linux/drivers/net/ethernet/sis/sis900.c
<<
>>
Prefs
   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:    1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/sched.h>
  56#include <linux/string.h>
  57#include <linux/timer.h>
  58#include <linux/errno.h>
  59#include <linux/ioport.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/pci.h>
  63#include <linux/netdevice.h>
  64#include <linux/init.h>
  65#include <linux/mii.h>
  66#include <linux/etherdevice.h>
  67#include <linux/skbuff.h>
  68#include <linux/delay.h>
  69#include <linux/ethtool.h>
  70#include <linux/crc32.h>
  71#include <linux/bitops.h>
  72#include <linux/dma-mapping.h>
  73
  74#include <asm/processor.h>      /* Processor type for cache alignment. */
  75#include <asm/io.h>
  76#include <asm/irq.h>
  77#include <linux/uaccess.h>      /* User space memory access functions */
  78
  79#include "sis900.h"
  80
  81#define SIS900_MODULE_NAME "sis900"
  82#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  83
  84static const char version[] =
  85        KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  86
  87static int max_interrupt_work = 40;
  88static int multicast_filter_limit = 128;
  89
  90static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  91
  92#define SIS900_DEF_MSG \
  93        (NETIF_MSG_DRV          | \
  94         NETIF_MSG_LINK         | \
  95         NETIF_MSG_RX_ERR       | \
  96         NETIF_MSG_TX_ERR)
  97
  98/* Time in jiffies before concluding the transmitter is hung. */
  99#define TX_TIMEOUT  (4*HZ)
 100
 101enum {
 102        SIS_900 = 0,
 103        SIS_7016
 104};
 105static const char * card_names[] = {
 106        "SiS 900 PCI Fast Ethernet",
 107        "SiS 7016 PCI Fast Ethernet"
 108};
 109
 110static const struct pci_device_id sis900_pci_tbl[] = {
 111        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 112         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 113        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 114         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 115        {0,}
 116};
 117MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 118
 119static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 120
 121static const struct mii_chip_info {
 122        const char * name;
 123        u16 phy_id0;
 124        u16 phy_id1;
 125        u8  phy_types;
 126#define HOME    0x0001
 127#define LAN     0x0002
 128#define MIX     0x0003
 129#define UNKNOWN 0x0
 130} mii_chip_table[] = {
 131        { "SiS 900 Internal MII PHY",           0x001d, 0x8000, LAN },
 132        { "SiS 7014 Physical Layer Solution",   0x0016, 0xf830, LAN },
 133        { "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 134        { "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 135        { "ADM 7001 LAN PHY",                   0x002e, 0xcc60, LAN },
 136        { "AMD 79C901 10BASE-T PHY",            0x0000, 0x6B70, LAN },
 137        { "AMD 79C901 HomePNA PHY",             0x0000, 0x6B90, HOME},
 138        { "ICS LAN PHY",                        0x0015, 0xF440, LAN },
 139        { "ICS LAN PHY",                        0x0143, 0xBC70, LAN },
 140        { "NS 83851 PHY",                       0x2000, 0x5C20, MIX },
 141        { "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 142        { "Realtek RTL8201 PHY",                0x0000, 0x8200, LAN },
 143        { "VIA 6103 PHY",                       0x0101, 0x8f20, LAN },
 144        {NULL,},
 145};
 146
 147struct mii_phy {
 148        struct mii_phy * next;
 149        int phy_addr;
 150        u16 phy_id0;
 151        u16 phy_id1;
 152        u16 status;
 153        u8  phy_types;
 154};
 155
 156typedef struct _BufferDesc {
 157        u32 link;
 158        u32 cmdsts;
 159        u32 bufptr;
 160} BufferDesc;
 161
 162struct sis900_private {
 163        struct pci_dev * pci_dev;
 164
 165        spinlock_t lock;
 166
 167        struct mii_phy * mii;
 168        struct mii_phy * first_mii; /* record the first mii structure */
 169        unsigned int cur_phy;
 170        struct mii_if_info mii_info;
 171
 172        void __iomem    *ioaddr;
 173
 174        struct timer_list timer; /* Link status detection timer. */
 175        u8 autong_complete; /* 1: auto-negotiate complete  */
 176
 177        u32 msg_enable;
 178
 179        unsigned int cur_rx, dirty_rx; /* producer/consumer pointers for Tx/Rx ring */
 180        unsigned int cur_tx, dirty_tx;
 181
 182        /* The saved address of a sent/receive-in-place packet buffer */
 183        struct sk_buff *tx_skbuff[NUM_TX_DESC];
 184        struct sk_buff *rx_skbuff[NUM_RX_DESC];
 185        BufferDesc *tx_ring;
 186        BufferDesc *rx_ring;
 187
 188        dma_addr_t tx_ring_dma;
 189        dma_addr_t rx_ring_dma;
 190
 191        unsigned int tx_full; /* The Tx queue is full. */
 192        u8 host_bridge_rev;
 193        u8 chipset_rev;
 194        /* EEPROM data */
 195        int eeprom_size;
 196};
 197
 198MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 199MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 200MODULE_LICENSE("GPL");
 201
 202module_param(multicast_filter_limit, int, 0444);
 203module_param(max_interrupt_work, int, 0444);
 204module_param(sis900_debug, int, 0444);
 205MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 206MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 207MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 208
 209#define sw32(reg, val)  iowrite32(val, ioaddr + (reg))
 210#define sw8(reg, val)   iowrite8(val, ioaddr + (reg))
 211#define sr32(reg)       ioread32(ioaddr + (reg))
 212#define sr16(reg)       ioread16(ioaddr + (reg))
 213
 214#ifdef CONFIG_NET_POLL_CONTROLLER
 215static void sis900_poll(struct net_device *dev);
 216#endif
 217static int sis900_open(struct net_device *net_dev);
 218static int sis900_mii_probe (struct net_device * net_dev);
 219static void sis900_init_rxfilter (struct net_device * net_dev);
 220static u16 read_eeprom(void __iomem *ioaddr, int location);
 221static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 222static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 223static void sis900_timer(struct timer_list *t);
 224static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 225static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue);
 226static void sis900_init_tx_ring(struct net_device *net_dev);
 227static void sis900_init_rx_ring(struct net_device *net_dev);
 228static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
 229                                     struct net_device *net_dev);
 230static int sis900_rx(struct net_device *net_dev);
 231static void sis900_finish_xmit (struct net_device *net_dev);
 232static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 233static int sis900_close(struct net_device *net_dev);
 234static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 235static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 236static void set_rx_mode(struct net_device *net_dev);
 237static void sis900_reset(struct net_device *net_dev);
 238static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 239static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 240static u16 sis900_default_phy(struct net_device * net_dev);
 241static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 242static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 243static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 244static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
 245static const struct ethtool_ops sis900_ethtool_ops;
 246
 247/**
 248 *      sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 249 *      @pci_dev: the sis900 pci device
 250 *      @net_dev: the net device to get address for
 251 *
 252 *      Older SiS900 and friends, use EEPROM to store MAC address.
 253 *      MAC address is read from read_eeprom() into @net_dev->dev_addr.
 254 */
 255
 256static int sis900_get_mac_addr(struct pci_dev *pci_dev,
 257                               struct net_device *net_dev)
 258{
 259        struct sis900_private *sis_priv = netdev_priv(net_dev);
 260        void __iomem *ioaddr = sis_priv->ioaddr;
 261        u16 addr[ETH_ALEN / 2];
 262        u16 signature;
 263        int i;
 264
 265        /* check to see if we have sane EEPROM */
 266        signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 267        if (signature == 0xffff || signature == 0x0000) {
 268                printk (KERN_WARNING "%s: Error EEPROM read %x\n",
 269                        pci_name(pci_dev), signature);
 270                return 0;
 271        }
 272
 273        /* get MAC address from EEPROM */
 274        for (i = 0; i < 3; i++)
 275                addr[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 276        eth_hw_addr_set(net_dev, (u8 *)addr);
 277
 278        return 1;
 279}
 280
 281/**
 282 *      sis630e_get_mac_addr - Get MAC address for SiS630E model
 283 *      @pci_dev: the sis900 pci device
 284 *      @net_dev: the net device to get address for
 285 *
 286 *      SiS630E model, use APC CMOS RAM to store MAC address.
 287 *      APC CMOS RAM is accessed through ISA bridge.
 288 *      MAC address is read into @net_dev->dev_addr.
 289 */
 290
 291static int sis630e_get_mac_addr(struct pci_dev *pci_dev,
 292                                struct net_device *net_dev)
 293{
 294        struct pci_dev *isa_bridge = NULL;
 295        u8 addr[ETH_ALEN];
 296        u8 reg;
 297        int i;
 298
 299        isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 300        if (!isa_bridge)
 301                isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 302        if (!isa_bridge) {
 303                printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 304                       pci_name(pci_dev));
 305                return 0;
 306        }
 307        pci_read_config_byte(isa_bridge, 0x48, &reg);
 308        pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 309
 310        for (i = 0; i < 6; i++) {
 311                outb(0x09 + i, 0x70);
 312                addr[i] = inb(0x71);
 313        }
 314        eth_hw_addr_set(net_dev, addr);
 315
 316        pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 317        pci_dev_put(isa_bridge);
 318
 319        return 1;
 320}
 321
 322
 323/**
 324 *      sis635_get_mac_addr - Get MAC address for SIS635 model
 325 *      @pci_dev: the sis900 pci device
 326 *      @net_dev: the net device to get address for
 327 *
 328 *      SiS635 model, set MAC Reload Bit to load Mac address from APC
 329 *      to rfdr. rfdr is accessed through rfcr. MAC address is read into
 330 *      @net_dev->dev_addr.
 331 */
 332
 333static int sis635_get_mac_addr(struct pci_dev *pci_dev,
 334                               struct net_device *net_dev)
 335{
 336        struct sis900_private *sis_priv = netdev_priv(net_dev);
 337        void __iomem *ioaddr = sis_priv->ioaddr;
 338        u16 addr[ETH_ALEN / 2];
 339        u32 rfcrSave;
 340        u32 i;
 341
 342        rfcrSave = sr32(rfcr);
 343
 344        sw32(cr, rfcrSave | RELOAD);
 345        sw32(cr, 0);
 346
 347        /* disable packet filtering before setting filter */
 348        sw32(rfcr, rfcrSave & ~RFEN);
 349
 350        /* load MAC addr to filter data register */
 351        for (i = 0 ; i < 3 ; i++) {
 352                sw32(rfcr, (i << RFADDR_shift));
 353                addr[i] = sr16(rfdr);
 354        }
 355        eth_hw_addr_set(net_dev, (u8 *)addr);
 356
 357        /* enable packet filtering */
 358        sw32(rfcr, rfcrSave | RFEN);
 359
 360        return 1;
 361}
 362
 363/**
 364 *      sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 365 *      @pci_dev: the sis900 pci device
 366 *      @net_dev: the net device to get address for
 367 *
 368 *      SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 369 *      is shared by
 370 *      LAN and 1394. When accessing EEPROM, send EEREQ signal to hardware first
 371 *      and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be accessed
 372 *      by LAN, otherwise it is not. After MAC address is read from EEPROM, send
 373 *      EEDONE signal to refuse EEPROM access by LAN.
 374 *      The EEPROM map of SiS962 or SiS963 is different to SiS900.
 375 *      The signature field in SiS962 or SiS963 spec is meaningless.
 376 *      MAC address is read into @net_dev->dev_addr.
 377 */
 378
 379static int sis96x_get_mac_addr(struct pci_dev *pci_dev,
 380                               struct net_device *net_dev)
 381{
 382        struct sis900_private *sis_priv = netdev_priv(net_dev);
 383        void __iomem *ioaddr = sis_priv->ioaddr;
 384        u16 addr[ETH_ALEN / 2];
 385        int wait, rc = 0;
 386
 387        sw32(mear, EEREQ);
 388        for (wait = 0; wait < 2000; wait++) {
 389                if (sr32(mear) & EEGNT) {
 390                        int i;
 391
 392                        /* get MAC address from EEPROM */
 393                        for (i = 0; i < 3; i++)
 394                                addr[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
 395                        eth_hw_addr_set(net_dev, (u8 *)addr);
 396
 397                        rc = 1;
 398                        break;
 399                }
 400                udelay(1);
 401        }
 402        sw32(mear, EEDONE);
 403        return rc;
 404}
 405
 406static const struct net_device_ops sis900_netdev_ops = {
 407        .ndo_open                = sis900_open,
 408        .ndo_stop               = sis900_close,
 409        .ndo_start_xmit         = sis900_start_xmit,
 410        .ndo_set_config         = sis900_set_config,
 411        .ndo_set_rx_mode        = set_rx_mode,
 412        .ndo_validate_addr      = eth_validate_addr,
 413        .ndo_set_mac_address    = eth_mac_addr,
 414        .ndo_eth_ioctl          = mii_ioctl,
 415        .ndo_tx_timeout         = sis900_tx_timeout,
 416#ifdef CONFIG_NET_POLL_CONTROLLER
 417        .ndo_poll_controller    = sis900_poll,
 418#endif
 419};
 420
 421/**
 422 *      sis900_probe - Probe for sis900 device
 423 *      @pci_dev: the sis900 pci device
 424 *      @pci_id: the pci device ID
 425 *
 426 *      Check and probe sis900 net device for @pci_dev.
 427 *      Get mac address according to the chip revision,
 428 *      and assign SiS900-specific entries in the device structure.
 429 *      ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 430 */
 431
 432static int sis900_probe(struct pci_dev *pci_dev,
 433                        const struct pci_device_id *pci_id)
 434{
 435        struct sis900_private *sis_priv;
 436        struct net_device *net_dev;
 437        struct pci_dev *dev;
 438        dma_addr_t ring_dma;
 439        void *ring_space;
 440        void __iomem *ioaddr;
 441        int i, ret;
 442        const char *card_name = card_names[pci_id->driver_data];
 443        const char *dev_name = pci_name(pci_dev);
 444
 445/* when built into the kernel, we only print version if device is found */
 446#ifndef MODULE
 447        static int printed_version;
 448        if (!printed_version++)
 449                printk(version);
 450#endif
 451
 452        /* setup various bits in PCI command register */
 453        ret = pcim_enable_device(pci_dev);
 454        if(ret) return ret;
 455
 456        i = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
 457        if(i){
 458                printk(KERN_ERR "sis900.c: architecture does not support "
 459                        "32bit PCI busmaster DMA\n");
 460                return i;
 461        }
 462
 463        pci_set_master(pci_dev);
 464
 465        net_dev = alloc_etherdev(sizeof(struct sis900_private));
 466        if (!net_dev)
 467                return -ENOMEM;
 468        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 469
 470        /* We do a request_region() to register /proc/ioports info. */
 471        ret = pci_request_regions(pci_dev, "sis900");
 472        if (ret)
 473                goto err_out;
 474
 475        /* IO region. */
 476        ioaddr = pci_iomap(pci_dev, 0, 0);
 477        if (!ioaddr) {
 478                ret = -ENOMEM;
 479                goto err_out;
 480        }
 481
 482        sis_priv = netdev_priv(net_dev);
 483        sis_priv->ioaddr = ioaddr;
 484        sis_priv->pci_dev = pci_dev;
 485        spin_lock_init(&sis_priv->lock);
 486
 487        sis_priv->eeprom_size = 24;
 488
 489        pci_set_drvdata(pci_dev, net_dev);
 490
 491        ring_space = dma_alloc_coherent(&pci_dev->dev, TX_TOTAL_SIZE,
 492                                        &ring_dma, GFP_KERNEL);
 493        if (!ring_space) {
 494                ret = -ENOMEM;
 495                goto err_out_unmap;
 496        }
 497        sis_priv->tx_ring = ring_space;
 498        sis_priv->tx_ring_dma = ring_dma;
 499
 500        ring_space = dma_alloc_coherent(&pci_dev->dev, RX_TOTAL_SIZE,
 501                                        &ring_dma, GFP_KERNEL);
 502        if (!ring_space) {
 503                ret = -ENOMEM;
 504                goto err_unmap_tx;
 505        }
 506        sis_priv->rx_ring = ring_space;
 507        sis_priv->rx_ring_dma = ring_dma;
 508
 509        /* The SiS900-specific entries in the device structure. */
 510        net_dev->netdev_ops = &sis900_netdev_ops;
 511        net_dev->watchdog_timeo = TX_TIMEOUT;
 512        net_dev->ethtool_ops = &sis900_ethtool_ops;
 513
 514        if (sis900_debug > 0)
 515                sis_priv->msg_enable = sis900_debug;
 516        else
 517                sis_priv->msg_enable = SIS900_DEF_MSG;
 518
 519        sis_priv->mii_info.dev = net_dev;
 520        sis_priv->mii_info.mdio_read = mdio_read;
 521        sis_priv->mii_info.mdio_write = mdio_write;
 522        sis_priv->mii_info.phy_id_mask = 0x1f;
 523        sis_priv->mii_info.reg_num_mask = 0x1f;
 524
 525        /* Get Mac address according to the chip revision */
 526        sis_priv->chipset_rev = pci_dev->revision;
 527        if(netif_msg_probe(sis_priv))
 528                printk(KERN_DEBUG "%s: detected revision %2.2x, "
 529                                "trying to get MAC address...\n",
 530                                dev_name, sis_priv->chipset_rev);
 531
 532        ret = 0;
 533        if (sis_priv->chipset_rev == SIS630E_900_REV)
 534                ret = sis630e_get_mac_addr(pci_dev, net_dev);
 535        else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 536                ret = sis635_get_mac_addr(pci_dev, net_dev);
 537        else if (sis_priv->chipset_rev == SIS96x_900_REV)
 538                ret = sis96x_get_mac_addr(pci_dev, net_dev);
 539        else
 540                ret = sis900_get_mac_addr(pci_dev, net_dev);
 541
 542        if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
 543                eth_hw_addr_random(net_dev);
 544                printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
 545                                "using random generated one\n", dev_name);
 546        }
 547
 548        /* 630ET : set the mii access mode as software-mode */
 549        if (sis_priv->chipset_rev == SIS630ET_900_REV)
 550                sw32(cr, ACCESSMODE | sr32(cr));
 551
 552        /* probe for mii transceiver */
 553        if (sis900_mii_probe(net_dev) == 0) {
 554                printk(KERN_WARNING "%s: Error probing MII device.\n",
 555                       dev_name);
 556                ret = -ENODEV;
 557                goto err_unmap_rx;
 558        }
 559
 560        /* save our host bridge revision */
 561        dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 562        if (dev) {
 563                sis_priv->host_bridge_rev = dev->revision;
 564                pci_dev_put(dev);
 565        }
 566
 567        ret = register_netdev(net_dev);
 568        if (ret)
 569                goto err_unmap_rx;
 570
 571        /* print some information about our NIC */
 572        printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
 573               net_dev->name, card_name, ioaddr, pci_dev->irq,
 574               net_dev->dev_addr);
 575
 576        /* Detect Wake on Lan support */
 577        ret = (sr32(CFGPMC) & PMESP) >> 27;
 578        if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 579                printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 580
 581        return 0;
 582
 583err_unmap_rx:
 584        dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 585                          sis_priv->rx_ring_dma);
 586err_unmap_tx:
 587        dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 588                          sis_priv->tx_ring_dma);
 589err_out_unmap:
 590        pci_iounmap(pci_dev, ioaddr);
 591 err_out:
 592        free_netdev(net_dev);
 593        return ret;
 594}
 595
 596/**
 597 *      sis900_mii_probe - Probe MII PHY for sis900
 598 *      @net_dev: the net device to probe for
 599 *
 600 *      Search for total of 32 possible mii phy addresses.
 601 *      Identify and set current phy if found one,
 602 *      return error if it failed to found.
 603 */
 604
 605static int sis900_mii_probe(struct net_device *net_dev)
 606{
 607        struct sis900_private *sis_priv = netdev_priv(net_dev);
 608        const char *dev_name = pci_name(sis_priv->pci_dev);
 609        u16 poll_bit = MII_STAT_LINK, status = 0;
 610        unsigned long timeout = jiffies + 5 * HZ;
 611        int phy_addr;
 612
 613        sis_priv->mii = NULL;
 614
 615        /* search for total of 32 possible mii phy addresses */
 616        for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 617                struct mii_phy * mii_phy = NULL;
 618                u16 mii_status;
 619                int i;
 620
 621                mii_phy = NULL;
 622                for(i = 0; i < 2; i++)
 623                        mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 624
 625                if (mii_status == 0xffff || mii_status == 0x0000) {
 626                        if (netif_msg_probe(sis_priv))
 627                                printk(KERN_DEBUG "%s: MII at address %d"
 628                                                " not accessible\n",
 629                                                dev_name, phy_addr);
 630                        continue;
 631                }
 632
 633                if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 634                        mii_phy = sis_priv->first_mii;
 635                        while (mii_phy) {
 636                                struct mii_phy *phy;
 637                                phy = mii_phy;
 638                                mii_phy = mii_phy->next;
 639                                kfree(phy);
 640                        }
 641                        return 0;
 642                }
 643
 644                mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 645                mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 646                mii_phy->phy_addr = phy_addr;
 647                mii_phy->status = mii_status;
 648                mii_phy->next = sis_priv->mii;
 649                sis_priv->mii = mii_phy;
 650                sis_priv->first_mii = mii_phy;
 651
 652                for (i = 0; mii_chip_table[i].phy_id1; i++)
 653                        if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 654                            ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 655                                mii_phy->phy_types = mii_chip_table[i].phy_types;
 656                                if (mii_chip_table[i].phy_types == MIX)
 657                                        mii_phy->phy_types =
 658                                            (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 659                                printk(KERN_INFO "%s: %s transceiver found "
 660                                                        "at address %d.\n",
 661                                                        dev_name,
 662                                                        mii_chip_table[i].name,
 663                                                        phy_addr);
 664                                break;
 665                        }
 666
 667                if( !mii_chip_table[i].phy_id1 ) {
 668                        printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 669                               dev_name, phy_addr);
 670                        mii_phy->phy_types = UNKNOWN;
 671                }
 672        }
 673
 674        if (sis_priv->mii == NULL) {
 675                printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 676                return 0;
 677        }
 678
 679        /* select default PHY for mac */
 680        sis_priv->mii = NULL;
 681        sis900_default_phy( net_dev );
 682
 683        /* Reset phy if default phy is internal sis900 */
 684        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 685            ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 686                status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 687
 688        /* workaround for ICS1893 PHY */
 689        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 690            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 691                mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 692
 693        if(status & MII_STAT_LINK){
 694                while (poll_bit) {
 695                        yield();
 696
 697                        poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 698                        if (time_after_eq(jiffies, timeout)) {
 699                                printk(KERN_WARNING "%s: reset phy and link down now\n",
 700                                       dev_name);
 701                                return -ETIME;
 702                        }
 703                }
 704        }
 705
 706        if (sis_priv->chipset_rev == SIS630E_900_REV) {
 707                /* SiS 630E has some bugs on default value of PHY registers */
 708                mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 709                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 710                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 711                mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 712                //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 713        }
 714
 715        if (sis_priv->mii->status & MII_STAT_LINK)
 716                netif_carrier_on(net_dev);
 717        else
 718                netif_carrier_off(net_dev);
 719
 720        return 1;
 721}
 722
 723/**
 724 *      sis900_default_phy - Select default PHY for sis900 mac.
 725 *      @net_dev: the net device to probe for
 726 *
 727 *      Select first detected PHY with link as default.
 728 *      If no one is link on, select PHY whose types is HOME as default.
 729 *      If HOME doesn't exist, select LAN.
 730 */
 731
 732static u16 sis900_default_phy(struct net_device * net_dev)
 733{
 734        struct sis900_private *sis_priv = netdev_priv(net_dev);
 735        struct mii_phy *phy = NULL, *phy_home = NULL,
 736                *default_phy = NULL, *phy_lan = NULL;
 737        u16 status;
 738
 739        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 740                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 741                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 742
 743                /* Link ON & Not select default PHY & not ghost PHY */
 744                if ((status & MII_STAT_LINK) && !default_phy &&
 745                    (phy->phy_types != UNKNOWN)) {
 746                        default_phy = phy;
 747                } else {
 748                        status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 749                        mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 750                                status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 751                        if (phy->phy_types == HOME)
 752                                phy_home = phy;
 753                        else if(phy->phy_types == LAN)
 754                                phy_lan = phy;
 755                }
 756        }
 757
 758        if (!default_phy && phy_home)
 759                default_phy = phy_home;
 760        else if (!default_phy && phy_lan)
 761                default_phy = phy_lan;
 762        else if (!default_phy)
 763                default_phy = sis_priv->first_mii;
 764
 765        if (sis_priv->mii != default_phy) {
 766                sis_priv->mii = default_phy;
 767                sis_priv->cur_phy = default_phy->phy_addr;
 768                printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 769                       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 770        }
 771
 772        sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 773
 774        status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 775        status &= (~MII_CNTL_ISOLATE);
 776
 777        mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 778        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 779        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 780
 781        return status;
 782}
 783
 784
 785/**
 786 *      sis900_set_capability - set the media capability of network adapter.
 787 *      @net_dev : the net device to probe for
 788 *      @phy : default PHY
 789 *
 790 *      Set the media capability of network adapter according to
 791 *      mii status register. It's necessary before auto-negotiate.
 792 */
 793
 794static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 795{
 796        u16 cap;
 797
 798        mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 799        mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 800
 801        cap = MII_NWAY_CSMA_CD |
 802                ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 803                ((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 804                ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 805                ((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 806
 807        mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 808}
 809
 810
 811/* Delay between EEPROM clock transitions. */
 812#define eeprom_delay()  sr32(mear)
 813
 814/**
 815 *      read_eeprom - Read Serial EEPROM
 816 *      @ioaddr: base i/o address
 817 *      @location: the EEPROM location to read
 818 *
 819 *      Read Serial EEPROM through EEPROM Access Register.
 820 *      Note that location is in word (16 bits) unit
 821 */
 822
 823static u16 read_eeprom(void __iomem *ioaddr, int location)
 824{
 825        u32 read_cmd = location | EEread;
 826        int i;
 827        u16 retval = 0;
 828
 829        sw32(mear, 0);
 830        eeprom_delay();
 831        sw32(mear, EECS);
 832        eeprom_delay();
 833
 834        /* Shift the read command (9) bits out. */
 835        for (i = 8; i >= 0; i--) {
 836                u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 837
 838                sw32(mear, dataval);
 839                eeprom_delay();
 840                sw32(mear, dataval | EECLK);
 841                eeprom_delay();
 842        }
 843        sw32(mear, EECS);
 844        eeprom_delay();
 845
 846        /* read the 16-bits data in */
 847        for (i = 16; i > 0; i--) {
 848                sw32(mear, EECS);
 849                eeprom_delay();
 850                sw32(mear, EECS | EECLK);
 851                eeprom_delay();
 852                retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
 853                eeprom_delay();
 854        }
 855
 856        /* Terminate the EEPROM access. */
 857        sw32(mear, 0);
 858        eeprom_delay();
 859
 860        return retval;
 861}
 862
 863/* Read and write the MII management registers using software-generated
 864   serial MDIO protocol. Note that the command bits and data bits are
 865   send out separately */
 866#define mdio_delay()    sr32(mear)
 867
 868static void mdio_idle(struct sis900_private *sp)
 869{
 870        void __iomem *ioaddr = sp->ioaddr;
 871
 872        sw32(mear, MDIO | MDDIR);
 873        mdio_delay();
 874        sw32(mear, MDIO | MDDIR | MDC);
 875}
 876
 877/* Synchronize the MII management interface by shifting 32 one bits out. */
 878static void mdio_reset(struct sis900_private *sp)
 879{
 880        void __iomem *ioaddr = sp->ioaddr;
 881        int i;
 882
 883        for (i = 31; i >= 0; i--) {
 884                sw32(mear, MDDIR | MDIO);
 885                mdio_delay();
 886                sw32(mear, MDDIR | MDIO | MDC);
 887                mdio_delay();
 888        }
 889}
 890
 891/**
 892 *      mdio_read - read MII PHY register
 893 *      @net_dev: the net device to read
 894 *      @phy_id: the phy address to read
 895 *      @location: the phy register id to read
 896 *
 897 *      Read MII registers through MDIO and MDC
 898 *      using MDIO management frame structure and protocol(defined by ISO/IEC).
 899 *      Please see SiS7014 or ICS spec
 900 */
 901
 902static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 903{
 904        int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 905        struct sis900_private *sp = netdev_priv(net_dev);
 906        void __iomem *ioaddr = sp->ioaddr;
 907        u16 retval = 0;
 908        int i;
 909
 910        mdio_reset(sp);
 911        mdio_idle(sp);
 912
 913        for (i = 15; i >= 0; i--) {
 914                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 915
 916                sw32(mear, dataval);
 917                mdio_delay();
 918                sw32(mear, dataval | MDC);
 919                mdio_delay();
 920        }
 921
 922        /* Read the 16 data bits. */
 923        for (i = 16; i > 0; i--) {
 924                sw32(mear, 0);
 925                mdio_delay();
 926                retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
 927                sw32(mear, MDC);
 928                mdio_delay();
 929        }
 930        sw32(mear, 0x00);
 931
 932        return retval;
 933}
 934
 935/**
 936 *      mdio_write - write MII PHY register
 937 *      @net_dev: the net device to write
 938 *      @phy_id: the phy address to write
 939 *      @location: the phy register id to write
 940 *      @value: the register value to write with
 941 *
 942 *      Write MII registers with @value through MDIO and MDC
 943 *      using MDIO management frame structure and protocol(defined by ISO/IEC)
 944 *      please see SiS7014 or ICS spec
 945 */
 946
 947static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 948                        int value)
 949{
 950        int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 951        struct sis900_private *sp = netdev_priv(net_dev);
 952        void __iomem *ioaddr = sp->ioaddr;
 953        int i;
 954
 955        mdio_reset(sp);
 956        mdio_idle(sp);
 957
 958        /* Shift the command bits out. */
 959        for (i = 15; i >= 0; i--) {
 960                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 961
 962                sw8(mear, dataval);
 963                mdio_delay();
 964                sw8(mear, dataval | MDC);
 965                mdio_delay();
 966        }
 967        mdio_delay();
 968
 969        /* Shift the value bits out. */
 970        for (i = 15; i >= 0; i--) {
 971                int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 972
 973                sw32(mear, dataval);
 974                mdio_delay();
 975                sw32(mear, dataval | MDC);
 976                mdio_delay();
 977        }
 978        mdio_delay();
 979
 980        /* Clear out extra bits. */
 981        for (i = 2; i > 0; i--) {
 982                sw8(mear, 0);
 983                mdio_delay();
 984                sw8(mear, MDC);
 985                mdio_delay();
 986        }
 987        sw32(mear, 0x00);
 988}
 989
 990
 991/**
 992 *      sis900_reset_phy - reset sis900 mii phy.
 993 *      @net_dev: the net device to write
 994 *      @phy_addr: default phy address
 995 *
 996 *      Some specific phy can't work properly without reset.
 997 *      This function will be called during initialization and
 998 *      link status change from ON to DOWN.
 999 */
1000
1001static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1002{
1003        int i;
1004        u16 status;
1005
1006        for (i = 0; i < 2; i++)
1007                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1008
1009        mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1010
1011        return status;
1012}
1013
1014#ifdef CONFIG_NET_POLL_CONTROLLER
1015/*
1016 * Polling 'interrupt' - used by things like netconsole to send skbs
1017 * without having to re-enable interrupts. It's not called while
1018 * the interrupt routine is executing.
1019*/
1020static void sis900_poll(struct net_device *dev)
1021{
1022        struct sis900_private *sp = netdev_priv(dev);
1023        const int irq = sp->pci_dev->irq;
1024
1025        disable_irq(irq);
1026        sis900_interrupt(irq, dev);
1027        enable_irq(irq);
1028}
1029#endif
1030
1031/**
1032 *      sis900_open - open sis900 device
1033 *      @net_dev: the net device to open
1034 *
1035 *      Do some initialization and start net interface.
1036 *      enable interrupts and set sis900 timer.
1037 */
1038
1039static int
1040sis900_open(struct net_device *net_dev)
1041{
1042        struct sis900_private *sis_priv = netdev_priv(net_dev);
1043        void __iomem *ioaddr = sis_priv->ioaddr;
1044        int ret;
1045
1046        /* Soft reset the chip. */
1047        sis900_reset(net_dev);
1048
1049        /* Equalizer workaround Rule */
1050        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1051
1052        ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1053                          net_dev->name, net_dev);
1054        if (ret)
1055                return ret;
1056
1057        sis900_init_rxfilter(net_dev);
1058
1059        sis900_init_tx_ring(net_dev);
1060        sis900_init_rx_ring(net_dev);
1061
1062        set_rx_mode(net_dev);
1063
1064        netif_start_queue(net_dev);
1065
1066        /* Workaround for EDB */
1067        sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1068
1069        /* Enable all known interrupts by setting the interrupt mask. */
1070        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1071        sw32(cr, RxENA | sr32(cr));
1072        sw32(ier, IE);
1073
1074        sis900_check_mode(net_dev, sis_priv->mii);
1075
1076        /* Set the timer to switch to check for link beat and perhaps switch
1077           to an alternate media type. */
1078        timer_setup(&sis_priv->timer, sis900_timer, 0);
1079        sis_priv->timer.expires = jiffies + HZ;
1080        add_timer(&sis_priv->timer);
1081
1082        return 0;
1083}
1084
1085/**
1086 *      sis900_init_rxfilter - Initialize the Rx filter
1087 *      @net_dev: the net device to initialize for
1088 *
1089 *      Set receive filter address to our MAC address
1090 *      and enable packet filtering.
1091 */
1092
1093static void
1094sis900_init_rxfilter (struct net_device * net_dev)
1095{
1096        struct sis900_private *sis_priv = netdev_priv(net_dev);
1097        void __iomem *ioaddr = sis_priv->ioaddr;
1098        u32 rfcrSave;
1099        u32 i;
1100
1101        rfcrSave = sr32(rfcr);
1102
1103        /* disable packet filtering before setting filter */
1104        sw32(rfcr, rfcrSave & ~RFEN);
1105
1106        /* load MAC addr to filter data register */
1107        for (i = 0 ; i < 3 ; i++) {
1108                u32 w = (u32) *((const u16 *)(net_dev->dev_addr)+i);
1109
1110                sw32(rfcr, i << RFADDR_shift);
1111                sw32(rfdr, w);
1112
1113                if (netif_msg_hw(sis_priv)) {
1114                        printk(KERN_DEBUG "%s: Receive Filter Address[%d]=%x\n",
1115                               net_dev->name, i, sr32(rfdr));
1116                }
1117        }
1118
1119        /* enable packet filtering */
1120        sw32(rfcr, rfcrSave | RFEN);
1121}
1122
1123/**
1124 *      sis900_init_tx_ring - Initialize the Tx descriptor ring
1125 *      @net_dev: the net device to initialize for
1126 *
1127 *      Initialize the Tx descriptor ring,
1128 */
1129
1130static void
1131sis900_init_tx_ring(struct net_device *net_dev)
1132{
1133        struct sis900_private *sis_priv = netdev_priv(net_dev);
1134        void __iomem *ioaddr = sis_priv->ioaddr;
1135        int i;
1136
1137        sis_priv->tx_full = 0;
1138        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1139
1140        for (i = 0; i < NUM_TX_DESC; i++) {
1141                sis_priv->tx_skbuff[i] = NULL;
1142
1143                sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1144                        ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1145                sis_priv->tx_ring[i].cmdsts = 0;
1146                sis_priv->tx_ring[i].bufptr = 0;
1147        }
1148
1149        /* load Transmit Descriptor Register */
1150        sw32(txdp, sis_priv->tx_ring_dma);
1151        if (netif_msg_hw(sis_priv))
1152                printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1153                       net_dev->name, sr32(txdp));
1154}
1155
1156/**
1157 *      sis900_init_rx_ring - Initialize the Rx descriptor ring
1158 *      @net_dev: the net device to initialize for
1159 *
1160 *      Initialize the Rx descriptor ring,
1161 *      and pre-allocate receive buffers (socket buffer)
1162 */
1163
1164static void
1165sis900_init_rx_ring(struct net_device *net_dev)
1166{
1167        struct sis900_private *sis_priv = netdev_priv(net_dev);
1168        void __iomem *ioaddr = sis_priv->ioaddr;
1169        int i;
1170
1171        sis_priv->cur_rx = 0;
1172        sis_priv->dirty_rx = 0;
1173
1174        /* init RX descriptor */
1175        for (i = 0; i < NUM_RX_DESC; i++) {
1176                sis_priv->rx_skbuff[i] = NULL;
1177
1178                sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1179                        ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1180                sis_priv->rx_ring[i].cmdsts = 0;
1181                sis_priv->rx_ring[i].bufptr = 0;
1182        }
1183
1184        /* allocate sock buffers */
1185        for (i = 0; i < NUM_RX_DESC; i++) {
1186                struct sk_buff *skb;
1187
1188                if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1189                        /* not enough memory for skbuff, this makes a "hole"
1190                           on the buffer ring, it is not clear how the
1191                           hardware will react to this kind of degenerated
1192                           buffer */
1193                        break;
1194                }
1195                sis_priv->rx_skbuff[i] = skb;
1196                sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1197                sis_priv->rx_ring[i].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1198                                                             skb->data,
1199                                                             RX_BUF_SIZE,
1200                                                             DMA_FROM_DEVICE);
1201                if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1202                                               sis_priv->rx_ring[i].bufptr))) {
1203                        dev_kfree_skb(skb);
1204                        sis_priv->rx_skbuff[i] = NULL;
1205                        break;
1206                }
1207        }
1208        sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1209
1210        /* load Receive Descriptor Register */
1211        sw32(rxdp, sis_priv->rx_ring_dma);
1212        if (netif_msg_hw(sis_priv))
1213                printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1214                       net_dev->name, sr32(rxdp));
1215}
1216
1217/**
1218 *      sis630_set_eq - set phy equalizer value for 630 LAN
1219 *      @net_dev: the net device to set equalizer value
1220 *      @revision: 630 LAN revision number
1221 *
1222 *      630E equalizer workaround rule(Cyrus Huang 08/15)
1223 *      PHY register 14h(Test)
1224 *      Bit 14: 0 -- Automatically detect (default)
1225 *              1 -- Manually set Equalizer filter
1226 *      Bit 13: 0 -- (Default)
1227 *              1 -- Speed up convergence of equalizer setting
1228 *      Bit 9 : 0 -- (Default)
1229 *              1 -- Disable Baseline Wander
1230 *      Bit 3~7   -- Equalizer filter setting
1231 *      Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1232 *      Then calculate equalizer value
1233 *      Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1234 *      Link Off:Set Bit 13 to 1, Bit 14 to 0
1235 *      Calculate Equalizer value:
1236 *      When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1237 *      When the equalizer is stable, this value is not a fixed value. It will be within
1238 *      a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1239 *      0 <= max <= 4  --> set equalizer to max
1240 *      5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1241 *      max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1242 */
1243
1244static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1245{
1246        struct sis900_private *sis_priv = netdev_priv(net_dev);
1247        u16 reg14h, eq_value=0, max_value=0, min_value=0;
1248        int i, maxcount=10;
1249
1250        if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1251               revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1252                return;
1253
1254        if (netif_carrier_ok(net_dev)) {
1255                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1256                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1257                                        (0x2200 | reg14h) & 0xBFFF);
1258                for (i=0; i < maxcount; i++) {
1259                        eq_value = (0x00F8 & mdio_read(net_dev,
1260                                        sis_priv->cur_phy, MII_RESV)) >> 3;
1261                        if (i == 0)
1262                                max_value=min_value=eq_value;
1263                        max_value = (eq_value > max_value) ?
1264                                                eq_value : max_value;
1265                        min_value = (eq_value < min_value) ?
1266                                                eq_value : min_value;
1267                }
1268                /* 630E rule to determine the equalizer value */
1269                if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1270                    revision == SIS630ET_900_REV) {
1271                        if (max_value < 5)
1272                                eq_value = max_value;
1273                        else if (max_value >= 5 && max_value < 15)
1274                                eq_value = (max_value == min_value) ?
1275                                                max_value+2 : max_value+1;
1276                        else if (max_value >= 15)
1277                                eq_value=(max_value == min_value) ?
1278                                                max_value+6 : max_value+5;
1279                }
1280                /* 630B0&B1 rule to determine the equalizer value */
1281                if (revision == SIS630A_900_REV &&
1282                    (sis_priv->host_bridge_rev == SIS630B0 ||
1283                     sis_priv->host_bridge_rev == SIS630B1)) {
1284                        if (max_value == 0)
1285                                eq_value = 3;
1286                        else
1287                                eq_value = (max_value + min_value + 1)/2;
1288                }
1289                /* write equalizer value and setting */
1290                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1291                reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1292                reg14h = (reg14h | 0x6000) & 0xFDFF;
1293                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1294        } else {
1295                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1296                if (revision == SIS630A_900_REV &&
1297                    (sis_priv->host_bridge_rev == SIS630B0 ||
1298                     sis_priv->host_bridge_rev == SIS630B1))
1299                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1300                                                (reg14h | 0x2200) & 0xBFFF);
1301                else
1302                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1303                                                (reg14h | 0x2000) & 0xBFFF);
1304        }
1305}
1306
1307/**
1308 *      sis900_timer - sis900 timer routine
1309 *      @t: timer list containing a pointer to sis900 net device
1310 *
1311 *      On each timer ticks we check two things,
1312 *      link status (ON/OFF) and link mode (10/100/Full/Half)
1313 */
1314
1315static void sis900_timer(struct timer_list *t)
1316{
1317        struct sis900_private *sis_priv = from_timer(sis_priv, t, timer);
1318        struct net_device *net_dev = sis_priv->mii_info.dev;
1319        struct mii_phy *mii_phy = sis_priv->mii;
1320        static const int next_tick = 5*HZ;
1321        int speed = 0, duplex = 0;
1322        u16 status;
1323
1324        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1325        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1326
1327        /* Link OFF -> ON */
1328        if (!netif_carrier_ok(net_dev)) {
1329        LookForLink:
1330                /* Search for new PHY */
1331                status = sis900_default_phy(net_dev);
1332                mii_phy = sis_priv->mii;
1333
1334                if (status & MII_STAT_LINK) {
1335                        WARN_ON(!(status & MII_STAT_AUTO_DONE));
1336
1337                        sis900_read_mode(net_dev, &speed, &duplex);
1338                        if (duplex) {
1339                                sis900_set_mode(sis_priv, speed, duplex);
1340                                sis630_set_eq(net_dev, sis_priv->chipset_rev);
1341                                netif_carrier_on(net_dev);
1342                        }
1343                }
1344        } else {
1345        /* Link ON -> OFF */
1346                if (!(status & MII_STAT_LINK)){
1347                        netif_carrier_off(net_dev);
1348                        if(netif_msg_link(sis_priv))
1349                                printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1350
1351                        /* Change mode issue */
1352                        if ((mii_phy->phy_id0 == 0x001D) &&
1353                                ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1354                                        sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1355
1356                        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1357
1358                        goto LookForLink;
1359                }
1360        }
1361
1362        sis_priv->timer.expires = jiffies + next_tick;
1363        add_timer(&sis_priv->timer);
1364}
1365
1366/**
1367 *      sis900_check_mode - check the media mode for sis900
1368 *      @net_dev: the net device to be checked
1369 *      @mii_phy: the mii phy
1370 *
1371 *      Older driver gets the media mode from mii status output
1372 *      register. Now we set our media capability and auto-negotiate
1373 *      to get the upper bound of speed and duplex between two ends.
1374 *      If the types of mii phy is HOME, it doesn't need to auto-negotiate
1375 *      and autong_complete should be set to 1.
1376 */
1377
1378static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1379{
1380        struct sis900_private *sis_priv = netdev_priv(net_dev);
1381        void __iomem *ioaddr = sis_priv->ioaddr;
1382        int speed, duplex;
1383
1384        if (mii_phy->phy_types == LAN) {
1385                sw32(cfg, ~EXD & sr32(cfg));
1386                sis900_set_capability(net_dev , mii_phy);
1387                sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1388        } else {
1389                sw32(cfg, EXD | sr32(cfg));
1390                speed = HW_SPEED_HOME;
1391                duplex = FDX_CAPABLE_HALF_SELECTED;
1392                sis900_set_mode(sis_priv, speed, duplex);
1393                sis_priv->autong_complete = 1;
1394        }
1395}
1396
1397/**
1398 *      sis900_set_mode - Set the media mode of mac register.
1399 *      @sp:     the device private data
1400 *      @speed : the transmit speed to be determined
1401 *      @duplex: the duplex mode to be determined
1402 *
1403 *      Set the media mode of mac register txcfg/rxcfg according to
1404 *      speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1405 *      bus is used instead of PCI bus. When this bit is set 1, the
1406 *      Max DMA Burst Size for TX/RX DMA should be no larger than 16
1407 *      double words.
1408 */
1409
1410static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1411{
1412        void __iomem *ioaddr = sp->ioaddr;
1413        u32 tx_flags = 0, rx_flags = 0;
1414
1415        if (sr32( cfg) & EDB_MASTER_EN) {
1416                tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1417                                        (TX_FILL_THRESH << TxFILLT_shift);
1418                rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1419        } else {
1420                tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1421                                        (TX_FILL_THRESH << TxFILLT_shift);
1422                rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1423        }
1424
1425        if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1426                rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1427                tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1428        } else {
1429                rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1430                tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1431        }
1432
1433        if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1434                tx_flags |= (TxCSI | TxHBI);
1435                rx_flags |= RxATX;
1436        }
1437
1438#if IS_ENABLED(CONFIG_VLAN_8021Q)
1439        /* Can accept Jumbo packet */
1440        rx_flags |= RxAJAB;
1441#endif
1442
1443        sw32(txcfg, tx_flags);
1444        sw32(rxcfg, rx_flags);
1445}
1446
1447/**
1448 *      sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1449 *      @net_dev: the net device to read mode for
1450 *      @phy_addr: mii phy address
1451 *
1452 *      If the adapter is link-on, set the auto-negotiate enable/reset bit.
1453 *      autong_complete should be set to 0 when starting auto-negotiation.
1454 *      autong_complete should be set to 1 if we didn't start auto-negotiation.
1455 *      sis900_timer will wait for link on again if autong_complete = 0.
1456 */
1457
1458static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1459{
1460        struct sis900_private *sis_priv = netdev_priv(net_dev);
1461        int i = 0;
1462        u32 status;
1463
1464        for (i = 0; i < 2; i++)
1465                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1466
1467        if (!(status & MII_STAT_LINK)){
1468                if(netif_msg_link(sis_priv))
1469                        printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1470                sis_priv->autong_complete = 1;
1471                netif_carrier_off(net_dev);
1472                return;
1473        }
1474
1475        /* (Re)start AutoNegotiate */
1476        mdio_write(net_dev, phy_addr, MII_CONTROL,
1477                   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1478        sis_priv->autong_complete = 0;
1479}
1480
1481
1482/**
1483 *      sis900_read_mode - read media mode for sis900 internal phy
1484 *      @net_dev: the net device to read mode for
1485 *      @speed  : the transmit speed to be determined
1486 *      @duplex : the duplex mode to be determined
1487 *
1488 *      The capability of remote end will be put in mii register autorec
1489 *      after auto-negotiation. Use AND operation to get the upper bound
1490 *      of speed and duplex between two ends.
1491 */
1492
1493static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1494{
1495        struct sis900_private *sis_priv = netdev_priv(net_dev);
1496        struct mii_phy *phy = sis_priv->mii;
1497        int phy_addr = sis_priv->cur_phy;
1498        u32 status;
1499        u16 autoadv, autorec;
1500        int i;
1501
1502        for (i = 0; i < 2; i++)
1503                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1504
1505        if (!(status & MII_STAT_LINK))
1506                return;
1507
1508        /* AutoNegotiate completed */
1509        autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1510        autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1511        status = autoadv & autorec;
1512
1513        *speed = HW_SPEED_10_MBPS;
1514        *duplex = FDX_CAPABLE_HALF_SELECTED;
1515
1516        if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1517                *speed = HW_SPEED_100_MBPS;
1518        if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1519                *duplex = FDX_CAPABLE_FULL_SELECTED;
1520
1521        sis_priv->autong_complete = 1;
1522
1523        /* Workaround for Realtek RTL8201 PHY issue */
1524        if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1525                if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1526                        *duplex = FDX_CAPABLE_FULL_SELECTED;
1527                if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1528                        *speed = HW_SPEED_100_MBPS;
1529        }
1530
1531        if(netif_msg_link(sis_priv))
1532                printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1533                                        net_dev->name,
1534                                        *speed == HW_SPEED_100_MBPS ?
1535                                                "100mbps" : "10mbps",
1536                                        *duplex == FDX_CAPABLE_FULL_SELECTED ?
1537                                                "full" : "half");
1538}
1539
1540/**
1541 *      sis900_tx_timeout - sis900 transmit timeout routine
1542 *      @net_dev: the net device to transmit
1543 *      @txqueue: index of hanging queue
1544 *
1545 *      print transmit timeout status
1546 *      disable interrupts and do some tasks
1547 */
1548
1549static void sis900_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
1550{
1551        struct sis900_private *sis_priv = netdev_priv(net_dev);
1552        void __iomem *ioaddr = sis_priv->ioaddr;
1553        unsigned long flags;
1554        int i;
1555
1556        if (netif_msg_tx_err(sis_priv)) {
1557                printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1558                        net_dev->name, sr32(cr), sr32(isr));
1559        }
1560
1561        /* Disable interrupts by clearing the interrupt mask. */
1562        sw32(imr, 0x0000);
1563
1564        /* use spinlock to prevent interrupt handler accessing buffer ring */
1565        spin_lock_irqsave(&sis_priv->lock, flags);
1566
1567        /* discard unsent packets */
1568        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1569        for (i = 0; i < NUM_TX_DESC; i++) {
1570                struct sk_buff *skb = sis_priv->tx_skbuff[i];
1571
1572                if (skb) {
1573                        dma_unmap_single(&sis_priv->pci_dev->dev,
1574                                         sis_priv->tx_ring[i].bufptr,
1575                                         skb->len, DMA_TO_DEVICE);
1576                        dev_kfree_skb_irq(skb);
1577                        sis_priv->tx_skbuff[i] = NULL;
1578                        sis_priv->tx_ring[i].cmdsts = 0;
1579                        sis_priv->tx_ring[i].bufptr = 0;
1580                        net_dev->stats.tx_dropped++;
1581                }
1582        }
1583        sis_priv->tx_full = 0;
1584        netif_wake_queue(net_dev);
1585
1586        spin_unlock_irqrestore(&sis_priv->lock, flags);
1587
1588        netif_trans_update(net_dev); /* prevent tx timeout */
1589
1590        /* load Transmit Descriptor Register */
1591        sw32(txdp, sis_priv->tx_ring_dma);
1592
1593        /* Enable all known interrupts by setting the interrupt mask. */
1594        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
1595}
1596
1597/**
1598 *      sis900_start_xmit - sis900 start transmit routine
1599 *      @skb: socket buffer pointer to put the data being transmitted
1600 *      @net_dev: the net device to transmit with
1601 *
1602 *      Set the transmit buffer descriptor,
1603 *      and write TxENA to enable transmit state machine.
1604 *      tell upper layer if the buffer is full
1605 */
1606
1607static netdev_tx_t
1608sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1609{
1610        struct sis900_private *sis_priv = netdev_priv(net_dev);
1611        void __iomem *ioaddr = sis_priv->ioaddr;
1612        unsigned int  entry;
1613        unsigned long flags;
1614        unsigned int  index_cur_tx, index_dirty_tx;
1615        unsigned int  count_dirty_tx;
1616
1617        spin_lock_irqsave(&sis_priv->lock, flags);
1618
1619        /* Calculate the next Tx descriptor entry. */
1620        entry = sis_priv->cur_tx % NUM_TX_DESC;
1621        sis_priv->tx_skbuff[entry] = skb;
1622
1623        /* set the transmit buffer descriptor and enable Transmit State Machine */
1624        sis_priv->tx_ring[entry].bufptr = dma_map_single(&sis_priv->pci_dev->dev,
1625                                                         skb->data, skb->len,
1626                                                         DMA_TO_DEVICE);
1627        if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1628                                       sis_priv->tx_ring[entry].bufptr))) {
1629                        dev_kfree_skb_any(skb);
1630                        sis_priv->tx_skbuff[entry] = NULL;
1631                        net_dev->stats.tx_dropped++;
1632                        spin_unlock_irqrestore(&sis_priv->lock, flags);
1633                        return NETDEV_TX_OK;
1634        }
1635        sis_priv->tx_ring[entry].cmdsts = (OWN | INTR | skb->len);
1636        sw32(cr, TxENA | sr32(cr));
1637
1638        sis_priv->cur_tx ++;
1639        index_cur_tx = sis_priv->cur_tx;
1640        index_dirty_tx = sis_priv->dirty_tx;
1641
1642        for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1643                count_dirty_tx ++;
1644
1645        if (index_cur_tx == index_dirty_tx) {
1646                /* dirty_tx is met in the cycle of cur_tx, buffer full */
1647                sis_priv->tx_full = 1;
1648                netif_stop_queue(net_dev);
1649        } else if (count_dirty_tx < NUM_TX_DESC) {
1650                /* Typical path, tell upper layer that more transmission is possible */
1651                netif_start_queue(net_dev);
1652        } else {
1653                /* buffer full, tell upper layer no more transmission */
1654                sis_priv->tx_full = 1;
1655                netif_stop_queue(net_dev);
1656        }
1657
1658        spin_unlock_irqrestore(&sis_priv->lock, flags);
1659
1660        if (netif_msg_tx_queued(sis_priv))
1661                printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1662                       "to slot %d.\n",
1663                       net_dev->name, skb->data, (int)skb->len, entry);
1664
1665        return NETDEV_TX_OK;
1666}
1667
1668/**
1669 *      sis900_interrupt - sis900 interrupt handler
1670 *      @irq: the irq number
1671 *      @dev_instance: the client data object
1672 *
1673 *      The interrupt handler does all of the Rx thread work,
1674 *      and cleans up after the Tx thread
1675 */
1676
1677static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1678{
1679        struct net_device *net_dev = dev_instance;
1680        struct sis900_private *sis_priv = netdev_priv(net_dev);
1681        int boguscnt = max_interrupt_work;
1682        void __iomem *ioaddr = sis_priv->ioaddr;
1683        u32 status;
1684        unsigned int handled = 0;
1685
1686        spin_lock (&sis_priv->lock);
1687
1688        do {
1689                status = sr32(isr);
1690
1691                if ((status & (HIBERR|TxURN|TxERR|TxDESC|RxORN|RxERR|RxOK)) == 0)
1692                        /* nothing interesting happened */
1693                        break;
1694                handled = 1;
1695
1696                /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1697                if (status & (RxORN | RxERR | RxOK))
1698                        /* Rx interrupt */
1699                        sis900_rx(net_dev);
1700
1701                if (status & (TxURN | TxERR | TxDESC))
1702                        /* Tx interrupt */
1703                        sis900_finish_xmit(net_dev);
1704
1705                /* something strange happened !!! */
1706                if (status & HIBERR) {
1707                        if(netif_msg_intr(sis_priv))
1708                                printk(KERN_INFO "%s: Abnormal interrupt, "
1709                                        "status %#8.8x.\n", net_dev->name, status);
1710                        break;
1711                }
1712                if (--boguscnt < 0) {
1713                        if(netif_msg_intr(sis_priv))
1714                                printk(KERN_INFO "%s: Too much work at interrupt, "
1715                                        "interrupt status = %#8.8x.\n",
1716                                        net_dev->name, status);
1717                        break;
1718                }
1719        } while (1);
1720
1721        if(netif_msg_intr(sis_priv))
1722                printk(KERN_DEBUG "%s: exiting interrupt, "
1723                       "interrupt status = %#8.8x\n",
1724                       net_dev->name, sr32(isr));
1725
1726        spin_unlock (&sis_priv->lock);
1727        return IRQ_RETVAL(handled);
1728}
1729
1730/**
1731 *      sis900_rx - sis900 receive routine
1732 *      @net_dev: the net device which receives data
1733 *
1734 *      Process receive interrupt events,
1735 *      put buffer to higher layer and refill buffer pool
1736 *      Note: This function is called by interrupt handler,
1737 *      don't do "too much" work here
1738 */
1739
1740static int sis900_rx(struct net_device *net_dev)
1741{
1742        struct sis900_private *sis_priv = netdev_priv(net_dev);
1743        void __iomem *ioaddr = sis_priv->ioaddr;
1744        unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1745        u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1746        int rx_work_limit;
1747
1748        if (netif_msg_rx_status(sis_priv))
1749                printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1750                       "status:0x%8.8x\n",
1751                       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1752        rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1753
1754        while (rx_status & OWN) {
1755                unsigned int rx_size;
1756                unsigned int data_size;
1757
1758                if (--rx_work_limit < 0)
1759                        break;
1760
1761                data_size = rx_status & DSIZE;
1762                rx_size = data_size - CRC_SIZE;
1763
1764#if IS_ENABLED(CONFIG_VLAN_8021Q)
1765                /* ``TOOLONG'' flag means jumbo packet received. */
1766                if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1767                        rx_status &= (~ ((unsigned int)TOOLONG));
1768#endif
1769
1770                if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1771                        /* corrupted packet received */
1772                        if (netif_msg_rx_err(sis_priv))
1773                                printk(KERN_DEBUG "%s: Corrupted packet "
1774                                       "received, buffer status = 0x%8.8x/%d.\n",
1775                                       net_dev->name, rx_status, data_size);
1776                        net_dev->stats.rx_errors++;
1777                        if (rx_status & OVERRUN)
1778                                net_dev->stats.rx_over_errors++;
1779                        if (rx_status & (TOOLONG|RUNT))
1780                                net_dev->stats.rx_length_errors++;
1781                        if (rx_status & (RXISERR | FAERR))
1782                                net_dev->stats.rx_frame_errors++;
1783                        if (rx_status & CRCERR)
1784                                net_dev->stats.rx_crc_errors++;
1785                        /* reset buffer descriptor state */
1786                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1787                } else {
1788                        struct sk_buff * skb;
1789                        struct sk_buff * rx_skb;
1790
1791                        dma_unmap_single(&sis_priv->pci_dev->dev,
1792                                         sis_priv->rx_ring[entry].bufptr,
1793                                         RX_BUF_SIZE, DMA_FROM_DEVICE);
1794
1795                        /* refill the Rx buffer, what if there is not enough
1796                         * memory for new socket buffer ?? */
1797                        if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1798                                /*
1799                                 * Not enough memory to refill the buffer
1800                                 * so we need to recycle the old one so
1801                                 * as to avoid creating a memory hole
1802                                 * in the rx ring
1803                                 */
1804                                skb = sis_priv->rx_skbuff[entry];
1805                                net_dev->stats.rx_dropped++;
1806                                goto refill_rx_ring;
1807                        }
1808
1809                        /* This situation should never happen, but due to
1810                           some unknown bugs, it is possible that
1811                           we are working on NULL sk_buff :-( */
1812                        if (sis_priv->rx_skbuff[entry] == NULL) {
1813                                if (netif_msg_rx_err(sis_priv))
1814                                        printk(KERN_WARNING "%s: NULL pointer "
1815                                              "encountered in Rx ring\n"
1816                                              "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1817                                              net_dev->name, sis_priv->cur_rx,
1818                                              sis_priv->dirty_rx);
1819                                dev_kfree_skb(skb);
1820                                break;
1821                        }
1822
1823                        /* give the socket buffer to upper layers */
1824                        rx_skb = sis_priv->rx_skbuff[entry];
1825                        skb_put(rx_skb, rx_size);
1826                        rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1827                        netif_rx(rx_skb);
1828
1829                        /* some network statistics */
1830                        if ((rx_status & BCAST) == MCAST)
1831                                net_dev->stats.multicast++;
1832                        net_dev->stats.rx_bytes += rx_size;
1833                        net_dev->stats.rx_packets++;
1834                        sis_priv->dirty_rx++;
1835refill_rx_ring:
1836                        sis_priv->rx_skbuff[entry] = skb;
1837                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1838                        sis_priv->rx_ring[entry].bufptr =
1839                                dma_map_single(&sis_priv->pci_dev->dev,
1840                                               skb->data, RX_BUF_SIZE,
1841                                               DMA_FROM_DEVICE);
1842                        if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1843                                                       sis_priv->rx_ring[entry].bufptr))) {
1844                                dev_kfree_skb_irq(skb);
1845                                sis_priv->rx_skbuff[entry] = NULL;
1846                                break;
1847                        }
1848                }
1849                sis_priv->cur_rx++;
1850                entry = sis_priv->cur_rx % NUM_RX_DESC;
1851                rx_status = sis_priv->rx_ring[entry].cmdsts;
1852        } // while
1853
1854        /* refill the Rx buffer, what if the rate of refilling is slower
1855         * than consuming ?? */
1856        for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1857                struct sk_buff *skb;
1858
1859                entry = sis_priv->dirty_rx % NUM_RX_DESC;
1860
1861                if (sis_priv->rx_skbuff[entry] == NULL) {
1862                        skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE);
1863                        if (skb == NULL) {
1864                                /* not enough memory for skbuff, this makes a
1865                                 * "hole" on the buffer ring, it is not clear
1866                                 * how the hardware will react to this kind
1867                                 * of degenerated buffer */
1868                                net_dev->stats.rx_dropped++;
1869                                break;
1870                        }
1871                        sis_priv->rx_skbuff[entry] = skb;
1872                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1873                        sis_priv->rx_ring[entry].bufptr =
1874                                dma_map_single(&sis_priv->pci_dev->dev,
1875                                               skb->data, RX_BUF_SIZE,
1876                                               DMA_FROM_DEVICE);
1877                        if (unlikely(dma_mapping_error(&sis_priv->pci_dev->dev,
1878                                                       sis_priv->rx_ring[entry].bufptr))) {
1879                                dev_kfree_skb_irq(skb);
1880                                sis_priv->rx_skbuff[entry] = NULL;
1881                                break;
1882                        }
1883                }
1884        }
1885        /* re-enable the potentially idle receive state matchine */
1886        sw32(cr , RxENA | sr32(cr));
1887
1888        return 0;
1889}
1890
1891/**
1892 *      sis900_finish_xmit - finish up transmission of packets
1893 *      @net_dev: the net device to be transmitted on
1894 *
1895 *      Check for error condition and free socket buffer etc
1896 *      schedule for more transmission as needed
1897 *      Note: This function is called by interrupt handler,
1898 *      don't do "too much" work here
1899 */
1900
1901static void sis900_finish_xmit (struct net_device *net_dev)
1902{
1903        struct sis900_private *sis_priv = netdev_priv(net_dev);
1904
1905        for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1906                struct sk_buff *skb;
1907                unsigned int entry;
1908                u32 tx_status;
1909
1910                entry = sis_priv->dirty_tx % NUM_TX_DESC;
1911                tx_status = sis_priv->tx_ring[entry].cmdsts;
1912
1913                if (tx_status & OWN) {
1914                        /* The packet is not transmitted yet (owned by hardware) !
1915                         * Note: this is an almost impossible condition
1916                         * on TxDESC interrupt ('descriptor interrupt') */
1917                        break;
1918                }
1919
1920                if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1921                        /* packet unsuccessfully transmitted */
1922                        if (netif_msg_tx_err(sis_priv))
1923                                printk(KERN_DEBUG "%s: Transmit "
1924                                       "error, Tx status %8.8x.\n",
1925                                       net_dev->name, tx_status);
1926                        net_dev->stats.tx_errors++;
1927                        if (tx_status & UNDERRUN)
1928                                net_dev->stats.tx_fifo_errors++;
1929                        if (tx_status & ABORT)
1930                                net_dev->stats.tx_aborted_errors++;
1931                        if (tx_status & NOCARRIER)
1932                                net_dev->stats.tx_carrier_errors++;
1933                        if (tx_status & OWCOLL)
1934                                net_dev->stats.tx_window_errors++;
1935                } else {
1936                        /* packet successfully transmitted */
1937                        net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1938                        net_dev->stats.tx_bytes += tx_status & DSIZE;
1939                        net_dev->stats.tx_packets++;
1940                }
1941                /* Free the original skb. */
1942                skb = sis_priv->tx_skbuff[entry];
1943                dma_unmap_single(&sis_priv->pci_dev->dev,
1944                                 sis_priv->tx_ring[entry].bufptr, skb->len,
1945                                 DMA_TO_DEVICE);
1946                dev_consume_skb_irq(skb);
1947                sis_priv->tx_skbuff[entry] = NULL;
1948                sis_priv->tx_ring[entry].bufptr = 0;
1949                sis_priv->tx_ring[entry].cmdsts = 0;
1950        }
1951
1952        if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1953            sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1954                /* The ring is no longer full, clear tx_full and schedule
1955                 * more transmission by netif_wake_queue(net_dev) */
1956                sis_priv->tx_full = 0;
1957                netif_wake_queue (net_dev);
1958        }
1959}
1960
1961/**
1962 *      sis900_close - close sis900 device
1963 *      @net_dev: the net device to be closed
1964 *
1965 *      Disable interrupts, stop the Tx and Rx Status Machine
1966 *      free Tx and RX socket buffer
1967 */
1968
1969static int sis900_close(struct net_device *net_dev)
1970{
1971        struct sis900_private *sis_priv = netdev_priv(net_dev);
1972        struct pci_dev *pdev = sis_priv->pci_dev;
1973        void __iomem *ioaddr = sis_priv->ioaddr;
1974        struct sk_buff *skb;
1975        int i;
1976
1977        netif_stop_queue(net_dev);
1978
1979        /* Disable interrupts by clearing the interrupt mask. */
1980        sw32(imr, 0x0000);
1981        sw32(ier, 0x0000);
1982
1983        /* Stop the chip's Tx and Rx Status Machine */
1984        sw32(cr, RxDIS | TxDIS | sr32(cr));
1985
1986        del_timer(&sis_priv->timer);
1987
1988        free_irq(pdev->irq, net_dev);
1989
1990        /* Free Tx and RX skbuff */
1991        for (i = 0; i < NUM_RX_DESC; i++) {
1992                skb = sis_priv->rx_skbuff[i];
1993                if (skb) {
1994                        dma_unmap_single(&pdev->dev,
1995                                         sis_priv->rx_ring[i].bufptr,
1996                                         RX_BUF_SIZE, DMA_FROM_DEVICE);
1997                        dev_kfree_skb(skb);
1998                        sis_priv->rx_skbuff[i] = NULL;
1999                }
2000        }
2001        for (i = 0; i < NUM_TX_DESC; i++) {
2002                skb = sis_priv->tx_skbuff[i];
2003                if (skb) {
2004                        dma_unmap_single(&pdev->dev,
2005                                         sis_priv->tx_ring[i].bufptr,
2006                                         skb->len, DMA_TO_DEVICE);
2007                        dev_kfree_skb(skb);
2008                        sis_priv->tx_skbuff[i] = NULL;
2009                }
2010        }
2011
2012        /* Green! Put the chip in low-power mode. */
2013
2014        return 0;
2015}
2016
2017/**
2018 *      sis900_get_drvinfo - Return information about driver
2019 *      @net_dev: the net device to probe
2020 *      @info: container for info returned
2021 *
2022 *      Process ethtool command such as "ehtool -i" to show information
2023 */
2024
2025static void sis900_get_drvinfo(struct net_device *net_dev,
2026                               struct ethtool_drvinfo *info)
2027{
2028        struct sis900_private *sis_priv = netdev_priv(net_dev);
2029
2030        strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2031        strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2032        strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2033                sizeof(info->bus_info));
2034}
2035
2036static u32 sis900_get_msglevel(struct net_device *net_dev)
2037{
2038        struct sis900_private *sis_priv = netdev_priv(net_dev);
2039        return sis_priv->msg_enable;
2040}
2041
2042static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2043{
2044        struct sis900_private *sis_priv = netdev_priv(net_dev);
2045        sis_priv->msg_enable = value;
2046}
2047
2048static u32 sis900_get_link(struct net_device *net_dev)
2049{
2050        struct sis900_private *sis_priv = netdev_priv(net_dev);
2051        return mii_link_ok(&sis_priv->mii_info);
2052}
2053
2054static int sis900_get_link_ksettings(struct net_device *net_dev,
2055                                     struct ethtool_link_ksettings *cmd)
2056{
2057        struct sis900_private *sis_priv = netdev_priv(net_dev);
2058        spin_lock_irq(&sis_priv->lock);
2059        mii_ethtool_get_link_ksettings(&sis_priv->mii_info, cmd);
2060        spin_unlock_irq(&sis_priv->lock);
2061        return 0;
2062}
2063
2064static int sis900_set_link_ksettings(struct net_device *net_dev,
2065                                     const struct ethtool_link_ksettings *cmd)
2066{
2067        struct sis900_private *sis_priv = netdev_priv(net_dev);
2068        int rt;
2069        spin_lock_irq(&sis_priv->lock);
2070        rt = mii_ethtool_set_link_ksettings(&sis_priv->mii_info, cmd);
2071        spin_unlock_irq(&sis_priv->lock);
2072        return rt;
2073}
2074
2075static int sis900_nway_reset(struct net_device *net_dev)
2076{
2077        struct sis900_private *sis_priv = netdev_priv(net_dev);
2078        return mii_nway_restart(&sis_priv->mii_info);
2079}
2080
2081/**
2082 *      sis900_set_wol - Set up Wake on Lan registers
2083 *      @net_dev: the net device to probe
2084 *      @wol: container for info passed to the driver
2085 *
2086 *      Process ethtool command "wol" to setup wake on lan features.
2087 *      SiS900 supports sending WoL events if a correct packet is received,
2088 *      but there is no simple way to filter them to only a subset (broadcast,
2089 *      multicast, unicast or arp).
2090 */
2091
2092static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2093{
2094        struct sis900_private *sis_priv = netdev_priv(net_dev);
2095        void __iomem *ioaddr = sis_priv->ioaddr;
2096        u32 cfgpmcsr = 0, pmctrl_bits = 0;
2097
2098        if (wol->wolopts == 0) {
2099                pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2100                cfgpmcsr &= ~PME_EN;
2101                pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2102                sw32(pmctrl, pmctrl_bits);
2103                if (netif_msg_wol(sis_priv))
2104                        printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2105                return 0;
2106        }
2107
2108        if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2109                                | WAKE_BCAST | WAKE_ARP))
2110                return -EINVAL;
2111
2112        if (wol->wolopts & WAKE_MAGIC)
2113                pmctrl_bits |= MAGICPKT;
2114        if (wol->wolopts & WAKE_PHY)
2115                pmctrl_bits |= LINKON;
2116
2117        sw32(pmctrl, pmctrl_bits);
2118
2119        pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2120        cfgpmcsr |= PME_EN;
2121        pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2122        if (netif_msg_wol(sis_priv))
2123                printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2124
2125        return 0;
2126}
2127
2128static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2129{
2130        struct sis900_private *sp = netdev_priv(net_dev);
2131        void __iomem *ioaddr = sp->ioaddr;
2132        u32 pmctrl_bits;
2133
2134        pmctrl_bits = sr32(pmctrl);
2135        if (pmctrl_bits & MAGICPKT)
2136                wol->wolopts |= WAKE_MAGIC;
2137        if (pmctrl_bits & LINKON)
2138                wol->wolopts |= WAKE_PHY;
2139
2140        wol->supported = (WAKE_PHY | WAKE_MAGIC);
2141}
2142
2143static int sis900_get_eeprom_len(struct net_device *dev)
2144{
2145        struct sis900_private *sis_priv = netdev_priv(dev);
2146
2147        return sis_priv->eeprom_size;
2148}
2149
2150static int sis900_read_eeprom(struct net_device *net_dev, u8 *buf)
2151{
2152        struct sis900_private *sis_priv = netdev_priv(net_dev);
2153        void __iomem *ioaddr = sis_priv->ioaddr;
2154        int wait, ret = -EAGAIN;
2155        u16 signature;
2156        u16 *ebuf = (u16 *)buf;
2157        int i;
2158
2159        if (sis_priv->chipset_rev == SIS96x_900_REV) {
2160                sw32(mear, EEREQ);
2161                for (wait = 0; wait < 2000; wait++) {
2162                        if (sr32(mear) & EEGNT) {
2163                                /* read 16 bits, and index by 16 bits */
2164                                for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2165                                        ebuf[i] = (u16)read_eeprom(ioaddr, i);
2166                                ret = 0;
2167                                break;
2168                        }
2169                        udelay(1);
2170                }
2171                sw32(mear, EEDONE);
2172        } else {
2173                signature = (u16)read_eeprom(ioaddr, EEPROMSignature);
2174                if (signature != 0xffff && signature != 0x0000) {
2175                        /* read 16 bits, and index by 16 bits */
2176                        for (i = 0; i < sis_priv->eeprom_size / 2; i++)
2177                                ebuf[i] = (u16)read_eeprom(ioaddr, i);
2178                        ret = 0;
2179                }
2180        }
2181        return ret;
2182}
2183
2184#define SIS900_EEPROM_MAGIC     0xBABE
2185static int sis900_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2186{
2187        struct sis900_private *sis_priv = netdev_priv(dev);
2188        u8 *eebuf;
2189        int res;
2190
2191        eebuf = kmalloc(sis_priv->eeprom_size, GFP_KERNEL);
2192        if (!eebuf)
2193                return -ENOMEM;
2194
2195        eeprom->magic = SIS900_EEPROM_MAGIC;
2196        spin_lock_irq(&sis_priv->lock);
2197        res = sis900_read_eeprom(dev, eebuf);
2198        spin_unlock_irq(&sis_priv->lock);
2199        if (!res)
2200                memcpy(data, eebuf + eeprom->offset, eeprom->len);
2201        kfree(eebuf);
2202        return res;
2203}
2204
2205static const struct ethtool_ops sis900_ethtool_ops = {
2206        .get_drvinfo    = sis900_get_drvinfo,
2207        .get_msglevel   = sis900_get_msglevel,
2208        .set_msglevel   = sis900_set_msglevel,
2209        .get_link       = sis900_get_link,
2210        .nway_reset     = sis900_nway_reset,
2211        .get_wol        = sis900_get_wol,
2212        .set_wol        = sis900_set_wol,
2213        .get_link_ksettings = sis900_get_link_ksettings,
2214        .set_link_ksettings = sis900_set_link_ksettings,
2215        .get_eeprom_len = sis900_get_eeprom_len,
2216        .get_eeprom = sis900_get_eeprom,
2217};
2218
2219/**
2220 *      mii_ioctl - process MII i/o control command
2221 *      @net_dev: the net device to command for
2222 *      @rq: parameter for command
2223 *      @cmd: the i/o command
2224 *
2225 *      Process MII command like read/write MII register
2226 */
2227
2228static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2229{
2230        struct sis900_private *sis_priv = netdev_priv(net_dev);
2231        struct mii_ioctl_data *data = if_mii(rq);
2232
2233        switch(cmd) {
2234        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
2235                data->phy_id = sis_priv->mii->phy_addr;
2236                fallthrough;
2237
2238        case SIOCGMIIREG:               /* Read MII PHY register. */
2239                data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2240                return 0;
2241
2242        case SIOCSMIIREG:               /* Write MII PHY register. */
2243                mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2244                return 0;
2245        default:
2246                return -EOPNOTSUPP;
2247        }
2248}
2249
2250/**
2251 *      sis900_set_config - Set media type by net_device.set_config
2252 *      @dev: the net device for media type change
2253 *      @map: ifmap passed by ifconfig
2254 *
2255 *      Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2256 *      we support only port changes. All other runtime configuration
2257 *      changes will be ignored
2258 */
2259
2260static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2261{
2262        struct sis900_private *sis_priv = netdev_priv(dev);
2263        struct mii_phy *mii_phy = sis_priv->mii;
2264
2265        u16 status;
2266
2267        if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2268                /* we switch on the ifmap->port field. I couldn't find anything
2269                 * like a definition or standard for the values of that field.
2270                 * I think the meaning of those values is device specific. But
2271                 * since I would like to change the media type via the ifconfig
2272                 * command I use the definition from linux/netdevice.h
2273                 * (which seems to be different from the ifport(pcmcia) definition) */
2274                switch(map->port){
2275                case IF_PORT_UNKNOWN: /* use auto here */
2276                        dev->if_port = map->port;
2277                        /* we are going to change the media type, so the Link
2278                         * will be temporary down and we need to reflect that
2279                         * here. When the Link comes up again, it will be
2280                         * sensed by the sis_timer procedure, which also does
2281                         * all the rest for us */
2282                        netif_carrier_off(dev);
2283
2284                        /* read current state */
2285                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2286
2287                        /* enable auto negotiation and reset the negotioation
2288                         * (I don't really know what the auto negatiotiation
2289                         * reset really means, but it sounds for me right to
2290                         * do one here) */
2291                        mdio_write(dev, mii_phy->phy_addr,
2292                                   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2293
2294                        break;
2295
2296                case IF_PORT_10BASET: /* 10BaseT */
2297                        dev->if_port = map->port;
2298
2299                        /* we are going to change the media type, so the Link
2300                         * will be temporary down and we need to reflect that
2301                         * here. When the Link comes up again, it will be
2302                         * sensed by the sis_timer procedure, which also does
2303                         * all the rest for us */
2304                        netif_carrier_off(dev);
2305
2306                        /* set Speed to 10Mbps */
2307                        /* read current state */
2308                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2309
2310                        /* disable auto negotiation and force 10MBit mode*/
2311                        mdio_write(dev, mii_phy->phy_addr,
2312                                   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2313                                        MII_CNTL_AUTO));
2314                        break;
2315
2316                case IF_PORT_100BASET: /* 100BaseT */
2317                case IF_PORT_100BASETX: /* 100BaseTx */
2318                        dev->if_port = map->port;
2319
2320                        /* we are going to change the media type, so the Link
2321                         * will be temporary down and we need to reflect that
2322                         * here. When the Link comes up again, it will be
2323                         * sensed by the sis_timer procedure, which also does
2324                         * all the rest for us */
2325                        netif_carrier_off(dev);
2326
2327                        /* set Speed to 100Mbps */
2328                        /* disable auto negotiation and enable 100MBit Mode */
2329                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2330                        mdio_write(dev, mii_phy->phy_addr,
2331                                   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2332                                   MII_CNTL_SPEED);
2333
2334                        break;
2335
2336                case IF_PORT_10BASE2: /* 10Base2 */
2337                case IF_PORT_AUI: /* AUI */
2338                case IF_PORT_100BASEFX: /* 100BaseFx */
2339                        /* These Modes are not supported (are they?)*/
2340                        return -EOPNOTSUPP;
2341
2342                default:
2343                        return -EINVAL;
2344                }
2345        }
2346        return 0;
2347}
2348
2349/**
2350 *      sis900_mcast_bitnr - compute hashtable index
2351 *      @addr: multicast address
2352 *      @revision: revision id of chip
2353 *
2354 *      SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2355 *      hash table, which makes this function a little bit different from other drivers
2356 *      SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2357 *      multicast hash table.
2358 */
2359
2360static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2361{
2362
2363        u32 crc = ether_crc(6, addr);
2364
2365        /* leave 8 or 7 most siginifant bits */
2366        if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2367                return (int)(crc >> 24);
2368        else
2369                return (int)(crc >> 25);
2370}
2371
2372/**
2373 *      set_rx_mode - Set SiS900 receive mode
2374 *      @net_dev: the net device to be set
2375 *
2376 *      Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2377 *      And set the appropriate multicast filter.
2378 *      Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2379 */
2380
2381static void set_rx_mode(struct net_device *net_dev)
2382{
2383        struct sis900_private *sis_priv = netdev_priv(net_dev);
2384        void __iomem *ioaddr = sis_priv->ioaddr;
2385        u16 mc_filter[16] = {0};        /* 256/128 bits multicast hash table */
2386        int i, table_entries;
2387        u32 rx_mode;
2388
2389        /* 635 Hash Table entries = 256(2^16) */
2390        if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2391                        (sis_priv->chipset_rev == SIS900B_900_REV))
2392                table_entries = 16;
2393        else
2394                table_entries = 8;
2395
2396        if (net_dev->flags & IFF_PROMISC) {
2397                /* Accept any kinds of packets */
2398                rx_mode = RFPromiscuous;
2399                for (i = 0; i < table_entries; i++)
2400                        mc_filter[i] = 0xffff;
2401        } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2402                   (net_dev->flags & IFF_ALLMULTI)) {
2403                /* too many multicast addresses or accept all multicast packet */
2404                rx_mode = RFAAB | RFAAM;
2405                for (i = 0; i < table_entries; i++)
2406                        mc_filter[i] = 0xffff;
2407        } else {
2408                /* Accept Broadcast packet, destination address matchs our
2409                 * MAC address, use Receive Filter to reject unwanted MCAST
2410                 * packets */
2411                struct netdev_hw_addr *ha;
2412                rx_mode = RFAAB;
2413
2414                netdev_for_each_mc_addr(ha, net_dev) {
2415                        unsigned int bit_nr;
2416
2417                        bit_nr = sis900_mcast_bitnr(ha->addr,
2418                                                    sis_priv->chipset_rev);
2419                        mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2420                }
2421        }
2422
2423        /* update Multicast Hash Table in Receive Filter */
2424        for (i = 0; i < table_entries; i++) {
2425                /* why plus 0x04 ??, That makes the correct value for hash table. */
2426                sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2427                sw32(rfdr, mc_filter[i]);
2428        }
2429
2430        sw32(rfcr, RFEN | rx_mode);
2431
2432        /* sis900 is capable of looping back packets at MAC level for
2433         * debugging purpose */
2434        if (net_dev->flags & IFF_LOOPBACK) {
2435                u32 cr_saved;
2436                /* We must disable Tx/Rx before setting loopback mode */
2437                cr_saved = sr32(cr);
2438                sw32(cr, cr_saved | TxDIS | RxDIS);
2439                /* enable loopback */
2440                sw32(txcfg, sr32(txcfg) | TxMLB);
2441                sw32(rxcfg, sr32(rxcfg) | RxATX);
2442                /* restore cr */
2443                sw32(cr, cr_saved);
2444        }
2445}
2446
2447/**
2448 *      sis900_reset - Reset sis900 MAC
2449 *      @net_dev: the net device to reset
2450 *
2451 *      reset sis900 MAC and wait until finished
2452 *      reset through command register
2453 *      change backoff algorithm for 900B0 & 635 M/B
2454 */
2455
2456static void sis900_reset(struct net_device *net_dev)
2457{
2458        struct sis900_private *sis_priv = netdev_priv(net_dev);
2459        void __iomem *ioaddr = sis_priv->ioaddr;
2460        u32 status = TxRCMP | RxRCMP;
2461        int i;
2462
2463        sw32(ier, 0);
2464        sw32(imr, 0);
2465        sw32(rfcr, 0);
2466
2467        sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2468
2469        /* Check that the chip has finished the reset. */
2470        for (i = 0; status && (i < 1000); i++)
2471                status ^= sr32(isr) & status;
2472
2473        if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2474            sis_priv->chipset_rev == SIS900B_900_REV)
2475                sw32(cfg, PESEL | RND_CNT);
2476        else
2477                sw32(cfg, PESEL);
2478}
2479
2480/**
2481 *      sis900_remove - Remove sis900 device
2482 *      @pci_dev: the pci device to be removed
2483 *
2484 *      remove and release SiS900 net device
2485 */
2486
2487static void sis900_remove(struct pci_dev *pci_dev)
2488{
2489        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2490        struct sis900_private *sis_priv = netdev_priv(net_dev);
2491
2492        unregister_netdev(net_dev);
2493
2494        while (sis_priv->first_mii) {
2495                struct mii_phy *phy = sis_priv->first_mii;
2496
2497                sis_priv->first_mii = phy->next;
2498                kfree(phy);
2499        }
2500
2501        dma_free_coherent(&pci_dev->dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2502                          sis_priv->rx_ring_dma);
2503        dma_free_coherent(&pci_dev->dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2504                          sis_priv->tx_ring_dma);
2505        pci_iounmap(pci_dev, sis_priv->ioaddr);
2506        free_netdev(net_dev);
2507}
2508
2509static int __maybe_unused sis900_suspend(struct device *dev)
2510{
2511        struct net_device *net_dev = dev_get_drvdata(dev);
2512        struct sis900_private *sis_priv = netdev_priv(net_dev);
2513        void __iomem *ioaddr = sis_priv->ioaddr;
2514
2515        if(!netif_running(net_dev))
2516                return 0;
2517
2518        netif_stop_queue(net_dev);
2519        netif_device_detach(net_dev);
2520
2521        /* Stop the chip's Tx and Rx Status Machine */
2522        sw32(cr, RxDIS | TxDIS | sr32(cr));
2523
2524        return 0;
2525}
2526
2527static int __maybe_unused sis900_resume(struct device *dev)
2528{
2529        struct net_device *net_dev = dev_get_drvdata(dev);
2530        struct sis900_private *sis_priv = netdev_priv(net_dev);
2531        void __iomem *ioaddr = sis_priv->ioaddr;
2532
2533        if(!netif_running(net_dev))
2534                return 0;
2535
2536        sis900_init_rxfilter(net_dev);
2537
2538        sis900_init_tx_ring(net_dev);
2539        sis900_init_rx_ring(net_dev);
2540
2541        set_rx_mode(net_dev);
2542
2543        netif_device_attach(net_dev);
2544        netif_start_queue(net_dev);
2545
2546        /* Workaround for EDB */
2547        sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2548
2549        /* Enable all known interrupts by setting the interrupt mask. */
2550        sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxDESC);
2551        sw32(cr, RxENA | sr32(cr));
2552        sw32(ier, IE);
2553
2554        sis900_check_mode(net_dev, sis_priv->mii);
2555
2556        return 0;
2557}
2558
2559static SIMPLE_DEV_PM_OPS(sis900_pm_ops, sis900_suspend, sis900_resume);
2560
2561static struct pci_driver sis900_pci_driver = {
2562        .name           = SIS900_MODULE_NAME,
2563        .id_table       = sis900_pci_tbl,
2564        .probe          = sis900_probe,
2565        .remove         = sis900_remove,
2566        .driver.pm      = &sis900_pm_ops,
2567};
2568
2569static int __init sis900_init_module(void)
2570{
2571/* when a module, this is printed whether or not devices are found in probe */
2572#ifdef MODULE
2573        printk(version);
2574#endif
2575
2576        return pci_register_driver(&sis900_pci_driver);
2577}
2578
2579static void __exit sis900_cleanup_module(void)
2580{
2581        pci_unregister_driver(&sis900_pci_driver);
2582}
2583
2584module_init(sis900_init_module);
2585module_exit(sis900_cleanup_module);
2586
2587