 * @write: 0 read, 1 for write.
3509 * @cd: pointer to command details structure or NULL
3510 *
3511 * Read/Write SFF EEPROM (0x06EE)
3512 */
3513int
3514ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3515                  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3516                  bool write, struct ice_sq_cd *cd)
3517{
3518        struct ice_aqc_sff_eeprom *cmd;
3519        struct ice_aq_desc desc;
3520        int status;
3521
3522        if (!data || (mem_addr & 0xff00))
3523                return -EINVAL;
3524
3525        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3526        cmd = &desc.params.read_write_sff_param;
3527        desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3528        cmd->lport_num = (u8)(lport & 0xff);
3529        cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3530        cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3531                                         ICE_AQC_SFF_I2CBUS_7BIT_M) |
3532                                        ((set_page <<
3533                                          ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3534                                         ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3535        cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3536        cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3537        if (write)
3538                cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3539
3540        status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3541        return status;
3542}
3543
3544/**
3545 * __ice_aq_get_set_rss_lut
3546 * @hw: pointer to the hardware structure
3547 * @params: RSS LUT parameters
3548 * @set: set true to set the table, false to get the table
3549 *
3550 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3551 */
3552static int
3553__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3554{
3555        u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3556        struct ice_aqc_get_set_rss_lut *cmd_resp;
3557        struct ice_aq_desc desc;
3558        int status;
3559        u8 *lut;
3560
3561        if (!params)
3562                return -EINVAL;
3563
3564        vsi_handle = params->vsi_handle;
3565        lut = params->lut;
3566
3567        if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3568                return -EINVAL;
3569
3570        lut_size = params->lut_size;
3571        lut_type = params->lut_type;
3572        glob_lut_idx = params->global_lut_id;
3573        vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3574
3575        cmd_resp = &desc.params.get_set_rss_lut;
3576
3577        if (set) {
3578                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3579                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3580        } else {
3581                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3582        }
3583
3584        cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3585                                         ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3586                                        ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3587                                       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3588
3589        switch (lut_type) {
3590        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3591        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3592        case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3593                flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3594                          ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3595                break;
3596        default:
3597                status = -EINVAL;
3598                goto ice_aq_get_set_rss_lut_exit;
3599        }
3600
3601        if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3602                flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3603                          ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3604
3605                if (!set)
3606                        goto ice_aq_get_set_rss_lut_send;
3607        } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3608                if (!set)
3609                        goto ice_aq_get_set_rss_lut_send;
3610        } else {
3611                goto ice_aq_get_set_rss_lut_send;
3612        }
3613
3614        /* LUT size is only valid for Global and PF table types */
3615        switch (lut_size) {
3616        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3617                break;
3618        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3619                flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3620                          ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3621                         ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3622                break;
3623        case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3624                if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3625                        flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3626                                  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3627                                 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3628                        break;
3629                }
3630                fallthrough;
3631        default:
3632                status = -EINVAL;
3633                goto ice_aq_get_set_rss_lut_exit;
3634        }
3635
3636ice_aq_get_set_rss_lut_send:
3637        cmd_resp->flags = cpu_to_le16(flags);
3638        status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3639
3640ice_aq_get_set_rss_lut_exit:
3641        return status;
3642}
3643
3644/**
3645 * ice_aq_get_rss_lut
3646 * @hw: pointer to the hardware structure
3647 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3648 *
3649 * get the RSS lookup table, PF or VSI type
3650 */
3651int
3652ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3653{
3654        return __ice_aq_get_set_rss_lut(hw, get_params, false);
3655}
3656
3657/**
3658 * ice_aq_set_rss_lut
3659 * @hw: pointer to the hardware structure
3660 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3661 *
3662 * set the RSS lookup table, PF or VSI type
3663 */
3664int
3665ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3666{
3667        return __ice_aq_get_set_rss_lut(hw, set_params, true);
3668}
3669
3670/**
3671 * __ice_aq_get_set_rss_key
3672 * @hw: pointer to the HW struct
3673 * @vsi_id: VSI FW index
3674 * @key: pointer to key info struct
3675 * @set: set true to set the key, false to get the key
3676 *
3677 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3678 */
3679static int
3680__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3681                         struct ice_aqc_get_set_rss_keys *key, bool set)
3682{
3683        struct ice_aqc_get_set_rss_key *cmd_resp;
3684        u16 key_size = sizeof(*key);
3685        struct ice_aq_desc desc;
3686
3687        cmd_resp = &desc.params.get_set_rss_key;
3688
3689        if (set) {
3690                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3691                desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3692        } else {
3693                ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3694        }
3695
3696        cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3697                                         ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3698                                        ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3699                                       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3700
3701        return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3702}
3703
3704/**
3705 * ice_aq_get_rss_key
3706 * @hw: pointer to the HW struct
3707 * @vsi_handle: software VSI handle
3708 * @key: pointer to key info struct
3709 *
3710 * get the RSS key per VSI
3711 */
3712int
3713ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3714                   struct ice_aqc_get_set_rss_keys *key)
3715{
3716        if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3717                return -EINVAL;
3718
3719        return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3720                                        key, false);
3721}
3722
3723/**
3724 * ice_aq_set_rss_key
3725 * @hw: pointer to the HW struct
3726 * @vsi_handle: software VSI handle
3727 * @keys: pointer to key info struct
3728 *
3729 * set the RSS key per VSI
3730 */
3731int
3732ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3733                   struct ice_aqc_get_set_rss_keys *keys)
3734{
3735        if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3736                return -EINVAL;
3737
3738        return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3739                                        keys, true);
3740}
3741
3742/**
3743 * ice_aq_add_lan_txq
3744 * @hw: pointer to the hardware structure
3745 * @num_qgrps: Number of added queue groups
3746 * @qg_list: list of queue groups to be added
3747 * @buf_size: size of buffer for indirect command
3748 * @cd: pointer to command details structure or NULL
3749 *
3750 * Add Tx LAN queue (0x0C30)
3751 *
3752 * NOTE:
3753 * Prior to calling add Tx LAN queue:
3754 * Initialize the following as part of the Tx queue context:
3755 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3756 * Cache profile and Packet shaper profile.
3757 *
3758 * After add Tx LAN queue AQ command is completed:
3759 * Interrupts should be associated with specific queues,
3760 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3761 * flow.
3762 */
3763static int
3764ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3765                   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3766                   struct ice_sq_cd *cd)
3767{
3768        struct ice_aqc_add_tx_qgrp *list;
3769        struct ice_aqc_add_txqs *cmd;
3770        struct ice_aq_desc desc;
3771        u16 i, sum_size = 0;
3772
3773        cmd = &desc.params.add_txqs;
3774
3775        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3776
3777        if (!qg_list)
3778                return -EINVAL;
3779
3780        if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3781                return -EINVAL;
3782
3783        for (i = 0, list = qg_list; i < num_qgrps; i++) {
3784                sum_size += struct_size(list, txqs, list->num_txqs);
3785                list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3786                                                      list->num_txqs);
3787        }
3788
3789        if (buf_size != sum_size)
3790                return -EINVAL;
3791
3792        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3793
3794        cmd->num_qgrps = num_qgrps;
3795
3796        return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3797}
3798
3799/**
3800 * ice_aq_dis_lan_txq
3801 * @hw: pointer to the hardware structure
3802 * @num_qgrps: number of groups in the list
3803 * @qg_list: the list of groups to disable
3804 * @buf_size: the total size of the qg_list buffer in bytes
3805 * @rst_src: if called due to reset, specifies the reset source
3806 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3807 * @cd: pointer to command details structure or NULL
3808 *
3809 * Disable LAN Tx queue (0x0C31)
3810 */
3811static int
3812ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3813                   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3814                   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3815                   struct ice_sq_cd *cd)
3816{
3817        struct ice_aqc_dis_txq_item *item;
3818        struct ice_aqc_dis_txqs *cmd;
3819        struct ice_aq_desc desc;
3820        u16 i, sz = 0;
3821        int status;
3822
3823        cmd = &desc.params.dis_txqs;
3824        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3825
3826        /* qg_list can be NULL only in VM/VF reset flow */
3827        if (!qg_list && !rst_src)
3828                return -EINVAL;
3829
3830        if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3831                return -EINVAL;
3832
3833        cmd->num_entries = num_qgrps;
3834
3835        cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3836                                            ICE_AQC_Q_DIS_TIMEOUT_M);
3837
3838        switch (rst_src) {
3839        case ICE_VM_RESET:
3840                cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3841                cmd->vmvf_and_timeout |=
3842                        cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3843                break;
3844        case ICE_VF_RESET:
3845                cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3846                /* In this case, FW expects vmvf_num to be absolute VF ID */
3847                cmd->vmvf_and_timeout |=
3848                        cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3849                                    ICE_AQC_Q_DIS_VMVF_NUM_M);
3850                break;
3851        case ICE_NO_RESET:
3852        default:
3853                break;
3854        }
3855
3856        /* flush pipe on time out */
3857        cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3858        /* If no queue group info, we are in a reset flow. Issue the AQ */
3859        if (!qg_list)
3860                goto do_aq;
3861
3862        /* set RD bit to indicate that command buffer is provided by the driver
3863         * and it needs to be read by the firmware
3864         */
3865        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3866
3867        for (i = 0, item = qg_list; i < num_qgrps; i++) {
3868                u16 item_size = struct_size(item, q_id, item->num_qs);
3869
3870                /* If the num of queues is even, add 2 bytes of padding */
3871                if ((item->num_qs % 2) == 0)
3872                        item_size += 2;
3873
3874                sz += item_size;
3875
3876                item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3877        }
3878
3879        if (buf_size != sz)
3880                return -EINVAL;
3881
3882do_aq:
3883        status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3884        if (status) {
3885                if (!qg_list)
3886                        ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3887                                  vmvf_num, hw->adminq.sq_last_status);
3888                else
3889                        ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3890                                  le16_to_cpu(qg_list[0].q_id[0]),
3891                                  hw->adminq.sq_last_status);
3892        }
3893        return status;
3894}
3895
3896/**
3897 * ice_aq_add_rdma_qsets
3898 * @hw: pointer to the hardware structure
3899 * @num_qset_grps: Number of RDMA Qset groups
3900 * @qset_list: list of Qset groups to be added
3901 * @buf_size: size of buffer for indirect command
3902 * @cd: pointer to command details structure or NULL
3903 *
3904 * Add Tx RDMA Qsets (0x0C33)
3905 */
3906static int
3907ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3908                      struct ice_aqc_add_rdma_qset_data *qset_list,
3909                      u16 buf_size, struct ice_sq_cd *cd)
3910{
3911        struct ice_aqc_add_rdma_qset_data *list;
3912        struct ice_aqc_add_rdma_qset *cmd;
3913        struct ice_aq_desc desc;
3914        u16 i, sum_size = 0;
3915
3916        cmd = &desc.params.add_rdma_qset;
3917
3918        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3919
3920        if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3921                return -EINVAL;
3922
3923        for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3924                u16 num_qsets = le16_to_cpu(list->num_qsets);
3925
3926                sum_size += struct_size(list, rdma_qsets, num_qsets);
3927                list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3928                                                             num_qsets);
3929        }
3930
3931        if (buf_size != sum_size)
3932                return -EINVAL;
3933
3934        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3935
3936        cmd->num_qset_grps = num_qset_grps;
3937
3938        return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
3939}
3940
3941/* End of FW Admin Queue command wrappers */
3942
3943/**
3944 * ice_write_byte - write a byte to a packed context structure
3945 * @src_ctx:  the context structure to read from
3946 * @dest_ctx: the context to be written to
3947 * @ce_info:  a description of the struct to be filled
3948 */
3949static void
3950ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3951{
3952        u8 src_byte, dest_byte, mask;
3953        u8 *from, *dest;
3954        u16 shift_width;
3955
3956        /* copy from the next struct field */
3957        from = src_ctx + ce_info->offset;
3958
3959        /* prepare the bits and mask */
3960        shift_width = ce_info->lsb % 8;
3961        mask = (u8)(BIT(ce_info->width) - 1);
3962
3963        src_byte = *from;
3964        src_byte &= mask;
3965
3966        /* shift to correct alignment */
3967        mask <<= shift_width;
3968        src_byte <<= shift_width;
3969
3970        /* get the current bits from the target bit string */
3971        dest = dest_ctx + (ce_info->lsb / 8);
3972
3973        memcpy(&dest_byte, dest, sizeof(dest_byte));
3974
3975        dest_byte &= ~mask;     /* get the bits not changing */
3976        dest_byte |= src_byte;  /* add in the new bits */
3977
3978        /* put it all back */
3979        memcpy(dest, &dest_byte, sizeof(dest_byte));
3980}
3981
3982/**
3983 * ice_write_word - write a word to a packed context structure
3984 * @src_ctx:  the context structure to read from
3985 * @dest_ctx: the context to be written to
3986 * @ce_info:  a description of the struct to be filled
3987 */
3988static void
3989ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3990{
3991        u16 src_word, mask;
3992        __le16 dest_word;
3993        u8 *from, *dest;
3994        u16 shift_width;
3995
3996        /* copy from the next struct field */
3997        from = src_ctx + ce_info->offset;
3998
3999        /* prepare the bits and mask */
4000        shift_width = ce_info->lsb % 8;
4001        mask = BIT(ce_info->width) - 1;
4002
4003        /* don't swizzle the bits until after the mask because the mask bits
4004         * will be in a different bit position on big endian machines
4005         */
4006        src_word = *(u16 *)from;
4007        src_word &= mask;
4008
4009        /* shift to correct alignment */
4010        mask <<= shift_width;
4011        src_word <<= shift_width;
4012
4013        /* get the current bits from the target bit string */
4014        dest = dest_ctx + (ce_info->lsb / 8);
4015
4016        memcpy(&dest_word, dest, sizeof(dest_word));
4017
4018        dest_word &= ~(cpu_to_le16(mask));      /* get the bits not changing */
4019        dest_word |= cpu_to_le16(src_word);     /* add in the new bits */
4020
4021        /* put it all back */
4022        memcpy(dest, &dest_word, sizeof(dest_word));
4023}
4024
4025/**
4026 * ice_write_dword - write a dword to a packed context structure
4027 * @src_ctx:  the context structure to read from
4028 * @dest_ctx: the context to be written to
4029 * @ce_info:  a description of the struct to be filled
4030 */
4031static void
4032ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4033{
4034        u32 src_dword, mask;
4035        __le32 dest_dword;
4036        u8 *from, *dest;
4037        u16 shift_width;
4038
4039        /* copy from the next struct field */
4040        from = src_ctx + ce_info->offset;
4041
4042        /* prepare the bits and mask */
4043        shift_width = ce_info->lsb % 8;
4044
4045        /* if the field width is exactly 32 on an x86 machine, then the shift
4046         * operation will not work because the SHL instructions count is masked
4047         * to 5 bits so the shift will do nothing
4048         */
4049        if (ce_info->width < 32)
4050                mask = BIT(ce_info->width) - 1;
4051        else
4052                mask = (u32)~0;
4053
4054        /* don't swizzle the bits until after the mask because the mask bits
4055         * will be in a different bit position on big endian machines
4056         */
4057        src_dword = *(u32 *)from;
4058        src_dword &= mask;
4059
4060        /* shift to correct alignment */
4061        mask <<= shift_width;
4062        src_dword <<= shift_width;
4063
4064        /* get the current bits from the target bit string */
4065        dest = dest_ctx + (ce_info->lsb / 8);
4066
4067        memcpy(&dest_dword, dest, sizeof(dest_dword));
4068
4069        dest_dword &= ~(cpu_to_le32(mask));     /* get the bits not changing */
4070        dest_dword |= cpu_to_le32(src_dword);   /* add in the new bits */
4071
4072        /* put it all back */
4073        memcpy(dest, &dest_dword, sizeof(dest_dword));
4074}
4075
4076/**
4077 * ice_write_qword - write a qword to a packed context structure
4078 * @src_ctx:  the context structure to read from
4079 * @dest_ctx: the context to be written to
4080 * @ce_info:  a description of the struct to be filled
4081 */
4082static void
4083ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4084{
4085        u64 src_qword, mask;
4086        __le64 dest_qword;
4087        u8 *from, *dest;
4088        u16 shift_width;
4089
4090        /* copy from the next struct field */
4091        from = src_ctx + ce_info->offset;
4092
4093        /* prepare the bits and mask */
4094        shift_width = ce_info->lsb % 8;
4095
4096        /* if the field width is exactly 64 on an x86 machine, then the shift
4097         * operation will not work because the SHL instructions count is masked
4098         * to 6 bits so the shift will do nothing
4099         */
4100        if (ce_info->width < 64)
4101                mask = BIT_ULL(ce_info->width) - 1;
4102        else
4103                mask = (u64)~0;
4104
4105        /* don't swizzle the bits until after the mask because the mask bits
4106         * will be in a different bit position on big endian machines
4107         */
4108        src_qword = *(u64 *)from;
4109        src_qword &= mask;
4110
4111        /* shift to correct alignment */
4112        mask <<= shift_width;
4113        src_qword <<= shift_width;
4114
4115        /* get the current bits from the target bit string */
4116        dest = dest_ctx + (ce_info->lsb / 8);
4117
4118        memcpy(&dest_qword, dest, sizeof(dest_qword));
4119
4120        dest_qword &= ~(cpu_to_le64(mask));     /* get the bits not changing */
4121        dest_qword |= cpu_to_le64(src_qword);   /* add in the new bits */
4122
4123        /* put it all back */
4124        memcpy(dest, &dest_qword, sizeof(dest_qword));
4125}
4126
4127/**
4128 * ice_set_ctx - set context bits in packed structure
4129 * @hw: pointer to the hardware structure
4130 * @src_ctx:  pointer to a generic non-packed context structure
4131 * @dest_ctx: pointer to memory for the packed structure
4132 * @ce_info:  a description of the structure to be transformed
4133 */
4134int
4135ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4136            const struct ice_ctx_ele *ce_info)
4137{
4138        int f;
4139
4140        for (f = 0; ce_info[f].width; f++) {
4141                /* We have to deal with each element of the FW response
4142                 * using the correct size so that we are correct regardless
4143                 * of the endianness of the machine.
4144                 */
4145                if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4146                        ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4147                                  f, ce_info[f].width, ce_info[f].size_of);
4148                        continue;
4149                }
4150                switch (ce_info[f].size_of) {
4151                case sizeof(u8):
4152                        ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4153                        break;
4154                case sizeof(u16):
4155                        ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4156                        break;
4157                case sizeof(u32):
4158                        ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4159                        break;
4160                case sizeof(u64):
4161                        ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4162                        break;
4163                default:
4164                        return -EINVAL;
4165                }
4166        }
4167
4168        return 0;
4169}
4170
4171/**
4172 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4173 * @hw: pointer to the HW struct
4174 * @vsi_handle: software VSI handle
4175 * @tc: TC number
4176 * @q_handle: software queue handle
4177 */
4178struct ice_q_ctx *
4179ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4180{
4181        struct ice_vsi_ctx *vsi;
4182        struct ice_q_ctx *q_ctx;
4183
4184        vsi = ice_get_vsi_ctx(hw, vsi_handle);
4185        if (!vsi)
4186                return NULL;
4187        if (q_handle >= vsi->num_lan_q_entries[tc])
4188                return NULL;
4189        if (!vsi->lan_q_ctx[tc])
4190                return NULL;
4191        q_ctx = vsi->lan_q_ctx[tc];
4192        return &q_ctx[q_handle];
4193}
4194
4195/**
4196 * ice_ena_vsi_txq
4197 * @pi: port information structure
4198 * @vsi_handle: software VSI handle
4199 * @tc: TC number
4200 * @q_handle: software queue handle
4201 * @num_qgrps: Number of added queue groups
4202 * @buf: list of queue groups to be added
4203 * @buf_size: size of buffer for indirect command
4204 * @cd: pointer to command details structure or NULL
4205 *
4206 * This function adds one LAN queue
4207 */
4208int
4209ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4210                u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4211                struct ice_sq_cd *cd)
4212{
4213        struct ice_aqc_txsched_elem_data node = { 0 };
4214        struct ice_sched_node *parent;
4215        struct ice_q_ctx *q_ctx;
4216        struct ice_hw *hw;
4217        int status;
4218
4219        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4220                return -EIO;
4221
4222        if (num_qgrps > 1 || buf->num_txqs > 1)
4223                return -ENOSPC;
4224
4225        hw = pi->hw;
4226
4227        if (!ice_is_vsi_valid(hw, vsi_handle))
4228                return -EINVAL;
4229
4230        mutex_lock(&pi->sched_lock);
4231
4232        q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4233        if (!q_ctx) {
4234                ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4235                          q_handle);
4236                status = -EINVAL;
4237                goto ena_txq_exit;
4238        }
4239
4240        /* find a parent node */
4241        parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4242                                            ICE_SCHED_NODE_OWNER_LAN);
4243        if (!parent) {
4244                status = -EINVAL;
4245                goto ena_txq_exit;
4246        }
4247
4248        buf->parent_teid = parent->info.node_teid;
4249        node.parent_teid = parent->info.node_teid;
4250        /* Mark that the values in the "generic" section as valid. The default
4251         * value in the "generic" section is zero. This means that :
4252         * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4253         * - 0 priority among siblings, indicated by Bit 1-3.
4254         * - WFQ, indicated by Bit 4.
4255         * - 0 Adjustment value is used in PSM credit update flow, indicated by
4256         * Bit 5-6.
4257         * - Bit 7 is reserved.
4258         * Without setting the generic section as valid in valid_sections, the
4259         * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4260         */
4261        buf->txqs[0].info.valid_sections =
4262                ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4263                ICE_AQC_ELEM_VALID_EIR;
4264        buf->txqs[0].info.generic = 0;
4265        buf->txqs[0].info.cir_bw.bw_profile_idx =
4266                cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4267        buf->txqs[0].info.cir_bw.bw_alloc =
4268                cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4269        buf->txqs[0].info.eir_bw.bw_profile_idx =
4270                cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4271        buf->txqs[0].info.eir_bw.bw_alloc =
4272                cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4273
4274        /* add the LAN queue */
4275        status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4276        if (status) {
4277                ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4278                          le16_to_cpu(buf->txqs[0].txq_id),
4279                          hw->adminq.sq_last_status);
4280                goto ena_txq_exit;
4281        }
4282
4283        node.node_teid = buf->txqs[0].q_teid;
4284        node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4285        q_ctx->q_handle = q_handle;
4286        q_ctx->q_teid = le32_to_cpu(node.node_teid);
4287
4288        /* add a leaf node into scheduler tree queue layer */
4289        status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4290        if (!status)
4291                status = ice_sched_replay_q_bw(pi, q_ctx);
4292
4293ena_txq_exit:
4294        mutex_unlock(&pi->sched_lock);
4295        return status;
4296}
4297
4298/**
4299 * ice_dis_vsi_txq
4300 * @pi: port information structure
4301 * @vsi_handle: software VSI handle
4302 * @tc: TC number
4303 * @num_queues: number of queues
4304 * @q_handles: pointer to software queue handle array
4305 * @q_ids: pointer to the q_id array
4306 * @q_teids: pointer to queue node teids
4307 * @rst_src: if called due to reset, specifies the reset source
4308 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4309 * @cd: pointer to command details structure or NULL
4310 *
4311 * This function removes queues and their corresponding nodes in SW DB
4312 */
4313int
4314ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4315                u16 *q_handles, u16 *q_ids, u32 *q_teids,
4316                enum ice_disq_rst_src rst_src, u16 vmvf_num,
4317                struct ice_sq_cd *cd)
4318{
4319        struct ice_aqc_dis_txq_item *qg_list;
4320        struct ice_q_ctx *q_ctx;
4321        int status = -ENOENT;
4322        struct ice_hw *hw;
4323        u16 i, buf_size;
4324
4325        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4326                return -EIO;
4327
4328        hw = pi->hw;
4329
4330        if (!num_queues) {
4331                /* if queue is disabled already yet the disable queue command
4332                 * has to be sent to complete the VF reset, then call
4333                 * ice_aq_dis_lan_txq without any queue information
4334                 */
4335                if (rst_src)
4336                        return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4337                                                  vmvf_num, NULL);
4338                return -EIO;
4339        }
4340
4341        buf_size = struct_size(qg_list, q_id, 1);
4342        qg_list = kzalloc(buf_size, GFP_KERNEL);
4343        if (!qg_list)
4344                return -ENOMEM;
4345
4346        mutex_lock(&pi->sched_lock);
4347
4348        for (i = 0; i < num_queues; i++) {
4349                struct ice_sched_node *node;
4350
4351                node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4352                if (!node)
4353                        continue;
4354                q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4355                if (!q_ctx) {
4356                        ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4357                                  q_handles[i]);
4358                        continue;
4359                }
4360                if (q_ctx->q_handle != q_handles[i]) {
4361                        ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4362                                  q_ctx->q_handle, q_handles[i]);
4363                        continue;
4364                }
4365                qg_list->parent_teid = node->info.parent_teid;
4366                qg_list->num_qs = 1;
4367                qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4368                status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4369                                            vmvf_num, cd);
4370
4371                if (status)
4372                        break;
4373                ice_free_sched_node(pi, node);
4374                q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4375        }
4376        mutex_unlock(&pi->sched_lock);
4377        kfree(qg_list);
4378        return status;
4379}
4380
4381/**
4382 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4383 * @pi: port information structure
4384 * @vsi_handle: software VSI handle
4385 * @tc_bitmap: TC bitmap
4386 * @maxqs: max queues array per TC
4387 * @owner: LAN or RDMA
4388 *
4389 * This function adds/updates the VSI queues per TC.
4390 */
4391static int
4392ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4393               u16 *maxqs, u8 owner)
4394{
4395        int status = 0;
4396        u8 i;
4397
4398        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4399                return -EIO;
4400
4401        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4402                return -EINVAL;
4403
4404        mutex_lock(&pi->sched_lock);
4405
4406        ice_for_each_traffic_class(i) {
4407                /* configuration is possible only if TC node is present */
4408                if (!ice_sched_get_tc_node(pi, i))
4409                        continue;
4410
4411                status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4412                                           ice_is_tc_ena(tc_bitmap, i));
4413                if (status)
4414                        break;
4415        }
4416
4417        mutex_unlock(&pi->sched_lock);
4418        return status;
4419}
4420
4421/**
4422 * ice_cfg_vsi_lan - configure VSI LAN queues
4423 * @pi: port information structure
4424 * @vsi_handle: software VSI handle
4425 * @tc_bitmap: TC bitmap
4426 * @max_lanqs: max LAN queues array per TC
4427 *
4428 * This function adds/updates the VSI LAN queues per TC.
4429 */
4430int
4431ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4432                u16 *max_lanqs)
4433{
4434        return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4435                              ICE_SCHED_NODE_OWNER_LAN);
4436}
4437
4438/**
4439 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4440 * @pi: port information structure
4441 * @vsi_handle: software VSI handle
4442 * @tc_bitmap: TC bitmap
4443 * @max_rdmaqs: max RDMA queues array per TC
4444 *
4445 * This function adds/updates the VSI RDMA queues per TC.
4446 */
4447int
4448ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4449                 u16 *max_rdmaqs)
4450{
4451        return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4452                              ICE_SCHED_NODE_OWNER_RDMA);
4453}
4454
4455/**
4456 * ice_ena_vsi_rdma_qset
4457 * @pi: port information structure
4458 * @vsi_handle: software VSI handle
4459 * @tc: TC number
4460 * @rdma_qset: pointer to RDMA Qset
4461 * @num_qsets: number of RDMA Qsets
4462 * @qset_teid: pointer to Qset node TEIDs
4463 *
4464 * This function adds RDMA Qset
4465 */
4466int
4467ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4468                      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4469{
4470        struct ice_aqc_txsched_elem_data node = { 0 };
4471        struct ice_aqc_add_rdma_qset_data *buf;
4472        struct ice_sched_node *parent;
4473        struct ice_hw *hw;
4474        u16 i, buf_size;
4475        int ret;
4476
4477        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4478                return -EIO;
4479        hw = pi->hw;
4480
4481        if (!ice_is_vsi_valid(hw, vsi_handle))
4482                return -EINVAL;
4483
4484        buf_size = struct_size(buf, rdma_qsets, num_qsets);
4485        buf = kzalloc(buf_size, GFP_KERNEL);
4486        if (!buf)
4487                return -ENOMEM;
4488        mutex_lock(&pi->sched_lock);
4489
4490        parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4491                                            ICE_SCHED_NODE_OWNER_RDMA);
4492        if (!parent) {
4493                ret = -EINVAL;
4494                goto rdma_error_exit;
4495        }
4496        buf->parent_teid = parent->info.node_teid;
4497        node.parent_teid = parent->info.node_teid;
4498
4499        buf->num_qsets = cpu_to_le16(num_qsets);
4500        for (i = 0; i < num_qsets; i++) {
4501                buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4502                buf->rdma_qsets[i].info.valid_sections =
4503                        ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4504                        ICE_AQC_ELEM_VALID_EIR;
4505                buf->rdma_qsets[i].info.generic = 0;
4506                buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4507                        cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4508                buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4509                        cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4510                buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4511                        cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4512                buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4513                        cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4514        }
4515        ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4516        if (ret) {
4517                ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4518                goto rdma_error_exit;
4519        }
4520        node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4521        for (i = 0; i < num_qsets; i++) {
4522                node.node_teid = buf->rdma_qsets[i].qset_teid;
4523                ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4524                                         &node);
4525                if (ret)
4526                        break;
4527                qset_teid[i] = le32_to_cpu(node.node_teid);
4528        }
4529rdma_error_exit:
4530        mutex_unlock(&pi->sched_lock);
4531        kfree(buf);
4532        return ret;
4533}
4534
4535/**
4536 * ice_dis_vsi_rdma_qset - free RDMA resources
4537 * @pi: port_info struct
4538 * @count: number of RDMA Qsets to free
4539 * @qset_teid: TEID of Qset node
4540 * @q_id: list of queue IDs being disabled
4541 */
4542int
4543ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4544                      u16 *q_id)
4545{
4546        struct ice_aqc_dis_txq_item *qg_list;
4547        struct ice_hw *hw;
4548        int status = 0;
4549        u16 qg_size;
4550        int i;
4551
4552        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4553                return -EIO;
4554
4555        hw = pi->hw;
4556
4557        qg_size = struct_size(qg_list, q_id, 1);
4558        qg_list = kzalloc(qg_size, GFP_KERNEL);
4559        if (!qg_list)
4560                return -ENOMEM;
4561
4562        mutex_lock(&pi->sched_lock);
4563
4564        for (i = 0; i < count; i++) {
4565                struct ice_sched_node *node;
4566
4567                node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4568                if (!node)
4569                        continue;
4570
4571                qg_list->parent_teid = node->info.parent_teid;
4572                qg_list->num_qs = 1;
4573                qg_list->q_id[0] =
4574                        cpu_to_le16(q_id[i] |
4575                                    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4576
4577                status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4578                                            ICE_NO_RESET, 0, NULL);
4579                if (status)
4580                        break;
4581
4582                ice_free_sched_node(pi, node);
4583        }
4584
4585        mutex_unlock(&pi->sched_lock);
4586        kfree(qg_list);
4587        return status;
4588}
4589
4590/**
4591 * ice_replay_pre_init - replay pre initialization
4592 * @hw: pointer to the HW struct
4593 *
4594 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4595 */
4596static int ice_replay_pre_init(struct ice_hw *hw)
4597{
4598        struct ice_switch_info *sw = hw->switch_info;
4599        u8 i;
4600
4601        /* Delete old entries from replay filter list head if there is any */
4602        ice_rm_all_sw_replay_rule_info(hw);
4603        /* In start of replay, move entries into replay_rules list, it
4604         * will allow adding rules entries back to filt_rules list,
4605         * which is operational list.
4606         */
4607        for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4608                list_replace_init(&sw->recp_list[i].filt_rules,
4609                                  &sw->recp_list[i].filt_replay_rules);
4610        ice_sched_replay_agg_vsi_preinit(hw);
4611
4612        return 0;
4613}
4614
4615/**
4616 * ice_replay_vsi - replay VSI configuration
4617 * @hw: pointer to the HW struct
4618 * @vsi_handle: driver VSI handle
4619 *
4620 * Restore all VSI configuration after reset. It is required to call this
4621 * function with main VSI first.
4622 */
4623int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4624{
4625        int status;
4626
4627        if (!ice_is_vsi_valid(hw, vsi_handle))
4628                return -EINVAL;
4629
4630        /* Replay pre-initialization if there is any */
4631        if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4632                status = ice_replay_pre_init(hw);
4633                if (status)
4634                        return status;
4635        }
4636        /* Replay per VSI all RSS configurations */
4637        status = ice_replay_rss_cfg(hw, vsi_handle);
4638        if (status)
4639                return status;
4640        /* Replay per VSI all filters */
4641        status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4642        if (!status)
4643                status = ice_replay_vsi_agg(hw, vsi_handle);
4644        return status;
4645}
4646
4647/**
4648 * ice_replay_post - post replay configuration cleanup
4649 * @hw: pointer to the HW struct
4650 *
4651 * Post replay cleanup.
4652 */
4653void ice_replay_post(struct ice_hw *hw)
4654{
4655        /* Delete old entries from replay filter list head */
4656        ice_rm_all_sw_replay_rule_info(hw);
4657        ice_sched_replay_agg(hw);
4658}
4659
4660/**
4661 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4662 * @hw: ptr to the hardware info
4663 * @reg: offset of 64 bit HW register to read from
4664 * @prev_stat_loaded: bool to specify if previous stats are loaded
4665 * @prev_stat: ptr to previous loaded stat value
4666 * @cur_stat: ptr to current stat value
4667 */
4668void
4669ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4670                  u64 *prev_stat, u64 *cur_stat)
4671{
4672        u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4673
4674        /* device stats are not reset at PFR, they likely will not be zeroed
4675         * when the driver starts. Thus, save the value from the first read
4676         * without adding to the statistic value so that we report stats which
4677         * count up from zero.
4678         */
4679        if (!prev_stat_loaded) {
4680                *prev_stat = new_data;
4681                return;
4682        }
4683
4684        /* Calculate the difference between the new and old values, and then
4685         * add it to the software stat value.
4686         */
4687        if (new_data >= *prev_stat)
4688                *cur_stat += new_data - *prev_stat;
4689        else
4690                /* to manage the potential roll-over */
4691                *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4692
4693        /* Update the previously stored value to prepare for next read */
4694        *prev_stat = new_data;
4695}
4696
4697/**
4698 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4699 * @hw: ptr to the hardware info
4700 * @reg: offset of HW register to read from
4701 * @prev_stat_loaded: bool to specify if previous stats are loaded
4702 * @prev_stat: ptr to previous loaded stat value
4703 * @cur_stat: ptr to current stat value
4704 */
4705void
4706ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4707                  u64 *prev_stat, u64 *cur_stat)
4708{
4709        u32 new_data;
4710
4711        new_data = rd32(hw, reg);
4712
4713        /* device stats are not reset at PFR, they likely will not be zeroed
4714         * when the driver starts. Thus, save the value from the first read
4715         * without adding to the statistic value so that we report stats which
4716         * count up from zero.
4717         */
4718        if (!prev_stat_loaded) {
4719                *prev_stat = new_data;
4720                return;
4721        }
4722
4723        /* Calculate the difference between the new and old values, and then
4724         * add it to the software stat value.
4725         */
4726        if (new_data >= *prev_stat)
4727                *cur_stat += new_data - *prev_stat;
4728        else
4729                /* to manage the potential roll-over */
4730                *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4731
4732        /* Update the previously stored value to prepare for next read */
4733        *prev_stat = new_data;
4734}
4735
4736/**
4737 * ice_sched_query_elem - query element information from HW
4738 * @hw: pointer to the HW struct
4739 * @node_teid: node TEID to be queried
4740 * @buf: buffer to element information
4741 *
4742 * This function queries HW element information
4743 */
4744int
4745ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4746                     struct ice_aqc_txsched_elem_data *buf)
4747{
4748        u16 buf_size, num_elem_ret = 0;
4749        int status;
4750
4751        buf_size = sizeof(*buf);
4752        memset(buf, 0, buf_size);
4753        buf->node_teid = cpu_to_le32(node_teid);
4754        status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4755                                          NULL);
4756        if (status || num_elem_ret != 1)
4757                ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4758        return status;
4759}
4760
4761/**
4762 * ice_aq_set_driver_param - Set driver parameter to share via firmware
4763 * @hw: pointer to the HW struct
4764 * @idx: parameter index to set
4765 * @value: the value to set the parameter to
4766 * @cd: pointer to command details structure or NULL
4767 *
4768 * Set the value of one of the software defined parameters. All PFs connected
4769 * to this device can read the value using ice_aq_get_driver_param.
4770 *
4771 * Note that firmware provides no synchronization or locking, and will not
4772 * save the parameter value during a device reset. It is expected that
4773 * a single PF will write the parameter value, while all other PFs will only
4774 * read it.
4775 */
4776int
4777ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4778                        u32 value, struct ice_sq_cd *cd)
4779{
4780        struct ice_aqc_driver_shared_params *cmd;
4781        struct ice_aq_desc desc;
4782
4783        if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4784                return -EIO;
4785
4786        cmd = &desc.params.drv_shared_params;
4787
4788        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4789
4790        cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4791        cmd->param_indx = idx;
4792        cmd->param_val = cpu_to_le32(value);
4793
4794        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4795}
4796
4797/**
4798 * ice_aq_get_driver_param - Get driver parameter shared via firmware
4799 * @hw: pointer to the HW struct
4800 * @idx: parameter index to set
4801 * @value: storage to return the shared parameter
4802 * @cd: pointer to command details structure or NULL
4803 *
4804 * Get the value of one of the software defined parameters.
4805 *
4806 * Note that firmware provides no synchronization or locking. It is expected
4807 * that only a single PF will write a given parameter.
4808 */
4809int
4810ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4811                        u32 *value, struct ice_sq_cd *cd)
4812{
4813        struct ice_aqc_driver_shared_params *cmd;
4814        struct ice_aq_desc desc;
4815        int status;
4816
4817        if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4818                return -EIO;
4819
4820        cmd = &desc.params.drv_shared_params;
4821
4822        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4823
4824        cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4825        cmd->param_indx = idx;
4826
4827        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4828        if (status)
4829                return status;
4830
4831        *value = le32_to_cpu(cmd->param_val);
4832
4833        return 0;
4834}
4835
4836/**
4837 * ice_aq_set_gpio
4838 * @hw: pointer to the hw struct
4839 * @gpio_ctrl_handle: GPIO controller node handle
4840 * @pin_idx: IO Number of the GPIO that needs to be set
4841 * @value: SW provide IO value to set in the LSB
4842 * @cd: pointer to command details structure or NULL
4843 *
4844 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
4845 */
4846int
4847ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
4848                struct ice_sq_cd *cd)
4849{
4850        struct ice_aqc_gpio *cmd;
4851        struct ice_aq_desc desc;
4852
4853        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
4854        cmd = &desc.params.read_write_gpio;
4855        cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4856        cmd->gpio_num = pin_idx;
4857        cmd->gpio_val = value ? 1 : 0;
4858
4859        return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4860}
4861
4862/**
4863 * ice_aq_get_gpio
4864 * @hw: pointer to the hw struct
4865 * @gpio_ctrl_handle: GPIO controller node handle
4866 * @pin_idx: IO Number of the GPIO that needs to be set
4867 * @value: IO value read
4868 * @cd: pointer to command details structure or NULL
4869 *
4870 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
4871 * the topology
4872 */
4873int
4874ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
4875                bool *value, struct ice_sq_cd *cd)
4876{
4877        struct ice_aqc_gpio *cmd;
4878        struct ice_aq_desc desc;
4879        int status;
4880
4881        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
4882        cmd = &desc.params.read_write_gpio;
4883        cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4884        cmd->gpio_num = pin_idx;
4885
4886        status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4887        if (status)
4888                return status;
4889
4890        *value = !!cmd->gpio_val;
4891        return 0;
4892}
4893
4894/**
4895 * ice_fw_supports_link_override
4896 * @hw: pointer to the hardware structure
4897 *
4898 * Checks if the firmware supports link override
4899 */
4900bool ice_fw_supports_link_override(struct ice_hw *hw)
4901{
4902        if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4903                if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4904                        return true;
4905                if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4906                    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4907                        return true;
4908        } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4909                return true;
4910        }
4911
4912        return false;
4913}
4914
4915/**
4916 * ice_get_link_default_override
4917 * @ldo: pointer to the link default override struct
4918 * @pi: pointer to the port info struct
4919 *
4920 * Gets the link default override for a port
4921 */
4922int
4923ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4924                              struct ice_port_info *pi)
4925{
4926        u16 i, tlv, tlv_len, tlv_start, buf, offset;
4927        struct ice_hw *hw = pi->hw;
4928        int status;
4929
4930        status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4931                                        ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4932        if (status) {
4933                ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4934                return status;
4935        }
4936
4937        /* Each port has its own config; calculate for our port */
4938        tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4939                ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4940
4941        /* link options first */
4942        status = ice_read_sr_word(hw, tlv_start, &buf);
4943        if (status) {
4944                ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4945                return status;
4946        }
4947        ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4948        ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4949                ICE_LINK_OVERRIDE_PHY_CFG_S;
4950
4951        /* link PHY config */
4952        offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4953        status = ice_read_sr_word(hw, offset, &buf);
4954        if (status) {
4955                ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4956                return status;
4957        }
4958        ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4959
4960        /* PHY types low */
4961        offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4962        for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4963                status = ice_read_sr_word(hw, (offset + i), &buf);
4964                if (status) {
4965                        ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4966                        return status;
4967                }
4968                /* shift 16 bits at a time to fill 64 bits */
4969                ldo->phy_type_low |= ((u64)buf << (i * 16));
4970        }
4971
4972        /* PHY types high */
4973        offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4974                ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4975        for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4976                status = ice_read_sr_word(hw, (offset + i), &buf);
4977                if (status) {
4978                        ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4979                        return status;
4980                }
4981                /* shift 16 bits at a time to fill 64 bits */
4982                ldo->phy_type_high |= ((u64)buf << (i * 16));
4983        }
4984
4985        return status;
4986}
4987
4988/**
4989 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4990 * @caps: get PHY capability data
4991 */
4992bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4993{
4994        if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4995            caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4996                                       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4997                                       ICE_AQC_PHY_AN_EN_CLAUSE37))
4998                return true;
4999
5000        return false;
5001}
5002
5003/**
5004 * ice_aq_set_lldp_mib - Set the LLDP MIB
5005 * @hw: pointer to the HW struct
5006 * @mib_type: Local, Remote or both Local and Remote MIBs
5007 * @buf: pointer to the caller-supplied buffer to store the MIB block
5008 * @buf_size: size of the buffer (in bytes)
5009 * @cd: pointer to command details structure or NULL
5010 *
5011 * Set the LLDP MIB. (0x0A08)
5012 */
5013int
5014ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5015                    struct ice_sq_cd *cd)
5016{
5017        struct ice_aqc_lldp_set_local_mib *cmd;
5018        struct ice_aq_desc desc;
5019
5020        cmd = &desc.params.lldp_set_mib;
5021
5022        if (buf_size == 0 || !buf)
5023                return -EINVAL;
5024
5025        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5026
5027        desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5028        desc.datalen = cpu_to_le16(buf_size);
5029
5030        cmd->type = mib_type;
5031        cmd->length = cpu_to_le16(buf_size);
5032
5033        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5034}
5035
5036/**
5037 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5038 * @hw: pointer to HW struct
5039 */
5040bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5041{
5042        if (hw->mac_type != ICE_MAC_E810)
5043                return false;
5044
5045        if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5046                if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5047                        return true;
5048                if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5049                    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5050                        return true;
5051        } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5052                return true;
5053        }
5054        return false;
5055}
5056
5057/**
5058 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5059 * @hw: pointer to HW struct
5060 * @vsi_num: absolute HW index for VSI
5061 * @add: boolean for if adding or removing a filter
5062 */
5063int
5064ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5065{
5066        struct ice_aqc_lldp_filter_ctrl *cmd;
5067        struct ice_aq_desc desc;
5068
5069        cmd = &desc.params.lldp_filter_ctrl;
5070
5071        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5072
5073        if (add)
5074                cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5075        else
5076                cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5077
5078        cmd->vsi_num = cpu_to_le16(vsi_num);
5079
5080        return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5081}
5082
5083/**
5084 * ice_fw_supports_report_dflt_cfg
5085 * @hw: pointer to the hardware structure
5086 *
5087 * Checks if the firmware supports report default configuration
5088 */
5089bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5090{
5091        if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5092                if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
5093                        return true;
5094                if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
5095                    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
5096                        return true;
5097        } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5098                return true;
5099        }
5100        return false;
5101}
5102