linux/drivers/net/ethernet/neterion/vxge/vxge-traffic.c
<<
>>
Prefs
   1/******************************************************************************
   2 * This software may be used and distributed according to the terms of
   3 * the GNU General Public License (GPL), incorporated herein by reference.
   4 * Drivers based on or derived from this code fall under the GPL and must
   5 * retain the authorship, copyright and license notice.  This file is not
   6 * a complete program and may only be used when the entire operating
   7 * system is licensed under the GPL.
   8 * See the file COPYING in this distribution for more information.
   9 *
  10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11 *                 Virtualized Server Adapter.
  12 * Copyright(c) 2002-2010 Exar Corp.
  13 ******************************************************************************/
  14#include <linux/etherdevice.h>
  15#include <linux/io-64-nonatomic-lo-hi.h>
  16#include <linux/prefetch.h>
  17
  18#include "vxge-traffic.h"
  19#include "vxge-config.h"
  20#include "vxge-main.h"
  21
  22/*
  23 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
  24 * @vp: Virtual Path handle.
  25 *
  26 * Enable vpath interrupts. The function is to be executed the last in
  27 * vpath initialization sequence.
  28 *
  29 * See also: vxge_hw_vpath_intr_disable()
  30 */
  31enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
  32{
  33        struct __vxge_hw_virtualpath *vpath;
  34        struct vxge_hw_vpath_reg __iomem *vp_reg;
  35        enum vxge_hw_status status = VXGE_HW_OK;
  36        if (vp == NULL) {
  37                status = VXGE_HW_ERR_INVALID_HANDLE;
  38                goto exit;
  39        }
  40
  41        vpath = vp->vpath;
  42
  43        if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  44                status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  45                goto exit;
  46        }
  47
  48        vp_reg = vpath->vp_reg;
  49
  50        writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
  51
  52        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  53                        &vp_reg->general_errors_reg);
  54
  55        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  56                        &vp_reg->pci_config_errors_reg);
  57
  58        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  59                        &vp_reg->mrpcim_to_vpath_alarm_reg);
  60
  61        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  62                        &vp_reg->srpcim_to_vpath_alarm_reg);
  63
  64        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  65                        &vp_reg->vpath_ppif_int_status);
  66
  67        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  68                        &vp_reg->srpcim_msg_to_vpath_reg);
  69
  70        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  71                        &vp_reg->vpath_pcipif_int_status);
  72
  73        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  74                        &vp_reg->prc_alarm_reg);
  75
  76        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  77                        &vp_reg->wrdma_alarm_status);
  78
  79        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  80                        &vp_reg->asic_ntwk_vp_err_reg);
  81
  82        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  83                        &vp_reg->xgmac_vp_int_status);
  84
  85        readq(&vp_reg->vpath_general_int_status);
  86
  87        /* Mask unwanted interrupts */
  88
  89        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  90                        &vp_reg->vpath_pcipif_int_mask);
  91
  92        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  93                        &vp_reg->srpcim_msg_to_vpath_mask);
  94
  95        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  96                        &vp_reg->srpcim_to_vpath_alarm_mask);
  97
  98        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  99                        &vp_reg->mrpcim_to_vpath_alarm_mask);
 100
 101        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 102                        &vp_reg->pci_config_errors_mask);
 103
 104        /* Unmask the individual interrupts */
 105
 106        writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
 107                VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
 108                VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
 109                VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
 110                &vp_reg->general_errors_mask);
 111
 112        __vxge_hw_pio_mem_write32_upper(
 113                (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
 114                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
 115                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
 116                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
 117                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
 118                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
 119                &vp_reg->kdfcctl_errors_mask);
 120
 121        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
 122
 123        __vxge_hw_pio_mem_write32_upper(
 124                (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
 125                &vp_reg->prc_alarm_mask);
 126
 127        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
 128        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
 129
 130        if (vpath->hldev->first_vp_id != vpath->vp_id)
 131                __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 132                        &vp_reg->asic_ntwk_vp_err_mask);
 133        else
 134                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
 135                VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
 136                VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
 137                &vp_reg->asic_ntwk_vp_err_mask);
 138
 139        __vxge_hw_pio_mem_write32_upper(0,
 140                &vp_reg->vpath_general_int_mask);
 141exit:
 142        return status;
 143
 144}
 145
 146/*
 147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
 148 * @vp: Virtual Path handle.
 149 *
 150 * Disable vpath interrupts. The function is to be executed the last in
 151 * vpath initialization sequence.
 152 *
 153 * See also: vxge_hw_vpath_intr_enable()
 154 */
 155enum vxge_hw_status vxge_hw_vpath_intr_disable(
 156                        struct __vxge_hw_vpath_handle *vp)
 157{
 158        struct __vxge_hw_virtualpath *vpath;
 159        enum vxge_hw_status status = VXGE_HW_OK;
 160        struct vxge_hw_vpath_reg __iomem *vp_reg;
 161        if (vp == NULL) {
 162                status = VXGE_HW_ERR_INVALID_HANDLE;
 163                goto exit;
 164        }
 165
 166        vpath = vp->vpath;
 167
 168        if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
 169                status = VXGE_HW_ERR_VPATH_NOT_OPEN;
 170                goto exit;
 171        }
 172        vp_reg = vpath->vp_reg;
 173
 174        __vxge_hw_pio_mem_write32_upper(
 175                (u32)VXGE_HW_INTR_MASK_ALL,
 176                &vp_reg->vpath_general_int_mask);
 177
 178        writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
 179
 180        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 181                        &vp_reg->general_errors_mask);
 182
 183        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 184                        &vp_reg->pci_config_errors_mask);
 185
 186        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 187                        &vp_reg->mrpcim_to_vpath_alarm_mask);
 188
 189        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 190                        &vp_reg->srpcim_to_vpath_alarm_mask);
 191
 192        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 193                        &vp_reg->vpath_ppif_int_mask);
 194
 195        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 196                        &vp_reg->srpcim_msg_to_vpath_mask);
 197
 198        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 199                        &vp_reg->vpath_pcipif_int_mask);
 200
 201        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 202                        &vp_reg->wrdma_alarm_mask);
 203
 204        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 205                        &vp_reg->prc_alarm_mask);
 206
 207        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 208                        &vp_reg->xgmac_vp_int_mask);
 209
 210        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 211                        &vp_reg->asic_ntwk_vp_err_mask);
 212
 213exit:
 214        return status;
 215}
 216
 217void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
 218{
 219        struct vxge_hw_vpath_reg __iomem *vp_reg;
 220        struct vxge_hw_vp_config *config;
 221        u64 val64;
 222
 223        if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
 224                return;
 225
 226        vp_reg = fifo->vp_reg;
 227        config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
 228
 229        if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
 230                config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
 231                val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 232                val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 233                fifo->tim_tti_cfg1_saved = val64;
 234                writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 235        }
 236}
 237
 238void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
 239{
 240        u64 val64 = ring->tim_rti_cfg1_saved;
 241
 242        val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 243        ring->tim_rti_cfg1_saved = val64;
 244        writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
 245}
 246
 247void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
 248{
 249        u64 val64 = fifo->tim_tti_cfg3_saved;
 250        u64 timer = (fifo->rtimer * 1000) / 272;
 251
 252        val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 253        if (timer)
 254                val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 255                        VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
 256
 257        writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
 258        /* tti_cfg3_saved is not updated again because it is
 259         * initialized at one place only - init time.
 260         */
 261}
 262
 263void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
 264{
 265        u64 val64 = ring->tim_rti_cfg3_saved;
 266        u64 timer = (ring->rtimer * 1000) / 272;
 267
 268        val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 269        if (timer)
 270                val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 271                        VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
 272
 273        writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
 274        /* rti_cfg3_saved is not updated again because it is
 275         * initialized at one place only - init time.
 276         */
 277}
 278
 279/**
 280 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
 281 * @channel: Channel for rx or tx handle
 282 * @msix_id:  MSIX ID
 283 *
 284 * The function masks the msix interrupt for the given msix_id
 285 *
 286 * Returns: 0
 287 */
 288void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
 289{
 290
 291        __vxge_hw_pio_mem_write32_upper(
 292                (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 293                &channel->common_reg->set_msix_mask_vect[msix_id%4]);
 294}
 295
 296/**
 297 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
 298 * @channel: Channel for rx or tx handle
 299 * @msix_id:  MSI ID
 300 *
 301 * The function unmasks the msix interrupt for the given msix_id
 302 *
 303 * Returns: 0
 304 */
 305void
 306vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
 307{
 308
 309        __vxge_hw_pio_mem_write32_upper(
 310                (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 311                &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
 312}
 313
 314/**
 315 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
 316 * @channel: Channel for rx or tx handle
 317 * @msix_id:  MSI ID
 318 *
 319 * The function unmasks the msix interrupt for the given msix_id
 320 * if configured in MSIX oneshot mode
 321 *
 322 * Returns: 0
 323 */
 324void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
 325{
 326        __vxge_hw_pio_mem_write32_upper(
 327                (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 328                &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
 329}
 330
 331/**
 332 * vxge_hw_device_set_intr_type - Updates the configuration
 333 *              with new interrupt type.
 334 * @hldev: HW device handle.
 335 * @intr_mode: New interrupt type
 336 */
 337u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
 338{
 339
 340        if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
 341           (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
 342           (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
 343           (intr_mode != VXGE_HW_INTR_MODE_DEF))
 344                intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
 345
 346        hldev->config.intr_mode = intr_mode;
 347        return intr_mode;
 348}
 349
 350/**
 351 * vxge_hw_device_intr_enable - Enable interrupts.
 352 * @hldev: HW device handle.
 353 *
 354 * Enable Titan interrupts. The function is to be executed the last in
 355 * Titan initialization sequence.
 356 *
 357 * See also: vxge_hw_device_intr_disable()
 358 */
 359void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
 360{
 361        u32 i;
 362        u64 val64;
 363        u32 val32;
 364
 365        vxge_hw_device_mask_all(hldev);
 366
 367        for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 368
 369                if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 370                        continue;
 371
 372                vxge_hw_vpath_intr_enable(
 373                        VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 374        }
 375
 376        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
 377                val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 378                        hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
 379
 380                if (val64 != 0) {
 381                        writeq(val64, &hldev->common_reg->tim_int_status0);
 382
 383                        writeq(~val64, &hldev->common_reg->tim_int_mask0);
 384                }
 385
 386                val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 387                        hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
 388
 389                if (val32 != 0) {
 390                        __vxge_hw_pio_mem_write32_upper(val32,
 391                                        &hldev->common_reg->tim_int_status1);
 392
 393                        __vxge_hw_pio_mem_write32_upper(~val32,
 394                                        &hldev->common_reg->tim_int_mask1);
 395                }
 396        }
 397
 398        val64 = readq(&hldev->common_reg->titan_general_int_status);
 399
 400        vxge_hw_device_unmask_all(hldev);
 401}
 402
 403/**
 404 * vxge_hw_device_intr_disable - Disable Titan interrupts.
 405 * @hldev: HW device handle.
 406 *
 407 * Disable Titan interrupts.
 408 *
 409 * See also: vxge_hw_device_intr_enable()
 410 */
 411void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
 412{
 413        u32 i;
 414
 415        vxge_hw_device_mask_all(hldev);
 416
 417        /* mask all the tim interrupts */
 418        writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
 419        __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
 420                &hldev->common_reg->tim_int_mask1);
 421
 422        for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 423
 424                if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 425                        continue;
 426
 427                vxge_hw_vpath_intr_disable(
 428                        VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 429        }
 430}
 431
 432/**
 433 * vxge_hw_device_mask_all - Mask all device interrupts.
 434 * @hldev: HW device handle.
 435 *
 436 * Mask all device interrupts.
 437 *
 438 * See also: vxge_hw_device_unmask_all()
 439 */
 440void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
 441{
 442        u64 val64;
 443
 444        val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
 445                VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 446
 447        __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 448                                &hldev->common_reg->titan_mask_all_int);
 449}
 450
 451/**
 452 * vxge_hw_device_unmask_all - Unmask all device interrupts.
 453 * @hldev: HW device handle.
 454 *
 455 * Unmask all device interrupts.
 456 *
 457 * See also: vxge_hw_device_mask_all()
 458 */
 459void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
 460{
 461        u64 val64 = 0;
 462
 463        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
 464                val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 465
 466        __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 467                        &hldev->common_reg->titan_mask_all_int);
 468}
 469
 470/**
 471 * vxge_hw_device_flush_io - Flush io writes.
 472 * @hldev: HW device handle.
 473 *
 474 * The function performs a read operation to flush io writes.
 475 *
 476 * Returns: void
 477 */
 478void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
 479{
 480        readl(&hldev->common_reg->titan_general_int_status);
 481}
 482
 483/**
 484 * __vxge_hw_device_handle_error - Handle error
 485 * @hldev: HW device
 486 * @vp_id: Vpath Id
 487 * @type: Error type. Please see enum vxge_hw_event{}
 488 *
 489 * Handle error.
 490 */
 491static enum vxge_hw_status
 492__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
 493                              enum vxge_hw_event type)
 494{
 495        switch (type) {
 496        case VXGE_HW_EVENT_UNKNOWN:
 497                break;
 498        case VXGE_HW_EVENT_RESET_START:
 499        case VXGE_HW_EVENT_RESET_COMPLETE:
 500        case VXGE_HW_EVENT_LINK_DOWN:
 501        case VXGE_HW_EVENT_LINK_UP:
 502                goto out;
 503        case VXGE_HW_EVENT_ALARM_CLEARED:
 504                goto out;
 505        case VXGE_HW_EVENT_ECCERR:
 506        case VXGE_HW_EVENT_MRPCIM_ECCERR:
 507                goto out;
 508        case VXGE_HW_EVENT_FIFO_ERR:
 509        case VXGE_HW_EVENT_VPATH_ERR:
 510        case VXGE_HW_EVENT_CRITICAL_ERR:
 511        case VXGE_HW_EVENT_SERR:
 512                break;
 513        case VXGE_HW_EVENT_SRPCIM_SERR:
 514        case VXGE_HW_EVENT_MRPCIM_SERR:
 515                goto out;
 516        case VXGE_HW_EVENT_SLOT_FREEZE:
 517                break;
 518        default:
 519                vxge_assert(0);
 520                goto out;
 521        }
 522
 523        /* notify driver */
 524        if (hldev->uld_callbacks->crit_err)
 525                hldev->uld_callbacks->crit_err(hldev,
 526                        type, vp_id);
 527out:
 528
 529        return VXGE_HW_OK;
 530}
 531
 532/*
 533 * __vxge_hw_device_handle_link_down_ind
 534 * @hldev: HW device handle.
 535 *
 536 * Link down indication handler. The function is invoked by HW when
 537 * Titan indicates that the link is down.
 538 */
 539static enum vxge_hw_status
 540__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
 541{
 542        /*
 543         * If the previous link state is not down, return.
 544         */
 545        if (hldev->link_state == VXGE_HW_LINK_DOWN)
 546                goto exit;
 547
 548        hldev->link_state = VXGE_HW_LINK_DOWN;
 549
 550        /* notify driver */
 551        if (hldev->uld_callbacks->link_down)
 552                hldev->uld_callbacks->link_down(hldev);
 553exit:
 554        return VXGE_HW_OK;
 555}
 556
 557/*
 558 * __vxge_hw_device_handle_link_up_ind
 559 * @hldev: HW device handle.
 560 *
 561 * Link up indication handler. The function is invoked by HW when
 562 * Titan indicates that the link is up for programmable amount of time.
 563 */
 564static enum vxge_hw_status
 565__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
 566{
 567        /*
 568         * If the previous link state is not down, return.
 569         */
 570        if (hldev->link_state == VXGE_HW_LINK_UP)
 571                goto exit;
 572
 573        hldev->link_state = VXGE_HW_LINK_UP;
 574
 575        /* notify driver */
 576        if (hldev->uld_callbacks->link_up)
 577                hldev->uld_callbacks->link_up(hldev);
 578exit:
 579        return VXGE_HW_OK;
 580}
 581
 582/*
 583 * __vxge_hw_vpath_alarm_process - Process Alarms.
 584 * @vpath: Virtual Path.
 585 * @skip_alarms: Do not clear the alarms
 586 *
 587 * Process vpath alarms.
 588 *
 589 */
 590static enum vxge_hw_status
 591__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
 592                              u32 skip_alarms)
 593{
 594        u64 val64;
 595        u64 alarm_status;
 596        u64 pic_status;
 597        struct __vxge_hw_device *hldev = NULL;
 598        enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
 599        u64 mask64;
 600        struct vxge_hw_vpath_stats_sw_info *sw_stats;
 601        struct vxge_hw_vpath_reg __iomem *vp_reg;
 602
 603        if (vpath == NULL) {
 604                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 605                        alarm_event);
 606                goto out2;
 607        }
 608
 609        hldev = vpath->hldev;
 610        vp_reg = vpath->vp_reg;
 611        alarm_status = readq(&vp_reg->vpath_general_int_status);
 612
 613        if (alarm_status == VXGE_HW_ALL_FOXES) {
 614                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
 615                        alarm_event);
 616                goto out;
 617        }
 618
 619        sw_stats = vpath->sw_stats;
 620
 621        if (alarm_status & ~(
 622                VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
 623                VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
 624                VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
 625                VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
 626                sw_stats->error_stats.unknown_alarms++;
 627
 628                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 629                        alarm_event);
 630                goto out;
 631        }
 632
 633        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
 634
 635                val64 = readq(&vp_reg->xgmac_vp_int_status);
 636
 637                if (val64 &
 638                VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
 639
 640                        val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
 641
 642                        if (((val64 &
 643                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
 644                             (!(val64 &
 645                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
 646                            ((val64 &
 647                             VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
 648                             (!(val64 &
 649                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
 650                                     ))) {
 651                                sw_stats->error_stats.network_sustained_fault++;
 652
 653                                writeq(
 654                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
 655                                        &vp_reg->asic_ntwk_vp_err_mask);
 656
 657                                __vxge_hw_device_handle_link_down_ind(hldev);
 658                                alarm_event = VXGE_HW_SET_LEVEL(
 659                                        VXGE_HW_EVENT_LINK_DOWN, alarm_event);
 660                        }
 661
 662                        if (((val64 &
 663                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
 664                             (!(val64 &
 665                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
 666                            ((val64 &
 667                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
 668                             (!(val64 &
 669                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
 670                                     ))) {
 671
 672                                sw_stats->error_stats.network_sustained_ok++;
 673
 674                                writeq(
 675                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
 676                                        &vp_reg->asic_ntwk_vp_err_mask);
 677
 678                                __vxge_hw_device_handle_link_up_ind(hldev);
 679                                alarm_event = VXGE_HW_SET_LEVEL(
 680                                        VXGE_HW_EVENT_LINK_UP, alarm_event);
 681                        }
 682
 683                        writeq(VXGE_HW_INTR_MASK_ALL,
 684                                &vp_reg->asic_ntwk_vp_err_reg);
 685
 686                        alarm_event = VXGE_HW_SET_LEVEL(
 687                                VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
 688
 689                        if (skip_alarms)
 690                                return VXGE_HW_OK;
 691                }
 692        }
 693
 694        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
 695
 696                pic_status = readq(&vp_reg->vpath_ppif_int_status);
 697
 698                if (pic_status &
 699                    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
 700
 701                        val64 = readq(&vp_reg->general_errors_reg);
 702                        mask64 = readq(&vp_reg->general_errors_mask);
 703
 704                        if ((val64 &
 705                                VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
 706                                ~mask64) {
 707                                sw_stats->error_stats.ini_serr_det++;
 708
 709                                alarm_event = VXGE_HW_SET_LEVEL(
 710                                        VXGE_HW_EVENT_SERR, alarm_event);
 711                        }
 712
 713                        if ((val64 &
 714                            VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
 715                                ~mask64) {
 716                                sw_stats->error_stats.dblgen_fifo0_overflow++;
 717
 718                                alarm_event = VXGE_HW_SET_LEVEL(
 719                                        VXGE_HW_EVENT_FIFO_ERR, alarm_event);
 720                        }
 721
 722                        if ((val64 &
 723                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
 724                                ~mask64)
 725                                sw_stats->error_stats.statsb_pif_chain_error++;
 726
 727                        if ((val64 &
 728                           VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
 729                                ~mask64)
 730                                sw_stats->error_stats.statsb_drop_timeout++;
 731
 732                        if ((val64 &
 733                                VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
 734                                ~mask64)
 735                                sw_stats->error_stats.target_illegal_access++;
 736
 737                        if (!skip_alarms) {
 738                                writeq(VXGE_HW_INTR_MASK_ALL,
 739                                        &vp_reg->general_errors_reg);
 740                                alarm_event = VXGE_HW_SET_LEVEL(
 741                                        VXGE_HW_EVENT_ALARM_CLEARED,
 742                                        alarm_event);
 743                        }
 744                }
 745
 746                if (pic_status &
 747                    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
 748
 749                        val64 = readq(&vp_reg->kdfcctl_errors_reg);
 750                        mask64 = readq(&vp_reg->kdfcctl_errors_mask);
 751
 752                        if ((val64 &
 753                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
 754                                ~mask64) {
 755                                sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
 756
 757                                alarm_event = VXGE_HW_SET_LEVEL(
 758                                        VXGE_HW_EVENT_FIFO_ERR,
 759                                        alarm_event);
 760                        }
 761
 762                        if ((val64 &
 763                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
 764                                ~mask64) {
 765                                sw_stats->error_stats.kdfcctl_fifo0_poison++;
 766
 767                                alarm_event = VXGE_HW_SET_LEVEL(
 768                                        VXGE_HW_EVENT_FIFO_ERR,
 769                                        alarm_event);
 770                        }
 771
 772                        if ((val64 &
 773                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
 774                                ~mask64) {
 775                                sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
 776
 777                                alarm_event = VXGE_HW_SET_LEVEL(
 778                                        VXGE_HW_EVENT_FIFO_ERR,
 779                                        alarm_event);
 780                        }
 781
 782                        if (!skip_alarms) {
 783                                writeq(VXGE_HW_INTR_MASK_ALL,
 784                                        &vp_reg->kdfcctl_errors_reg);
 785                                alarm_event = VXGE_HW_SET_LEVEL(
 786                                        VXGE_HW_EVENT_ALARM_CLEARED,
 787                                        alarm_event);
 788                        }
 789                }
 790
 791        }
 792
 793        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
 794
 795                val64 = readq(&vp_reg->wrdma_alarm_status);
 796
 797                if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
 798
 799                        val64 = readq(&vp_reg->prc_alarm_reg);
 800                        mask64 = readq(&vp_reg->prc_alarm_mask);
 801
 802                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
 803                                ~mask64)
 804                                sw_stats->error_stats.prc_ring_bumps++;
 805
 806                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
 807                                ~mask64) {
 808                                sw_stats->error_stats.prc_rxdcm_sc_err++;
 809
 810                                alarm_event = VXGE_HW_SET_LEVEL(
 811                                        VXGE_HW_EVENT_VPATH_ERR,
 812                                        alarm_event);
 813                        }
 814
 815                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
 816                                & ~mask64) {
 817                                sw_stats->error_stats.prc_rxdcm_sc_abort++;
 818
 819                                alarm_event = VXGE_HW_SET_LEVEL(
 820                                                VXGE_HW_EVENT_VPATH_ERR,
 821                                                alarm_event);
 822                        }
 823
 824                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
 825                                 & ~mask64) {
 826                                sw_stats->error_stats.prc_quanta_size_err++;
 827
 828                                alarm_event = VXGE_HW_SET_LEVEL(
 829                                        VXGE_HW_EVENT_VPATH_ERR,
 830                                        alarm_event);
 831                        }
 832
 833                        if (!skip_alarms) {
 834                                writeq(VXGE_HW_INTR_MASK_ALL,
 835                                        &vp_reg->prc_alarm_reg);
 836                                alarm_event = VXGE_HW_SET_LEVEL(
 837                                                VXGE_HW_EVENT_ALARM_CLEARED,
 838                                                alarm_event);
 839                        }
 840                }
 841        }
 842out:
 843        hldev->stats.sw_dev_err_stats.vpath_alarms++;
 844out2:
 845        if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
 846                (alarm_event == VXGE_HW_EVENT_UNKNOWN))
 847                return VXGE_HW_OK;
 848
 849        __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
 850
 851        if (alarm_event == VXGE_HW_EVENT_SERR)
 852                return VXGE_HW_ERR_CRITICAL;
 853
 854        return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
 855                VXGE_HW_ERR_SLOT_FREEZE :
 856                (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
 857                VXGE_HW_ERR_VPATH;
 858}
 859
 860/**
 861 * vxge_hw_device_begin_irq - Begin IRQ processing.
 862 * @hldev: HW device handle.
 863 * @skip_alarms: Do not clear the alarms
 864 * @reason: "Reason" for the interrupt, the value of Titan's
 865 *      general_int_status register.
 866 *
 867 * The function performs two actions, It first checks whether (shared IRQ) the
 868 * interrupt was raised by the device. Next, it masks the device interrupts.
 869 *
 870 * Note:
 871 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
 872 * bridge. Therefore, two back-to-back interrupts are potentially possible.
 873 *
 874 * Returns: 0, if the interrupt is not "ours" (note that in this case the
 875 * device remain enabled).
 876 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
 877 * status.
 878 */
 879enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
 880                                             u32 skip_alarms, u64 *reason)
 881{
 882        u32 i;
 883        u64 val64;
 884        u64 adapter_status;
 885        u64 vpath_mask;
 886        enum vxge_hw_status ret = VXGE_HW_OK;
 887
 888        val64 = readq(&hldev->common_reg->titan_general_int_status);
 889
 890        if (unlikely(!val64)) {
 891                /* not Titan interrupt  */
 892                *reason = 0;
 893                ret = VXGE_HW_ERR_WRONG_IRQ;
 894                goto exit;
 895        }
 896
 897        if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
 898
 899                adapter_status = readq(&hldev->common_reg->adapter_status);
 900
 901                if (adapter_status == VXGE_HW_ALL_FOXES) {
 902
 903                        __vxge_hw_device_handle_error(hldev,
 904                                NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
 905                        *reason = 0;
 906                        ret = VXGE_HW_ERR_SLOT_FREEZE;
 907                        goto exit;
 908                }
 909        }
 910
 911        hldev->stats.sw_dev_info_stats.total_intr_cnt++;
 912
 913        *reason = val64;
 914
 915        vpath_mask = hldev->vpaths_deployed >>
 916                                (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
 917
 918        if (val64 &
 919            VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
 920                hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
 921
 922                return VXGE_HW_OK;
 923        }
 924
 925        hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
 926
 927        if (unlikely(val64 &
 928                        VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
 929
 930                enum vxge_hw_status error_level = VXGE_HW_OK;
 931
 932                hldev->stats.sw_dev_err_stats.vpath_alarms++;
 933
 934                for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 935
 936                        if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 937                                continue;
 938
 939                        ret = __vxge_hw_vpath_alarm_process(
 940                                &hldev->virtual_paths[i], skip_alarms);
 941
 942                        error_level = VXGE_HW_SET_LEVEL(ret, error_level);
 943
 944                        if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
 945                                (ret == VXGE_HW_ERR_SLOT_FREEZE)))
 946                                break;
 947                }
 948
 949                ret = error_level;
 950        }
 951exit:
 952        return ret;
 953}
 954
 955/**
 956 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
 957 * condition that has caused the Tx and RX interrupt.
 958 * @hldev: HW device.
 959 *
 960 * Acknowledge (that is, clear) the condition that has caused
 961 * the Tx and Rx interrupt.
 962 * See also: vxge_hw_device_begin_irq(),
 963 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
 964 */
 965void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
 966{
 967
 968        if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
 969           (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
 970                writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 971                                 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
 972                                &hldev->common_reg->tim_int_status0);
 973        }
 974
 975        if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
 976           (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
 977                __vxge_hw_pio_mem_write32_upper(
 978                                (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 979                                 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
 980                                &hldev->common_reg->tim_int_status1);
 981        }
 982}
 983
 984/*
 985 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
 986 * @channel: Channel
 987 * @dtrh: Buffer to return the DTR pointer
 988 *
 989 * Allocates a dtr from the reserve array. If the reserve array is empty,
 990 * it swaps the reserve and free arrays.
 991 *
 992 */
 993static enum vxge_hw_status
 994vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
 995{
 996        if (channel->reserve_ptr - channel->reserve_top > 0) {
 997_alloc_after_swap:
 998                *dtrh = channel->reserve_arr[--channel->reserve_ptr];
 999
1000                return VXGE_HW_OK;
1001        }
1002
1003        /* switch between empty and full arrays */
1004
1005        /* the idea behind such a design is that by having free and reserved
1006         * arrays separated we basically separated irq and non-irq parts.
1007         * i.e. no additional lock need to be done when we free a resource */
1008
1009        if (channel->length - channel->free_ptr > 0) {
1010                swap(channel->reserve_arr, channel->free_arr);
1011                channel->reserve_ptr = channel->length;
1012                channel->reserve_top = channel->free_ptr;
1013                channel->free_ptr = channel->length;
1014
1015                channel->stats->reserve_free_swaps_cnt++;
1016
1017                goto _alloc_after_swap;
1018        }
1019
1020        channel->stats->full_cnt++;
1021
1022        *dtrh = NULL;
1023        return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1024}
1025
1026/*
1027 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1028 * @channelh: Channel
1029 * @dtrh: DTR pointer
1030 *
1031 * Posts a dtr to work array.
1032 *
1033 */
1034static void
1035vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1036{
1037        vxge_assert(channel->work_arr[channel->post_index] == NULL);
1038
1039        channel->work_arr[channel->post_index++] = dtrh;
1040
1041        /* wrap-around */
1042        if (channel->post_index == channel->length)
1043                channel->post_index = 0;
1044}
1045
1046/*
1047 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1048 * @channel: Channel
1049 * @dtr: Buffer to return the next completed DTR pointer
1050 *
1051 * Returns the next completed dtr with out removing it from work array
1052 *
1053 */
1054void
1055vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1056{
1057        vxge_assert(channel->compl_index < channel->length);
1058
1059        *dtrh = channel->work_arr[channel->compl_index];
1060        prefetch(*dtrh);
1061}
1062
1063/*
1064 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1065 * @channel: Channel handle
1066 *
1067 * Removes the next completed dtr from work array
1068 *
1069 */
1070void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1071{
1072        channel->work_arr[channel->compl_index] = NULL;
1073
1074        /* wrap-around */
1075        if (++channel->compl_index == channel->length)
1076                channel->compl_index = 0;
1077
1078        channel->stats->total_compl_cnt++;
1079}
1080
1081/*
1082 * vxge_hw_channel_dtr_free - Frees a dtr
1083 * @channel: Channel handle
1084 * @dtr:  DTR pointer
1085 *
1086 * Returns the dtr to free array
1087 *
1088 */
1089void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1090{
1091        channel->free_arr[--channel->free_ptr] = dtrh;
1092}
1093
1094/*
1095 * vxge_hw_channel_dtr_count
1096 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1097 *
1098 * Retrieve number of DTRs available. This function can not be called
1099 * from data path. ring_initial_replenishi() is the only user.
1100 */
1101int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1102{
1103        return (channel->reserve_ptr - channel->reserve_top) +
1104                (channel->length - channel->free_ptr);
1105}
1106
1107/**
1108 * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
1109 * @ring: Handle to the ring object used for receive
1110 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1111 * with a valid handle.
1112 *
1113 * Reserve Rx descriptor for the subsequent filling-in driver
1114 * and posting on the corresponding channel (@channelh)
1115 * via vxge_hw_ring_rxd_post().
1116 *
1117 * Returns: VXGE_HW_OK - success.
1118 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1119 *
1120 */
1121enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1122        void **rxdh)
1123{
1124        enum vxge_hw_status status;
1125        struct __vxge_hw_channel *channel;
1126
1127        channel = &ring->channel;
1128
1129        status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1130
1131        if (status == VXGE_HW_OK) {
1132                struct vxge_hw_ring_rxd_1 *rxdp =
1133                        (struct vxge_hw_ring_rxd_1 *)*rxdh;
1134
1135                rxdp->control_0 = rxdp->control_1 = 0;
1136        }
1137
1138        return status;
1139}
1140
1141/**
1142 * vxge_hw_ring_rxd_free - Free descriptor.
1143 * @ring: Handle to the ring object used for receive
1144 * @rxdh: Descriptor handle.
1145 *
1146 * Free the reserved descriptor. This operation is "symmetrical" to
1147 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1148 * lifecycle.
1149 *
1150 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1151 * be:
1152 *
1153 * - reserved (vxge_hw_ring_rxd_reserve);
1154 *
1155 * - posted     (vxge_hw_ring_rxd_post);
1156 *
1157 * - completed (vxge_hw_ring_rxd_next_completed);
1158 *
1159 * - and recycled again (vxge_hw_ring_rxd_free).
1160 *
1161 * For alternative state transitions and more details please refer to
1162 * the design doc.
1163 *
1164 */
1165void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1166{
1167        struct __vxge_hw_channel *channel;
1168
1169        channel = &ring->channel;
1170
1171        vxge_hw_channel_dtr_free(channel, rxdh);
1172
1173}
1174
1175/**
1176 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1177 * @ring: Handle to the ring object used for receive
1178 * @rxdh: Descriptor handle.
1179 *
1180 * This routine prepares a rxd and posts
1181 */
1182void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1183{
1184        struct __vxge_hw_channel *channel;
1185
1186        channel = &ring->channel;
1187
1188        vxge_hw_channel_dtr_post(channel, rxdh);
1189}
1190
1191/**
1192 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1193 * @ring: Handle to the ring object used for receive
1194 * @rxdh: Descriptor handle.
1195 *
1196 * Processes rxd after post
1197 */
1198void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1199{
1200        struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1201
1202        rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1203
1204        if (ring->stats->common_stats.usage_cnt > 0)
1205                ring->stats->common_stats.usage_cnt--;
1206}
1207
1208/**
1209 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1210 * @ring: Handle to the ring object used for receive
1211 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1212 *
1213 * Post descriptor on the ring.
1214 * Prior to posting the descriptor should be filled in accordance with
1215 * Host/Titan interface specification for a given service (LL, etc.).
1216 *
1217 */
1218void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1219{
1220        struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1221        struct __vxge_hw_channel *channel;
1222
1223        channel = &ring->channel;
1224
1225        wmb();
1226        rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1227
1228        vxge_hw_channel_dtr_post(channel, rxdh);
1229
1230        if (ring->stats->common_stats.usage_cnt > 0)
1231                ring->stats->common_stats.usage_cnt--;
1232}
1233
1234/**
1235 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1236 * @ring: Handle to the ring object used for receive
1237 * @rxdh: Descriptor handle.
1238 *
1239 * Processes rxd after post with memory barrier.
1240 */
1241void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1242{
1243        wmb();
1244        vxge_hw_ring_rxd_post_post(ring, rxdh);
1245}
1246
1247/**
1248 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1249 * @ring: Handle to the ring object used for receive
1250 * @rxdh: Descriptor handle. Returned by HW.
1251 * @t_code:     Transfer code, as per Titan User Guide,
1252 *       Receive Descriptor Format. Returned by HW.
1253 *
1254 * Retrieve the _next_ completed descriptor.
1255 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1256 * driver of new completed descriptors. After that
1257 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1258 * completions (the very first completion is passed by HW via
1259 * vxge_hw_ring_callback_f).
1260 *
1261 * Implementation-wise, the driver is free to call
1262 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1263 * ring callback, or in a deferred fashion and separate (from HW)
1264 * context.
1265 *
1266 * Non-zero @t_code means failure to fill-in receive buffer(s)
1267 * of the descriptor.
1268 * For instance, parity error detected during the data transfer.
1269 * In this case Titan will complete the descriptor and indicate
1270 * for the host that the received data is not to be used.
1271 * For details please refer to Titan User Guide.
1272 *
1273 * Returns: VXGE_HW_OK - success.
1274 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1275 * are currently available for processing.
1276 *
1277 * See also: vxge_hw_ring_callback_f{},
1278 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1279 */
1280enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1281        struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1282{
1283        struct __vxge_hw_channel *channel;
1284        struct vxge_hw_ring_rxd_1 *rxdp;
1285        enum vxge_hw_status status = VXGE_HW_OK;
1286        u64 control_0, own;
1287
1288        channel = &ring->channel;
1289
1290        vxge_hw_channel_dtr_try_complete(channel, rxdh);
1291
1292        rxdp = *rxdh;
1293        if (rxdp == NULL) {
1294                status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1295                goto exit;
1296        }
1297
1298        control_0 = rxdp->control_0;
1299        own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1300        *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1301
1302        /* check whether it is not the end */
1303        if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1304
1305                vxge_assert((rxdp)->host_control !=
1306                                0);
1307
1308                ++ring->cmpl_cnt;
1309                vxge_hw_channel_dtr_complete(channel);
1310
1311                vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1312
1313                ring->stats->common_stats.usage_cnt++;
1314                if (ring->stats->common_stats.usage_max <
1315                                ring->stats->common_stats.usage_cnt)
1316                        ring->stats->common_stats.usage_max =
1317                                ring->stats->common_stats.usage_cnt;
1318
1319                status = VXGE_HW_OK;
1320                goto exit;
1321        }
1322
1323        /* reset it. since we don't want to return
1324         * garbage to the driver */
1325        *rxdh = NULL;
1326        status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1327exit:
1328        return status;
1329}
1330
1331/**
1332 * vxge_hw_ring_handle_tcode - Handle transfer code.
1333 * @ring: Handle to the ring object used for receive
1334 * @rxdh: Descriptor handle.
1335 * @t_code: One of the enumerated (and documented in the Titan user guide)
1336 * "transfer codes".
1337 *
1338 * Handle descriptor's transfer code. The latter comes with each completed
1339 * descriptor.
1340 *
1341 * Returns: one of the enum vxge_hw_status{} enumerated types.
1342 * VXGE_HW_OK                   - for success.
1343 * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1344 */
1345enum vxge_hw_status vxge_hw_ring_handle_tcode(
1346        struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1347{
1348        enum vxge_hw_status status = VXGE_HW_OK;
1349
1350        /* If the t_code is not supported and if the
1351         * t_code is other than 0x5 (unparseable packet
1352         * such as unknown UPV6 header), Drop it !!!
1353         */
1354
1355        if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1356                t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1357                status = VXGE_HW_OK;
1358                goto exit;
1359        }
1360
1361        if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1362                status = VXGE_HW_ERR_INVALID_TCODE;
1363                goto exit;
1364        }
1365
1366        ring->stats->rxd_t_code_err_cnt[t_code]++;
1367exit:
1368        return status;
1369}
1370
1371/**
1372 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1373 *
1374 * @fifo: fifohandle
1375 * @txdl_ptr: The starting location of the TxDL in host memory
1376 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1377 * @no_snoop: No snoop flags
1378 *
1379 * This function posts a non-offload doorbell to doorbell FIFO
1380 *
1381 */
1382static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1383        u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1384{
1385        writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1386                VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1387                VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1388                &fifo->nofl_db->control_0);
1389
1390        writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1391}
1392
1393/**
1394 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1395 * the fifo
1396 * @fifoh: Handle to the fifo object used for non offload send
1397 */
1398u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1399{
1400        return vxge_hw_channel_dtr_count(&fifoh->channel);
1401}
1402
1403/**
1404 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1405 * @fifo: Handle to the fifo object used for non offload send
1406 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1407 *        with a valid handle.
1408 * @txdl_priv: Buffer to return the pointer to per txdl space
1409 *
1410 * Reserve a single TxDL (that is, fifo descriptor)
1411 * for the subsequent filling-in by driver)
1412 * and posting on the corresponding channel (@channelh)
1413 * via vxge_hw_fifo_txdl_post().
1414 *
1415 * Note: it is the responsibility of driver to reserve multiple descriptors
1416 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1417 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1418 *
1419 * Returns: VXGE_HW_OK - success;
1420 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1421 *
1422 */
1423enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1424        struct __vxge_hw_fifo *fifo,
1425        void **txdlh, void **txdl_priv)
1426{
1427        struct __vxge_hw_channel *channel;
1428        enum vxge_hw_status status;
1429        int i;
1430
1431        channel = &fifo->channel;
1432
1433        status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1434
1435        if (status == VXGE_HW_OK) {
1436                struct vxge_hw_fifo_txd *txdp =
1437                        (struct vxge_hw_fifo_txd *)*txdlh;
1438                struct __vxge_hw_fifo_txdl_priv *priv;
1439
1440                priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1441
1442                /* reset the TxDL's private */
1443                priv->align_dma_offset = 0;
1444                priv->align_vaddr_start = priv->align_vaddr;
1445                priv->align_used_frags = 0;
1446                priv->frags = 0;
1447                priv->alloc_frags = fifo->config->max_frags;
1448                priv->next_txdl_priv = NULL;
1449
1450                *txdl_priv = (void *)(size_t)txdp->host_control;
1451
1452                for (i = 0; i < fifo->config->max_frags; i++) {
1453                        txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1454                        txdp->control_0 = txdp->control_1 = 0;
1455                }
1456        }
1457
1458        return status;
1459}
1460
1461/**
1462 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1463 * descriptor.
1464 * @fifo: Handle to the fifo object used for non offload send
1465 * @txdlh: Descriptor handle.
1466 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1467 *            (of buffers).
1468 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1469 * @size: Size of the data buffer (in bytes).
1470 *
1471 * This API is part of the preparation of the transmit descriptor for posting
1472 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1473 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1474 * All three APIs fill in the fields of the fifo descriptor,
1475 * in accordance with the Titan specification.
1476 *
1477 */
1478void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1479                                  void *txdlh, u32 frag_idx,
1480                                  dma_addr_t dma_pointer, u32 size)
1481{
1482        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1483        struct vxge_hw_fifo_txd *txdp, *txdp_last;
1484
1485        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1486        txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1487
1488        if (frag_idx != 0)
1489                txdp->control_0 = txdp->control_1 = 0;
1490        else {
1491                txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1492                        VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1493                txdp->control_1 |= fifo->interrupt_type;
1494                txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1495                        fifo->tx_intr_num);
1496                if (txdl_priv->frags) {
1497                        txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1498                        (txdl_priv->frags - 1);
1499                        txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1500                                VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1501                }
1502        }
1503
1504        vxge_assert(frag_idx < txdl_priv->alloc_frags);
1505
1506        txdp->buffer_pointer = (u64)dma_pointer;
1507        txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1508        fifo->stats->total_buffers++;
1509        txdl_priv->frags++;
1510}
1511
1512/**
1513 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1514 * @fifo: Handle to the fifo object used for non offload send
1515 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1516 *
1517 * Post descriptor on the 'fifo' type channel for transmission.
1518 * Prior to posting the descriptor should be filled in accordance with
1519 * Host/Titan interface specification for a given service (LL, etc.).
1520 *
1521 */
1522void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1523{
1524        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1525        struct vxge_hw_fifo_txd *txdp_last;
1526        struct vxge_hw_fifo_txd *txdp_first;
1527
1528        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1529        txdp_first = txdlh;
1530
1531        txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1532        txdp_last->control_0 |=
1533              VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1534        txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1535
1536        vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1537
1538        __vxge_hw_non_offload_db_post(fifo,
1539                (u64)txdl_priv->dma_addr,
1540                txdl_priv->frags - 1,
1541                fifo->no_snoop_bits);
1542
1543        fifo->stats->total_posts++;
1544        fifo->stats->common_stats.usage_cnt++;
1545        if (fifo->stats->common_stats.usage_max <
1546                fifo->stats->common_stats.usage_cnt)
1547                fifo->stats->common_stats.usage_max =
1548                        fifo->stats->common_stats.usage_cnt;
1549}
1550
1551/**
1552 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1553 * @fifo: Handle to the fifo object used for non offload send
1554 * @txdlh: Descriptor handle. Returned by HW.
1555 * @t_code: Transfer code, as per Titan User Guide,
1556 *          Transmit Descriptor Format.
1557 *          Returned by HW.
1558 *
1559 * Retrieve the _next_ completed descriptor.
1560 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1561 * driver of new completed descriptors. After that
1562 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1563 * completions (the very first completion is passed by HW via
1564 * vxge_hw_channel_callback_f).
1565 *
1566 * Implementation-wise, the driver is free to call
1567 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1568 * channel callback, or in a deferred fashion and separate (from HW)
1569 * context.
1570 *
1571 * Non-zero @t_code means failure to process the descriptor.
1572 * The failure could happen, for instance, when the link is
1573 * down, in which case Titan completes the descriptor because it
1574 * is not able to send the data out.
1575 *
1576 * For details please refer to Titan User Guide.
1577 *
1578 * Returns: VXGE_HW_OK - success.
1579 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1580 * are currently available for processing.
1581 *
1582 */
1583enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1584        struct __vxge_hw_fifo *fifo, void **txdlh,
1585        enum vxge_hw_fifo_tcode *t_code)
1586{
1587        struct __vxge_hw_channel *channel;
1588        struct vxge_hw_fifo_txd *txdp;
1589        enum vxge_hw_status status = VXGE_HW_OK;
1590
1591        channel = &fifo->channel;
1592
1593        vxge_hw_channel_dtr_try_complete(channel, txdlh);
1594
1595        txdp = *txdlh;
1596        if (txdp == NULL) {
1597                status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1598                goto exit;
1599        }
1600
1601        /* check whether host owns it */
1602        if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1603
1604                vxge_assert(txdp->host_control != 0);
1605
1606                vxge_hw_channel_dtr_complete(channel);
1607
1608                *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1609
1610                if (fifo->stats->common_stats.usage_cnt > 0)
1611                        fifo->stats->common_stats.usage_cnt--;
1612
1613                status = VXGE_HW_OK;
1614                goto exit;
1615        }
1616
1617        /* no more completions */
1618        *txdlh = NULL;
1619        status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1620exit:
1621        return status;
1622}
1623
1624/**
1625 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1626 * @fifo: Handle to the fifo object used for non offload send
1627 * @txdlh: Descriptor handle.
1628 * @t_code: One of the enumerated (and documented in the Titan user guide)
1629 *          "transfer codes".
1630 *
1631 * Handle descriptor's transfer code. The latter comes with each completed
1632 * descriptor.
1633 *
1634 * Returns: one of the enum vxge_hw_status{} enumerated types.
1635 * VXGE_HW_OK - for success.
1636 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1637 */
1638enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1639                                              void *txdlh,
1640                                              enum vxge_hw_fifo_tcode t_code)
1641{
1642        enum vxge_hw_status status = VXGE_HW_OK;
1643
1644        if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1645                status = VXGE_HW_ERR_INVALID_TCODE;
1646                goto exit;
1647        }
1648
1649        fifo->stats->txd_t_code_err_cnt[t_code]++;
1650exit:
1651        return status;
1652}
1653
1654/**
1655 * vxge_hw_fifo_txdl_free - Free descriptor.
1656 * @fifo: Handle to the fifo object used for non offload send
1657 * @txdlh: Descriptor handle.
1658 *
1659 * Free the reserved descriptor. This operation is "symmetrical" to
1660 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1661 * lifecycle.
1662 *
1663 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1664 * be:
1665 *
1666 * - reserved (vxge_hw_fifo_txdl_reserve);
1667 *
1668 * - posted (vxge_hw_fifo_txdl_post);
1669 *
1670 * - completed (vxge_hw_fifo_txdl_next_completed);
1671 *
1672 * - and recycled again (vxge_hw_fifo_txdl_free).
1673 *
1674 * For alternative state transitions and more details please refer to
1675 * the design doc.
1676 *
1677 */
1678void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1679{
1680        struct __vxge_hw_channel *channel;
1681
1682        channel = &fifo->channel;
1683
1684        vxge_hw_channel_dtr_free(channel, txdlh);
1685}
1686
1687/**
1688 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath to MAC address table.
1689 * @vp: Vpath handle.
1690 * @macaddr: MAC address to be added for this vpath into the list
1691 * @macaddr_mask: MAC address mask for macaddr
1692 * @duplicate_mode: Duplicate MAC address add mode. Please see
1693 *             enum vxge_hw_vpath_mac_addr_add_mode{}
1694 *
1695 * Adds the given mac address and mac address mask into the list for this
1696 * vpath.
1697 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1698 * vxge_hw_vpath_mac_addr_get_next
1699 *
1700 */
1701enum vxge_hw_status
1702vxge_hw_vpath_mac_addr_add(
1703        struct __vxge_hw_vpath_handle *vp,
1704        u8 *macaddr,
1705        u8 *macaddr_mask,
1706        enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1707{
1708        u32 i;
1709        u64 data1 = 0ULL;
1710        u64 data2 = 0ULL;
1711        enum vxge_hw_status status = VXGE_HW_OK;
1712
1713        if (vp == NULL) {
1714                status = VXGE_HW_ERR_INVALID_HANDLE;
1715                goto exit;
1716        }
1717
1718        for (i = 0; i < ETH_ALEN; i++) {
1719                data1 <<= 8;
1720                data1 |= (u8)macaddr[i];
1721
1722                data2 <<= 8;
1723                data2 |= (u8)macaddr_mask[i];
1724        }
1725
1726        switch (duplicate_mode) {
1727        case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1728                i = 0;
1729                break;
1730        case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1731                i = 1;
1732                break;
1733        case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1734                i = 2;
1735                break;
1736        default:
1737                i = 0;
1738                break;
1739        }
1740
1741        status = __vxge_hw_vpath_rts_table_set(vp,
1742                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1743                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1744                        0,
1745                        VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1746                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1747                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1748exit:
1749        return status;
1750}
1751
1752/**
1753 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry
1754 * @vp: Vpath handle.
1755 * @macaddr: First MAC address entry for this vpath in the list
1756 * @macaddr_mask: MAC address mask for macaddr
1757 *
1758 * Get the first mac address entry for this vpath from MAC address table.
1759 * Return: the first mac address and mac address mask in the list for this
1760 * vpath.
1761 * see also: vxge_hw_vpath_mac_addr_get_next
1762 *
1763 */
1764enum vxge_hw_status
1765vxge_hw_vpath_mac_addr_get(
1766        struct __vxge_hw_vpath_handle *vp,
1767        u8 *macaddr,
1768        u8 *macaddr_mask)
1769{
1770        u32 i;
1771        u64 data1 = 0ULL;
1772        u64 data2 = 0ULL;
1773        enum vxge_hw_status status = VXGE_HW_OK;
1774
1775        if (vp == NULL) {
1776                status = VXGE_HW_ERR_INVALID_HANDLE;
1777                goto exit;
1778        }
1779
1780        status = __vxge_hw_vpath_rts_table_get(vp,
1781                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1782                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1783                        0, &data1, &data2);
1784
1785        if (status != VXGE_HW_OK)
1786                goto exit;
1787
1788        data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1789
1790        data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1791
1792        for (i = ETH_ALEN; i > 0; i--) {
1793                macaddr[i-1] = (u8)(data1 & 0xFF);
1794                data1 >>= 8;
1795
1796                macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1797                data2 >>= 8;
1798        }
1799exit:
1800        return status;
1801}
1802
1803/**
1804 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry
1805 * @vp: Vpath handle.
1806 * @macaddr: Next MAC address entry for this vpath in the list
1807 * @macaddr_mask: MAC address mask for macaddr
1808 *
1809 * Get the next mac address entry for this vpath from MAC address table.
1810 * Return: the next mac address and mac address mask in the list for this
1811 * vpath.
1812 * see also: vxge_hw_vpath_mac_addr_get
1813 *
1814 */
1815enum vxge_hw_status
1816vxge_hw_vpath_mac_addr_get_next(
1817        struct __vxge_hw_vpath_handle *vp,
1818        u8 *macaddr,
1819        u8 *macaddr_mask)
1820{
1821        u32 i;
1822        u64 data1 = 0ULL;
1823        u64 data2 = 0ULL;
1824        enum vxge_hw_status status = VXGE_HW_OK;
1825
1826        if (vp == NULL) {
1827                status = VXGE_HW_ERR_INVALID_HANDLE;
1828                goto exit;
1829        }
1830
1831        status = __vxge_hw_vpath_rts_table_get(vp,
1832                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1833                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1834                        0, &data1, &data2);
1835
1836        if (status != VXGE_HW_OK)
1837                goto exit;
1838
1839        data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1840
1841        data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1842
1843        for (i = ETH_ALEN; i > 0; i--) {
1844                macaddr[i-1] = (u8)(data1 & 0xFF);
1845                data1 >>= 8;
1846
1847                macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1848                data2 >>= 8;
1849        }
1850
1851exit:
1852        return status;
1853}
1854
1855/**
1856 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath to MAC address table.
1857 * @vp: Vpath handle.
1858 * @macaddr: MAC address to be added for this vpath into the list
1859 * @macaddr_mask: MAC address mask for macaddr
1860 *
1861 * Delete the given mac address and mac address mask into the list for this
1862 * vpath.
1863 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1864 * vxge_hw_vpath_mac_addr_get_next
1865 *
1866 */
1867enum vxge_hw_status
1868vxge_hw_vpath_mac_addr_delete(
1869        struct __vxge_hw_vpath_handle *vp,
1870        u8 *macaddr,
1871        u8 *macaddr_mask)
1872{
1873        u32 i;
1874        u64 data1 = 0ULL;
1875        u64 data2 = 0ULL;
1876        enum vxge_hw_status status = VXGE_HW_OK;
1877
1878        if (vp == NULL) {
1879                status = VXGE_HW_ERR_INVALID_HANDLE;
1880                goto exit;
1881        }
1882
1883        for (i = 0; i < ETH_ALEN; i++) {
1884                data1 <<= 8;
1885                data1 |= (u8)macaddr[i];
1886
1887                data2 <<= 8;
1888                data2 |= (u8)macaddr_mask[i];
1889        }
1890
1891        status = __vxge_hw_vpath_rts_table_set(vp,
1892                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1893                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1894                        0,
1895                        VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1896                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1897exit:
1898        return status;
1899}
1900
1901/**
1902 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath to vlan id table.
1903 * @vp: Vpath handle.
1904 * @vid: vlan id to be added for this vpath into the list
1905 *
1906 * Adds the given vlan id into the list for this  vpath.
1907 * see also: vxge_hw_vpath_vid_delete
1908 *
1909 */
1910enum vxge_hw_status
1911vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1912{
1913        enum vxge_hw_status status = VXGE_HW_OK;
1914
1915        if (vp == NULL) {
1916                status = VXGE_HW_ERR_INVALID_HANDLE;
1917                goto exit;
1918        }
1919
1920        status = __vxge_hw_vpath_rts_table_set(vp,
1921                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1922                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1923                        0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1924exit:
1925        return status;
1926}
1927
1928/**
1929 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1930 *               to vlan id table.
1931 * @vp: Vpath handle.
1932 * @vid: vlan id to be added for this vpath into the list
1933 *
1934 * Adds the given vlan id into the list for this  vpath.
1935 * see also: vxge_hw_vpath_vid_add
1936 *
1937 */
1938enum vxge_hw_status
1939vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1940{
1941        enum vxge_hw_status status = VXGE_HW_OK;
1942
1943        if (vp == NULL) {
1944                status = VXGE_HW_ERR_INVALID_HANDLE;
1945                goto exit;
1946        }
1947
1948        status = __vxge_hw_vpath_rts_table_set(vp,
1949                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1950                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1951                        0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1952exit:
1953        return status;
1954}
1955
1956/**
1957 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1958 * @vp: Vpath handle.
1959 *
1960 * Enable promiscuous mode of Titan-e operation.
1961 *
1962 * See also: vxge_hw_vpath_promisc_disable().
1963 */
1964enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1965                        struct __vxge_hw_vpath_handle *vp)
1966{
1967        u64 val64;
1968        struct __vxge_hw_virtualpath *vpath;
1969        enum vxge_hw_status status = VXGE_HW_OK;
1970
1971        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1972                status = VXGE_HW_ERR_INVALID_HANDLE;
1973                goto exit;
1974        }
1975
1976        vpath = vp->vpath;
1977
1978        /* Enable promiscuous mode for function 0 only */
1979        if (!(vpath->hldev->access_rights &
1980                VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1981                return VXGE_HW_OK;
1982
1983        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1984
1985        if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1986
1987                val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1988                         VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1989                         VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1990                         VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1991
1992                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1993        }
1994exit:
1995        return status;
1996}
1997
1998/**
1999 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2000 * @vp: Vpath handle.
2001 *
2002 * Disable promiscuous mode of Titan-e operation.
2003 *
2004 * See also: vxge_hw_vpath_promisc_enable().
2005 */
2006enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2007                        struct __vxge_hw_vpath_handle *vp)
2008{
2009        u64 val64;
2010        struct __vxge_hw_virtualpath *vpath;
2011        enum vxge_hw_status status = VXGE_HW_OK;
2012
2013        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2014                status = VXGE_HW_ERR_INVALID_HANDLE;
2015                goto exit;
2016        }
2017
2018        vpath = vp->vpath;
2019
2020        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2021
2022        if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2023
2024                val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2025                           VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2026                           VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2027
2028                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2029        }
2030exit:
2031        return status;
2032}
2033
2034/*
2035 * vxge_hw_vpath_bcast_enable - Enable broadcast
2036 * @vp: Vpath handle.
2037 *
2038 * Enable receiving broadcasts.
2039 */
2040enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2041                        struct __vxge_hw_vpath_handle *vp)
2042{
2043        u64 val64;
2044        struct __vxge_hw_virtualpath *vpath;
2045        enum vxge_hw_status status = VXGE_HW_OK;
2046
2047        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2048                status = VXGE_HW_ERR_INVALID_HANDLE;
2049                goto exit;
2050        }
2051
2052        vpath = vp->vpath;
2053
2054        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2055
2056        if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2057                val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2058                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2059        }
2060exit:
2061        return status;
2062}
2063
2064/**
2065 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2066 * @vp: Vpath handle.
2067 *
2068 * Enable Titan-e multicast addresses.
2069 * Returns: VXGE_HW_OK on success.
2070 *
2071 */
2072enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2073                        struct __vxge_hw_vpath_handle *vp)
2074{
2075        u64 val64;
2076        struct __vxge_hw_virtualpath *vpath;
2077        enum vxge_hw_status status = VXGE_HW_OK;
2078
2079        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2080                status = VXGE_HW_ERR_INVALID_HANDLE;
2081                goto exit;
2082        }
2083
2084        vpath = vp->vpath;
2085
2086        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2087
2088        if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2089                val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2090                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2091        }
2092exit:
2093        return status;
2094}
2095
2096/**
2097 * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2098 * @vp: Vpath handle.
2099 *
2100 * Disable Titan-e multicast addresses.
2101 * Returns: VXGE_HW_OK - success.
2102 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2103 *
2104 */
2105enum vxge_hw_status
2106vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2107{
2108        u64 val64;
2109        struct __vxge_hw_virtualpath *vpath;
2110        enum vxge_hw_status status = VXGE_HW_OK;
2111
2112        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2113                status = VXGE_HW_ERR_INVALID_HANDLE;
2114                goto exit;
2115        }
2116
2117        vpath = vp->vpath;
2118
2119        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2120
2121        if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2122                val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2123                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2124        }
2125exit:
2126        return status;
2127}
2128
2129/*
2130 * vxge_hw_vpath_alarm_process - Process Alarms.
2131 * @vpath: Virtual Path.
2132 * @skip_alarms: Do not clear the alarms
2133 *
2134 * Process vpath alarms.
2135 *
2136 */
2137enum vxge_hw_status vxge_hw_vpath_alarm_process(
2138                        struct __vxge_hw_vpath_handle *vp,
2139                        u32 skip_alarms)
2140{
2141        enum vxge_hw_status status = VXGE_HW_OK;
2142
2143        if (vp == NULL) {
2144                status = VXGE_HW_ERR_INVALID_HANDLE;
2145                goto exit;
2146        }
2147
2148        status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2149exit:
2150        return status;
2151}
2152
2153/**
2154 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2155 *                            alrms
2156 * @vp: Virtual Path handle.
2157 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2158 *             interrupts(Can be repeated). If fifo or ring are not enabled
2159 *             the MSIX vector for that should be set to 0
2160 * @alarm_msix_id: MSIX vector for alarm.
2161 *
2162 * This API will associate a given MSIX vector numbers with the four TIM
2163 * interrupts and alarm interrupt.
2164 */
2165void
2166vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2167                       int alarm_msix_id)
2168{
2169        u64 val64;
2170        struct __vxge_hw_virtualpath *vpath = vp->vpath;
2171        struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2172        u32 vp_id = vp->vpath->vp_id;
2173
2174        val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2175                  (vp_id * 4) + tim_msix_id[0]) |
2176                 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2177                  (vp_id * 4) + tim_msix_id[1]);
2178
2179        writeq(val64, &vp_reg->interrupt_cfg0);
2180
2181        writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2182                        (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2183                        &vp_reg->interrupt_cfg2);
2184
2185        if (vpath->hldev->config.intr_mode ==
2186                                        VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2187                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2188                                VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2189                                0, 32), &vp_reg->one_shot_vect0_en);
2190                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2191                                VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2192                                0, 32), &vp_reg->one_shot_vect1_en);
2193                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2194                                VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2195                                0, 32), &vp_reg->one_shot_vect2_en);
2196        }
2197}
2198
2199/**
2200 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2201 * @vp: Virtual Path handle.
2202 * @msix_id:  MSIX ID
2203 *
2204 * The function masks the msix interrupt for the given msix_id
2205 *
2206 * Returns: 0,
2207 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2208 * status.
2209 * See also:
2210 */
2211void
2212vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2213{
2214        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2215        __vxge_hw_pio_mem_write32_upper(
2216                (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2217                &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2218}
2219
2220/**
2221 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2222 * @vp: Virtual Path handle.
2223 * @msix_id:  MSI ID
2224 *
2225 * The function clears the msix interrupt for the given msix_id
2226 *
2227 * Returns: 0,
2228 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2229 * status.
2230 * See also:
2231 */
2232void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2233{
2234        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2235
2236        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT)
2237                __vxge_hw_pio_mem_write32_upper(
2238                        (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2239                        &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2240        else
2241                __vxge_hw_pio_mem_write32_upper(
2242                        (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2243                        &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2244}
2245
2246/**
2247 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2248 * @vp: Virtual Path handle.
2249 * @msix_id:  MSI ID
2250 *
2251 * The function unmasks the msix interrupt for the given msix_id
2252 *
2253 * Returns: 0,
2254 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2255 * status.
2256 * See also:
2257 */
2258void
2259vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2260{
2261        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2262        __vxge_hw_pio_mem_write32_upper(
2263                        (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2264                        &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2265}
2266
2267/**
2268 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2269 * @vp: Virtual Path handle.
2270 *
2271 * Mask Tx and Rx vpath interrupts.
2272 *
2273 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2274 */
2275void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2276{
2277        u64     tim_int_mask0[4] = {[0 ...3] = 0};
2278        u32     tim_int_mask1[4] = {[0 ...3] = 0};
2279        u64     val64;
2280        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2281
2282        VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2283                tim_int_mask1, vp->vpath->vp_id);
2284
2285        val64 = readq(&hldev->common_reg->tim_int_mask0);
2286
2287        if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2288                (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2289                writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2290                        tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2291                        &hldev->common_reg->tim_int_mask0);
2292        }
2293
2294        val64 = readl(&hldev->common_reg->tim_int_mask1);
2295
2296        if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2297                (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2298                __vxge_hw_pio_mem_write32_upper(
2299                        (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2300                        tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2301                        &hldev->common_reg->tim_int_mask1);
2302        }
2303}
2304
2305/**
2306 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2307 * @vp: Virtual Path handle.
2308 *
2309 * Unmask Tx and Rx vpath interrupts.
2310 *
2311 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2312 */
2313void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2314{
2315        u64     tim_int_mask0[4] = {[0 ...3] = 0};
2316        u32     tim_int_mask1[4] = {[0 ...3] = 0};
2317        u64     val64;
2318        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2319
2320        VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2321                tim_int_mask1, vp->vpath->vp_id);
2322
2323        val64 = readq(&hldev->common_reg->tim_int_mask0);
2324
2325        if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2326           (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2327                writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2328                        tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2329                        &hldev->common_reg->tim_int_mask0);
2330        }
2331
2332        if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2333           (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2334                __vxge_hw_pio_mem_write32_upper(
2335                        (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2336                          tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2337                        &hldev->common_reg->tim_int_mask1);
2338        }
2339}
2340
2341/**
2342 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2343 * descriptors and process the same.
2344 * @ring: Handle to the ring object used for receive
2345 *
2346 * The function polls the Rx for the completed  descriptors and calls
2347 * the driver via supplied completion   callback.
2348 *
2349 * Returns: VXGE_HW_OK, if the polling is completed successful.
2350 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2351 * descriptors available which are yet to be processed.
2352 *
2353 * See also: vxge_hw_vpath_poll_rx()
2354 */
2355enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2356{
2357        u8 t_code;
2358        enum vxge_hw_status status = VXGE_HW_OK;
2359        void *first_rxdh;
2360        int new_count = 0;
2361
2362        ring->cmpl_cnt = 0;
2363
2364        status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2365        if (status == VXGE_HW_OK)
2366                ring->callback(ring, first_rxdh,
2367                        t_code, ring->channel.userdata);
2368
2369        if (ring->cmpl_cnt != 0) {
2370                ring->doorbell_cnt += ring->cmpl_cnt;
2371                if (ring->doorbell_cnt >= ring->rxds_limit) {
2372                        /*
2373                         * Each RxD is of 4 qwords, update the number of
2374                         * qwords replenished
2375                         */
2376                        new_count = (ring->doorbell_cnt * 4);
2377
2378                        /* For each block add 4 more qwords */
2379                        ring->total_db_cnt += ring->doorbell_cnt;
2380                        if (ring->total_db_cnt >= ring->rxds_per_block) {
2381                                new_count += 4;
2382                                /* Reset total count */
2383                                ring->total_db_cnt %= ring->rxds_per_block;
2384                        }
2385                        writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2386                                &ring->vp_reg->prc_rxd_doorbell);
2387                        readl(&ring->common_reg->titan_general_int_status);
2388                        ring->doorbell_cnt = 0;
2389                }
2390        }
2391
2392        return status;
2393}
2394
2395/**
2396 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process the same.
2397 * @fifo: Handle to the fifo object used for non offload send
2398 * @skb_ptr: pointer to skb
2399 * @nr_skb: number of skbs
2400 * @more: more is coming
2401 *
2402 * The function polls the Tx for the completed descriptors and calls
2403 * the driver via supplied completion callback.
2404 *
2405 * Returns: VXGE_HW_OK, if the polling is completed successful.
2406 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2407 * descriptors available which are yet to be processed.
2408 */
2409enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2410                                        struct sk_buff ***skb_ptr, int nr_skb,
2411                                        int *more)
2412{
2413        enum vxge_hw_fifo_tcode t_code;
2414        void *first_txdlh;
2415        enum vxge_hw_status status = VXGE_HW_OK;
2416        struct __vxge_hw_channel *channel;
2417
2418        channel = &fifo->channel;
2419
2420        status = vxge_hw_fifo_txdl_next_completed(fifo,
2421                                &first_txdlh, &t_code);
2422        if (status == VXGE_HW_OK)
2423                if (fifo->callback(fifo, first_txdlh, t_code,
2424                        channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2425                        status = VXGE_HW_COMPLETIONS_REMAIN;
2426
2427        return status;
2428}
2429