linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
   2/*
   3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
   7#ifndef __iwl_trans_h__
   8#define __iwl_trans_h__
   9
  10#include <linux/ieee80211.h>
  11#include <linux/mm.h> /* for page_address */
  12#include <linux/lockdep.h>
  13#include <linux/kernel.h>
  14
  15#include "iwl-debug.h"
  16#include "iwl-config.h"
  17#include "fw/img.h"
  18#include "iwl-op-mode.h"
  19#include <linux/firmware.h>
  20#include "fw/api/cmdhdr.h"
  21#include "fw/api/txq.h"
  22#include "fw/api/dbg-tlv.h"
  23#include "iwl-dbg-tlv.h"
  24
  25/**
  26 * DOC: Transport layer - what is it ?
  27 *
  28 * The transport layer is the layer that deals with the HW directly. It provides
  29 * an abstraction of the underlying HW to the upper layer. The transport layer
  30 * doesn't provide any policy, algorithm or anything of this kind, but only
  31 * mechanisms to make the HW do something. It is not completely stateless but
  32 * close to it.
  33 * We will have an implementation for each different supported bus.
  34 */
  35
  36/**
  37 * DOC: Life cycle of the transport layer
  38 *
  39 * The transport layer has a very precise life cycle.
  40 *
  41 *      1) A helper function is called during the module initialization and
  42 *         registers the bus driver's ops with the transport's alloc function.
  43 *      2) Bus's probe calls to the transport layer's allocation functions.
  44 *         Of course this function is bus specific.
  45 *      3) This allocation functions will spawn the upper layer which will
  46 *         register mac80211.
  47 *
  48 *      4) At some point (i.e. mac80211's start call), the op_mode will call
  49 *         the following sequence:
  50 *         start_hw
  51 *         start_fw
  52 *
  53 *      5) Then when finished (or reset):
  54 *         stop_device
  55 *
  56 *      6) Eventually, the free function will be called.
  57 */
  58
  59#define IWL_TRANS_FW_DBG_DOMAIN(trans)  IWL_FW_INI_DOMAIN_ALWAYS_ON
  60
  61#define FH_RSCSR_FRAME_SIZE_MSK         0x00003FFF      /* bits 0-13 */
  62#define FH_RSCSR_FRAME_INVALID          0x55550000
  63#define FH_RSCSR_FRAME_ALIGN            0x40
  64#define FH_RSCSR_RPA_EN                 BIT(25)
  65#define FH_RSCSR_RADA_EN                BIT(26)
  66#define FH_RSCSR_RXQ_POS                16
  67#define FH_RSCSR_RXQ_MASK               0x3F0000
  68
  69struct iwl_rx_packet {
  70        /*
  71         * The first 4 bytes of the RX frame header contain both the RX frame
  72         * size and some flags.
  73         * Bit fields:
  74         * 31:    flag flush RB request
  75         * 30:    flag ignore TC (terminal counter) request
  76         * 29:    flag fast IRQ request
  77         * 28-27: Reserved
  78         * 26:    RADA enabled
  79         * 25:    Offload enabled
  80         * 24:    RPF enabled
  81         * 23:    RSS enabled
  82         * 22:    Checksum enabled
  83         * 21-16: RX queue
  84         * 15-14: Reserved
  85         * 13-00: RX frame size
  86         */
  87        __le32 len_n_flags;
  88        struct iwl_cmd_header hdr;
  89        u8 data[];
  90} __packed;
  91
  92static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
  93{
  94        return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
  95}
  96
  97static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
  98{
  99        return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
 100}
 101
 102/**
 103 * enum CMD_MODE - how to send the host commands ?
 104 *
 105 * @CMD_ASYNC: Return right away and don't wait for the response
 106 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
 107 *      the response. The caller needs to call iwl_free_resp when done.
 108 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
 109 *      called after this command completes. Valid only with CMD_ASYNC.
 110 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
 111 *      SUSPEND and RESUME commands. We are in D3 mode when we set
 112 *      trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
 113 */
 114enum CMD_MODE {
 115        CMD_ASYNC               = BIT(0),
 116        CMD_WANT_SKB            = BIT(1),
 117        CMD_SEND_IN_RFKILL      = BIT(2),
 118        CMD_WANT_ASYNC_CALLBACK = BIT(3),
 119        CMD_SEND_IN_D3          = BIT(4),
 120};
 121
 122#define DEF_CMD_PAYLOAD_SIZE 320
 123
 124/**
 125 * struct iwl_device_cmd
 126 *
 127 * For allocation of the command and tx queues, this establishes the overall
 128 * size of the largest command we send to uCode, except for commands that
 129 * aren't fully copied and use other TFD space.
 130 */
 131struct iwl_device_cmd {
 132        union {
 133                struct {
 134                        struct iwl_cmd_header hdr;      /* uCode API */
 135                        u8 payload[DEF_CMD_PAYLOAD_SIZE];
 136                };
 137                struct {
 138                        struct iwl_cmd_header_wide hdr_wide;
 139                        u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
 140                                        sizeof(struct iwl_cmd_header_wide) +
 141                                        sizeof(struct iwl_cmd_header)];
 142                };
 143        };
 144} __packed;
 145
 146/**
 147 * struct iwl_device_tx_cmd - buffer for TX command
 148 * @hdr: the header
 149 * @payload: the payload placeholder
 150 *
 151 * The actual structure is sized dynamically according to need.
 152 */
 153struct iwl_device_tx_cmd {
 154        struct iwl_cmd_header hdr;
 155        u8 payload[];
 156} __packed;
 157
 158#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
 159
 160/*
 161 * number of transfer buffers (fragments) per transmit frame descriptor;
 162 * this is just the driver's idea, the hardware supports 20
 163 */
 164#define IWL_MAX_CMD_TBS_PER_TFD 2
 165
 166/* We need 2 entries for the TX command and header, and another one might
 167 * be needed for potential data in the SKB's head. The remaining ones can
 168 * be used for frags.
 169 */
 170#define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
 171
 172/**
 173 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
 174 *
 175 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
 176 *      ring. The transport layer doesn't map the command's buffer to DMA, but
 177 *      rather copies it to a previously allocated DMA buffer. This flag tells
 178 *      the transport layer not to copy the command, but to map the existing
 179 *      buffer (that is passed in) instead. This saves the memcpy and allows
 180 *      commands that are bigger than the fixed buffer to be submitted.
 181 *      Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
 182 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
 183 *      chunk internally and free it again after the command completes. This
 184 *      can (currently) be used only once per command.
 185 *      Note that a TFD entry after a DUP one cannot be a normal copied one.
 186 */
 187enum iwl_hcmd_dataflag {
 188        IWL_HCMD_DFL_NOCOPY     = BIT(0),
 189        IWL_HCMD_DFL_DUP        = BIT(1),
 190};
 191
 192enum iwl_error_event_table_status {
 193        IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
 194        IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
 195        IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
 196        IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
 197        IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
 198        IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
 199        IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
 200};
 201
 202/**
 203 * struct iwl_host_cmd - Host command to the uCode
 204 *
 205 * @data: array of chunks that composes the data of the host command
 206 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
 207 * @_rx_page_order: (internally used to free response packet)
 208 * @_rx_page_addr: (internally used to free response packet)
 209 * @flags: can be CMD_*
 210 * @len: array of the lengths of the chunks in data
 211 * @dataflags: IWL_HCMD_DFL_*
 212 * @id: command id of the host command, for wide commands encoding the
 213 *      version and group as well
 214 */
 215struct iwl_host_cmd {
 216        const void *data[IWL_MAX_CMD_TBS_PER_TFD];
 217        struct iwl_rx_packet *resp_pkt;
 218        unsigned long _rx_page_addr;
 219        u32 _rx_page_order;
 220
 221        u32 flags;
 222        u32 id;
 223        u16 len[IWL_MAX_CMD_TBS_PER_TFD];
 224        u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
 225};
 226
 227static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
 228{
 229        free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
 230}
 231
 232struct iwl_rx_cmd_buffer {
 233        struct page *_page;
 234        int _offset;
 235        bool _page_stolen;
 236        u32 _rx_page_order;
 237        unsigned int truesize;
 238};
 239
 240static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
 241{
 242        return (void *)((unsigned long)page_address(r->_page) + r->_offset);
 243}
 244
 245static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
 246{
 247        return r->_offset;
 248}
 249
 250static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
 251{
 252        r->_page_stolen = true;
 253        get_page(r->_page);
 254        return r->_page;
 255}
 256
 257static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
 258{
 259        __free_pages(r->_page, r->_rx_page_order);
 260}
 261
 262#define MAX_NO_RECLAIM_CMDS     6
 263
 264#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
 265
 266/*
 267 * Maximum number of HW queues the transport layer
 268 * currently supports
 269 */
 270#define IWL_MAX_HW_QUEUES               32
 271#define IWL_MAX_TVQM_QUEUES             512
 272
 273#define IWL_MAX_TID_COUNT       8
 274#define IWL_MGMT_TID            15
 275#define IWL_FRAME_LIMIT 64
 276#define IWL_MAX_RX_HW_QUEUES    16
 277#define IWL_9000_MAX_RX_HW_QUEUES       6
 278
 279/**
 280 * enum iwl_wowlan_status - WoWLAN image/device status
 281 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
 282 * @IWL_D3_STATUS_RESET: device was reset while suspended
 283 */
 284enum iwl_d3_status {
 285        IWL_D3_STATUS_ALIVE,
 286        IWL_D3_STATUS_RESET,
 287};
 288
 289/**
 290 * enum iwl_trans_status: transport status flags
 291 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
 292 * @STATUS_DEVICE_ENABLED: APM is enabled
 293 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
 294 * @STATUS_INT_ENABLED: interrupts are enabled
 295 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
 296 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
 297 * @STATUS_FW_ERROR: the fw is in error state
 298 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
 299 *      are sent
 300 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
 301 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
 302 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
 303 *      e.g. for testing
 304 */
 305enum iwl_trans_status {
 306        STATUS_SYNC_HCMD_ACTIVE,
 307        STATUS_DEVICE_ENABLED,
 308        STATUS_TPOWER_PMI,
 309        STATUS_INT_ENABLED,
 310        STATUS_RFKILL_HW,
 311        STATUS_RFKILL_OPMODE,
 312        STATUS_FW_ERROR,
 313        STATUS_TRANS_GOING_IDLE,
 314        STATUS_TRANS_IDLE,
 315        STATUS_TRANS_DEAD,
 316        STATUS_SUPPRESS_CMD_ERROR_ONCE,
 317};
 318
 319static inline int
 320iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
 321{
 322        switch (rb_size) {
 323        case IWL_AMSDU_2K:
 324                return get_order(2 * 1024);
 325        case IWL_AMSDU_4K:
 326                return get_order(4 * 1024);
 327        case IWL_AMSDU_8K:
 328                return get_order(8 * 1024);
 329        case IWL_AMSDU_12K:
 330                return get_order(16 * 1024);
 331        default:
 332                WARN_ON(1);
 333                return -1;
 334        }
 335}
 336
 337static inline int
 338iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
 339{
 340        switch (rb_size) {
 341        case IWL_AMSDU_2K:
 342                return 2 * 1024;
 343        case IWL_AMSDU_4K:
 344                return 4 * 1024;
 345        case IWL_AMSDU_8K:
 346                return 8 * 1024;
 347        case IWL_AMSDU_12K:
 348                return 16 * 1024;
 349        default:
 350                WARN_ON(1);
 351                return 0;
 352        }
 353}
 354
 355struct iwl_hcmd_names {
 356        u8 cmd_id;
 357        const char *const cmd_name;
 358};
 359
 360#define HCMD_NAME(x)    \
 361        { .cmd_id = x, .cmd_name = #x }
 362
 363struct iwl_hcmd_arr {
 364        const struct iwl_hcmd_names *arr;
 365        int size;
 366};
 367
 368#define HCMD_ARR(x)     \
 369        { .arr = x, .size = ARRAY_SIZE(x) }
 370
 371/**
 372 * struct iwl_dump_sanitize_ops - dump sanitization operations
 373 * @frob_txf: Scrub the TX FIFO data
 374 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
 375 *      but that might be short or long (&struct iwl_cmd_header or
 376 *      &struct iwl_cmd_header_wide)
 377 * @frob_mem: Scrub memory data
 378 */
 379struct iwl_dump_sanitize_ops {
 380        void (*frob_txf)(void *ctx, void *buf, size_t buflen);
 381        void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
 382        void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
 383};
 384
 385/**
 386 * struct iwl_trans_config - transport configuration
 387 *
 388 * @op_mode: pointer to the upper layer.
 389 * @cmd_queue: the index of the command queue.
 390 *      Must be set before start_fw.
 391 * @cmd_fifo: the fifo for host commands
 392 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
 393 * @no_reclaim_cmds: Some devices erroneously don't set the
 394 *      SEQ_RX_FRAME bit on some notifications, this is the
 395 *      list of such notifications to filter. Max length is
 396 *      %MAX_NO_RECLAIM_CMDS.
 397 * @n_no_reclaim_cmds: # of commands in list
 398 * @rx_buf_size: RX buffer size needed for A-MSDUs
 399 *      if unset 4k will be the RX buffer size
 400 * @bc_table_dword: set to true if the BC table expects the byte count to be
 401 *      in DWORD (as opposed to bytes)
 402 * @scd_set_active: should the transport configure the SCD for HCMD queue
 403 * @command_groups: array of command groups, each member is an array of the
 404 *      commands in the group; for debugging only
 405 * @command_groups_size: number of command groups, to avoid illegal access
 406 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
 407 *      space for at least two pointers
 408 * @fw_reset_handshake: firmware supports reset flow handshake
 409 */
 410struct iwl_trans_config {
 411        struct iwl_op_mode *op_mode;
 412
 413        u8 cmd_queue;
 414        u8 cmd_fifo;
 415        unsigned int cmd_q_wdg_timeout;
 416        const u8 *no_reclaim_cmds;
 417        unsigned int n_no_reclaim_cmds;
 418
 419        enum iwl_amsdu_size rx_buf_size;
 420        bool bc_table_dword;
 421        bool scd_set_active;
 422        const struct iwl_hcmd_arr *command_groups;
 423        int command_groups_size;
 424
 425        u8 cb_data_offs;
 426        bool fw_reset_handshake;
 427};
 428
 429struct iwl_trans_dump_data {
 430        u32 len;
 431        u8 data[];
 432};
 433
 434struct iwl_trans;
 435
 436struct iwl_trans_txq_scd_cfg {
 437        u8 fifo;
 438        u8 sta_id;
 439        u8 tid;
 440        bool aggregate;
 441        int frame_limit;
 442};
 443
 444/**
 445 * struct iwl_trans_rxq_dma_data - RX queue DMA data
 446 * @fr_bd_cb: DMA address of free BD cyclic buffer
 447 * @fr_bd_wid: Initial write index of the free BD cyclic buffer
 448 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
 449 * @ur_bd_cb: DMA address of used BD cyclic buffer
 450 */
 451struct iwl_trans_rxq_dma_data {
 452        u64 fr_bd_cb;
 453        u32 fr_bd_wid;
 454        u64 urbd_stts_wrptr;
 455        u64 ur_bd_cb;
 456};
 457
 458/**
 459 * struct iwl_trans_ops - transport specific operations
 460 *
 461 * All the handlers MUST be implemented
 462 *
 463 * @start_hw: starts the HW. From that point on, the HW can send interrupts.
 464 *      May sleep.
 465 * @op_mode_leave: Turn off the HW RF kill indication if on
 466 *      May sleep
 467 * @start_fw: allocates and inits all the resources for the transport
 468 *      layer. Also kick a fw image.
 469 *      May sleep
 470 * @fw_alive: called when the fw sends alive notification. If the fw provides
 471 *      the SCD base address in SRAM, then provide it here, or 0 otherwise.
 472 *      May sleep
 473 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
 474 *      the HW. From that point on, the HW will be stopped but will still issue
 475 *      an interrupt if the HW RF kill switch is triggered.
 476 *      This callback must do the right thing and not crash even if %start_hw()
 477 *      was called but not &start_fw(). May sleep.
 478 * @d3_suspend: put the device into the correct mode for WoWLAN during
 479 *      suspend. This is optional, if not implemented WoWLAN will not be
 480 *      supported. This callback may sleep.
 481 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
 482 *      talk to the WoWLAN image to get its status. This is optional, if not
 483 *      implemented WoWLAN will not be supported. This callback may sleep.
 484 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
 485 *      If RFkill is asserted in the middle of a SYNC host command, it must
 486 *      return -ERFKILL straight away.
 487 *      May sleep only if CMD_ASYNC is not set
 488 * @tx: send an skb. The transport relies on the op_mode to zero the
 489 *      the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
 490 *      the CSUM will be taken care of (TCP CSUM and IP header in case of
 491 *      IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
 492 *      header if it is IPv4.
 493 *      Must be atomic
 494 * @reclaim: free packet until ssn. Returns a list of freed packets.
 495 *      Must be atomic
 496 * @txq_enable: setup a queue. To setup an AC queue, use the
 497 *      iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
 498 *      this one. The op_mode must not configure the HCMD queue. The scheduler
 499 *      configuration may be %NULL, in which case the hardware will not be
 500 *      configured. If true is returned, the operation mode needs to increment
 501 *      the sequence number of the packets routed to this queue because of a
 502 *      hardware scheduler bug. May sleep.
 503 * @txq_disable: de-configure a Tx queue to send AMPDUs
 504 *      Must be atomic
 505 * @txq_set_shared_mode: change Tx queue shared/unshared marking
 506 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
 507 * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
 508 * @freeze_txq_timer: prevents the timer of the queue from firing until the
 509 *      queue is set to awake. Must be atomic.
 510 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
 511 *      that the transport needs to refcount the calls since this function
 512 *      will be called several times with block = true, and then the queues
 513 *      need to be unblocked only after the same number of calls with
 514 *      block = false.
 515 * @write8: write a u8 to a register at offset ofs from the BAR
 516 * @write32: write a u32 to a register at offset ofs from the BAR
 517 * @read32: read a u32 register at offset ofs from the BAR
 518 * @read_prph: read a DWORD from a periphery register
 519 * @write_prph: write a DWORD to a periphery register
 520 * @read_mem: read device's SRAM in DWORD
 521 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
 522 *      will be zeroed.
 523 * @read_config32: read a u32 value from the device's config space at
 524 *      the given offset.
 525 * @configure: configure parameters required by the transport layer from
 526 *      the op_mode. May be called several times before start_fw, can't be
 527 *      called after that.
 528 * @set_pmi: set the power pmi state
 529 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
 530 *      Sleeping is not allowed between grab_nic_access and
 531 *      release_nic_access.
 532 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
 533 *      must be the same one that was sent before to the grab_nic_access.
 534 * @set_bits_mask - set SRAM register according to value and mask.
 535 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
 536 *      TX'ed commands and similar. The buffer will be vfree'd by the caller.
 537 *      Note that the transport must fill in the proper file headers.
 538 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
 539 *      of the trans debugfs
 540 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
 541 *      context info.
 542 * @interrupts: disable/enable interrupts to transport
 543 */
 544struct iwl_trans_ops {
 545
 546        int (*start_hw)(struct iwl_trans *iwl_trans);
 547        void (*op_mode_leave)(struct iwl_trans *iwl_trans);
 548        int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
 549                        bool run_in_rfkill);
 550        void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
 551        void (*stop_device)(struct iwl_trans *trans);
 552
 553        int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
 554        int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
 555                         bool test, bool reset);
 556
 557        int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
 558
 559        int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
 560                  struct iwl_device_tx_cmd *dev_cmd, int queue);
 561        void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
 562                        struct sk_buff_head *skbs);
 563
 564        void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
 565
 566        bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
 567                           const struct iwl_trans_txq_scd_cfg *cfg,
 568                           unsigned int queue_wdg_timeout);
 569        void (*txq_disable)(struct iwl_trans *trans, int queue,
 570                            bool configure_scd);
 571        /* 22000 functions */
 572        int (*txq_alloc)(struct iwl_trans *trans,
 573                         __le16 flags, u8 sta_id, u8 tid,
 574                         int cmd_id, int size,
 575                         unsigned int queue_wdg_timeout);
 576        void (*txq_free)(struct iwl_trans *trans, int queue);
 577        int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
 578                            struct iwl_trans_rxq_dma_data *data);
 579
 580        void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
 581                                    bool shared);
 582
 583        int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
 584        int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
 585        void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
 586                                 bool freeze);
 587        void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
 588
 589        void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
 590        void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
 591        u32 (*read32)(struct iwl_trans *trans, u32 ofs);
 592        u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
 593        void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
 594        int (*read_mem)(struct iwl_trans *trans, u32 addr,
 595                        void *buf, int dwords);
 596        int (*write_mem)(struct iwl_trans *trans, u32 addr,
 597                         const void *buf, int dwords);
 598        int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
 599        void (*configure)(struct iwl_trans *trans,
 600                          const struct iwl_trans_config *trans_cfg);
 601        void (*set_pmi)(struct iwl_trans *trans, bool state);
 602        int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
 603        bool (*grab_nic_access)(struct iwl_trans *trans);
 604        void (*release_nic_access)(struct iwl_trans *trans);
 605        void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
 606                              u32 value);
 607
 608        struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
 609                                                 u32 dump_mask,
 610                                                 const struct iwl_dump_sanitize_ops *sanitize_ops,
 611                                                 void *sanitize_ctx);
 612        void (*debugfs_cleanup)(struct iwl_trans *trans);
 613        void (*sync_nmi)(struct iwl_trans *trans);
 614        int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
 615        int (*set_reduce_power)(struct iwl_trans *trans,
 616                                const void *data, u32 len);
 617        void (*interrupts)(struct iwl_trans *trans, bool enable);
 618};
 619
 620/**
 621 * enum iwl_trans_state - state of the transport layer
 622 *
 623 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
 624 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
 625 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
 626 */
 627enum iwl_trans_state {
 628        IWL_TRANS_NO_FW,
 629        IWL_TRANS_FW_STARTED,
 630        IWL_TRANS_FW_ALIVE,
 631};
 632
 633/**
 634 * DOC: Platform power management
 635 *
 636 * In system-wide power management the entire platform goes into a low
 637 * power state (e.g. idle or suspend to RAM) at the same time and the
 638 * device is configured as a wakeup source for the entire platform.
 639 * This is usually triggered by userspace activity (e.g. the user
 640 * presses the suspend button or a power management daemon decides to
 641 * put the platform in low power mode).  The device's behavior in this
 642 * mode is dictated by the wake-on-WLAN configuration.
 643 *
 644 * The terms used for the device's behavior are as follows:
 645 *
 646 *      - D0: the device is fully powered and the host is awake;
 647 *      - D3: the device is in low power mode and only reacts to
 648 *              specific events (e.g. magic-packet received or scan
 649 *              results found);
 650 *
 651 * These terms reflect the power modes in the firmware and are not to
 652 * be confused with the physical device power state.
 653 */
 654
 655/**
 656 * enum iwl_plat_pm_mode - platform power management mode
 657 *
 658 * This enumeration describes the device's platform power management
 659 * behavior when in system-wide suspend (i.e WoWLAN).
 660 *
 661 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
 662 *      device.  In system-wide suspend mode, it means that the all
 663 *      connections will be closed automatically by mac80211 before
 664 *      the platform is suspended.
 665 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
 666 */
 667enum iwl_plat_pm_mode {
 668        IWL_PLAT_PM_MODE_DISABLED,
 669        IWL_PLAT_PM_MODE_D3,
 670};
 671
 672/**
 673 * enum iwl_ini_cfg_state
 674 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
 675 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
 676 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
 677 *      are corrupted. The rest of the debug TLVs will still be used
 678 */
 679enum iwl_ini_cfg_state {
 680        IWL_INI_CFG_STATE_NOT_LOADED,
 681        IWL_INI_CFG_STATE_LOADED,
 682        IWL_INI_CFG_STATE_CORRUPTED,
 683};
 684
 685/* Max time to wait for nmi interrupt */
 686#define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
 687
 688/**
 689 * struct iwl_dram_data
 690 * @physical: page phy pointer
 691 * @block: pointer to the allocated block/page
 692 * @size: size of the block/page
 693 */
 694struct iwl_dram_data {
 695        dma_addr_t physical;
 696        void *block;
 697        int size;
 698};
 699
 700/**
 701 * struct iwl_fw_mon - fw monitor per allocation id
 702 * @num_frags: number of fragments
 703 * @frags: an array of DRAM buffer fragments
 704 */
 705struct iwl_fw_mon {
 706        u32 num_frags;
 707        struct iwl_dram_data *frags;
 708};
 709
 710/**
 711 * struct iwl_self_init_dram - dram data used by self init process
 712 * @fw: lmac and umac dram data
 713 * @fw_cnt: total number of items in array
 714 * @paging: paging dram data
 715 * @paging_cnt: total number of items in array
 716 */
 717struct iwl_self_init_dram {
 718        struct iwl_dram_data *fw;
 719        int fw_cnt;
 720        struct iwl_dram_data *paging;
 721        int paging_cnt;
 722};
 723
 724/**
 725 * struct iwl_trans_debug - transport debug related data
 726 *
 727 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
 728 * @rec_on: true iff there is a fw debug recording currently active
 729 * @dest_tlv: points to the destination TLV for debug
 730 * @conf_tlv: array of pointers to configuration TLVs for debug
 731 * @trigger_tlv: array of pointers to triggers TLVs for debug
 732 * @lmac_error_event_table: addrs of lmacs error tables
 733 * @umac_error_event_table: addr of umac error table
 734 * @tcm_error_event_table: address(es) of TCM error table(s)
 735 * @rcm_error_event_table: address(es) of RCM error table(s)
 736 * @error_event_table_tlv_status: bitmap that indicates what error table
 737 *      pointers was recevied via TLV. uses enum &iwl_error_event_table_status
 738 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
 739 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
 740 * @fw_mon_cfg: debug buffer allocation configuration
 741 * @fw_mon_ini: DRAM buffer fragments per allocation id
 742 * @fw_mon: DRAM buffer for firmware monitor
 743 * @hw_error: equals true if hw error interrupt was received from the FW
 744 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
 745 * @active_regions: active regions
 746 * @debug_info_tlv_list: list of debug info TLVs
 747 * @time_point: array of debug time points
 748 * @periodic_trig_list: periodic triggers list
 749 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
 750 * @ucode_preset: preset based on ucode
 751 */
 752struct iwl_trans_debug {
 753        u8 n_dest_reg;
 754        bool rec_on;
 755
 756        const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
 757        const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
 758        struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
 759
 760        u32 lmac_error_event_table[2];
 761        u32 umac_error_event_table;
 762        u32 tcm_error_event_table[2];
 763        u32 rcm_error_event_table[2];
 764        unsigned int error_event_table_tlv_status;
 765
 766        enum iwl_ini_cfg_state internal_ini_cfg;
 767        enum iwl_ini_cfg_state external_ini_cfg;
 768
 769        struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
 770        struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
 771
 772        struct iwl_dram_data fw_mon;
 773
 774        bool hw_error;
 775        enum iwl_fw_ini_buffer_location ini_dest;
 776
 777        u64 unsupported_region_msk;
 778        struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
 779        struct list_head debug_info_tlv_list;
 780        struct iwl_dbg_tlv_time_point_data
 781                time_point[IWL_FW_INI_TIME_POINT_NUM];
 782        struct list_head periodic_trig_list;
 783
 784        u32 domains_bitmap;
 785        u32 ucode_preset;
 786        bool restart_required;
 787        u32 last_tp_resetfw;
 788};
 789
 790struct iwl_dma_ptr {
 791        dma_addr_t dma;
 792        void *addr;
 793        size_t size;
 794};
 795
 796struct iwl_cmd_meta {
 797        /* only for SYNC commands, iff the reply skb is wanted */
 798        struct iwl_host_cmd *source;
 799        u32 flags;
 800        u32 tbs;
 801};
 802
 803/*
 804 * The FH will write back to the first TB only, so we need to copy some data
 805 * into the buffer regardless of whether it should be mapped or not.
 806 * This indicates how big the first TB must be to include the scratch buffer
 807 * and the assigned PN.
 808 * Since PN location is 8 bytes at offset 12, it's 20 now.
 809 * If we make it bigger then allocations will be bigger and copy slower, so
 810 * that's probably not useful.
 811 */
 812#define IWL_FIRST_TB_SIZE       20
 813#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
 814
 815struct iwl_pcie_txq_entry {
 816        void *cmd;
 817        struct sk_buff *skb;
 818        /* buffer to free after command completes */
 819        const void *free_buf;
 820        struct iwl_cmd_meta meta;
 821};
 822
 823struct iwl_pcie_first_tb_buf {
 824        u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
 825};
 826
 827/**
 828 * struct iwl_txq - Tx Queue for DMA
 829 * @q: generic Rx/Tx queue descriptor
 830 * @tfds: transmit frame descriptors (DMA memory)
 831 * @first_tb_bufs: start of command headers, including scratch buffers, for
 832 *      the writeback -- this is DMA memory and an array holding one buffer
 833 *      for each command on the queue
 834 * @first_tb_dma: DMA address for the first_tb_bufs start
 835 * @entries: transmit entries (driver state)
 836 * @lock: queue lock
 837 * @stuck_timer: timer that fires if queue gets stuck
 838 * @trans: pointer back to transport (for timer)
 839 * @need_update: indicates need to update read/write index
 840 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
 841 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
 842 * @frozen: tx stuck queue timer is frozen
 843 * @frozen_expiry_remainder: remember how long until the timer fires
 844 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
 845 * @write_ptr: 1-st empty entry (index) host_w
 846 * @read_ptr: last used entry (index) host_r
 847 * @dma_addr:  physical addr for BD's
 848 * @n_window: safe queue window
 849 * @id: queue id
 850 * @low_mark: low watermark, resume queue if free space more than this
 851 * @high_mark: high watermark, stop queue if free space less than this
 852 *
 853 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
 854 * descriptors) and required locking structures.
 855 *
 856 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
 857 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
 858 * there might be HW changes in the future). For the normal TX
 859 * queues, n_window, which is the size of the software queue data
 860 * is also 256; however, for the command queue, n_window is only
 861 * 32 since we don't need so many commands pending. Since the HW
 862 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
 863 * This means that we end up with the following:
 864 *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
 865 *  SW entries:           | 0      | ... | 31          |
 866 * where N is a number between 0 and 7. This means that the SW
 867 * data is a window overlayed over the HW queue.
 868 */
 869struct iwl_txq {
 870        void *tfds;
 871        struct iwl_pcie_first_tb_buf *first_tb_bufs;
 872        dma_addr_t first_tb_dma;
 873        struct iwl_pcie_txq_entry *entries;
 874        /* lock for syncing changes on the queue */
 875        spinlock_t lock;
 876        unsigned long frozen_expiry_remainder;
 877        struct timer_list stuck_timer;
 878        struct iwl_trans *trans;
 879        bool need_update;
 880        bool frozen;
 881        bool ampdu;
 882        int block;
 883        unsigned long wd_timeout;
 884        struct sk_buff_head overflow_q;
 885        struct iwl_dma_ptr bc_tbl;
 886
 887        int write_ptr;
 888        int read_ptr;
 889        dma_addr_t dma_addr;
 890        int n_window;
 891        u32 id;
 892        int low_mark;
 893        int high_mark;
 894
 895        bool overflow_tx;
 896};
 897
 898/**
 899 * struct iwl_trans_txqs - transport tx queues data
 900 *
 901 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
 902 * @page_offs: offset from skb->cb to mac header page pointer
 903 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
 904 * @queue_used - bit mask of used queues
 905 * @queue_stopped - bit mask of stopped queues
 906 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
 907 */
 908struct iwl_trans_txqs {
 909        unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
 910        unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
 911        struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
 912        struct dma_pool *bc_pool;
 913        size_t bc_tbl_size;
 914        bool bc_table_dword;
 915        u8 page_offs;
 916        u8 dev_cmd_offs;
 917        struct iwl_tso_hdr_page __percpu *tso_hdr_page;
 918
 919        struct {
 920                u8 fifo;
 921                u8 q_id;
 922                unsigned int wdg_timeout;
 923        } cmd;
 924
 925        struct {
 926                u8 max_tbs;
 927                u16 size;
 928                u8 addr_size;
 929        } tfd;
 930
 931        struct iwl_dma_ptr scd_bc_tbls;
 932};
 933
 934/**
 935 * struct iwl_trans - transport common data
 936 *
 937 * @csme_own - true if we couldn't get ownership on the device
 938 * @ops - pointer to iwl_trans_ops
 939 * @op_mode - pointer to the op_mode
 940 * @trans_cfg: the trans-specific configuration part
 941 * @cfg - pointer to the configuration
 942 * @drv - pointer to iwl_drv
 943 * @status: a bit-mask of transport status flags
 944 * @dev - pointer to struct device * that represents the device
 945 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
 946 *      0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
 947 * @hw_rf_id a u32 with the device RF ID
 948 * @hw_id: a u32 with the ID of the device / sub-device.
 949 *      Set during transport allocation.
 950 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
 951 * @hw_rev_step: The mac step of the HW
 952 * @pm_support: set to true in start_hw if link pm is supported
 953 * @ltr_enabled: set to true if the LTR is enabled
 954 * @wide_cmd_header: true when ucode supports wide command header format
 955 * @wait_command_queue: wait queue for sync commands
 956 * @num_rx_queues: number of RX queues allocated by the transport;
 957 *      the transport must set this before calling iwl_drv_start()
 958 * @iml_len: the length of the image loader
 959 * @iml: a pointer to the image loader itself
 960 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
 961 *      The user should use iwl_trans_{alloc,free}_tx_cmd.
 962 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
 963 *      starting the firmware, used for tracing
 964 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
 965 *      start of the 802.11 header in the @rx_mpdu_cmd
 966 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
 967 * @system_pm_mode: the system-wide power management mode in use.
 968 *      This mode is set dynamically, depending on the WoWLAN values
 969 *      configured from the userspace at runtime.
 970 * @iwl_trans_txqs: transport tx queues data.
 971 */
 972struct iwl_trans {
 973        bool csme_own;
 974        const struct iwl_trans_ops *ops;
 975        struct iwl_op_mode *op_mode;
 976        const struct iwl_cfg_trans_params *trans_cfg;
 977        const struct iwl_cfg *cfg;
 978        struct iwl_drv *drv;
 979        enum iwl_trans_state state;
 980        unsigned long status;
 981
 982        struct device *dev;
 983        u32 max_skb_frags;
 984        u32 hw_rev;
 985        u32 hw_rev_step;
 986        u32 hw_rf_id;
 987        u32 hw_id;
 988        char hw_id_str[52];
 989        u32 sku_id[3];
 990
 991        u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
 992
 993        bool pm_support;
 994        bool ltr_enabled;
 995        u8 pnvm_loaded:1;
 996        u8 reduce_power_loaded:1;
 997
 998        const struct iwl_hcmd_arr *command_groups;
 999        int command_groups_size;
1000        bool wide_cmd_header;
1001
1002        wait_queue_head_t wait_command_queue;
1003        u8 num_rx_queues;
1004
1005        size_t iml_len;
1006        u8 *iml;
1007
1008        /* The following fields are internal only */
1009        struct kmem_cache *dev_cmd_pool;
1010        char dev_cmd_pool_name[50];
1011
1012        struct dentry *dbgfs_dir;
1013
1014#ifdef CONFIG_LOCKDEP
1015        struct lockdep_map sync_cmd_lockdep_map;
1016#endif
1017
1018        struct iwl_trans_debug dbg;
1019        struct iwl_self_init_dram init_dram;
1020
1021        enum iwl_plat_pm_mode system_pm_mode;
1022
1023        const char *name;
1024        struct iwl_trans_txqs txqs;
1025
1026        /* pointer to trans specific struct */
1027        /*Ensure that this pointer will always be aligned to sizeof pointer */
1028        char trans_specific[] __aligned(sizeof(void *));
1029};
1030
1031const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1032int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1033
1034static inline void iwl_trans_configure(struct iwl_trans *trans,
1035                                       const struct iwl_trans_config *trans_cfg)
1036{
1037        trans->op_mode = trans_cfg->op_mode;
1038
1039        trans->ops->configure(trans, trans_cfg);
1040        WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1041}
1042
1043static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1044{
1045        might_sleep();
1046
1047        return trans->ops->start_hw(trans);
1048}
1049
1050static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1051{
1052        might_sleep();
1053
1054        if (trans->ops->op_mode_leave)
1055                trans->ops->op_mode_leave(trans);
1056
1057        trans->op_mode = NULL;
1058
1059        trans->state = IWL_TRANS_NO_FW;
1060}
1061
1062static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1063{
1064        might_sleep();
1065
1066        trans->state = IWL_TRANS_FW_ALIVE;
1067
1068        trans->ops->fw_alive(trans, scd_addr);
1069}
1070
1071static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1072                                     const struct fw_img *fw,
1073                                     bool run_in_rfkill)
1074{
1075        int ret;
1076
1077        might_sleep();
1078
1079        WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1080
1081        clear_bit(STATUS_FW_ERROR, &trans->status);
1082        ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1083        if (ret == 0)
1084                trans->state = IWL_TRANS_FW_STARTED;
1085
1086        return ret;
1087}
1088
1089static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1090{
1091        might_sleep();
1092
1093        trans->ops->stop_device(trans);
1094
1095        trans->state = IWL_TRANS_NO_FW;
1096}
1097
1098static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1099                                       bool reset)
1100{
1101        might_sleep();
1102        if (!trans->ops->d3_suspend)
1103                return 0;
1104
1105        return trans->ops->d3_suspend(trans, test, reset);
1106}
1107
1108static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1109                                      enum iwl_d3_status *status,
1110                                      bool test, bool reset)
1111{
1112        might_sleep();
1113        if (!trans->ops->d3_resume)
1114                return 0;
1115
1116        return trans->ops->d3_resume(trans, status, test, reset);
1117}
1118
1119static inline struct iwl_trans_dump_data *
1120iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1121                    const struct iwl_dump_sanitize_ops *sanitize_ops,
1122                    void *sanitize_ctx)
1123{
1124        if (!trans->ops->dump_data)
1125                return NULL;
1126        return trans->ops->dump_data(trans, dump_mask,
1127                                     sanitize_ops, sanitize_ctx);
1128}
1129
1130static inline struct iwl_device_tx_cmd *
1131iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1132{
1133        return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1134}
1135
1136int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1137
1138static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1139                                         struct iwl_device_tx_cmd *dev_cmd)
1140{
1141        kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1142}
1143
1144static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1145                               struct iwl_device_tx_cmd *dev_cmd, int queue)
1146{
1147        if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1148                return -EIO;
1149
1150        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1151                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1152                return -EIO;
1153        }
1154
1155        return trans->ops->tx(trans, skb, dev_cmd, queue);
1156}
1157
1158static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1159                                     int ssn, struct sk_buff_head *skbs)
1160{
1161        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1162                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1163                return;
1164        }
1165
1166        trans->ops->reclaim(trans, queue, ssn, skbs);
1167}
1168
1169static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1170                                        int ptr)
1171{
1172        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1173                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1174                return;
1175        }
1176
1177        trans->ops->set_q_ptrs(trans, queue, ptr);
1178}
1179
1180static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1181                                         bool configure_scd)
1182{
1183        trans->ops->txq_disable(trans, queue, configure_scd);
1184}
1185
1186static inline bool
1187iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1188                         const struct iwl_trans_txq_scd_cfg *cfg,
1189                         unsigned int queue_wdg_timeout)
1190{
1191        might_sleep();
1192
1193        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1194                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1195                return false;
1196        }
1197
1198        return trans->ops->txq_enable(trans, queue, ssn,
1199                                      cfg, queue_wdg_timeout);
1200}
1201
1202static inline int
1203iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1204                           struct iwl_trans_rxq_dma_data *data)
1205{
1206        if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1207                return -ENOTSUPP;
1208
1209        return trans->ops->rxq_dma_data(trans, queue, data);
1210}
1211
1212static inline void
1213iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1214{
1215        if (WARN_ON_ONCE(!trans->ops->txq_free))
1216                return;
1217
1218        trans->ops->txq_free(trans, queue);
1219}
1220
1221static inline int
1222iwl_trans_txq_alloc(struct iwl_trans *trans,
1223                    __le16 flags, u8 sta_id, u8 tid,
1224                    int cmd_id, int size,
1225                    unsigned int wdg_timeout)
1226{
1227        might_sleep();
1228
1229        if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1230                return -ENOTSUPP;
1231
1232        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1233                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1234                return -EIO;
1235        }
1236
1237        return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1238                                     cmd_id, size, wdg_timeout);
1239}
1240
1241static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1242                                                 int queue, bool shared_mode)
1243{
1244        if (trans->ops->txq_set_shared_mode)
1245                trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1246}
1247
1248static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1249                                        int fifo, int sta_id, int tid,
1250                                        int frame_limit, u16 ssn,
1251                                        unsigned int queue_wdg_timeout)
1252{
1253        struct iwl_trans_txq_scd_cfg cfg = {
1254                .fifo = fifo,
1255                .sta_id = sta_id,
1256                .tid = tid,
1257                .frame_limit = frame_limit,
1258                .aggregate = sta_id >= 0,
1259        };
1260
1261        iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1262}
1263
1264static inline
1265void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1266                             unsigned int queue_wdg_timeout)
1267{
1268        struct iwl_trans_txq_scd_cfg cfg = {
1269                .fifo = fifo,
1270                .sta_id = -1,
1271                .tid = IWL_MAX_TID_COUNT,
1272                .frame_limit = IWL_FRAME_LIMIT,
1273                .aggregate = false,
1274        };
1275
1276        iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1277}
1278
1279static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1280                                              unsigned long txqs,
1281                                              bool freeze)
1282{
1283        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1284                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1285                return;
1286        }
1287
1288        if (trans->ops->freeze_txq_timer)
1289                trans->ops->freeze_txq_timer(trans, txqs, freeze);
1290}
1291
1292static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1293                                            bool block)
1294{
1295        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1296                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1297                return;
1298        }
1299
1300        if (trans->ops->block_txq_ptrs)
1301                trans->ops->block_txq_ptrs(trans, block);
1302}
1303
1304static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1305                                                 u32 txqs)
1306{
1307        if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1308                return -ENOTSUPP;
1309
1310        /* No need to wait if the firmware is not alive */
1311        if (trans->state != IWL_TRANS_FW_ALIVE) {
1312                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1313                return -EIO;
1314        }
1315
1316        return trans->ops->wait_tx_queues_empty(trans, txqs);
1317}
1318
1319static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1320{
1321        if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1322                return -ENOTSUPP;
1323
1324        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1325                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1326                return -EIO;
1327        }
1328
1329        return trans->ops->wait_txq_empty(trans, queue);
1330}
1331
1332static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1333{
1334        trans->ops->write8(trans, ofs, val);
1335}
1336
1337static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1338{
1339        trans->ops->write32(trans, ofs, val);
1340}
1341
1342static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1343{
1344        return trans->ops->read32(trans, ofs);
1345}
1346
1347static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1348{
1349        return trans->ops->read_prph(trans, ofs);
1350}
1351
1352static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1353                                        u32 val)
1354{
1355        return trans->ops->write_prph(trans, ofs, val);
1356}
1357
1358static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1359                                     void *buf, int dwords)
1360{
1361        return trans->ops->read_mem(trans, addr, buf, dwords);
1362}
1363
1364#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)                   \
1365        do {                                                                  \
1366                if (__builtin_constant_p(bufsize))                            \
1367                        BUILD_BUG_ON((bufsize) % sizeof(u32));                \
1368                iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1369        } while (0)
1370
1371static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1372{
1373        u32 value;
1374
1375        if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1376                return 0xa5a5a5a5;
1377
1378        return value;
1379}
1380
1381static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1382                                      const void *buf, int dwords)
1383{
1384        return trans->ops->write_mem(trans, addr, buf, dwords);
1385}
1386
1387static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1388                                        u32 val)
1389{
1390        return iwl_trans_write_mem(trans, addr, &val, 1);
1391}
1392
1393static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1394{
1395        if (trans->ops->set_pmi)
1396                trans->ops->set_pmi(trans, state);
1397}
1398
1399static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1400                                     bool retake_ownership)
1401{
1402        if (trans->ops->sw_reset)
1403                return trans->ops->sw_reset(trans, retake_ownership);
1404        return 0;
1405}
1406
1407static inline void
1408iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1409{
1410        trans->ops->set_bits_mask(trans, reg, mask, value);
1411}
1412
1413#define iwl_trans_grab_nic_access(trans)                \
1414        __cond_lock(nic_access,                         \
1415                    likely((trans)->ops->grab_nic_access(trans)))
1416
1417static inline void __releases(nic_access)
1418iwl_trans_release_nic_access(struct iwl_trans *trans)
1419{
1420        trans->ops->release_nic_access(trans);
1421        __release(nic_access);
1422}
1423
1424static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1425{
1426        if (WARN_ON_ONCE(!trans->op_mode))
1427                return;
1428
1429        /* prevent double restarts due to the same erroneous FW */
1430        if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1431                iwl_op_mode_nic_error(trans->op_mode, sync);
1432                trans->state = IWL_TRANS_NO_FW;
1433        }
1434}
1435
1436static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1437{
1438        return trans->state == IWL_TRANS_FW_ALIVE;
1439}
1440
1441static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1442{
1443        if (trans->ops->sync_nmi)
1444                trans->ops->sync_nmi(trans);
1445}
1446
1447void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1448                                  u32 sw_err_bit);
1449
1450static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1451                                     const void *data, u32 len)
1452{
1453        if (trans->ops->set_pnvm) {
1454                int ret = trans->ops->set_pnvm(trans, data, len);
1455
1456                if (ret)
1457                        return ret;
1458        }
1459
1460        trans->pnvm_loaded = true;
1461
1462        return 0;
1463}
1464
1465static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1466                                             const void *data, u32 len)
1467{
1468        if (trans->ops->set_reduce_power) {
1469                int ret = trans->ops->set_reduce_power(trans, data, len);
1470
1471                if (ret)
1472                        return ret;
1473        }
1474
1475        trans->reduce_power_loaded = true;
1476        return 0;
1477}
1478
1479static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1480{
1481        return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1482                trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1483}
1484
1485static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1486{
1487        if (trans->ops->interrupts)
1488                trans->ops->interrupts(trans, enable);
1489}
1490
1491/*****************************************************
1492 * transport helper functions
1493 *****************************************************/
1494struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1495                          struct device *dev,
1496                          const struct iwl_trans_ops *ops,
1497                          const struct iwl_cfg_trans_params *cfg_trans);
1498int iwl_trans_init(struct iwl_trans *trans);
1499void iwl_trans_free(struct iwl_trans *trans);
1500
1501/*****************************************************
1502* driver (transport) register/unregister functions
1503******************************************************/
1504int __must_check iwl_pci_register_driver(void);
1505void iwl_pci_unregister_driver(void);
1506
1507#endif /* __iwl_trans_h__ */
1508