linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40                                                 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53        36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71        struct igb_adapter *adapter = hw->back;
  72        int i;
  73
  74        for (i = 10; i--;)
  75                array_wr32(E1000_VFTA, offset, value);
  76
  77        wrfl();
  78        adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90        u32 reg = 0;
  91        bool ext_mdio = false;
  92
  93        switch (hw->mac.type) {
  94        case e1000_82575:
  95        case e1000_82576:
  96                reg = rd32(E1000_MDIC);
  97                ext_mdio = !!(reg & E1000_MDIC_DEST);
  98                break;
  99        case e1000_82580:
 100        case e1000_i350:
 101        case e1000_i354:
 102        case e1000_i210:
 103        case e1000_i211:
 104                reg = rd32(E1000_MDICNFG);
 105                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106                break;
 107        default:
 108                break;
 109        }
 110        return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121        struct e1000_phy_info *phy = &hw->phy;
 122        s32 ret_val;
 123        u16 data;
 124        u8 port = 0;
 125
 126        /* Check the copper medium. */
 127        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128        if (ret_val)
 129                return ret_val;
 130
 131        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132        if (ret_val)
 133                return ret_val;
 134
 135        if (data & E1000_M88E1112_STATUS_LINK)
 136                port = E1000_MEDIA_PORT_COPPER;
 137
 138        /* Check the other medium. */
 139        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140        if (ret_val)
 141                return ret_val;
 142
 143        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144        if (ret_val)
 145                return ret_val;
 146
 147
 148        if (data & E1000_M88E1112_STATUS_LINK)
 149                port = E1000_MEDIA_PORT_OTHER;
 150
 151        /* Determine if a swap needs to happen. */
 152        if (port && (hw->dev_spec._82575.media_port != port)) {
 153                hw->dev_spec._82575.media_port = port;
 154                hw->dev_spec._82575.media_changed = true;
 155        }
 156
 157        if (port == E1000_MEDIA_PORT_COPPER) {
 158                /* reset page to 0 */
 159                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160                if (ret_val)
 161                        return ret_val;
 162                igb_check_for_link_82575(hw);
 163        } else {
 164                igb_check_for_link_82575(hw);
 165                /* reset page to 0 */
 166                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167                if (ret_val)
 168                        return ret_val;
 169        }
 170
 171        return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180        struct e1000_phy_info *phy = &hw->phy;
 181        s32 ret_val = 0;
 182        u32 ctrl_ext;
 183
 184        if (hw->phy.media_type != e1000_media_type_copper) {
 185                phy->type = e1000_phy_none;
 186                goto out;
 187        }
 188
 189        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190        phy->reset_delay_us     = 100;
 191
 192        ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194        if (igb_sgmii_active_82575(hw)) {
 195                phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196                ctrl_ext |= E1000_CTRL_I2C_ENA;
 197        } else {
 198                phy->ops.reset = igb_phy_hw_reset;
 199                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200        }
 201
 202        wr32(E1000_CTRL_EXT, ctrl_ext);
 203        igb_reset_mdicnfg_82580(hw);
 204
 205        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206                phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207                phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208        } else {
 209                switch (hw->mac.type) {
 210                case e1000_82580:
 211                case e1000_i350:
 212                case e1000_i354:
 213                case e1000_i210:
 214                case e1000_i211:
 215                        phy->ops.read_reg = igb_read_phy_reg_82580;
 216                        phy->ops.write_reg = igb_write_phy_reg_82580;
 217                        break;
 218                default:
 219                        phy->ops.read_reg = igb_read_phy_reg_igp;
 220                        phy->ops.write_reg = igb_write_phy_reg_igp;
 221                }
 222        }
 223
 224        /* set lan id */
 225        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 226                        E1000_STATUS_FUNC_SHIFT;
 227
 228        /* Set phy->phy_addr and phy->id. */
 229        ret_val = igb_get_phy_id_82575(hw);
 230        if (ret_val)
 231                return ret_val;
 232
 233        /* Verify phy id and set remaining function pointers */
 234        switch (phy->id) {
 235        case M88E1543_E_PHY_ID:
 236        case M88E1512_E_PHY_ID:
 237        case I347AT4_E_PHY_ID:
 238        case M88E1112_E_PHY_ID:
 239        case M88E1111_I_PHY_ID:
 240                phy->type               = e1000_phy_m88;
 241                phy->ops.check_polarity = igb_check_polarity_m88;
 242                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 243                if (phy->id != M88E1111_I_PHY_ID)
 244                        phy->ops.get_cable_length =
 245                                         igb_get_cable_length_m88_gen2;
 246                else
 247                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 248                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 249                /* Check if this PHY is configured for media swap. */
 250                if (phy->id == M88E1112_E_PHY_ID) {
 251                        u16 data;
 252
 253                        ret_val = phy->ops.write_reg(hw,
 254                                                     E1000_M88E1112_PAGE_ADDR,
 255                                                     2);
 256                        if (ret_val)
 257                                goto out;
 258
 259                        ret_val = phy->ops.read_reg(hw,
 260                                                    E1000_M88E1112_MAC_CTRL_1,
 261                                                    &data);
 262                        if (ret_val)
 263                                goto out;
 264
 265                        data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 266                               E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 267                        if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 268                            data == E1000_M88E1112_AUTO_COPPER_BASEX)
 269                                hw->mac.ops.check_for_link =
 270                                                igb_check_for_link_media_swap;
 271                }
 272                if (phy->id == M88E1512_E_PHY_ID) {
 273                        ret_val = igb_initialize_M88E1512_phy(hw);
 274                        if (ret_val)
 275                                goto out;
 276                }
 277                if (phy->id == M88E1543_E_PHY_ID) {
 278                        ret_val = igb_initialize_M88E1543_phy(hw);
 279                        if (ret_val)
 280                                goto out;
 281                }
 282                break;
 283        case IGP03E1000_E_PHY_ID:
 284                phy->type = e1000_phy_igp_3;
 285                phy->ops.get_phy_info = igb_get_phy_info_igp;
 286                phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 287                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 288                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 289                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 290                break;
 291        case I82580_I_PHY_ID:
 292        case I350_I_PHY_ID:
 293                phy->type = e1000_phy_82580;
 294                phy->ops.force_speed_duplex =
 295                                         igb_phy_force_speed_duplex_82580;
 296                phy->ops.get_cable_length = igb_get_cable_length_82580;
 297                phy->ops.get_phy_info = igb_get_phy_info_82580;
 298                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 299                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 300                break;
 301        case I210_I_PHY_ID:
 302                phy->type               = e1000_phy_i210;
 303                phy->ops.check_polarity = igb_check_polarity_m88;
 304                phy->ops.get_cfg_done   = igb_get_cfg_done_i210;
 305                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 306                phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 307                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 308                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 309                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 310                break;
 311        case BCM54616_E_PHY_ID:
 312                phy->type = e1000_phy_bcm54616;
 313                break;
 314        default:
 315                ret_val = -E1000_ERR_PHY;
 316                goto out;
 317        }
 318
 319out:
 320        return ret_val;
 321}
 322
 323/**
 324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 325 *  @hw: pointer to the HW structure
 326 **/
 327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 328{
 329        struct e1000_nvm_info *nvm = &hw->nvm;
 330        u32 eecd = rd32(E1000_EECD);
 331        u16 size;
 332
 333        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 334                     E1000_EECD_SIZE_EX_SHIFT);
 335
 336        /* Added to a constant, "size" becomes the left-shift value
 337         * for setting word_size.
 338         */
 339        size += NVM_WORD_SIZE_BASE_SHIFT;
 340
 341        /* Just in case size is out of range, cap it to the largest
 342         * EEPROM size supported
 343         */
 344        if (size > 15)
 345                size = 15;
 346
 347        nvm->word_size = BIT(size);
 348        nvm->opcode_bits = 8;
 349        nvm->delay_usec = 1;
 350
 351        switch (nvm->override) {
 352        case e1000_nvm_override_spi_large:
 353                nvm->page_size = 32;
 354                nvm->address_bits = 16;
 355                break;
 356        case e1000_nvm_override_spi_small:
 357                nvm->page_size = 8;
 358                nvm->address_bits = 8;
 359                break;
 360        default:
 361                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 362                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 363                                    16 : 8;
 364                break;
 365        }
 366        if (nvm->word_size == BIT(15))
 367                nvm->page_size = 128;
 368
 369        nvm->type = e1000_nvm_eeprom_spi;
 370
 371        /* NVM Function Pointers */
 372        nvm->ops.acquire = igb_acquire_nvm_82575;
 373        nvm->ops.release = igb_release_nvm_82575;
 374        nvm->ops.write = igb_write_nvm_spi;
 375        nvm->ops.validate = igb_validate_nvm_checksum;
 376        nvm->ops.update = igb_update_nvm_checksum;
 377        if (nvm->word_size < BIT(15))
 378                nvm->ops.read = igb_read_nvm_eerd;
 379        else
 380                nvm->ops.read = igb_read_nvm_spi;
 381
 382        /* override generic family function pointers for specific descendants */
 383        switch (hw->mac.type) {
 384        case e1000_82580:
 385                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 386                nvm->ops.update = igb_update_nvm_checksum_82580;
 387                break;
 388        case e1000_i354:
 389        case e1000_i350:
 390                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 391                nvm->ops.update = igb_update_nvm_checksum_i350;
 392                break;
 393        default:
 394                break;
 395        }
 396
 397        return 0;
 398}
 399
 400/**
 401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 402 *  @hw: pointer to the HW structure
 403 **/
 404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 405{
 406        struct e1000_mac_info *mac = &hw->mac;
 407        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 408
 409        /* Set mta register count */
 410        mac->mta_reg_count = 128;
 411        /* Set uta register count */
 412        mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 413        /* Set rar entry count */
 414        switch (mac->type) {
 415        case e1000_82576:
 416                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 417                break;
 418        case e1000_82580:
 419                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 420                break;
 421        case e1000_i350:
 422        case e1000_i354:
 423                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 424                break;
 425        default:
 426                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 427                break;
 428        }
 429        /* reset */
 430        if (mac->type >= e1000_82580)
 431                mac->ops.reset_hw = igb_reset_hw_82580;
 432        else
 433                mac->ops.reset_hw = igb_reset_hw_82575;
 434
 435        if (mac->type >= e1000_i210) {
 436                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 437                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 438
 439        } else {
 440                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 441                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 442        }
 443
 444        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 445                mac->ops.write_vfta = igb_write_vfta_i350;
 446        else
 447                mac->ops.write_vfta = igb_write_vfta;
 448
 449        /* Set if part includes ASF firmware */
 450        mac->asf_firmware_present = true;
 451        /* Set if manageability features are enabled. */
 452        mac->arc_subsystem_valid =
 453                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 454                        ? true : false;
 455        /* enable EEE on i350 parts and later parts */
 456        if (mac->type >= e1000_i350)
 457                dev_spec->eee_disable = false;
 458        else
 459                dev_spec->eee_disable = true;
 460        /* Allow a single clear of the SW semaphore on I210 and newer */
 461        if (mac->type >= e1000_i210)
 462                dev_spec->clear_semaphore_once = true;
 463        /* physical interface link setup */
 464        mac->ops.setup_physical_interface =
 465                (hw->phy.media_type == e1000_media_type_copper)
 466                        ? igb_setup_copper_link_82575
 467                        : igb_setup_serdes_link_82575;
 468
 469        if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 470                switch (hw->device_id) {
 471                /* feature not supported on these id's */
 472                case E1000_DEV_ID_DH89XXCC_SGMII:
 473                case E1000_DEV_ID_DH89XXCC_SERDES:
 474                case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 475                case E1000_DEV_ID_DH89XXCC_SFP:
 476                        break;
 477                default:
 478                        hw->dev_spec._82575.mas_capable = true;
 479                        break;
 480                }
 481        }
 482        return 0;
 483}
 484
 485/**
 486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  The media type is chosen based on SFP module.
 490 *  compatibility flags retrieved from SFP ID EEPROM.
 491 **/
 492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 493{
 494        s32 ret_val = E1000_ERR_CONFIG;
 495        u32 ctrl_ext = 0;
 496        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 497        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 498        u8 tranceiver_type = 0;
 499        s32 timeout = 3;
 500
 501        /* Turn I2C interface ON and power on sfp cage */
 502        ctrl_ext = rd32(E1000_CTRL_EXT);
 503        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 504        wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 505
 506        wrfl();
 507
 508        /* Read SFP module data */
 509        while (timeout) {
 510                ret_val = igb_read_sfp_data_byte(hw,
 511                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 512                        &tranceiver_type);
 513                if (ret_val == 0)
 514                        break;
 515                msleep(100);
 516                timeout--;
 517        }
 518        if (ret_val != 0)
 519                goto out;
 520
 521        ret_val = igb_read_sfp_data_byte(hw,
 522                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 523                        (u8 *)eth_flags);
 524        if (ret_val != 0)
 525                goto out;
 526
 527        /* Check if there is some SFP module plugged and powered */
 528        if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 529            (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 530                dev_spec->module_plugged = true;
 531                if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 532                        hw->phy.media_type = e1000_media_type_internal_serdes;
 533                } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 534                        dev_spec->sgmii_active = true;
 535                        hw->phy.media_type = e1000_media_type_internal_serdes;
 536                } else if (eth_flags->e1000_base_t) {
 537                        dev_spec->sgmii_active = true;
 538                        hw->phy.media_type = e1000_media_type_copper;
 539                } else {
 540                        hw->phy.media_type = e1000_media_type_unknown;
 541                        hw_dbg("PHY module has not been recognized\n");
 542                        goto out;
 543                }
 544        } else {
 545                hw->phy.media_type = e1000_media_type_unknown;
 546        }
 547        ret_val = 0;
 548out:
 549        /* Restore I2C interface setting */
 550        wr32(E1000_CTRL_EXT, ctrl_ext);
 551        return ret_val;
 552}
 553
 554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 555{
 556        struct e1000_mac_info *mac = &hw->mac;
 557        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 558        s32 ret_val;
 559        u32 ctrl_ext = 0;
 560        u32 link_mode = 0;
 561
 562        switch (hw->device_id) {
 563        case E1000_DEV_ID_82575EB_COPPER:
 564        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 565        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 566                mac->type = e1000_82575;
 567                break;
 568        case E1000_DEV_ID_82576:
 569        case E1000_DEV_ID_82576_NS:
 570        case E1000_DEV_ID_82576_NS_SERDES:
 571        case E1000_DEV_ID_82576_FIBER:
 572        case E1000_DEV_ID_82576_SERDES:
 573        case E1000_DEV_ID_82576_QUAD_COPPER:
 574        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 575        case E1000_DEV_ID_82576_SERDES_QUAD:
 576                mac->type = e1000_82576;
 577                break;
 578        case E1000_DEV_ID_82580_COPPER:
 579        case E1000_DEV_ID_82580_FIBER:
 580        case E1000_DEV_ID_82580_QUAD_FIBER:
 581        case E1000_DEV_ID_82580_SERDES:
 582        case E1000_DEV_ID_82580_SGMII:
 583        case E1000_DEV_ID_82580_COPPER_DUAL:
 584        case E1000_DEV_ID_DH89XXCC_SGMII:
 585        case E1000_DEV_ID_DH89XXCC_SERDES:
 586        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 587        case E1000_DEV_ID_DH89XXCC_SFP:
 588                mac->type = e1000_82580;
 589                break;
 590        case E1000_DEV_ID_I350_COPPER:
 591        case E1000_DEV_ID_I350_FIBER:
 592        case E1000_DEV_ID_I350_SERDES:
 593        case E1000_DEV_ID_I350_SGMII:
 594                mac->type = e1000_i350;
 595                break;
 596        case E1000_DEV_ID_I210_COPPER:
 597        case E1000_DEV_ID_I210_FIBER:
 598        case E1000_DEV_ID_I210_SERDES:
 599        case E1000_DEV_ID_I210_SGMII:
 600        case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 601        case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 602                mac->type = e1000_i210;
 603                break;
 604        case E1000_DEV_ID_I211_COPPER:
 605                mac->type = e1000_i211;
 606                break;
 607        case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 608        case E1000_DEV_ID_I354_SGMII:
 609        case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 610                mac->type = e1000_i354;
 611                break;
 612        default:
 613                return -E1000_ERR_MAC_INIT;
 614        }
 615
 616        /* Set media type */
 617        /* The 82575 uses bits 22:23 for link mode. The mode can be changed
 618         * based on the EEPROM. We cannot rely upon device ID. There
 619         * is no distinguishable difference between fiber and internal
 620         * SerDes mode on the 82575. There can be an external PHY attached
 621         * on the SGMII interface. For this, we'll set sgmii_active to true.
 622         */
 623        hw->phy.media_type = e1000_media_type_copper;
 624        dev_spec->sgmii_active = false;
 625        dev_spec->module_plugged = false;
 626
 627        ctrl_ext = rd32(E1000_CTRL_EXT);
 628
 629        link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 630        switch (link_mode) {
 631        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 632                hw->phy.media_type = e1000_media_type_internal_serdes;
 633                break;
 634        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 635                /* Get phy control interface type set (MDIO vs. I2C)*/
 636                if (igb_sgmii_uses_mdio_82575(hw)) {
 637                        hw->phy.media_type = e1000_media_type_copper;
 638                        dev_spec->sgmii_active = true;
 639                        break;
 640                }
 641                fallthrough; /* for I2C based SGMII */
 642        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 643                /* read media type from SFP EEPROM */
 644                ret_val = igb_set_sfp_media_type_82575(hw);
 645                if ((ret_val != 0) ||
 646                    (hw->phy.media_type == e1000_media_type_unknown)) {
 647                        /* If media type was not identified then return media
 648                         * type defined by the CTRL_EXT settings.
 649                         */
 650                        hw->phy.media_type = e1000_media_type_internal_serdes;
 651
 652                        if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 653                                hw->phy.media_type = e1000_media_type_copper;
 654                                dev_spec->sgmii_active = true;
 655                        }
 656
 657                        break;
 658                }
 659
 660                /* change current link mode setting */
 661                ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 662
 663                if (dev_spec->sgmii_active)
 664                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 665                else
 666                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 667
 668                wr32(E1000_CTRL_EXT, ctrl_ext);
 669
 670                break;
 671        default:
 672                break;
 673        }
 674
 675        /* mac initialization and operations */
 676        ret_val = igb_init_mac_params_82575(hw);
 677        if (ret_val)
 678                goto out;
 679
 680        /* NVM initialization */
 681        ret_val = igb_init_nvm_params_82575(hw);
 682        switch (hw->mac.type) {
 683        case e1000_i210:
 684        case e1000_i211:
 685                ret_val = igb_init_nvm_params_i210(hw);
 686                break;
 687        default:
 688                break;
 689        }
 690
 691        if (ret_val)
 692                goto out;
 693
 694        /* if part supports SR-IOV then initialize mailbox parameters */
 695        switch (mac->type) {
 696        case e1000_82576:
 697        case e1000_i350:
 698                igb_init_mbx_params_pf(hw);
 699                break;
 700        default:
 701                break;
 702        }
 703
 704        /* setup PHY parameters */
 705        ret_val = igb_init_phy_params_82575(hw);
 706
 707out:
 708        return ret_val;
 709}
 710
 711/**
 712 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 713 *  @hw: pointer to the HW structure
 714 *
 715 *  Acquire access rights to the correct PHY.  This is a
 716 *  function pointer entry point called by the api module.
 717 **/
 718static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 719{
 720        u16 mask = E1000_SWFW_PHY0_SM;
 721
 722        if (hw->bus.func == E1000_FUNC_1)
 723                mask = E1000_SWFW_PHY1_SM;
 724        else if (hw->bus.func == E1000_FUNC_2)
 725                mask = E1000_SWFW_PHY2_SM;
 726        else if (hw->bus.func == E1000_FUNC_3)
 727                mask = E1000_SWFW_PHY3_SM;
 728
 729        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 730}
 731
 732/**
 733 *  igb_release_phy_82575 - Release rights to access PHY
 734 *  @hw: pointer to the HW structure
 735 *
 736 *  A wrapper to release access rights to the correct PHY.  This is a
 737 *  function pointer entry point called by the api module.
 738 **/
 739static void igb_release_phy_82575(struct e1000_hw *hw)
 740{
 741        u16 mask = E1000_SWFW_PHY0_SM;
 742
 743        if (hw->bus.func == E1000_FUNC_1)
 744                mask = E1000_SWFW_PHY1_SM;
 745        else if (hw->bus.func == E1000_FUNC_2)
 746                mask = E1000_SWFW_PHY2_SM;
 747        else if (hw->bus.func == E1000_FUNC_3)
 748                mask = E1000_SWFW_PHY3_SM;
 749
 750        hw->mac.ops.release_swfw_sync(hw, mask);
 751}
 752
 753/**
 754 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 755 *  @hw: pointer to the HW structure
 756 *  @offset: register offset to be read
 757 *  @data: pointer to the read data
 758 *
 759 *  Reads the PHY register at offset using the serial gigabit media independent
 760 *  interface and stores the retrieved information in data.
 761 **/
 762static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 763                                          u16 *data)
 764{
 765        s32 ret_val = -E1000_ERR_PARAM;
 766
 767        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 768                hw_dbg("PHY Address %u is out of range\n", offset);
 769                goto out;
 770        }
 771
 772        ret_val = hw->phy.ops.acquire(hw);
 773        if (ret_val)
 774                goto out;
 775
 776        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 777
 778        hw->phy.ops.release(hw);
 779
 780out:
 781        return ret_val;
 782}
 783
 784/**
 785 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 786 *  @hw: pointer to the HW structure
 787 *  @offset: register offset to write to
 788 *  @data: data to write at register offset
 789 *
 790 *  Writes the data to PHY register at the offset using the serial gigabit
 791 *  media independent interface.
 792 **/
 793static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 794                                           u16 data)
 795{
 796        s32 ret_val = -E1000_ERR_PARAM;
 797
 798
 799        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 800                hw_dbg("PHY Address %d is out of range\n", offset);
 801                goto out;
 802        }
 803
 804        ret_val = hw->phy.ops.acquire(hw);
 805        if (ret_val)
 806                goto out;
 807
 808        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 809
 810        hw->phy.ops.release(hw);
 811
 812out:
 813        return ret_val;
 814}
 815
 816/**
 817 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 818 *  @hw: pointer to the HW structure
 819 *
 820 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 821 *  sgmi interface.
 822 **/
 823static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 824{
 825        struct e1000_phy_info *phy = &hw->phy;
 826        s32  ret_val = 0;
 827        u16 phy_id;
 828        u32 ctrl_ext;
 829        u32 mdic;
 830
 831        /* Extra read required for some PHY's on i354 */
 832        if (hw->mac.type == e1000_i354)
 833                igb_get_phy_id(hw);
 834
 835        /* For SGMII PHYs, we try the list of possible addresses until
 836         * we find one that works.  For non-SGMII PHYs
 837         * (e.g. integrated copper PHYs), an address of 1 should
 838         * work.  The result of this function should mean phy->phy_addr
 839         * and phy->id are set correctly.
 840         */
 841        if (!(igb_sgmii_active_82575(hw))) {
 842                phy->addr = 1;
 843                ret_val = igb_get_phy_id(hw);
 844                goto out;
 845        }
 846
 847        if (igb_sgmii_uses_mdio_82575(hw)) {
 848                switch (hw->mac.type) {
 849                case e1000_82575:
 850                case e1000_82576:
 851                        mdic = rd32(E1000_MDIC);
 852                        mdic &= E1000_MDIC_PHY_MASK;
 853                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 854                        break;
 855                case e1000_82580:
 856                case e1000_i350:
 857                case e1000_i354:
 858                case e1000_i210:
 859                case e1000_i211:
 860                        mdic = rd32(E1000_MDICNFG);
 861                        mdic &= E1000_MDICNFG_PHY_MASK;
 862                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 863                        break;
 864                default:
 865                        ret_val = -E1000_ERR_PHY;
 866                        goto out;
 867                }
 868                ret_val = igb_get_phy_id(hw);
 869                goto out;
 870        }
 871
 872        /* Power on sgmii phy if it is disabled */
 873        ctrl_ext = rd32(E1000_CTRL_EXT);
 874        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 875        wrfl();
 876        msleep(300);
 877
 878        /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 879         * Therefore, we need to test 1-7
 880         */
 881        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 882                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 883                if (ret_val == 0) {
 884                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 885                               phy_id, phy->addr);
 886                        /* At the time of this writing, The M88 part is
 887                         * the only supported SGMII PHY product.
 888                         */
 889                        if (phy_id == M88_VENDOR)
 890                                break;
 891                } else {
 892                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 893                }
 894        }
 895
 896        /* A valid PHY type couldn't be found. */
 897        if (phy->addr == 8) {
 898                phy->addr = 0;
 899                ret_val = -E1000_ERR_PHY;
 900                goto out;
 901        } else {
 902                ret_val = igb_get_phy_id(hw);
 903        }
 904
 905        /* restore previous sfp cage power state */
 906        wr32(E1000_CTRL_EXT, ctrl_ext);
 907
 908out:
 909        return ret_val;
 910}
 911
 912/**
 913 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 914 *  @hw: pointer to the HW structure
 915 *
 916 *  Resets the PHY using the serial gigabit media independent interface.
 917 **/
 918static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 919{
 920        struct e1000_phy_info *phy = &hw->phy;
 921        s32 ret_val;
 922
 923        /* This isn't a true "hard" reset, but is the only reset
 924         * available to us at this time.
 925         */
 926
 927        hw_dbg("Soft resetting SGMII attached PHY...\n");
 928
 929        /* SFP documentation requires the following to configure the SPF module
 930         * to work on SGMII.  No further documentation is given.
 931         */
 932        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 933        if (ret_val)
 934                goto out;
 935
 936        ret_val = igb_phy_sw_reset(hw);
 937        if (ret_val)
 938                goto out;
 939
 940        if (phy->id == M88E1512_E_PHY_ID)
 941                ret_val = igb_initialize_M88E1512_phy(hw);
 942        if (phy->id == M88E1543_E_PHY_ID)
 943                ret_val = igb_initialize_M88E1543_phy(hw);
 944out:
 945        return ret_val;
 946}
 947
 948/**
 949 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 950 *  @hw: pointer to the HW structure
 951 *  @active: true to enable LPLU, false to disable
 952 *
 953 *  Sets the LPLU D0 state according to the active flag.  When
 954 *  activating LPLU this function also disables smart speed
 955 *  and vice versa.  LPLU will not be activated unless the
 956 *  device autonegotiation advertisement meets standards of
 957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 958 *  This is a function pointer entry point only called by
 959 *  PHY setup routines.
 960 **/
 961static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 962{
 963        struct e1000_phy_info *phy = &hw->phy;
 964        s32 ret_val;
 965        u16 data;
 966
 967        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 968        if (ret_val)
 969                goto out;
 970
 971        if (active) {
 972                data |= IGP02E1000_PM_D0_LPLU;
 973                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 974                                                 data);
 975                if (ret_val)
 976                        goto out;
 977
 978                /* When LPLU is enabled, we should disable SmartSpeed */
 979                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 980                                                &data);
 981                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 982                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 983                                                 data);
 984                if (ret_val)
 985                        goto out;
 986        } else {
 987                data &= ~IGP02E1000_PM_D0_LPLU;
 988                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 989                                                 data);
 990                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 991                 * during Dx states where the power conservation is most
 992                 * important.  During driver activity we should enable
 993                 * SmartSpeed, so performance is maintained.
 994                 */
 995                if (phy->smart_speed == e1000_smart_speed_on) {
 996                        ret_val = phy->ops.read_reg(hw,
 997                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 998                        if (ret_val)
 999                                goto out;
1000
1001                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1002                        ret_val = phy->ops.write_reg(hw,
1003                                        IGP01E1000_PHY_PORT_CONFIG, data);
1004                        if (ret_val)
1005                                goto out;
1006                } else if (phy->smart_speed == e1000_smart_speed_off) {
1007                        ret_val = phy->ops.read_reg(hw,
1008                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1009                        if (ret_val)
1010                                goto out;
1011
1012                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1013                        ret_val = phy->ops.write_reg(hw,
1014                                        IGP01E1000_PHY_PORT_CONFIG, data);
1015                        if (ret_val)
1016                                goto out;
1017                }
1018        }
1019
1020out:
1021        return ret_val;
1022}
1023
1024/**
1025 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026 *  @hw: pointer to the HW structure
1027 *  @active: true to enable LPLU, false to disable
1028 *
1029 *  Sets the LPLU D0 state according to the active flag.  When
1030 *  activating LPLU this function also disables smart speed
1031 *  and vice versa.  LPLU will not be activated unless the
1032 *  device autonegotiation advertisement meets standards of
1033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1034 *  This is a function pointer entry point only called by
1035 *  PHY setup routines.
1036 **/
1037static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1038{
1039        struct e1000_phy_info *phy = &hw->phy;
1040        u16 data;
1041
1042        data = rd32(E1000_82580_PHY_POWER_MGMT);
1043
1044        if (active) {
1045                data |= E1000_82580_PM_D0_LPLU;
1046
1047                /* When LPLU is enabled, we should disable SmartSpeed */
1048                data &= ~E1000_82580_PM_SPD;
1049        } else {
1050                data &= ~E1000_82580_PM_D0_LPLU;
1051
1052                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1053                 * during Dx states where the power conservation is most
1054                 * important.  During driver activity we should enable
1055                 * SmartSpeed, so performance is maintained.
1056                 */
1057                if (phy->smart_speed == e1000_smart_speed_on)
1058                        data |= E1000_82580_PM_SPD;
1059                else if (phy->smart_speed == e1000_smart_speed_off)
1060                        data &= ~E1000_82580_PM_SPD; }
1061
1062        wr32(E1000_82580_PHY_POWER_MGMT, data);
1063        return 0;
1064}
1065
1066/**
1067 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068 *  @hw: pointer to the HW structure
1069 *  @active: boolean used to enable/disable lplu
1070 *
1071 *  Success returns 0, Failure returns 1
1072 *
1073 *  The low power link up (lplu) state is set to the power management level D3
1074 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1075 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1076 *  is used during Dx states where the power conservation is most important.
1077 *  During driver activity, SmartSpeed should be enabled so performance is
1078 *  maintained.
1079 **/
1080static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1081{
1082        struct e1000_phy_info *phy = &hw->phy;
1083        u16 data;
1084
1085        data = rd32(E1000_82580_PHY_POWER_MGMT);
1086
1087        if (!active) {
1088                data &= ~E1000_82580_PM_D3_LPLU;
1089                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090                 * during Dx states where the power conservation is most
1091                 * important.  During driver activity we should enable
1092                 * SmartSpeed, so performance is maintained.
1093                 */
1094                if (phy->smart_speed == e1000_smart_speed_on)
1095                        data |= E1000_82580_PM_SPD;
1096                else if (phy->smart_speed == e1000_smart_speed_off)
1097                        data &= ~E1000_82580_PM_SPD;
1098        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1099                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1100                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1101                data |= E1000_82580_PM_D3_LPLU;
1102                /* When LPLU is enabled, we should disable SmartSpeed */
1103                data &= ~E1000_82580_PM_SPD;
1104        }
1105
1106        wr32(E1000_82580_PHY_POWER_MGMT, data);
1107        return 0;
1108}
1109
1110/**
1111 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1112 *  @hw: pointer to the HW structure
1113 *
1114 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1115 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116 *  Return successful if access grant bit set, else clear the request for
1117 *  EEPROM access and return -E1000_ERR_NVM (-1).
1118 **/
1119static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1120{
1121        s32 ret_val;
1122
1123        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1124        if (ret_val)
1125                goto out;
1126
1127        ret_val = igb_acquire_nvm(hw);
1128
1129        if (ret_val)
1130                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131
1132out:
1133        return ret_val;
1134}
1135
1136/**
1137 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1138 *  @hw: pointer to the HW structure
1139 *
1140 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141 *  then release the semaphores acquired.
1142 **/
1143static void igb_release_nvm_82575(struct e1000_hw *hw)
1144{
1145        igb_release_nvm(hw);
1146        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1147}
1148
1149/**
1150 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151 *  @hw: pointer to the HW structure
1152 *  @mask: specifies which semaphore to acquire
1153 *
1154 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1155 *  will also specify which port we're acquiring the lock for.
1156 **/
1157static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1158{
1159        u32 swfw_sync;
1160        u32 swmask = mask;
1161        u32 fwmask = mask << 16;
1162        s32 ret_val = 0;
1163        s32 i = 0, timeout = 200;
1164
1165        while (i < timeout) {
1166                if (igb_get_hw_semaphore(hw)) {
1167                        ret_val = -E1000_ERR_SWFW_SYNC;
1168                        goto out;
1169                }
1170
1171                swfw_sync = rd32(E1000_SW_FW_SYNC);
1172                if (!(swfw_sync & (fwmask | swmask)))
1173                        break;
1174
1175                /* Firmware currently using resource (fwmask)
1176                 * or other software thread using resource (swmask)
1177                 */
1178                igb_put_hw_semaphore(hw);
1179                mdelay(5);
1180                i++;
1181        }
1182
1183        if (i == timeout) {
1184                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185                ret_val = -E1000_ERR_SWFW_SYNC;
1186                goto out;
1187        }
1188
1189        swfw_sync |= swmask;
1190        wr32(E1000_SW_FW_SYNC, swfw_sync);
1191
1192        igb_put_hw_semaphore(hw);
1193
1194out:
1195        return ret_val;
1196}
1197
1198/**
1199 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200 *  @hw: pointer to the HW structure
1201 *  @mask: specifies which semaphore to acquire
1202 *
1203 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1204 *  will also specify which port we're releasing the lock for.
1205 **/
1206static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1207{
1208        u32 swfw_sync;
1209
1210        while (igb_get_hw_semaphore(hw) != 0)
1211                ; /* Empty */
1212
1213        swfw_sync = rd32(E1000_SW_FW_SYNC);
1214        swfw_sync &= ~mask;
1215        wr32(E1000_SW_FW_SYNC, swfw_sync);
1216
1217        igb_put_hw_semaphore(hw);
1218}
1219
1220/**
1221 *  igb_get_cfg_done_82575 - Read config done bit
1222 *  @hw: pointer to the HW structure
1223 *
1224 *  Read the management control register for the config done bit for
1225 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1226 *  to read the config done bit, so an error is *ONLY* logged and returns
1227 *  0.  If we were to return with error, EEPROM-less silicon
1228 *  would not be able to be reset or change link.
1229 **/
1230static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1231{
1232        s32 timeout = PHY_CFG_TIMEOUT;
1233        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1234
1235        if (hw->bus.func == 1)
1236                mask = E1000_NVM_CFG_DONE_PORT_1;
1237        else if (hw->bus.func == E1000_FUNC_2)
1238                mask = E1000_NVM_CFG_DONE_PORT_2;
1239        else if (hw->bus.func == E1000_FUNC_3)
1240                mask = E1000_NVM_CFG_DONE_PORT_3;
1241
1242        while (timeout) {
1243                if (rd32(E1000_EEMNGCTL) & mask)
1244                        break;
1245                usleep_range(1000, 2000);
1246                timeout--;
1247        }
1248        if (!timeout)
1249                hw_dbg("MNG configuration cycle has not completed.\n");
1250
1251        /* If EEPROM is not marked present, init the PHY manually */
1252        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1253            (hw->phy.type == e1000_phy_igp_3))
1254                igb_phy_init_script_igp3(hw);
1255
1256        return 0;
1257}
1258
1259/**
1260 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1261 *  @hw: pointer to the HW structure
1262 *  @speed: stores the current speed
1263 *  @duplex: stores the current duplex
1264 *
1265 *  This is a wrapper function, if using the serial gigabit media independent
1266 *  interface, use PCS to retrieve the link speed and duplex information.
1267 *  Otherwise, use the generic function to get the link speed and duplex info.
1268 **/
1269static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1270                                        u16 *duplex)
1271{
1272        s32 ret_val;
1273
1274        if (hw->phy.media_type != e1000_media_type_copper)
1275                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1276                                                               duplex);
1277        else
1278                ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1279                                                                    duplex);
1280
1281        return ret_val;
1282}
1283
1284/**
1285 *  igb_check_for_link_82575 - Check for link
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1289 *  use the generic interface for determining link.
1290 **/
1291static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1292{
1293        s32 ret_val;
1294        u16 speed, duplex;
1295
1296        if (hw->phy.media_type != e1000_media_type_copper) {
1297                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1298                                                             &duplex);
1299                /* Use this flag to determine if link needs to be checked or
1300                 * not.  If  we have link clear the flag so that we do not
1301                 * continue to check for link.
1302                 */
1303                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1304
1305                /* Configure Flow Control now that Auto-Neg has completed.
1306                 * First, we need to restore the desired flow control
1307                 * settings because we may have had to re-autoneg with a
1308                 * different link partner.
1309                 */
1310                ret_val = igb_config_fc_after_link_up(hw);
1311                if (ret_val)
1312                        hw_dbg("Error configuring flow control\n");
1313        } else {
1314                ret_val = igb_check_for_copper_link(hw);
1315        }
1316
1317        return ret_val;
1318}
1319
1320/**
1321 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322 *  @hw: pointer to the HW structure
1323 **/
1324void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1325{
1326        u32 reg;
1327
1328
1329        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1330            !igb_sgmii_active_82575(hw))
1331                return;
1332
1333        /* Enable PCS to turn on link */
1334        reg = rd32(E1000_PCS_CFG0);
1335        reg |= E1000_PCS_CFG_PCS_EN;
1336        wr32(E1000_PCS_CFG0, reg);
1337
1338        /* Power up the laser */
1339        reg = rd32(E1000_CTRL_EXT);
1340        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1341        wr32(E1000_CTRL_EXT, reg);
1342
1343        /* flush the write to verify completion */
1344        wrfl();
1345        usleep_range(1000, 2000);
1346}
1347
1348/**
1349 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350 *  @hw: pointer to the HW structure
1351 *  @speed: stores the current speed
1352 *  @duplex: stores the current duplex
1353 *
1354 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1355 *  duplex, then store the values in the pointers provided.
1356 **/
1357static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1358                                                u16 *duplex)
1359{
1360        struct e1000_mac_info *mac = &hw->mac;
1361        u32 pcs, status;
1362
1363        /* Set up defaults for the return values of this function */
1364        mac->serdes_has_link = false;
1365        *speed = 0;
1366        *duplex = 0;
1367
1368        /* Read the PCS Status register for link state. For non-copper mode,
1369         * the status register is not accurate. The PCS status register is
1370         * used instead.
1371         */
1372        pcs = rd32(E1000_PCS_LSTAT);
1373
1374        /* The link up bit determines when link is up on autoneg. The sync ok
1375         * gets set once both sides sync up and agree upon link. Stable link
1376         * can be determined by checking for both link up and link sync ok
1377         */
1378        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1379                mac->serdes_has_link = true;
1380
1381                /* Detect and store PCS speed */
1382                if (pcs & E1000_PCS_LSTS_SPEED_1000)
1383                        *speed = SPEED_1000;
1384                else if (pcs & E1000_PCS_LSTS_SPEED_100)
1385                        *speed = SPEED_100;
1386                else
1387                        *speed = SPEED_10;
1388
1389                /* Detect and store PCS duplex */
1390                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1391                        *duplex = FULL_DUPLEX;
1392                else
1393                        *duplex = HALF_DUPLEX;
1394
1395        /* Check if it is an I354 2.5Gb backplane connection. */
1396                if (mac->type == e1000_i354) {
1397                        status = rd32(E1000_STATUS);
1398                        if ((status & E1000_STATUS_2P5_SKU) &&
1399                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
1400                                *speed = SPEED_2500;
1401                                *duplex = FULL_DUPLEX;
1402                                hw_dbg("2500 Mbs, ");
1403                                hw_dbg("Full Duplex\n");
1404                        }
1405                }
1406
1407        }
1408
1409        return 0;
1410}
1411
1412/**
1413 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1417 *  when management pass thru is not enabled.
1418 **/
1419void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1420{
1421        u32 reg;
1422
1423        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1424            igb_sgmii_active_82575(hw))
1425                return;
1426
1427        if (!igb_enable_mng_pass_thru(hw)) {
1428                /* Disable PCS to turn off link */
1429                reg = rd32(E1000_PCS_CFG0);
1430                reg &= ~E1000_PCS_CFG_PCS_EN;
1431                wr32(E1000_PCS_CFG0, reg);
1432
1433                /* shutdown the laser */
1434                reg = rd32(E1000_CTRL_EXT);
1435                reg |= E1000_CTRL_EXT_SDP3_DATA;
1436                wr32(E1000_CTRL_EXT, reg);
1437
1438                /* flush the write to verify completion */
1439                wrfl();
1440                usleep_range(1000, 2000);
1441        }
1442}
1443
1444/**
1445 *  igb_reset_hw_82575 - Reset hardware
1446 *  @hw: pointer to the HW structure
1447 *
1448 *  This resets the hardware into a known state.  This is a
1449 *  function pointer entry point called by the api module.
1450 **/
1451static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1452{
1453        u32 ctrl;
1454        s32 ret_val;
1455
1456        /* Prevent the PCI-E bus from sticking if there is no TLP connection
1457         * on the last TLP read/write transaction when MAC is reset.
1458         */
1459        ret_val = igb_disable_pcie_master(hw);
1460        if (ret_val)
1461                hw_dbg("PCI-E Master disable polling has failed.\n");
1462
1463        /* set the completion timeout for interface */
1464        ret_val = igb_set_pcie_completion_timeout(hw);
1465        if (ret_val)
1466                hw_dbg("PCI-E Set completion timeout has failed.\n");
1467
1468        hw_dbg("Masking off all interrupts\n");
1469        wr32(E1000_IMC, 0xffffffff);
1470
1471        wr32(E1000_RCTL, 0);
1472        wr32(E1000_TCTL, E1000_TCTL_PSP);
1473        wrfl();
1474
1475        usleep_range(10000, 20000);
1476
1477        ctrl = rd32(E1000_CTRL);
1478
1479        hw_dbg("Issuing a global reset to MAC\n");
1480        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1481
1482        ret_val = igb_get_auto_rd_done(hw);
1483        if (ret_val) {
1484                /* When auto config read does not complete, do not
1485                 * return with an error. This can happen in situations
1486                 * where there is no eeprom and prevents getting link.
1487                 */
1488                hw_dbg("Auto Read Done did not complete\n");
1489        }
1490
1491        /* If EEPROM is not present, run manual init scripts */
1492        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1493                igb_reset_init_script_82575(hw);
1494
1495        /* Clear any pending interrupt events. */
1496        wr32(E1000_IMC, 0xffffffff);
1497        rd32(E1000_ICR);
1498
1499        /* Install any alternate MAC address into RAR0 */
1500        ret_val = igb_check_alt_mac_addr(hw);
1501
1502        return ret_val;
1503}
1504
1505/**
1506 *  igb_init_hw_82575 - Initialize hardware
1507 *  @hw: pointer to the HW structure
1508 *
1509 *  This inits the hardware readying it for operation.
1510 **/
1511static s32 igb_init_hw_82575(struct e1000_hw *hw)
1512{
1513        struct e1000_mac_info *mac = &hw->mac;
1514        s32 ret_val;
1515        u16 i, rar_count = mac->rar_entry_count;
1516
1517        if ((hw->mac.type >= e1000_i210) &&
1518            !(igb_get_flash_presence_i210(hw))) {
1519                ret_val = igb_pll_workaround_i210(hw);
1520                if (ret_val)
1521                        return ret_val;
1522        }
1523
1524        /* Initialize identification LED */
1525        ret_val = igb_id_led_init(hw);
1526        if (ret_val) {
1527                hw_dbg("Error initializing identification LED\n");
1528                /* This is not fatal and we should not stop init due to this */
1529        }
1530
1531        /* Disabling VLAN filtering */
1532        hw_dbg("Initializing the IEEE VLAN\n");
1533        igb_clear_vfta(hw);
1534
1535        /* Setup the receive address */
1536        igb_init_rx_addrs(hw, rar_count);
1537
1538        /* Zero out the Multicast HASH table */
1539        hw_dbg("Zeroing the MTA\n");
1540        for (i = 0; i < mac->mta_reg_count; i++)
1541                array_wr32(E1000_MTA, i, 0);
1542
1543        /* Zero out the Unicast HASH table */
1544        hw_dbg("Zeroing the UTA\n");
1545        for (i = 0; i < mac->uta_reg_count; i++)
1546                array_wr32(E1000_UTA, i, 0);
1547
1548        /* Setup link and flow control */
1549        ret_val = igb_setup_link(hw);
1550
1551        /* Clear all of the statistics registers (clear on read).  It is
1552         * important that we do this after we have tried to establish link
1553         * because the symbol error count will increment wildly if there
1554         * is no link.
1555         */
1556        igb_clear_hw_cntrs_82575(hw);
1557        return ret_val;
1558}
1559
1560/**
1561 *  igb_setup_copper_link_82575 - Configure copper link settings
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1565 *  for link, once link is established calls to configure collision distance
1566 *  and flow control are called.
1567 **/
1568static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1569{
1570        u32 ctrl;
1571        s32  ret_val;
1572        u32 phpm_reg;
1573
1574        ctrl = rd32(E1000_CTRL);
1575        ctrl |= E1000_CTRL_SLU;
1576        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1577        wr32(E1000_CTRL, ctrl);
1578
1579        /* Clear Go Link Disconnect bit on supported devices */
1580        switch (hw->mac.type) {
1581        case e1000_82580:
1582        case e1000_i350:
1583        case e1000_i210:
1584        case e1000_i211:
1585                phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1586                phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1587                wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1588                break;
1589        default:
1590                break;
1591        }
1592
1593        ret_val = igb_setup_serdes_link_82575(hw);
1594        if (ret_val)
1595                goto out;
1596
1597        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1598                /* allow time for SFP cage time to power up phy */
1599                msleep(300);
1600
1601                ret_val = hw->phy.ops.reset(hw);
1602                if (ret_val) {
1603                        hw_dbg("Error resetting the PHY.\n");
1604                        goto out;
1605                }
1606        }
1607        switch (hw->phy.type) {
1608        case e1000_phy_i210:
1609        case e1000_phy_m88:
1610                switch (hw->phy.id) {
1611                case I347AT4_E_PHY_ID:
1612                case M88E1112_E_PHY_ID:
1613                case M88E1543_E_PHY_ID:
1614                case M88E1512_E_PHY_ID:
1615                case I210_I_PHY_ID:
1616                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1617                        break;
1618                default:
1619                        ret_val = igb_copper_link_setup_m88(hw);
1620                        break;
1621                }
1622                break;
1623        case e1000_phy_igp_3:
1624                ret_val = igb_copper_link_setup_igp(hw);
1625                break;
1626        case e1000_phy_82580:
1627                ret_val = igb_copper_link_setup_82580(hw);
1628                break;
1629        case e1000_phy_bcm54616:
1630                ret_val = 0;
1631                break;
1632        default:
1633                ret_val = -E1000_ERR_PHY;
1634                break;
1635        }
1636
1637        if (ret_val)
1638                goto out;
1639
1640        ret_val = igb_setup_copper_link(hw);
1641out:
1642        return ret_val;
1643}
1644
1645/**
1646 *  igb_setup_serdes_link_82575 - Setup link for serdes
1647 *  @hw: pointer to the HW structure
1648 *
1649 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1650 *  used on copper connections where the serialized gigabit media independent
1651 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1652 *  for auto-negotiation or forces speed/duplex.
1653 **/
1654static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1655{
1656        u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1657        bool pcs_autoneg;
1658        s32 ret_val = 0;
1659        u16 data;
1660
1661        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1662            !igb_sgmii_active_82575(hw))
1663                return ret_val;
1664
1665
1666        /* On the 82575, SerDes loopback mode persists until it is
1667         * explicitly turned off or a power cycle is performed.  A read to
1668         * the register does not indicate its status.  Therefore, we ensure
1669         * loopback mode is disabled during initialization.
1670         */
1671        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1672
1673        /* power on the sfp cage if present and turn on I2C */
1674        ctrl_ext = rd32(E1000_CTRL_EXT);
1675        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1676        ctrl_ext |= E1000_CTRL_I2C_ENA;
1677        wr32(E1000_CTRL_EXT, ctrl_ext);
1678
1679        ctrl_reg = rd32(E1000_CTRL);
1680        ctrl_reg |= E1000_CTRL_SLU;
1681
1682        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1683                /* set both sw defined pins */
1684                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1685
1686                /* Set switch control to serdes energy detect */
1687                reg = rd32(E1000_CONNSW);
1688                reg |= E1000_CONNSW_ENRGSRC;
1689                wr32(E1000_CONNSW, reg);
1690        }
1691
1692        reg = rd32(E1000_PCS_LCTL);
1693
1694        /* default pcs_autoneg to the same setting as mac autoneg */
1695        pcs_autoneg = hw->mac.autoneg;
1696
1697        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1698        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1699                /* sgmii mode lets the phy handle forcing speed/duplex */
1700                pcs_autoneg = true;
1701                /* autoneg time out should be disabled for SGMII mode */
1702                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1703                break;
1704        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1705                /* disable PCS autoneg and support parallel detect only */
1706                pcs_autoneg = false;
1707                fallthrough;
1708        default:
1709                if (hw->mac.type == e1000_82575 ||
1710                    hw->mac.type == e1000_82576) {
1711                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1712                        if (ret_val) {
1713                                hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1714                                return ret_val;
1715                        }
1716
1717                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1718                                pcs_autoneg = false;
1719                }
1720
1721                /* non-SGMII modes only supports a speed of 1000/Full for the
1722                 * link so it is best to just force the MAC and let the pcs
1723                 * link either autoneg or be forced to 1000/Full
1724                 */
1725                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1726                                E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1727
1728                /* set speed of 1000/Full if speed/duplex is forced */
1729                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1730                break;
1731        }
1732
1733        wr32(E1000_CTRL, ctrl_reg);
1734
1735        /* New SerDes mode allows for forcing speed or autonegotiating speed
1736         * at 1gb. Autoneg should be default set by most drivers. This is the
1737         * mode that will be compatible with older link partners and switches.
1738         * However, both are supported by the hardware and some drivers/tools.
1739         */
1740        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1741                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1742
1743        if (pcs_autoneg) {
1744                /* Set PCS register for autoneg */
1745                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1746                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1747
1748                /* Disable force flow control for autoneg */
1749                reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1750
1751                /* Configure flow control advertisement for autoneg */
1752                anadv_reg = rd32(E1000_PCS_ANADV);
1753                anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1754                switch (hw->fc.requested_mode) {
1755                case e1000_fc_full:
1756                case e1000_fc_rx_pause:
1757                        anadv_reg |= E1000_TXCW_ASM_DIR;
1758                        anadv_reg |= E1000_TXCW_PAUSE;
1759                        break;
1760                case e1000_fc_tx_pause:
1761                        anadv_reg |= E1000_TXCW_ASM_DIR;
1762                        break;
1763                default:
1764                        break;
1765                }
1766                wr32(E1000_PCS_ANADV, anadv_reg);
1767
1768                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1769        } else {
1770                /* Set PCS register for forced link */
1771                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1772
1773                /* Force flow control for forced link */
1774                reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1775
1776                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1777        }
1778
1779        wr32(E1000_PCS_LCTL, reg);
1780
1781        if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1782                igb_force_mac_fc(hw);
1783
1784        return ret_val;
1785}
1786
1787/**
1788 *  igb_sgmii_active_82575 - Return sgmii state
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1792 *  which can be enabled for use in the embedded applications.  Simply
1793 *  return the current state of the sgmii interface.
1794 **/
1795static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1796{
1797        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1798        return dev_spec->sgmii_active;
1799}
1800
1801/**
1802 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  Inits recommended HW defaults after a reset when there is no EEPROM
1806 *  detected. This is only for the 82575.
1807 **/
1808static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1809{
1810        if (hw->mac.type == e1000_82575) {
1811                hw_dbg("Running reset init script for 82575\n");
1812                /* SerDes configuration via SERDESCTRL */
1813                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1814                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1815                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1816                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1817
1818                /* CCM configuration via CCMCTL register */
1819                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1820                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1821
1822                /* PCIe lanes configuration */
1823                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1824                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1825                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1826                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1827
1828                /* PCIe PLL Configuration */
1829                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1830                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1831                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1832        }
1833
1834        return 0;
1835}
1836
1837/**
1838 *  igb_read_mac_addr_82575 - Read device MAC address
1839 *  @hw: pointer to the HW structure
1840 **/
1841static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1842{
1843        s32 ret_val = 0;
1844
1845        /* If there's an alternate MAC address place it in RAR0
1846         * so that it will override the Si installed default perm
1847         * address.
1848         */
1849        ret_val = igb_check_alt_mac_addr(hw);
1850        if (ret_val)
1851                goto out;
1852
1853        ret_val = igb_read_mac_addr(hw);
1854
1855out:
1856        return ret_val;
1857}
1858
1859/**
1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861 * @hw: pointer to the HW structure
1862 *
1863 * In the case of a PHY power down to save power, or to turn off link during a
1864 * driver unload, or wake on lan is not enabled, remove the link.
1865 **/
1866void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1867{
1868        /* If the management interface is not enabled, then power down */
1869        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1870                igb_power_down_phy_copper(hw);
1871}
1872
1873/**
1874 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875 *  @hw: pointer to the HW structure
1876 *
1877 *  Clears the hardware counters by reading the counter registers.
1878 **/
1879static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1880{
1881        igb_clear_hw_cntrs_base(hw);
1882
1883        rd32(E1000_PRC64);
1884        rd32(E1000_PRC127);
1885        rd32(E1000_PRC255);
1886        rd32(E1000_PRC511);
1887        rd32(E1000_PRC1023);
1888        rd32(E1000_PRC1522);
1889        rd32(E1000_PTC64);
1890        rd32(E1000_PTC127);
1891        rd32(E1000_PTC255);
1892        rd32(E1000_PTC511);
1893        rd32(E1000_PTC1023);
1894        rd32(E1000_PTC1522);
1895
1896        rd32(E1000_ALGNERRC);
1897        rd32(E1000_RXERRC);
1898        rd32(E1000_TNCRS);
1899        rd32(E1000_CEXTERR);
1900        rd32(E1000_TSCTC);
1901        rd32(E1000_TSCTFC);
1902
1903        rd32(E1000_MGTPRC);
1904        rd32(E1000_MGTPDC);
1905        rd32(E1000_MGTPTC);
1906
1907        rd32(E1000_IAC);
1908        rd32(E1000_ICRXOC);
1909
1910        rd32(E1000_ICRXPTC);
1911        rd32(E1000_ICRXATC);
1912        rd32(E1000_ICTXPTC);
1913        rd32(E1000_ICTXATC);
1914        rd32(E1000_ICTXQEC);
1915        rd32(E1000_ICTXQMTC);
1916        rd32(E1000_ICRXDMTC);
1917
1918        rd32(E1000_CBTMPC);
1919        rd32(E1000_HTDPMC);
1920        rd32(E1000_CBRMPC);
1921        rd32(E1000_RPTHC);
1922        rd32(E1000_HGPTC);
1923        rd32(E1000_HTCBDPC);
1924        rd32(E1000_HGORCL);
1925        rd32(E1000_HGORCH);
1926        rd32(E1000_HGOTCL);
1927        rd32(E1000_HGOTCH);
1928        rd32(E1000_LENERRS);
1929
1930        /* This register should not be read in copper configurations */
1931        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1932            igb_sgmii_active_82575(hw))
1933                rd32(E1000_SCVPC);
1934}
1935
1936/**
1937 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  After rx enable if manageability is enabled then there is likely some
1941 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1942 *  function clears the fifos and flushes any packets that came in as rx was
1943 *  being enabled.
1944 **/
1945void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1946{
1947        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1948        int i, ms_wait;
1949
1950        /* disable IPv6 options as per hardware errata */
1951        rfctl = rd32(E1000_RFCTL);
1952        rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1953        wr32(E1000_RFCTL, rfctl);
1954
1955        if (hw->mac.type != e1000_82575 ||
1956            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1957                return;
1958
1959        /* Disable all RX queues */
1960        for (i = 0; i < 4; i++) {
1961                rxdctl[i] = rd32(E1000_RXDCTL(i));
1962                wr32(E1000_RXDCTL(i),
1963                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1964        }
1965        /* Poll all queues to verify they have shut down */
1966        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1967                usleep_range(1000, 2000);
1968                rx_enabled = 0;
1969                for (i = 0; i < 4; i++)
1970                        rx_enabled |= rd32(E1000_RXDCTL(i));
1971                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1972                        break;
1973        }
1974
1975        if (ms_wait == 10)
1976                hw_dbg("Queue disable timed out after 10ms\n");
1977
1978        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979         * incoming packets are rejected.  Set enable and wait 2ms so that
1980         * any packet that was coming in as RCTL.EN was set is flushed
1981         */
1982        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1983
1984        rlpml = rd32(E1000_RLPML);
1985        wr32(E1000_RLPML, 0);
1986
1987        rctl = rd32(E1000_RCTL);
1988        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1989        temp_rctl |= E1000_RCTL_LPE;
1990
1991        wr32(E1000_RCTL, temp_rctl);
1992        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1993        wrfl();
1994        usleep_range(2000, 3000);
1995
1996        /* Enable RX queues that were previously enabled and restore our
1997         * previous state
1998         */
1999        for (i = 0; i < 4; i++)
2000                wr32(E1000_RXDCTL(i), rxdctl[i]);
2001        wr32(E1000_RCTL, rctl);
2002        wrfl();
2003
2004        wr32(E1000_RLPML, rlpml);
2005        wr32(E1000_RFCTL, rfctl);
2006
2007        /* Flush receive errors generated by workaround */
2008        rd32(E1000_ROC);
2009        rd32(E1000_RNBC);
2010        rd32(E1000_MPC);
2011}
2012
2013/**
2014 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2015 *  @hw: pointer to the HW structure
2016 *
2017 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018 *  however the hardware default for these parts is 500us to 1ms which is less
2019 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2020 *  increase the value to either 10ms to 200ms for capability version 1 config,
2021 *  or 16ms to 55ms for version 2.
2022 **/
2023static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2024{
2025        u32 gcr = rd32(E1000_GCR);
2026        s32 ret_val = 0;
2027        u16 pcie_devctl2;
2028
2029        /* only take action if timeout value is defaulted to 0 */
2030        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2031                goto out;
2032
2033        /* if capabilities version is type 1 we can write the
2034         * timeout of 10ms to 200ms through the GCR register
2035         */
2036        if (!(gcr & E1000_GCR_CAP_VER2)) {
2037                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2038                goto out;
2039        }
2040
2041        /* for version 2 capabilities we need to write the config space
2042         * directly in order to set the completion timeout value for
2043         * 16ms to 55ms
2044         */
2045        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2046                                        &pcie_devctl2);
2047        if (ret_val)
2048                goto out;
2049
2050        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2051
2052        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2053                                         &pcie_devctl2);
2054out:
2055        /* disable completion timeout resend */
2056        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2057
2058        wr32(E1000_GCR, gcr);
2059        return ret_val;
2060}
2061
2062/**
2063 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064 *  @hw: pointer to the hardware struct
2065 *  @enable: state to enter, either enabled or disabled
2066 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2067 *
2068 *  enables/disables L2 switch anti-spoofing functionality.
2069 **/
2070void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2071{
2072        u32 reg_val, reg_offset;
2073
2074        switch (hw->mac.type) {
2075        case e1000_82576:
2076                reg_offset = E1000_DTXSWC;
2077                break;
2078        case e1000_i350:
2079        case e1000_i354:
2080                reg_offset = E1000_TXSWC;
2081                break;
2082        default:
2083                return;
2084        }
2085
2086        reg_val = rd32(reg_offset);
2087        if (enable) {
2088                reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2089                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2090                /* The PF can spoof - it has to in order to
2091                 * support emulation mode NICs
2092                 */
2093                reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2094        } else {
2095                reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2096                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2097        }
2098        wr32(reg_offset, reg_val);
2099}
2100
2101/**
2102 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103 *  @hw: pointer to the hardware struct
2104 *  @enable: state to enter, either enabled or disabled
2105 *
2106 *  enables/disables L2 switch loopback functionality.
2107 **/
2108void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2109{
2110        u32 dtxswc;
2111
2112        switch (hw->mac.type) {
2113        case e1000_82576:
2114                dtxswc = rd32(E1000_DTXSWC);
2115                if (enable)
2116                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117                else
2118                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2119                wr32(E1000_DTXSWC, dtxswc);
2120                break;
2121        case e1000_i354:
2122        case e1000_i350:
2123                dtxswc = rd32(E1000_TXSWC);
2124                if (enable)
2125                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126                else
2127                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2128                wr32(E1000_TXSWC, dtxswc);
2129                break;
2130        default:
2131                /* Currently no other hardware supports loopback */
2132                break;
2133        }
2134
2135}
2136
2137/**
2138 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139 *  @hw: pointer to the hardware struct
2140 *  @enable: state to enter, either enabled or disabled
2141 *
2142 *  enables/disables replication of packets across multiple pools.
2143 **/
2144void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2145{
2146        u32 vt_ctl = rd32(E1000_VT_CTL);
2147
2148        if (enable)
2149                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2150        else
2151                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2152
2153        wr32(E1000_VT_CTL, vt_ctl);
2154}
2155
2156/**
2157 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2158 *  @hw: pointer to the HW structure
2159 *  @offset: register offset to be read
2160 *  @data: pointer to the read data
2161 *
2162 *  Reads the MDI control register in the PHY at offset and stores the
2163 *  information read to data.
2164 **/
2165s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2166{
2167        s32 ret_val;
2168
2169        ret_val = hw->phy.ops.acquire(hw);
2170        if (ret_val)
2171                goto out;
2172
2173        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2174
2175        hw->phy.ops.release(hw);
2176
2177out:
2178        return ret_val;
2179}
2180
2181/**
2182 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2183 *  @hw: pointer to the HW structure
2184 *  @offset: register offset to write to
2185 *  @data: data to write to register at offset
2186 *
2187 *  Writes data to MDI control register in the PHY at offset.
2188 **/
2189s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2190{
2191        s32 ret_val;
2192
2193
2194        ret_val = hw->phy.ops.acquire(hw);
2195        if (ret_val)
2196                goto out;
2197
2198        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2199
2200        hw->phy.ops.release(hw);
2201
2202out:
2203        return ret_val;
2204}
2205
2206/**
2207 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208 *  @hw: pointer to the HW structure
2209 *
2210 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211 *  the values found in the EEPROM.  This addresses an issue in which these
2212 *  bits are not restored from EEPROM after reset.
2213 **/
2214static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2215{
2216        s32 ret_val = 0;
2217        u32 mdicnfg;
2218        u16 nvm_data = 0;
2219
2220        if (hw->mac.type != e1000_82580)
2221                goto out;
2222        if (!igb_sgmii_active_82575(hw))
2223                goto out;
2224
2225        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2226                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2227                                   &nvm_data);
2228        if (ret_val) {
2229                hw_dbg("NVM Read Error\n");
2230                goto out;
2231        }
2232
2233        mdicnfg = rd32(E1000_MDICNFG);
2234        if (nvm_data & NVM_WORD24_EXT_MDIO)
2235                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2236        if (nvm_data & NVM_WORD24_COM_MDIO)
2237                mdicnfg |= E1000_MDICNFG_COM_MDIO;
2238        wr32(E1000_MDICNFG, mdicnfg);
2239out:
2240        return ret_val;
2241}
2242
2243/**
2244 *  igb_reset_hw_82580 - Reset hardware
2245 *  @hw: pointer to the HW structure
2246 *
2247 *  This resets function or entire device (all ports, etc.)
2248 *  to a known state.
2249 **/
2250static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2251{
2252        s32 ret_val = 0;
2253        /* BH SW mailbox bit in SW_FW_SYNC */
2254        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2255        u32 ctrl;
2256        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2257
2258        hw->dev_spec._82575.global_device_reset = false;
2259
2260        /* due to hw errata, global device reset doesn't always
2261         * work on 82580
2262         */
2263        if (hw->mac.type == e1000_82580)
2264                global_device_reset = false;
2265
2266        /* Get current control state. */
2267        ctrl = rd32(E1000_CTRL);
2268
2269        /* Prevent the PCI-E bus from sticking if there is no TLP connection
2270         * on the last TLP read/write transaction when MAC is reset.
2271         */
2272        ret_val = igb_disable_pcie_master(hw);
2273        if (ret_val)
2274                hw_dbg("PCI-E Master disable polling has failed.\n");
2275
2276        hw_dbg("Masking off all interrupts\n");
2277        wr32(E1000_IMC, 0xffffffff);
2278        wr32(E1000_RCTL, 0);
2279        wr32(E1000_TCTL, E1000_TCTL_PSP);
2280        wrfl();
2281
2282        usleep_range(10000, 11000);
2283
2284        /* Determine whether or not a global dev reset is requested */
2285        if (global_device_reset &&
2286                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2287                        global_device_reset = false;
2288
2289        if (global_device_reset &&
2290                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2291                ctrl |= E1000_CTRL_DEV_RST;
2292        else
2293                ctrl |= E1000_CTRL_RST;
2294
2295        wr32(E1000_CTRL, ctrl);
2296        wrfl();
2297
2298        /* Add delay to insure DEV_RST has time to complete */
2299        if (global_device_reset)
2300                usleep_range(5000, 6000);
2301
2302        ret_val = igb_get_auto_rd_done(hw);
2303        if (ret_val) {
2304                /* When auto config read does not complete, do not
2305                 * return with an error. This can happen in situations
2306                 * where there is no eeprom and prevents getting link.
2307                 */
2308                hw_dbg("Auto Read Done did not complete\n");
2309        }
2310
2311        /* clear global device reset status bit */
2312        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2313
2314        /* Clear any pending interrupt events. */
2315        wr32(E1000_IMC, 0xffffffff);
2316        rd32(E1000_ICR);
2317
2318        ret_val = igb_reset_mdicnfg_82580(hw);
2319        if (ret_val)
2320                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2321
2322        /* Install any alternate MAC address into RAR0 */
2323        ret_val = igb_check_alt_mac_addr(hw);
2324
2325        /* Release semaphore */
2326        if (global_device_reset)
2327                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2328
2329        return ret_val;
2330}
2331
2332/**
2333 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334 *  @data: data received by reading RXPBS register
2335 *
2336 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2337 *  This function converts the retrieved value into the correct table value
2338 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339 *  0x0 36  72 144   1   2   4   8  16
2340 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2341 */
2342u16 igb_rxpbs_adjust_82580(u32 data)
2343{
2344        u16 ret_val = 0;
2345
2346        if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2347                ret_val = e1000_82580_rxpbs_table[data];
2348
2349        return ret_val;
2350}
2351
2352/**
2353 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2354 *  checksum
2355 *  @hw: pointer to the HW structure
2356 *  @offset: offset in words of the checksum protected region
2357 *
2358 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2360 **/
2361static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2362                                                 u16 offset)
2363{
2364        s32 ret_val = 0;
2365        u16 checksum = 0;
2366        u16 i, nvm_data;
2367
2368        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2369                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2370                if (ret_val) {
2371                        hw_dbg("NVM Read Error\n");
2372                        goto out;
2373                }
2374                checksum += nvm_data;
2375        }
2376
2377        if (checksum != (u16) NVM_SUM) {
2378                hw_dbg("NVM Checksum Invalid\n");
2379                ret_val = -E1000_ERR_NVM;
2380                goto out;
2381        }
2382
2383out:
2384        return ret_val;
2385}
2386
2387/**
2388 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2389 *  checksum
2390 *  @hw: pointer to the HW structure
2391 *  @offset: offset in words of the checksum protected region
2392 *
2393 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2395 *  value to the EEPROM.
2396 **/
2397static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2398{
2399        s32 ret_val;
2400        u16 checksum = 0;
2401        u16 i, nvm_data;
2402
2403        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2404                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405                if (ret_val) {
2406                        hw_dbg("NVM Read Error while updating checksum.\n");
2407                        goto out;
2408                }
2409                checksum += nvm_data;
2410        }
2411        checksum = (u16) NVM_SUM - checksum;
2412        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2413                                &checksum);
2414        if (ret_val)
2415                hw_dbg("NVM Write Error while updating checksum.\n");
2416
2417out:
2418        return ret_val;
2419}
2420
2421/**
2422 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423 *  @hw: pointer to the HW structure
2424 *
2425 *  Calculates the EEPROM section checksum by reading/adding each word of
2426 *  the EEPROM and then verifies that the sum of the EEPROM is
2427 *  equal to 0xBABA.
2428 **/
2429static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2430{
2431        s32 ret_val = 0;
2432        u16 eeprom_regions_count = 1;
2433        u16 j, nvm_data;
2434        u16 nvm_offset;
2435
2436        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2437        if (ret_val) {
2438                hw_dbg("NVM Read Error\n");
2439                goto out;
2440        }
2441
2442        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2443                /* if checksums compatibility bit is set validate checksums
2444                 * for all 4 ports.
2445                 */
2446                eeprom_regions_count = 4;
2447        }
2448
2449        for (j = 0; j < eeprom_regions_count; j++) {
2450                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2452                                                                nvm_offset);
2453                if (ret_val != 0)
2454                        goto out;
2455        }
2456
2457out:
2458        return ret_val;
2459}
2460
2461/**
2462 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463 *  @hw: pointer to the HW structure
2464 *
2465 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2466 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2467 *  checksum and writes the value to the EEPROM.
2468 **/
2469static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2470{
2471        s32 ret_val;
2472        u16 j, nvm_data;
2473        u16 nvm_offset;
2474
2475        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2476        if (ret_val) {
2477                hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2478                goto out;
2479        }
2480
2481        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2482                /* set compatibility bit to validate checksums appropriately */
2483                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2484                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2485                                        &nvm_data);
2486                if (ret_val) {
2487                        hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2488                        goto out;
2489                }
2490        }
2491
2492        for (j = 0; j < 4; j++) {
2493                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2494                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2495                if (ret_val)
2496                        goto out;
2497        }
2498
2499out:
2500        return ret_val;
2501}
2502
2503/**
2504 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505 *  @hw: pointer to the HW structure
2506 *
2507 *  Calculates the EEPROM section checksum by reading/adding each word of
2508 *  the EEPROM and then verifies that the sum of the EEPROM is
2509 *  equal to 0xBABA.
2510 **/
2511static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2512{
2513        s32 ret_val = 0;
2514        u16 j;
2515        u16 nvm_offset;
2516
2517        for (j = 0; j < 4; j++) {
2518                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2519                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2520                                                                nvm_offset);
2521                if (ret_val != 0)
2522                        goto out;
2523        }
2524
2525out:
2526        return ret_val;
2527}
2528
2529/**
2530 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531 *  @hw: pointer to the HW structure
2532 *
2533 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2534 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2535 *  checksum and writes the value to the EEPROM.
2536 **/
2537static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2538{
2539        s32 ret_val = 0;
2540        u16 j;
2541        u16 nvm_offset;
2542
2543        for (j = 0; j < 4; j++) {
2544                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2545                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2546                if (ret_val != 0)
2547                        goto out;
2548        }
2549
2550out:
2551        return ret_val;
2552}
2553
2554/**
2555 *  __igb_access_emi_reg - Read/write EMI register
2556 *  @hw: pointer to the HW structure
2557 *  @address: EMI address to program
2558 *  @data: pointer to value to read/write from/to the EMI address
2559 *  @read: boolean flag to indicate read or write
2560 **/
2561static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2562                                  u16 *data, bool read)
2563{
2564        s32 ret_val = 0;
2565
2566        ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2567        if (ret_val)
2568                return ret_val;
2569
2570        if (read)
2571                ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2572        else
2573                ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2574
2575        return ret_val;
2576}
2577
2578/**
2579 *  igb_read_emi_reg - Read Extended Management Interface register
2580 *  @hw: pointer to the HW structure
2581 *  @addr: EMI address to program
2582 *  @data: value to be read from the EMI address
2583 **/
2584s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2585{
2586        return __igb_access_emi_reg(hw, addr, data, true);
2587}
2588
2589/**
2590 *  igb_set_eee_i350 - Enable/disable EEE support
2591 *  @hw: pointer to the HW structure
2592 *  @adv1G: boolean flag enabling 1G EEE advertisement
2593 *  @adv100M: boolean flag enabling 100M EEE advertisement
2594 *
2595 *  Enable/disable EEE based on setting in dev_spec structure.
2596 *
2597 **/
2598s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2599{
2600        u32 ipcnfg, eeer;
2601
2602        if ((hw->mac.type < e1000_i350) ||
2603            (hw->phy.media_type != e1000_media_type_copper))
2604                goto out;
2605        ipcnfg = rd32(E1000_IPCNFG);
2606        eeer = rd32(E1000_EEER);
2607
2608        /* enable or disable per user setting */
2609        if (!(hw->dev_spec._82575.eee_disable)) {
2610                u32 eee_su = rd32(E1000_EEE_SU);
2611
2612                if (adv100M)
2613                        ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2614                else
2615                        ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2616
2617                if (adv1G)
2618                        ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2619                else
2620                        ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2621
2622                eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2623                        E1000_EEER_LPI_FC);
2624
2625                /* This bit should not be set in normal operation. */
2626                if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2627                        hw_dbg("LPI Clock Stop Bit should not be set!\n");
2628
2629        } else {
2630                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2631                        E1000_IPCNFG_EEE_100M_AN);
2632                eeer &= ~(E1000_EEER_TX_LPI_EN |
2633                        E1000_EEER_RX_LPI_EN |
2634                        E1000_EEER_LPI_FC);
2635        }
2636        wr32(E1000_IPCNFG, ipcnfg);
2637        wr32(E1000_EEER, eeer);
2638        rd32(E1000_IPCNFG);
2639        rd32(E1000_EEER);
2640out:
2641
2642        return 0;
2643}
2644
2645/**
2646 *  igb_set_eee_i354 - Enable/disable EEE support
2647 *  @hw: pointer to the HW structure
2648 *  @adv1G: boolean flag enabling 1G EEE advertisement
2649 *  @adv100M: boolean flag enabling 100M EEE advertisement
2650 *
2651 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2652 *
2653 **/
2654s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2655{
2656        struct e1000_phy_info *phy = &hw->phy;
2657        s32 ret_val = 0;
2658        u16 phy_data;
2659
2660        if ((hw->phy.media_type != e1000_media_type_copper) ||
2661            ((phy->id != M88E1543_E_PHY_ID) &&
2662             (phy->id != M88E1512_E_PHY_ID)))
2663                goto out;
2664
2665        if (!hw->dev_spec._82575.eee_disable) {
2666                /* Switch to PHY page 18. */
2667                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2668                if (ret_val)
2669                        goto out;
2670
2671                ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2672                                            &phy_data);
2673                if (ret_val)
2674                        goto out;
2675
2676                phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2677                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2678                                             phy_data);
2679                if (ret_val)
2680                        goto out;
2681
2682                /* Return the PHY to page 0. */
2683                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2684                if (ret_val)
2685                        goto out;
2686
2687                /* Turn on EEE advertisement. */
2688                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689                                             E1000_EEE_ADV_DEV_I354,
2690                                             &phy_data);
2691                if (ret_val)
2692                        goto out;
2693
2694                if (adv100M)
2695                        phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2696                else
2697                        phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2698
2699                if (adv1G)
2700                        phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2701                else
2702                        phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2703
2704                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2705                                                E1000_EEE_ADV_DEV_I354,
2706                                                phy_data);
2707        } else {
2708                /* Turn off EEE advertisement. */
2709                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2710                                             E1000_EEE_ADV_DEV_I354,
2711                                             &phy_data);
2712                if (ret_val)
2713                        goto out;
2714
2715                phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2716                              E1000_EEE_ADV_1000_SUPPORTED);
2717                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2718                                              E1000_EEE_ADV_DEV_I354,
2719                                              phy_data);
2720        }
2721
2722out:
2723        return ret_val;
2724}
2725
2726/**
2727 *  igb_get_eee_status_i354 - Get EEE status
2728 *  @hw: pointer to the HW structure
2729 *  @status: EEE status
2730 *
2731 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2732 *  been received.
2733 **/
2734s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2735{
2736        struct e1000_phy_info *phy = &hw->phy;
2737        s32 ret_val = 0;
2738        u16 phy_data;
2739
2740        /* Check if EEE is supported on this device. */
2741        if ((hw->phy.media_type != e1000_media_type_copper) ||
2742            ((phy->id != M88E1543_E_PHY_ID) &&
2743             (phy->id != M88E1512_E_PHY_ID)))
2744                goto out;
2745
2746        ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2747                                     E1000_PCS_STATUS_DEV_I354,
2748                                     &phy_data);
2749        if (ret_val)
2750                goto out;
2751
2752        *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2753                              E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2754
2755out:
2756        return ret_val;
2757}
2758
2759#ifdef CONFIG_IGB_HWMON
2760static const u8 e1000_emc_temp_data[4] = {
2761        E1000_EMC_INTERNAL_DATA,
2762        E1000_EMC_DIODE1_DATA,
2763        E1000_EMC_DIODE2_DATA,
2764        E1000_EMC_DIODE3_DATA
2765};
2766static const u8 e1000_emc_therm_limit[4] = {
2767        E1000_EMC_INTERNAL_THERM_LIMIT,
2768        E1000_EMC_DIODE1_THERM_LIMIT,
2769        E1000_EMC_DIODE2_THERM_LIMIT,
2770        E1000_EMC_DIODE3_THERM_LIMIT
2771};
2772
2773/**
2774 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775 *  @hw: pointer to hardware structure
2776 *
2777 *  Updates the temperatures in mac.thermal_sensor_data
2778 **/
2779static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2780{
2781        u16 ets_offset;
2782        u16 ets_cfg;
2783        u16 ets_sensor;
2784        u8  num_sensors;
2785        u8  sensor_index;
2786        u8  sensor_location;
2787        u8  i;
2788        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2789
2790        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2791                return E1000_NOT_IMPLEMENTED;
2792
2793        data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2794
2795        /* Return the internal sensor only if ETS is unsupported */
2796        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2797        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2798                return 0;
2799
2800        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2801        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2802            != NVM_ETS_TYPE_EMC)
2803                return E1000_NOT_IMPLEMENTED;
2804
2805        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806        if (num_sensors > E1000_MAX_SENSORS)
2807                num_sensors = E1000_MAX_SENSORS;
2808
2809        for (i = 1; i < num_sensors; i++) {
2810                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2811                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2812                                NVM_ETS_DATA_INDEX_SHIFT);
2813                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2814                                   NVM_ETS_DATA_LOC_SHIFT);
2815
2816                if (sensor_location != 0)
2817                        hw->phy.ops.read_i2c_byte(hw,
2818                                        e1000_emc_temp_data[sensor_index],
2819                                        E1000_I2C_THERMAL_SENSOR_ADDR,
2820                                        &data->sensor[i].temp);
2821        }
2822        return 0;
2823}
2824
2825/**
2826 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827 *  @hw: pointer to hardware structure
2828 *
2829 *  Sets the thermal sensor thresholds according to the NVM map
2830 *  and save off the threshold and location values into mac.thermal_sensor_data
2831 **/
2832static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2833{
2834        u16 ets_offset;
2835        u16 ets_cfg;
2836        u16 ets_sensor;
2837        u8  low_thresh_delta;
2838        u8  num_sensors;
2839        u8  sensor_index;
2840        u8  sensor_location;
2841        u8  therm_limit;
2842        u8  i;
2843        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2844
2845        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2846                return E1000_NOT_IMPLEMENTED;
2847
2848        memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2849
2850        data->sensor[0].location = 0x1;
2851        data->sensor[0].caution_thresh =
2852                (rd32(E1000_THHIGHTC) & 0xFF);
2853        data->sensor[0].max_op_thresh =
2854                (rd32(E1000_THLOWTC) & 0xFF);
2855
2856        /* Return the internal sensor only if ETS is unsupported */
2857        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2858        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2859                return 0;
2860
2861        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2862        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2863            != NVM_ETS_TYPE_EMC)
2864                return E1000_NOT_IMPLEMENTED;
2865
2866        low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2867                            NVM_ETS_LTHRES_DELTA_SHIFT);
2868        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2869
2870        for (i = 1; i <= num_sensors; i++) {
2871                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2872                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2873                                NVM_ETS_DATA_INDEX_SHIFT);
2874                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2875                                   NVM_ETS_DATA_LOC_SHIFT);
2876                therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2877
2878                hw->phy.ops.write_i2c_byte(hw,
2879                        e1000_emc_therm_limit[sensor_index],
2880                        E1000_I2C_THERMAL_SENSOR_ADDR,
2881                        therm_limit);
2882
2883                if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2884                        data->sensor[i].location = sensor_location;
2885                        data->sensor[i].caution_thresh = therm_limit;
2886                        data->sensor[i].max_op_thresh = therm_limit -
2887                                                        low_thresh_delta;
2888                }
2889        }
2890        return 0;
2891}
2892
2893#endif
2894static struct e1000_mac_operations e1000_mac_ops_82575 = {
2895        .init_hw              = igb_init_hw_82575,
2896        .check_for_link       = igb_check_for_link_82575,
2897        .rar_set              = igb_rar_set,
2898        .read_mac_addr        = igb_read_mac_addr_82575,
2899        .get_speed_and_duplex = igb_get_link_up_info_82575,
2900#ifdef CONFIG_IGB_HWMON
2901        .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2902        .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2903#endif
2904};
2905
2906static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2907        .acquire              = igb_acquire_phy_82575,
2908        .get_cfg_done         = igb_get_cfg_done_82575,
2909        .release              = igb_release_phy_82575,
2910        .write_i2c_byte       = igb_write_i2c_byte,
2911        .read_i2c_byte        = igb_read_i2c_byte,
2912};
2913
2914static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2915        .acquire              = igb_acquire_nvm_82575,
2916        .read                 = igb_read_nvm_eerd,
2917        .release              = igb_release_nvm_82575,
2918        .write                = igb_write_nvm_spi,
2919};
2920
2921const struct e1000_info e1000_82575_info = {
2922        .get_invariants = igb_get_invariants_82575,
2923        .mac_ops = &e1000_mac_ops_82575,
2924        .phy_ops = &e1000_phy_ops_82575,
2925        .nvm_ops = &e1000_nvm_ops_82575,
2926};
2927
2928