linux/drivers/nvme/host/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/blk-mq.h>
   9#include <linux/blk-integrity.h>
  10#include <linux/compat.h>
  11#include <linux/delay.h>
  12#include <linux/errno.h>
  13#include <linux/hdreg.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/slab.h>
  18#include <linux/types.h>
  19#include <linux/pr.h>
  20#include <linux/ptrace.h>
  21#include <linux/nvme_ioctl.h>
  22#include <linux/pm_qos.h>
  23#include <asm/unaligned.h>
  24
  25#include "nvme.h"
  26#include "fabrics.h"
  27
  28#define CREATE_TRACE_POINTS
  29#include "trace.h"
  30
  31#define NVME_MINORS             (1U << MINORBITS)
  32
  33unsigned int admin_timeout = 60;
  34module_param(admin_timeout, uint, 0644);
  35MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  36EXPORT_SYMBOL_GPL(admin_timeout);
  37
  38unsigned int nvme_io_timeout = 30;
  39module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
  40MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  41EXPORT_SYMBOL_GPL(nvme_io_timeout);
  42
  43static unsigned char shutdown_timeout = 5;
  44module_param(shutdown_timeout, byte, 0644);
  45MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  46
  47static u8 nvme_max_retries = 5;
  48module_param_named(max_retries, nvme_max_retries, byte, 0644);
  49MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
  50
  51static unsigned long default_ps_max_latency_us = 100000;
  52module_param(default_ps_max_latency_us, ulong, 0644);
  53MODULE_PARM_DESC(default_ps_max_latency_us,
  54                 "max power saving latency for new devices; use PM QOS to change per device");
  55
  56static bool force_apst;
  57module_param(force_apst, bool, 0644);
  58MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
  59
  60static unsigned long apst_primary_timeout_ms = 100;
  61module_param(apst_primary_timeout_ms, ulong, 0644);
  62MODULE_PARM_DESC(apst_primary_timeout_ms,
  63        "primary APST timeout in ms");
  64
  65static unsigned long apst_secondary_timeout_ms = 2000;
  66module_param(apst_secondary_timeout_ms, ulong, 0644);
  67MODULE_PARM_DESC(apst_secondary_timeout_ms,
  68        "secondary APST timeout in ms");
  69
  70static unsigned long apst_primary_latency_tol_us = 15000;
  71module_param(apst_primary_latency_tol_us, ulong, 0644);
  72MODULE_PARM_DESC(apst_primary_latency_tol_us,
  73        "primary APST latency tolerance in us");
  74
  75static unsigned long apst_secondary_latency_tol_us = 100000;
  76module_param(apst_secondary_latency_tol_us, ulong, 0644);
  77MODULE_PARM_DESC(apst_secondary_latency_tol_us,
  78        "secondary APST latency tolerance in us");
  79
  80static bool streams;
  81module_param(streams, bool, 0644);
  82MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
  83
  84/*
  85 * nvme_wq - hosts nvme related works that are not reset or delete
  86 * nvme_reset_wq - hosts nvme reset works
  87 * nvme_delete_wq - hosts nvme delete works
  88 *
  89 * nvme_wq will host works such as scan, aen handling, fw activation,
  90 * keep-alive, periodic reconnects etc. nvme_reset_wq
  91 * runs reset works which also flush works hosted on nvme_wq for
  92 * serialization purposes. nvme_delete_wq host controller deletion
  93 * works which flush reset works for serialization.
  94 */
  95struct workqueue_struct *nvme_wq;
  96EXPORT_SYMBOL_GPL(nvme_wq);
  97
  98struct workqueue_struct *nvme_reset_wq;
  99EXPORT_SYMBOL_GPL(nvme_reset_wq);
 100
 101struct workqueue_struct *nvme_delete_wq;
 102EXPORT_SYMBOL_GPL(nvme_delete_wq);
 103
 104static LIST_HEAD(nvme_subsystems);
 105static DEFINE_MUTEX(nvme_subsystems_lock);
 106
 107static DEFINE_IDA(nvme_instance_ida);
 108static dev_t nvme_ctrl_base_chr_devt;
 109static struct class *nvme_class;
 110static struct class *nvme_subsys_class;
 111
 112static DEFINE_IDA(nvme_ns_chr_minor_ida);
 113static dev_t nvme_ns_chr_devt;
 114static struct class *nvme_ns_chr_class;
 115
 116static void nvme_put_subsystem(struct nvme_subsystem *subsys);
 117static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
 118                                           unsigned nsid);
 119static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
 120                                   struct nvme_command *cmd);
 121
 122void nvme_queue_scan(struct nvme_ctrl *ctrl)
 123{
 124        /*
 125         * Only new queue scan work when admin and IO queues are both alive
 126         */
 127        if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
 128                queue_work(nvme_wq, &ctrl->scan_work);
 129}
 130
 131/*
 132 * Use this function to proceed with scheduling reset_work for a controller
 133 * that had previously been set to the resetting state. This is intended for
 134 * code paths that can't be interrupted by other reset attempts. A hot removal
 135 * may prevent this from succeeding.
 136 */
 137int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
 138{
 139        if (ctrl->state != NVME_CTRL_RESETTING)
 140                return -EBUSY;
 141        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 142                return -EBUSY;
 143        return 0;
 144}
 145EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
 146
 147static void nvme_failfast_work(struct work_struct *work)
 148{
 149        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
 150                        struct nvme_ctrl, failfast_work);
 151
 152        if (ctrl->state != NVME_CTRL_CONNECTING)
 153                return;
 154
 155        set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
 156        dev_info(ctrl->device, "failfast expired\n");
 157        nvme_kick_requeue_lists(ctrl);
 158}
 159
 160static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
 161{
 162        if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
 163                return;
 164
 165        schedule_delayed_work(&ctrl->failfast_work,
 166                              ctrl->opts->fast_io_fail_tmo * HZ);
 167}
 168
 169static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
 170{
 171        if (!ctrl->opts)
 172                return;
 173
 174        cancel_delayed_work_sync(&ctrl->failfast_work);
 175        clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
 176}
 177
 178
 179int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
 180{
 181        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
 182                return -EBUSY;
 183        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 184                return -EBUSY;
 185        return 0;
 186}
 187EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
 188
 189int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
 190{
 191        int ret;
 192
 193        ret = nvme_reset_ctrl(ctrl);
 194        if (!ret) {
 195                flush_work(&ctrl->reset_work);
 196                if (ctrl->state != NVME_CTRL_LIVE)
 197                        ret = -ENETRESET;
 198        }
 199
 200        return ret;
 201}
 202
 203static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
 204{
 205        dev_info(ctrl->device,
 206                 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
 207
 208        flush_work(&ctrl->reset_work);
 209        nvme_stop_ctrl(ctrl);
 210        nvme_remove_namespaces(ctrl);
 211        ctrl->ops->delete_ctrl(ctrl);
 212        nvme_uninit_ctrl(ctrl);
 213}
 214
 215static void nvme_delete_ctrl_work(struct work_struct *work)
 216{
 217        struct nvme_ctrl *ctrl =
 218                container_of(work, struct nvme_ctrl, delete_work);
 219
 220        nvme_do_delete_ctrl(ctrl);
 221}
 222
 223int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
 224{
 225        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 226                return -EBUSY;
 227        if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
 228                return -EBUSY;
 229        return 0;
 230}
 231EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
 232
 233static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
 234{
 235        /*
 236         * Keep a reference until nvme_do_delete_ctrl() complete,
 237         * since ->delete_ctrl can free the controller.
 238         */
 239        nvme_get_ctrl(ctrl);
 240        if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 241                nvme_do_delete_ctrl(ctrl);
 242        nvme_put_ctrl(ctrl);
 243}
 244
 245static blk_status_t nvme_error_status(u16 status)
 246{
 247        switch (status & 0x7ff) {
 248        case NVME_SC_SUCCESS:
 249                return BLK_STS_OK;
 250        case NVME_SC_CAP_EXCEEDED:
 251                return BLK_STS_NOSPC;
 252        case NVME_SC_LBA_RANGE:
 253        case NVME_SC_CMD_INTERRUPTED:
 254        case NVME_SC_NS_NOT_READY:
 255                return BLK_STS_TARGET;
 256        case NVME_SC_BAD_ATTRIBUTES:
 257        case NVME_SC_ONCS_NOT_SUPPORTED:
 258        case NVME_SC_INVALID_OPCODE:
 259        case NVME_SC_INVALID_FIELD:
 260        case NVME_SC_INVALID_NS:
 261                return BLK_STS_NOTSUPP;
 262        case NVME_SC_WRITE_FAULT:
 263        case NVME_SC_READ_ERROR:
 264        case NVME_SC_UNWRITTEN_BLOCK:
 265        case NVME_SC_ACCESS_DENIED:
 266        case NVME_SC_READ_ONLY:
 267        case NVME_SC_COMPARE_FAILED:
 268                return BLK_STS_MEDIUM;
 269        case NVME_SC_GUARD_CHECK:
 270        case NVME_SC_APPTAG_CHECK:
 271        case NVME_SC_REFTAG_CHECK:
 272        case NVME_SC_INVALID_PI:
 273                return BLK_STS_PROTECTION;
 274        case NVME_SC_RESERVATION_CONFLICT:
 275                return BLK_STS_NEXUS;
 276        case NVME_SC_HOST_PATH_ERROR:
 277                return BLK_STS_TRANSPORT;
 278        case NVME_SC_ZONE_TOO_MANY_ACTIVE:
 279                return BLK_STS_ZONE_ACTIVE_RESOURCE;
 280        case NVME_SC_ZONE_TOO_MANY_OPEN:
 281                return BLK_STS_ZONE_OPEN_RESOURCE;
 282        default:
 283                return BLK_STS_IOERR;
 284        }
 285}
 286
 287static void nvme_retry_req(struct request *req)
 288{
 289        unsigned long delay = 0;
 290        u16 crd;
 291
 292        /* The mask and shift result must be <= 3 */
 293        crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
 294        if (crd)
 295                delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
 296
 297        nvme_req(req)->retries++;
 298        blk_mq_requeue_request(req, false);
 299        blk_mq_delay_kick_requeue_list(req->q, delay);
 300}
 301
 302enum nvme_disposition {
 303        COMPLETE,
 304        RETRY,
 305        FAILOVER,
 306};
 307
 308static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
 309{
 310        if (likely(nvme_req(req)->status == 0))
 311                return COMPLETE;
 312
 313        if (blk_noretry_request(req) ||
 314            (nvme_req(req)->status & NVME_SC_DNR) ||
 315            nvme_req(req)->retries >= nvme_max_retries)
 316                return COMPLETE;
 317
 318        if (req->cmd_flags & REQ_NVME_MPATH) {
 319                if (nvme_is_path_error(nvme_req(req)->status) ||
 320                    blk_queue_dying(req->q))
 321                        return FAILOVER;
 322        } else {
 323                if (blk_queue_dying(req->q))
 324                        return COMPLETE;
 325        }
 326
 327        return RETRY;
 328}
 329
 330static inline void nvme_end_req_zoned(struct request *req)
 331{
 332        if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
 333            req_op(req) == REQ_OP_ZONE_APPEND)
 334                req->__sector = nvme_lba_to_sect(req->q->queuedata,
 335                        le64_to_cpu(nvme_req(req)->result.u64));
 336}
 337
 338static inline void nvme_end_req(struct request *req)
 339{
 340        blk_status_t status = nvme_error_status(nvme_req(req)->status);
 341
 342        nvme_end_req_zoned(req);
 343        nvme_trace_bio_complete(req);
 344        blk_mq_end_request(req, status);
 345}
 346
 347void nvme_complete_rq(struct request *req)
 348{
 349        trace_nvme_complete_rq(req);
 350        nvme_cleanup_cmd(req);
 351
 352        if (nvme_req(req)->ctrl->kas)
 353                nvme_req(req)->ctrl->comp_seen = true;
 354
 355        switch (nvme_decide_disposition(req)) {
 356        case COMPLETE:
 357                nvme_end_req(req);
 358                return;
 359        case RETRY:
 360                nvme_retry_req(req);
 361                return;
 362        case FAILOVER:
 363                nvme_failover_req(req);
 364                return;
 365        }
 366}
 367EXPORT_SYMBOL_GPL(nvme_complete_rq);
 368
 369void nvme_complete_batch_req(struct request *req)
 370{
 371        trace_nvme_complete_rq(req);
 372        nvme_cleanup_cmd(req);
 373        nvme_end_req_zoned(req);
 374}
 375EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
 376
 377/*
 378 * Called to unwind from ->queue_rq on a failed command submission so that the
 379 * multipathing code gets called to potentially failover to another path.
 380 * The caller needs to unwind all transport specific resource allocations and
 381 * must return propagate the return value.
 382 */
 383blk_status_t nvme_host_path_error(struct request *req)
 384{
 385        nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
 386        blk_mq_set_request_complete(req);
 387        nvme_complete_rq(req);
 388        return BLK_STS_OK;
 389}
 390EXPORT_SYMBOL_GPL(nvme_host_path_error);
 391
 392bool nvme_cancel_request(struct request *req, void *data, bool reserved)
 393{
 394        dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
 395                                "Cancelling I/O %d", req->tag);
 396
 397        /* don't abort one completed request */
 398        if (blk_mq_request_completed(req))
 399                return true;
 400
 401        nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
 402        nvme_req(req)->flags |= NVME_REQ_CANCELLED;
 403        blk_mq_complete_request(req);
 404        return true;
 405}
 406EXPORT_SYMBOL_GPL(nvme_cancel_request);
 407
 408void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
 409{
 410        if (ctrl->tagset) {
 411                blk_mq_tagset_busy_iter(ctrl->tagset,
 412                                nvme_cancel_request, ctrl);
 413                blk_mq_tagset_wait_completed_request(ctrl->tagset);
 414        }
 415}
 416EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
 417
 418void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
 419{
 420        if (ctrl->admin_tagset) {
 421                blk_mq_tagset_busy_iter(ctrl->admin_tagset,
 422                                nvme_cancel_request, ctrl);
 423                blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
 424        }
 425}
 426EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
 427
 428bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
 429                enum nvme_ctrl_state new_state)
 430{
 431        enum nvme_ctrl_state old_state;
 432        unsigned long flags;
 433        bool changed = false;
 434
 435        spin_lock_irqsave(&ctrl->lock, flags);
 436
 437        old_state = ctrl->state;
 438        switch (new_state) {
 439        case NVME_CTRL_LIVE:
 440                switch (old_state) {
 441                case NVME_CTRL_NEW:
 442                case NVME_CTRL_RESETTING:
 443                case NVME_CTRL_CONNECTING:
 444                        changed = true;
 445                        fallthrough;
 446                default:
 447                        break;
 448                }
 449                break;
 450        case NVME_CTRL_RESETTING:
 451                switch (old_state) {
 452                case NVME_CTRL_NEW:
 453                case NVME_CTRL_LIVE:
 454                        changed = true;
 455                        fallthrough;
 456                default:
 457                        break;
 458                }
 459                break;
 460        case NVME_CTRL_CONNECTING:
 461                switch (old_state) {
 462                case NVME_CTRL_NEW:
 463                case NVME_CTRL_RESETTING:
 464                        changed = true;
 465                        fallthrough;
 466                default:
 467                        break;
 468                }
 469                break;
 470        case NVME_CTRL_DELETING:
 471                switch (old_state) {
 472                case NVME_CTRL_LIVE:
 473                case NVME_CTRL_RESETTING:
 474                case NVME_CTRL_CONNECTING:
 475                        changed = true;
 476                        fallthrough;
 477                default:
 478                        break;
 479                }
 480                break;
 481        case NVME_CTRL_DELETING_NOIO:
 482                switch (old_state) {
 483                case NVME_CTRL_DELETING:
 484                case NVME_CTRL_DEAD:
 485                        changed = true;
 486                        fallthrough;
 487                default:
 488                        break;
 489                }
 490                break;
 491        case NVME_CTRL_DEAD:
 492                switch (old_state) {
 493                case NVME_CTRL_DELETING:
 494                        changed = true;
 495                        fallthrough;
 496                default:
 497                        break;
 498                }
 499                break;
 500        default:
 501                break;
 502        }
 503
 504        if (changed) {
 505                ctrl->state = new_state;
 506                wake_up_all(&ctrl->state_wq);
 507        }
 508
 509        spin_unlock_irqrestore(&ctrl->lock, flags);
 510        if (!changed)
 511                return false;
 512
 513        if (ctrl->state == NVME_CTRL_LIVE) {
 514                if (old_state == NVME_CTRL_CONNECTING)
 515                        nvme_stop_failfast_work(ctrl);
 516                nvme_kick_requeue_lists(ctrl);
 517        } else if (ctrl->state == NVME_CTRL_CONNECTING &&
 518                old_state == NVME_CTRL_RESETTING) {
 519                nvme_start_failfast_work(ctrl);
 520        }
 521        return changed;
 522}
 523EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
 524
 525/*
 526 * Returns true for sink states that can't ever transition back to live.
 527 */
 528static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
 529{
 530        switch (ctrl->state) {
 531        case NVME_CTRL_NEW:
 532        case NVME_CTRL_LIVE:
 533        case NVME_CTRL_RESETTING:
 534        case NVME_CTRL_CONNECTING:
 535                return false;
 536        case NVME_CTRL_DELETING:
 537        case NVME_CTRL_DELETING_NOIO:
 538        case NVME_CTRL_DEAD:
 539                return true;
 540        default:
 541                WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
 542                return true;
 543        }
 544}
 545
 546/*
 547 * Waits for the controller state to be resetting, or returns false if it is
 548 * not possible to ever transition to that state.
 549 */
 550bool nvme_wait_reset(struct nvme_ctrl *ctrl)
 551{
 552        wait_event(ctrl->state_wq,
 553                   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
 554                   nvme_state_terminal(ctrl));
 555        return ctrl->state == NVME_CTRL_RESETTING;
 556}
 557EXPORT_SYMBOL_GPL(nvme_wait_reset);
 558
 559static void nvme_free_ns_head(struct kref *ref)
 560{
 561        struct nvme_ns_head *head =
 562                container_of(ref, struct nvme_ns_head, ref);
 563
 564        nvme_mpath_remove_disk(head);
 565        ida_simple_remove(&head->subsys->ns_ida, head->instance);
 566        cleanup_srcu_struct(&head->srcu);
 567        nvme_put_subsystem(head->subsys);
 568        kfree(head);
 569}
 570
 571bool nvme_tryget_ns_head(struct nvme_ns_head *head)
 572{
 573        return kref_get_unless_zero(&head->ref);
 574}
 575
 576void nvme_put_ns_head(struct nvme_ns_head *head)
 577{
 578        kref_put(&head->ref, nvme_free_ns_head);
 579}
 580
 581static void nvme_free_ns(struct kref *kref)
 582{
 583        struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
 584
 585        put_disk(ns->disk);
 586        nvme_put_ns_head(ns->head);
 587        nvme_put_ctrl(ns->ctrl);
 588        kfree(ns);
 589}
 590
 591static inline bool nvme_get_ns(struct nvme_ns *ns)
 592{
 593        return kref_get_unless_zero(&ns->kref);
 594}
 595
 596void nvme_put_ns(struct nvme_ns *ns)
 597{
 598        kref_put(&ns->kref, nvme_free_ns);
 599}
 600EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
 601
 602static inline void nvme_clear_nvme_request(struct request *req)
 603{
 604        nvme_req(req)->status = 0;
 605        nvme_req(req)->retries = 0;
 606        nvme_req(req)->flags = 0;
 607        req->rq_flags |= RQF_DONTPREP;
 608}
 609
 610static inline unsigned int nvme_req_op(struct nvme_command *cmd)
 611{
 612        return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
 613}
 614
 615static inline void nvme_init_request(struct request *req,
 616                struct nvme_command *cmd)
 617{
 618        if (req->q->queuedata)
 619                req->timeout = NVME_IO_TIMEOUT;
 620        else /* no queuedata implies admin queue */
 621                req->timeout = NVME_ADMIN_TIMEOUT;
 622
 623        /* passthru commands should let the driver set the SGL flags */
 624        cmd->common.flags &= ~NVME_CMD_SGL_ALL;
 625
 626        req->cmd_flags |= REQ_FAILFAST_DRIVER;
 627        if (req->mq_hctx->type == HCTX_TYPE_POLL)
 628                req->cmd_flags |= REQ_POLLED;
 629        nvme_clear_nvme_request(req);
 630        memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
 631}
 632
 633struct request *nvme_alloc_request(struct request_queue *q,
 634                struct nvme_command *cmd, blk_mq_req_flags_t flags)
 635{
 636        struct request *req;
 637
 638        req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
 639        if (!IS_ERR(req))
 640                nvme_init_request(req, cmd);
 641        return req;
 642}
 643EXPORT_SYMBOL_GPL(nvme_alloc_request);
 644
 645static struct request *nvme_alloc_request_qid(struct request_queue *q,
 646                struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
 647{
 648        struct request *req;
 649
 650        req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
 651                        qid ? qid - 1 : 0);
 652        if (!IS_ERR(req))
 653                nvme_init_request(req, cmd);
 654        return req;
 655}
 656
 657/*
 658 * For something we're not in a state to send to the device the default action
 659 * is to busy it and retry it after the controller state is recovered.  However,
 660 * if the controller is deleting or if anything is marked for failfast or
 661 * nvme multipath it is immediately failed.
 662 *
 663 * Note: commands used to initialize the controller will be marked for failfast.
 664 * Note: nvme cli/ioctl commands are marked for failfast.
 665 */
 666blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
 667                struct request *rq)
 668{
 669        if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
 670            ctrl->state != NVME_CTRL_DELETING &&
 671            ctrl->state != NVME_CTRL_DEAD &&
 672            !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
 673            !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
 674                return BLK_STS_RESOURCE;
 675        return nvme_host_path_error(rq);
 676}
 677EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
 678
 679bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
 680                bool queue_live)
 681{
 682        struct nvme_request *req = nvme_req(rq);
 683
 684        /*
 685         * currently we have a problem sending passthru commands
 686         * on the admin_q if the controller is not LIVE because we can't
 687         * make sure that they are going out after the admin connect,
 688         * controller enable and/or other commands in the initialization
 689         * sequence. until the controller will be LIVE, fail with
 690         * BLK_STS_RESOURCE so that they will be rescheduled.
 691         */
 692        if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
 693                return false;
 694
 695        if (ctrl->ops->flags & NVME_F_FABRICS) {
 696                /*
 697                 * Only allow commands on a live queue, except for the connect
 698                 * command, which is require to set the queue live in the
 699                 * appropinquate states.
 700                 */
 701                switch (ctrl->state) {
 702                case NVME_CTRL_CONNECTING:
 703                        if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
 704                            req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
 705                                return true;
 706                        break;
 707                default:
 708                        break;
 709                case NVME_CTRL_DEAD:
 710                        return false;
 711                }
 712        }
 713
 714        return queue_live;
 715}
 716EXPORT_SYMBOL_GPL(__nvme_check_ready);
 717
 718static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
 719{
 720        struct nvme_command c = { };
 721
 722        c.directive.opcode = nvme_admin_directive_send;
 723        c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
 724        c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
 725        c.directive.dtype = NVME_DIR_IDENTIFY;
 726        c.directive.tdtype = NVME_DIR_STREAMS;
 727        c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
 728
 729        return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
 730}
 731
 732static int nvme_disable_streams(struct nvme_ctrl *ctrl)
 733{
 734        return nvme_toggle_streams(ctrl, false);
 735}
 736
 737static int nvme_enable_streams(struct nvme_ctrl *ctrl)
 738{
 739        return nvme_toggle_streams(ctrl, true);
 740}
 741
 742static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
 743                                  struct streams_directive_params *s, u32 nsid)
 744{
 745        struct nvme_command c = { };
 746
 747        memset(s, 0, sizeof(*s));
 748
 749        c.directive.opcode = nvme_admin_directive_recv;
 750        c.directive.nsid = cpu_to_le32(nsid);
 751        c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
 752        c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
 753        c.directive.dtype = NVME_DIR_STREAMS;
 754
 755        return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
 756}
 757
 758static int nvme_configure_directives(struct nvme_ctrl *ctrl)
 759{
 760        struct streams_directive_params s;
 761        int ret;
 762
 763        if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
 764                return 0;
 765        if (!streams)
 766                return 0;
 767
 768        ret = nvme_enable_streams(ctrl);
 769        if (ret)
 770                return ret;
 771
 772        ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
 773        if (ret)
 774                goto out_disable_stream;
 775
 776        ctrl->nssa = le16_to_cpu(s.nssa);
 777        if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
 778                dev_info(ctrl->device, "too few streams (%u) available\n",
 779                                        ctrl->nssa);
 780                goto out_disable_stream;
 781        }
 782
 783        ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
 784        dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
 785        return 0;
 786
 787out_disable_stream:
 788        nvme_disable_streams(ctrl);
 789        return ret;
 790}
 791
 792/*
 793 * Check if 'req' has a write hint associated with it. If it does, assign
 794 * a valid namespace stream to the write.
 795 */
 796static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
 797                                     struct request *req, u16 *control,
 798                                     u32 *dsmgmt)
 799{
 800        enum rw_hint streamid = req->write_hint;
 801
 802        if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
 803                streamid = 0;
 804        else {
 805                streamid--;
 806                if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
 807                        return;
 808
 809                *control |= NVME_RW_DTYPE_STREAMS;
 810                *dsmgmt |= streamid << 16;
 811        }
 812
 813        if (streamid < ARRAY_SIZE(req->q->write_hints))
 814                req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
 815}
 816
 817static inline void nvme_setup_flush(struct nvme_ns *ns,
 818                struct nvme_command *cmnd)
 819{
 820        memset(cmnd, 0, sizeof(*cmnd));
 821        cmnd->common.opcode = nvme_cmd_flush;
 822        cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
 823}
 824
 825static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
 826                struct nvme_command *cmnd)
 827{
 828        unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
 829        struct nvme_dsm_range *range;
 830        struct bio *bio;
 831
 832        /*
 833         * Some devices do not consider the DSM 'Number of Ranges' field when
 834         * determining how much data to DMA. Always allocate memory for maximum
 835         * number of segments to prevent device reading beyond end of buffer.
 836         */
 837        static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
 838
 839        range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
 840        if (!range) {
 841                /*
 842                 * If we fail allocation our range, fallback to the controller
 843                 * discard page. If that's also busy, it's safe to return
 844                 * busy, as we know we can make progress once that's freed.
 845                 */
 846                if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
 847                        return BLK_STS_RESOURCE;
 848
 849                range = page_address(ns->ctrl->discard_page);
 850        }
 851
 852        __rq_for_each_bio(bio, req) {
 853                u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
 854                u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
 855
 856                if (n < segments) {
 857                        range[n].cattr = cpu_to_le32(0);
 858                        range[n].nlb = cpu_to_le32(nlb);
 859                        range[n].slba = cpu_to_le64(slba);
 860                }
 861                n++;
 862        }
 863
 864        if (WARN_ON_ONCE(n != segments)) {
 865                if (virt_to_page(range) == ns->ctrl->discard_page)
 866                        clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
 867                else
 868                        kfree(range);
 869                return BLK_STS_IOERR;
 870        }
 871
 872        memset(cmnd, 0, sizeof(*cmnd));
 873        cmnd->dsm.opcode = nvme_cmd_dsm;
 874        cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
 875        cmnd->dsm.nr = cpu_to_le32(segments - 1);
 876        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 877
 878        req->special_vec.bv_page = virt_to_page(range);
 879        req->special_vec.bv_offset = offset_in_page(range);
 880        req->special_vec.bv_len = alloc_size;
 881        req->rq_flags |= RQF_SPECIAL_PAYLOAD;
 882
 883        return BLK_STS_OK;
 884}
 885
 886static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
 887                struct request *req, struct nvme_command *cmnd)
 888{
 889        memset(cmnd, 0, sizeof(*cmnd));
 890
 891        if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
 892                return nvme_setup_discard(ns, req, cmnd);
 893
 894        cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
 895        cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
 896        cmnd->write_zeroes.slba =
 897                cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
 898        cmnd->write_zeroes.length =
 899                cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 900
 901        if (nvme_ns_has_pi(ns)) {
 902                cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
 903
 904                switch (ns->pi_type) {
 905                case NVME_NS_DPS_PI_TYPE1:
 906                case NVME_NS_DPS_PI_TYPE2:
 907                        cmnd->write_zeroes.reftag =
 908                                cpu_to_le32(t10_pi_ref_tag(req));
 909                        break;
 910                }
 911        }
 912
 913        return BLK_STS_OK;
 914}
 915
 916static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
 917                struct request *req, struct nvme_command *cmnd,
 918                enum nvme_opcode op)
 919{
 920        struct nvme_ctrl *ctrl = ns->ctrl;
 921        u16 control = 0;
 922        u32 dsmgmt = 0;
 923
 924        if (req->cmd_flags & REQ_FUA)
 925                control |= NVME_RW_FUA;
 926        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 927                control |= NVME_RW_LR;
 928
 929        if (req->cmd_flags & REQ_RAHEAD)
 930                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 931
 932        cmnd->rw.opcode = op;
 933        cmnd->rw.flags = 0;
 934        cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
 935        cmnd->rw.rsvd2 = 0;
 936        cmnd->rw.metadata = 0;
 937        cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
 938        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 939        cmnd->rw.reftag = 0;
 940        cmnd->rw.apptag = 0;
 941        cmnd->rw.appmask = 0;
 942
 943        if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
 944                nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
 945
 946        if (ns->ms) {
 947                /*
 948                 * If formated with metadata, the block layer always provides a
 949                 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
 950                 * we enable the PRACT bit for protection information or set the
 951                 * namespace capacity to zero to prevent any I/O.
 952                 */
 953                if (!blk_integrity_rq(req)) {
 954                        if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
 955                                return BLK_STS_NOTSUPP;
 956                        control |= NVME_RW_PRINFO_PRACT;
 957                }
 958
 959                switch (ns->pi_type) {
 960                case NVME_NS_DPS_PI_TYPE3:
 961                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 962                        break;
 963                case NVME_NS_DPS_PI_TYPE1:
 964                case NVME_NS_DPS_PI_TYPE2:
 965                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
 966                                        NVME_RW_PRINFO_PRCHK_REF;
 967                        if (op == nvme_cmd_zone_append)
 968                                control |= NVME_RW_APPEND_PIREMAP;
 969                        cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
 970                        break;
 971                }
 972        }
 973
 974        cmnd->rw.control = cpu_to_le16(control);
 975        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 976        return 0;
 977}
 978
 979void nvme_cleanup_cmd(struct request *req)
 980{
 981        if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
 982                struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
 983
 984                if (req->special_vec.bv_page == ctrl->discard_page)
 985                        clear_bit_unlock(0, &ctrl->discard_page_busy);
 986                else
 987                        kfree(bvec_virt(&req->special_vec));
 988        }
 989}
 990EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
 991
 992blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
 993{
 994        struct nvme_command *cmd = nvme_req(req)->cmd;
 995        blk_status_t ret = BLK_STS_OK;
 996
 997        if (!(req->rq_flags & RQF_DONTPREP))
 998                nvme_clear_nvme_request(req);
 999
1000        switch (req_op(req)) {
1001        case REQ_OP_DRV_IN:
1002        case REQ_OP_DRV_OUT:
1003                /* these are setup prior to execution in nvme_init_request() */
1004                break;
1005        case REQ_OP_FLUSH:
1006                nvme_setup_flush(ns, cmd);
1007                break;
1008        case REQ_OP_ZONE_RESET_ALL:
1009        case REQ_OP_ZONE_RESET:
1010                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1011                break;
1012        case REQ_OP_ZONE_OPEN:
1013                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1014                break;
1015        case REQ_OP_ZONE_CLOSE:
1016                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1017                break;
1018        case REQ_OP_ZONE_FINISH:
1019                ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1020                break;
1021        case REQ_OP_WRITE_ZEROES:
1022                ret = nvme_setup_write_zeroes(ns, req, cmd);
1023                break;
1024        case REQ_OP_DISCARD:
1025                ret = nvme_setup_discard(ns, req, cmd);
1026                break;
1027        case REQ_OP_READ:
1028                ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1029                break;
1030        case REQ_OP_WRITE:
1031                ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1032                break;
1033        case REQ_OP_ZONE_APPEND:
1034                ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1035                break;
1036        default:
1037                WARN_ON_ONCE(1);
1038                return BLK_STS_IOERR;
1039        }
1040
1041        cmd->common.command_id = nvme_cid(req);
1042        trace_nvme_setup_cmd(req, cmd);
1043        return ret;
1044}
1045EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1046
1047/*
1048 * Return values:
1049 * 0:  success
1050 * >0: nvme controller's cqe status response
1051 * <0: kernel error in lieu of controller response
1052 */
1053static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1054                bool at_head)
1055{
1056        blk_status_t status;
1057
1058        status = blk_execute_rq(rq, at_head);
1059        if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1060                return -EINTR;
1061        if (nvme_req(rq)->status)
1062                return nvme_req(rq)->status;
1063        return blk_status_to_errno(status);
1064}
1065
1066/*
1067 * Returns 0 on success.  If the result is negative, it's a Linux error code;
1068 * if the result is positive, it's an NVM Express status code
1069 */
1070int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1071                union nvme_result *result, void *buffer, unsigned bufflen,
1072                unsigned timeout, int qid, int at_head,
1073                blk_mq_req_flags_t flags)
1074{
1075        struct request *req;
1076        int ret;
1077
1078        if (qid == NVME_QID_ANY)
1079                req = nvme_alloc_request(q, cmd, flags);
1080        else
1081                req = nvme_alloc_request_qid(q, cmd, flags, qid);
1082        if (IS_ERR(req))
1083                return PTR_ERR(req);
1084
1085        if (timeout)
1086                req->timeout = timeout;
1087
1088        if (buffer && bufflen) {
1089                ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1090                if (ret)
1091                        goto out;
1092        }
1093
1094        ret = nvme_execute_rq(NULL, req, at_head);
1095        if (result && ret >= 0)
1096                *result = nvme_req(req)->result;
1097 out:
1098        blk_mq_free_request(req);
1099        return ret;
1100}
1101EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1102
1103int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1104                void *buffer, unsigned bufflen)
1105{
1106        return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1107                        NVME_QID_ANY, 0, 0);
1108}
1109EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1110
1111static u32 nvme_known_admin_effects(u8 opcode)
1112{
1113        switch (opcode) {
1114        case nvme_admin_format_nvm:
1115                return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1116                        NVME_CMD_EFFECTS_CSE_MASK;
1117        case nvme_admin_sanitize_nvm:
1118                return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1119        default:
1120                break;
1121        }
1122        return 0;
1123}
1124
1125u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1126{
1127        u32 effects = 0;
1128
1129        if (ns) {
1130                if (ns->head->effects)
1131                        effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1132                if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1133                        dev_warn_once(ctrl->device,
1134                                "IO command:%02x has unhandled effects:%08x\n",
1135                                opcode, effects);
1136                return 0;
1137        }
1138
1139        if (ctrl->effects)
1140                effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1141        effects |= nvme_known_admin_effects(opcode);
1142
1143        return effects;
1144}
1145EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1146
1147static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1148                               u8 opcode)
1149{
1150        u32 effects = nvme_command_effects(ctrl, ns, opcode);
1151
1152        /*
1153         * For simplicity, IO to all namespaces is quiesced even if the command
1154         * effects say only one namespace is affected.
1155         */
1156        if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1157                mutex_lock(&ctrl->scan_lock);
1158                mutex_lock(&ctrl->subsys->lock);
1159                nvme_mpath_start_freeze(ctrl->subsys);
1160                nvme_mpath_wait_freeze(ctrl->subsys);
1161                nvme_start_freeze(ctrl);
1162                nvme_wait_freeze(ctrl);
1163        }
1164        return effects;
1165}
1166
1167static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1168                              struct nvme_command *cmd, int status)
1169{
1170        if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1171                nvme_unfreeze(ctrl);
1172                nvme_mpath_unfreeze(ctrl->subsys);
1173                mutex_unlock(&ctrl->subsys->lock);
1174                nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1175                mutex_unlock(&ctrl->scan_lock);
1176        }
1177        if (effects & NVME_CMD_EFFECTS_CCC)
1178                nvme_init_ctrl_finish(ctrl);
1179        if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1180                nvme_queue_scan(ctrl);
1181                flush_work(&ctrl->scan_work);
1182        }
1183
1184        switch (cmd->common.opcode) {
1185        case nvme_admin_set_features:
1186                switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1187                case NVME_FEAT_KATO:
1188                        /*
1189                         * Keep alive commands interval on the host should be
1190                         * updated when KATO is modified by Set Features
1191                         * commands.
1192                         */
1193                        if (!status)
1194                                nvme_update_keep_alive(ctrl, cmd);
1195                        break;
1196                default:
1197                        break;
1198                }
1199                break;
1200        default:
1201                break;
1202        }
1203}
1204
1205int nvme_execute_passthru_rq(struct request *rq)
1206{
1207        struct nvme_command *cmd = nvme_req(rq)->cmd;
1208        struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1209        struct nvme_ns *ns = rq->q->queuedata;
1210        struct gendisk *disk = ns ? ns->disk : NULL;
1211        u32 effects;
1212        int  ret;
1213
1214        effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1215        ret = nvme_execute_rq(disk, rq, false);
1216        if (effects) /* nothing to be done for zero cmd effects */
1217                nvme_passthru_end(ctrl, effects, cmd, ret);
1218
1219        return ret;
1220}
1221EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1222
1223/*
1224 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1225 * 
1226 *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1227 *   accounting for transport roundtrip times [..].
1228 */
1229static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1230{
1231        queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1232}
1233
1234static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1235{
1236        struct nvme_ctrl *ctrl = rq->end_io_data;
1237        unsigned long flags;
1238        bool startka = false;
1239
1240        blk_mq_free_request(rq);
1241
1242        if (status) {
1243                dev_err(ctrl->device,
1244                        "failed nvme_keep_alive_end_io error=%d\n",
1245                                status);
1246                return;
1247        }
1248
1249        ctrl->comp_seen = false;
1250        spin_lock_irqsave(&ctrl->lock, flags);
1251        if (ctrl->state == NVME_CTRL_LIVE ||
1252            ctrl->state == NVME_CTRL_CONNECTING)
1253                startka = true;
1254        spin_unlock_irqrestore(&ctrl->lock, flags);
1255        if (startka)
1256                nvme_queue_keep_alive_work(ctrl);
1257}
1258
1259static void nvme_keep_alive_work(struct work_struct *work)
1260{
1261        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1262                        struct nvme_ctrl, ka_work);
1263        bool comp_seen = ctrl->comp_seen;
1264        struct request *rq;
1265
1266        if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1267                dev_dbg(ctrl->device,
1268                        "reschedule traffic based keep-alive timer\n");
1269                ctrl->comp_seen = false;
1270                nvme_queue_keep_alive_work(ctrl);
1271                return;
1272        }
1273
1274        rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1275                                BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1276        if (IS_ERR(rq)) {
1277                /* allocation failure, reset the controller */
1278                dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1279                nvme_reset_ctrl(ctrl);
1280                return;
1281        }
1282
1283        rq->timeout = ctrl->kato * HZ;
1284        rq->end_io_data = ctrl;
1285        blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io);
1286}
1287
1288static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1289{
1290        if (unlikely(ctrl->kato == 0))
1291                return;
1292
1293        nvme_queue_keep_alive_work(ctrl);
1294}
1295
1296void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1297{
1298        if (unlikely(ctrl->kato == 0))
1299                return;
1300
1301        cancel_delayed_work_sync(&ctrl->ka_work);
1302}
1303EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1304
1305static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1306                                   struct nvme_command *cmd)
1307{
1308        unsigned int new_kato =
1309                DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1310
1311        dev_info(ctrl->device,
1312                 "keep alive interval updated from %u ms to %u ms\n",
1313                 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1314
1315        nvme_stop_keep_alive(ctrl);
1316        ctrl->kato = new_kato;
1317        nvme_start_keep_alive(ctrl);
1318}
1319
1320/*
1321 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1322 * flag, thus sending any new CNS opcodes has a big chance of not working.
1323 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1324 * (but not for any later version).
1325 */
1326static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1327{
1328        if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1329                return ctrl->vs < NVME_VS(1, 2, 0);
1330        return ctrl->vs < NVME_VS(1, 1, 0);
1331}
1332
1333static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1334{
1335        struct nvme_command c = { };
1336        int error;
1337
1338        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1339        c.identify.opcode = nvme_admin_identify;
1340        c.identify.cns = NVME_ID_CNS_CTRL;
1341
1342        *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1343        if (!*id)
1344                return -ENOMEM;
1345
1346        error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1347                        sizeof(struct nvme_id_ctrl));
1348        if (error)
1349                kfree(*id);
1350        return error;
1351}
1352
1353static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1354                struct nvme_ns_id_desc *cur, bool *csi_seen)
1355{
1356        const char *warn_str = "ctrl returned bogus length:";
1357        void *data = cur;
1358
1359        switch (cur->nidt) {
1360        case NVME_NIDT_EUI64:
1361                if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1362                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1363                                 warn_str, cur->nidl);
1364                        return -1;
1365                }
1366                memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1367                return NVME_NIDT_EUI64_LEN;
1368        case NVME_NIDT_NGUID:
1369                if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1370                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1371                                 warn_str, cur->nidl);
1372                        return -1;
1373                }
1374                memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1375                return NVME_NIDT_NGUID_LEN;
1376        case NVME_NIDT_UUID:
1377                if (cur->nidl != NVME_NIDT_UUID_LEN) {
1378                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1379                                 warn_str, cur->nidl);
1380                        return -1;
1381                }
1382                uuid_copy(&ids->uuid, data + sizeof(*cur));
1383                return NVME_NIDT_UUID_LEN;
1384        case NVME_NIDT_CSI:
1385                if (cur->nidl != NVME_NIDT_CSI_LEN) {
1386                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1387                                 warn_str, cur->nidl);
1388                        return -1;
1389                }
1390                memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1391                *csi_seen = true;
1392                return NVME_NIDT_CSI_LEN;
1393        default:
1394                /* Skip unknown types */
1395                return cur->nidl;
1396        }
1397}
1398
1399static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1400                struct nvme_ns_ids *ids)
1401{
1402        struct nvme_command c = { };
1403        bool csi_seen = false;
1404        int status, pos, len;
1405        void *data;
1406
1407        if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1408                return 0;
1409        if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1410                return 0;
1411
1412        c.identify.opcode = nvme_admin_identify;
1413        c.identify.nsid = cpu_to_le32(nsid);
1414        c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1415
1416        data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1417        if (!data)
1418                return -ENOMEM;
1419
1420        status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1421                                      NVME_IDENTIFY_DATA_SIZE);
1422        if (status) {
1423                dev_warn(ctrl->device,
1424                        "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1425                        nsid, status);
1426                goto free_data;
1427        }
1428
1429        for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1430                struct nvme_ns_id_desc *cur = data + pos;
1431
1432                if (cur->nidl == 0)
1433                        break;
1434
1435                len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1436                if (len < 0)
1437                        break;
1438
1439                len += sizeof(*cur);
1440        }
1441
1442        if (nvme_multi_css(ctrl) && !csi_seen) {
1443                dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1444                         nsid);
1445                status = -EINVAL;
1446        }
1447
1448free_data:
1449        kfree(data);
1450        return status;
1451}
1452
1453static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1454                        struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1455{
1456        struct nvme_command c = { };
1457        int error;
1458
1459        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1460        c.identify.opcode = nvme_admin_identify;
1461        c.identify.nsid = cpu_to_le32(nsid);
1462        c.identify.cns = NVME_ID_CNS_NS;
1463
1464        *id = kmalloc(sizeof(**id), GFP_KERNEL);
1465        if (!*id)
1466                return -ENOMEM;
1467
1468        error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1469        if (error) {
1470                dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1471                goto out_free_id;
1472        }
1473
1474        error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1475        if ((*id)->ncap == 0) /* namespace not allocated or attached */
1476                goto out_free_id;
1477
1478        if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1479            !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1480                memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1481        if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1482            !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1483                memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1484
1485        return 0;
1486
1487out_free_id:
1488        kfree(*id);
1489        return error;
1490}
1491
1492static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1493                unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1494{
1495        union nvme_result res = { 0 };
1496        struct nvme_command c = { };
1497        int ret;
1498
1499        c.features.opcode = op;
1500        c.features.fid = cpu_to_le32(fid);
1501        c.features.dword11 = cpu_to_le32(dword11);
1502
1503        ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1504                        buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1505        if (ret >= 0 && result)
1506                *result = le32_to_cpu(res.u32);
1507        return ret;
1508}
1509
1510int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1511                      unsigned int dword11, void *buffer, size_t buflen,
1512                      u32 *result)
1513{
1514        return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1515                             buflen, result);
1516}
1517EXPORT_SYMBOL_GPL(nvme_set_features);
1518
1519int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1520                      unsigned int dword11, void *buffer, size_t buflen,
1521                      u32 *result)
1522{
1523        return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1524                             buflen, result);
1525}
1526EXPORT_SYMBOL_GPL(nvme_get_features);
1527
1528int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1529{
1530        u32 q_count = (*count - 1) | ((*count - 1) << 16);
1531        u32 result;
1532        int status, nr_io_queues;
1533
1534        status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1535                        &result);
1536        if (status < 0)
1537                return status;
1538
1539        /*
1540         * Degraded controllers might return an error when setting the queue
1541         * count.  We still want to be able to bring them online and offer
1542         * access to the admin queue, as that might be only way to fix them up.
1543         */
1544        if (status > 0) {
1545                dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1546                *count = 0;
1547        } else {
1548                nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1549                *count = min(*count, nr_io_queues);
1550        }
1551
1552        return 0;
1553}
1554EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1555
1556#define NVME_AEN_SUPPORTED \
1557        (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1558         NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1559
1560static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1561{
1562        u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1563        int status;
1564
1565        if (!supported_aens)
1566                return;
1567
1568        status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1569                        NULL, 0, &result);
1570        if (status)
1571                dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1572                         supported_aens);
1573
1574        queue_work(nvme_wq, &ctrl->async_event_work);
1575}
1576
1577static int nvme_ns_open(struct nvme_ns *ns)
1578{
1579
1580        /* should never be called due to GENHD_FL_HIDDEN */
1581        if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1582                goto fail;
1583        if (!nvme_get_ns(ns))
1584                goto fail;
1585        if (!try_module_get(ns->ctrl->ops->module))
1586                goto fail_put_ns;
1587
1588        return 0;
1589
1590fail_put_ns:
1591        nvme_put_ns(ns);
1592fail:
1593        return -ENXIO;
1594}
1595
1596static void nvme_ns_release(struct nvme_ns *ns)
1597{
1598
1599        module_put(ns->ctrl->ops->module);
1600        nvme_put_ns(ns);
1601}
1602
1603static int nvme_open(struct block_device *bdev, fmode_t mode)
1604{
1605        return nvme_ns_open(bdev->bd_disk->private_data);
1606}
1607
1608static void nvme_release(struct gendisk *disk, fmode_t mode)
1609{
1610        nvme_ns_release(disk->private_data);
1611}
1612
1613int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1614{
1615        /* some standard values */
1616        geo->heads = 1 << 6;
1617        geo->sectors = 1 << 5;
1618        geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1619        return 0;
1620}
1621
1622#ifdef CONFIG_BLK_DEV_INTEGRITY
1623static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1624                                u32 max_integrity_segments)
1625{
1626        struct blk_integrity integrity = { };
1627
1628        switch (pi_type) {
1629        case NVME_NS_DPS_PI_TYPE3:
1630                integrity.profile = &t10_pi_type3_crc;
1631                integrity.tag_size = sizeof(u16) + sizeof(u32);
1632                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1633                break;
1634        case NVME_NS_DPS_PI_TYPE1:
1635        case NVME_NS_DPS_PI_TYPE2:
1636                integrity.profile = &t10_pi_type1_crc;
1637                integrity.tag_size = sizeof(u16);
1638                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1639                break;
1640        default:
1641                integrity.profile = NULL;
1642                break;
1643        }
1644        integrity.tuple_size = ms;
1645        blk_integrity_register(disk, &integrity);
1646        blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1647}
1648#else
1649static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1650                                u32 max_integrity_segments)
1651{
1652}
1653#endif /* CONFIG_BLK_DEV_INTEGRITY */
1654
1655static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1656{
1657        struct nvme_ctrl *ctrl = ns->ctrl;
1658        struct request_queue *queue = disk->queue;
1659        u32 size = queue_logical_block_size(queue);
1660
1661        if (ctrl->max_discard_sectors == 0) {
1662                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1663                return;
1664        }
1665
1666        if (ctrl->nr_streams && ns->sws && ns->sgs)
1667                size *= ns->sws * ns->sgs;
1668
1669        BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1670                        NVME_DSM_MAX_RANGES);
1671
1672        queue->limits.discard_alignment = 0;
1673        queue->limits.discard_granularity = size;
1674
1675        /* If discard is already enabled, don't reset queue limits */
1676        if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1677                return;
1678
1679        blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1680        blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1681
1682        if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1683                blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1684}
1685
1686static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1687{
1688        return !uuid_is_null(&ids->uuid) ||
1689                memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1690                memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1691}
1692
1693static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1694{
1695        return uuid_equal(&a->uuid, &b->uuid) &&
1696                memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1697                memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1698                a->csi == b->csi;
1699}
1700
1701static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1702                                 u32 *phys_bs, u32 *io_opt)
1703{
1704        struct streams_directive_params s;
1705        int ret;
1706
1707        if (!ctrl->nr_streams)
1708                return 0;
1709
1710        ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1711        if (ret)
1712                return ret;
1713
1714        ns->sws = le32_to_cpu(s.sws);
1715        ns->sgs = le16_to_cpu(s.sgs);
1716
1717        if (ns->sws) {
1718                *phys_bs = ns->sws * (1 << ns->lba_shift);
1719                if (ns->sgs)
1720                        *io_opt = *phys_bs * ns->sgs;
1721        }
1722
1723        return 0;
1724}
1725
1726static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1727{
1728        struct nvme_ctrl *ctrl = ns->ctrl;
1729
1730        /*
1731         * The PI implementation requires the metadata size to be equal to the
1732         * t10 pi tuple size.
1733         */
1734        ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1735        if (ns->ms == sizeof(struct t10_pi_tuple))
1736                ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1737        else
1738                ns->pi_type = 0;
1739
1740        ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1741        if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1742                return;
1743
1744        if (ctrl->ops->flags & NVME_F_FABRICS) {
1745                /*
1746                 * The NVMe over Fabrics specification only supports metadata as
1747                 * part of the extended data LBA.  We rely on HCA/HBA support to
1748                 * remap the separate metadata buffer from the block layer.
1749                 */
1750                if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1751                        return;
1752
1753                ns->features |= NVME_NS_EXT_LBAS;
1754
1755                /*
1756                 * The current fabrics transport drivers support namespace
1757                 * metadata formats only if nvme_ns_has_pi() returns true.
1758                 * Suppress support for all other formats so the namespace will
1759                 * have a 0 capacity and not be usable through the block stack.
1760                 *
1761                 * Note, this check will need to be modified if any drivers
1762                 * gain the ability to use other metadata formats.
1763                 */
1764                if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1765                        ns->features |= NVME_NS_METADATA_SUPPORTED;
1766        } else {
1767                /*
1768                 * For PCIe controllers, we can't easily remap the separate
1769                 * metadata buffer from the block layer and thus require a
1770                 * separate metadata buffer for block layer metadata/PI support.
1771                 * We allow extended LBAs for the passthrough interface, though.
1772                 */
1773                if (id->flbas & NVME_NS_FLBAS_META_EXT)
1774                        ns->features |= NVME_NS_EXT_LBAS;
1775                else
1776                        ns->features |= NVME_NS_METADATA_SUPPORTED;
1777        }
1778}
1779
1780static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1781                struct request_queue *q)
1782{
1783        bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1784
1785        if (ctrl->max_hw_sectors) {
1786                u32 max_segments =
1787                        (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1788
1789                max_segments = min_not_zero(max_segments, ctrl->max_segments);
1790                blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1791                blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1792        }
1793        blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1794        blk_queue_dma_alignment(q, 7);
1795        blk_queue_write_cache(q, vwc, vwc);
1796}
1797
1798static void nvme_update_disk_info(struct gendisk *disk,
1799                struct nvme_ns *ns, struct nvme_id_ns *id)
1800{
1801        sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1802        unsigned short bs = 1 << ns->lba_shift;
1803        u32 atomic_bs, phys_bs, io_opt = 0;
1804
1805        /*
1806         * The block layer can't support LBA sizes larger than the page size
1807         * yet, so catch this early and don't allow block I/O.
1808         */
1809        if (ns->lba_shift > PAGE_SHIFT) {
1810                capacity = 0;
1811                bs = (1 << 9);
1812        }
1813
1814        blk_integrity_unregister(disk);
1815
1816        atomic_bs = phys_bs = bs;
1817        nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1818        if (id->nabo == 0) {
1819                /*
1820                 * Bit 1 indicates whether NAWUPF is defined for this namespace
1821                 * and whether it should be used instead of AWUPF. If NAWUPF ==
1822                 * 0 then AWUPF must be used instead.
1823                 */
1824                if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1825                        atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1826                else
1827                        atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1828        }
1829
1830        if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1831                /* NPWG = Namespace Preferred Write Granularity */
1832                phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1833                /* NOWS = Namespace Optimal Write Size */
1834                io_opt = bs * (1 + le16_to_cpu(id->nows));
1835        }
1836
1837        blk_queue_logical_block_size(disk->queue, bs);
1838        /*
1839         * Linux filesystems assume writing a single physical block is
1840         * an atomic operation. Hence limit the physical block size to the
1841         * value of the Atomic Write Unit Power Fail parameter.
1842         */
1843        blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1844        blk_queue_io_min(disk->queue, phys_bs);
1845        blk_queue_io_opt(disk->queue, io_opt);
1846
1847        /*
1848         * Register a metadata profile for PI, or the plain non-integrity NVMe
1849         * metadata masquerading as Type 0 if supported, otherwise reject block
1850         * I/O to namespaces with metadata except when the namespace supports
1851         * PI, as it can strip/insert in that case.
1852         */
1853        if (ns->ms) {
1854                if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1855                    (ns->features & NVME_NS_METADATA_SUPPORTED))
1856                        nvme_init_integrity(disk, ns->ms, ns->pi_type,
1857                                            ns->ctrl->max_integrity_segments);
1858                else if (!nvme_ns_has_pi(ns))
1859                        capacity = 0;
1860        }
1861
1862        set_capacity_and_notify(disk, capacity);
1863
1864        nvme_config_discard(disk, ns);
1865        blk_queue_max_write_zeroes_sectors(disk->queue,
1866                                           ns->ctrl->max_zeroes_sectors);
1867
1868        set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1869                test_bit(NVME_NS_FORCE_RO, &ns->flags));
1870}
1871
1872static inline bool nvme_first_scan(struct gendisk *disk)
1873{
1874        /* nvme_alloc_ns() scans the disk prior to adding it */
1875        return !disk_live(disk);
1876}
1877
1878static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1879{
1880        struct nvme_ctrl *ctrl = ns->ctrl;
1881        u32 iob;
1882
1883        if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1884            is_power_of_2(ctrl->max_hw_sectors))
1885                iob = ctrl->max_hw_sectors;
1886        else
1887                iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1888
1889        if (!iob)
1890                return;
1891
1892        if (!is_power_of_2(iob)) {
1893                if (nvme_first_scan(ns->disk))
1894                        pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1895                                ns->disk->disk_name, iob);
1896                return;
1897        }
1898
1899        if (blk_queue_is_zoned(ns->disk->queue)) {
1900                if (nvme_first_scan(ns->disk))
1901                        pr_warn("%s: ignoring zoned namespace IO boundary\n",
1902                                ns->disk->disk_name);
1903                return;
1904        }
1905
1906        blk_queue_chunk_sectors(ns->queue, iob);
1907}
1908
1909static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1910{
1911        unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1912        int ret;
1913
1914        blk_mq_freeze_queue(ns->disk->queue);
1915        ns->lba_shift = id->lbaf[lbaf].ds;
1916        nvme_set_queue_limits(ns->ctrl, ns->queue);
1917
1918        nvme_configure_metadata(ns, id);
1919        nvme_set_chunk_sectors(ns, id);
1920        nvme_update_disk_info(ns->disk, ns, id);
1921
1922        if (ns->head->ids.csi == NVME_CSI_ZNS) {
1923                ret = nvme_update_zone_info(ns, lbaf);
1924                if (ret)
1925                        goto out_unfreeze;
1926        }
1927
1928        set_bit(NVME_NS_READY, &ns->flags);
1929        blk_mq_unfreeze_queue(ns->disk->queue);
1930
1931        if (blk_queue_is_zoned(ns->queue)) {
1932                ret = nvme_revalidate_zones(ns);
1933                if (ret && !nvme_first_scan(ns->disk))
1934                        return ret;
1935        }
1936
1937        if (nvme_ns_head_multipath(ns->head)) {
1938                blk_mq_freeze_queue(ns->head->disk->queue);
1939                nvme_update_disk_info(ns->head->disk, ns, id);
1940                nvme_mpath_revalidate_paths(ns);
1941                blk_stack_limits(&ns->head->disk->queue->limits,
1942                                 &ns->queue->limits, 0);
1943                disk_update_readahead(ns->head->disk);
1944                blk_mq_unfreeze_queue(ns->head->disk->queue);
1945        }
1946        return 0;
1947
1948out_unfreeze:
1949        /*
1950         * If probing fails due an unsupported feature, hide the block device,
1951         * but still allow other access.
1952         */
1953        if (ret == -ENODEV) {
1954                ns->disk->flags |= GENHD_FL_HIDDEN;
1955                set_bit(NVME_NS_READY, &ns->flags);
1956                ret = 0;
1957        }
1958        blk_mq_unfreeze_queue(ns->disk->queue);
1959        return ret;
1960}
1961
1962static char nvme_pr_type(enum pr_type type)
1963{
1964        switch (type) {
1965        case PR_WRITE_EXCLUSIVE:
1966                return 1;
1967        case PR_EXCLUSIVE_ACCESS:
1968                return 2;
1969        case PR_WRITE_EXCLUSIVE_REG_ONLY:
1970                return 3;
1971        case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1972                return 4;
1973        case PR_WRITE_EXCLUSIVE_ALL_REGS:
1974                return 5;
1975        case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1976                return 6;
1977        default:
1978                return 0;
1979        }
1980};
1981
1982static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1983                struct nvme_command *c, u8 data[16])
1984{
1985        struct nvme_ns_head *head = bdev->bd_disk->private_data;
1986        int srcu_idx = srcu_read_lock(&head->srcu);
1987        struct nvme_ns *ns = nvme_find_path(head);
1988        int ret = -EWOULDBLOCK;
1989
1990        if (ns) {
1991                c->common.nsid = cpu_to_le32(ns->head->ns_id);
1992                ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1993        }
1994        srcu_read_unlock(&head->srcu, srcu_idx);
1995        return ret;
1996}
1997        
1998static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1999                u8 data[16])
2000{
2001        c->common.nsid = cpu_to_le32(ns->head->ns_id);
2002        return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2003}
2004
2005static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2006                                u64 key, u64 sa_key, u8 op)
2007{
2008        struct nvme_command c = { };
2009        u8 data[16] = { 0, };
2010
2011        put_unaligned_le64(key, &data[0]);
2012        put_unaligned_le64(sa_key, &data[8]);
2013
2014        c.common.opcode = op;
2015        c.common.cdw10 = cpu_to_le32(cdw10);
2016
2017        if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2018            bdev->bd_disk->fops == &nvme_ns_head_ops)
2019                return nvme_send_ns_head_pr_command(bdev, &c, data);
2020        return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2021}
2022
2023static int nvme_pr_register(struct block_device *bdev, u64 old,
2024                u64 new, unsigned flags)
2025{
2026        u32 cdw10;
2027
2028        if (flags & ~PR_FL_IGNORE_KEY)
2029                return -EOPNOTSUPP;
2030
2031        cdw10 = old ? 2 : 0;
2032        cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2033        cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2034        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2035}
2036
2037static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2038                enum pr_type type, unsigned flags)
2039{
2040        u32 cdw10;
2041
2042        if (flags & ~PR_FL_IGNORE_KEY)
2043                return -EOPNOTSUPP;
2044
2045        cdw10 = nvme_pr_type(type) << 8;
2046        cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2047        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2048}
2049
2050static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2051                enum pr_type type, bool abort)
2052{
2053        u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2054
2055        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2056}
2057
2058static int nvme_pr_clear(struct block_device *bdev, u64 key)
2059{
2060        u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2061
2062        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2063}
2064
2065static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2066{
2067        u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2068
2069        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2070}
2071
2072const struct pr_ops nvme_pr_ops = {
2073        .pr_register    = nvme_pr_register,
2074        .pr_reserve     = nvme_pr_reserve,
2075        .pr_release     = nvme_pr_release,
2076        .pr_preempt     = nvme_pr_preempt,
2077        .pr_clear       = nvme_pr_clear,
2078};
2079
2080#ifdef CONFIG_BLK_SED_OPAL
2081int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2082                bool send)
2083{
2084        struct nvme_ctrl *ctrl = data;
2085        struct nvme_command cmd = { };
2086
2087        if (send)
2088                cmd.common.opcode = nvme_admin_security_send;
2089        else
2090                cmd.common.opcode = nvme_admin_security_recv;
2091        cmd.common.nsid = 0;
2092        cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2093        cmd.common.cdw11 = cpu_to_le32(len);
2094
2095        return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2096                        NVME_QID_ANY, 1, 0);
2097}
2098EXPORT_SYMBOL_GPL(nvme_sec_submit);
2099#endif /* CONFIG_BLK_SED_OPAL */
2100
2101#ifdef CONFIG_BLK_DEV_ZONED
2102static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2103                unsigned int nr_zones, report_zones_cb cb, void *data)
2104{
2105        return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2106                        data);
2107}
2108#else
2109#define nvme_report_zones       NULL
2110#endif /* CONFIG_BLK_DEV_ZONED */
2111
2112static const struct block_device_operations nvme_bdev_ops = {
2113        .owner          = THIS_MODULE,
2114        .ioctl          = nvme_ioctl,
2115        .open           = nvme_open,
2116        .release        = nvme_release,
2117        .getgeo         = nvme_getgeo,
2118        .report_zones   = nvme_report_zones,
2119        .pr_ops         = &nvme_pr_ops,
2120};
2121
2122static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2123{
2124        unsigned long timeout =
2125                ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2126        u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2127        int ret;
2128
2129        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2130                if (csts == ~0)
2131                        return -ENODEV;
2132                if ((csts & NVME_CSTS_RDY) == bit)
2133                        break;
2134
2135                usleep_range(1000, 2000);
2136                if (fatal_signal_pending(current))
2137                        return -EINTR;
2138                if (time_after(jiffies, timeout)) {
2139                        dev_err(ctrl->device,
2140                                "Device not ready; aborting %s, CSTS=0x%x\n",
2141                                enabled ? "initialisation" : "reset", csts);
2142                        return -ENODEV;
2143                }
2144        }
2145
2146        return ret;
2147}
2148
2149/*
2150 * If the device has been passed off to us in an enabled state, just clear
2151 * the enabled bit.  The spec says we should set the 'shutdown notification
2152 * bits', but doing so may cause the device to complete commands to the
2153 * admin queue ... and we don't know what memory that might be pointing at!
2154 */
2155int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2156{
2157        int ret;
2158
2159        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2160        ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2161
2162        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2163        if (ret)
2164                return ret;
2165
2166        if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2167                msleep(NVME_QUIRK_DELAY_AMOUNT);
2168
2169        return nvme_wait_ready(ctrl, ctrl->cap, false);
2170}
2171EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2172
2173int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2174{
2175        unsigned dev_page_min;
2176        int ret;
2177
2178        ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2179        if (ret) {
2180                dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2181                return ret;
2182        }
2183        dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2184
2185        if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2186                dev_err(ctrl->device,
2187                        "Minimum device page size %u too large for host (%u)\n",
2188                        1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2189                return -ENODEV;
2190        }
2191
2192        if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2193                ctrl->ctrl_config = NVME_CC_CSS_CSI;
2194        else
2195                ctrl->ctrl_config = NVME_CC_CSS_NVM;
2196        ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2197        ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2198        ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2199        ctrl->ctrl_config |= NVME_CC_ENABLE;
2200
2201        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2202        if (ret)
2203                return ret;
2204        return nvme_wait_ready(ctrl, ctrl->cap, true);
2205}
2206EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2207
2208int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2209{
2210        unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2211        u32 csts;
2212        int ret;
2213
2214        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2215        ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2216
2217        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2218        if (ret)
2219                return ret;
2220
2221        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2222                if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2223                        break;
2224
2225                msleep(100);
2226                if (fatal_signal_pending(current))
2227                        return -EINTR;
2228                if (time_after(jiffies, timeout)) {
2229                        dev_err(ctrl->device,
2230                                "Device shutdown incomplete; abort shutdown\n");
2231                        return -ENODEV;
2232                }
2233        }
2234
2235        return ret;
2236}
2237EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2238
2239static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2240{
2241        __le64 ts;
2242        int ret;
2243
2244        if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2245                return 0;
2246
2247        ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2248        ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2249                        NULL);
2250        if (ret)
2251                dev_warn_once(ctrl->device,
2252                        "could not set timestamp (%d)\n", ret);
2253        return ret;
2254}
2255
2256static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2257{
2258        struct nvme_feat_host_behavior *host;
2259        int ret;
2260
2261        /* Don't bother enabling the feature if retry delay is not reported */
2262        if (!ctrl->crdt[0])
2263                return 0;
2264
2265        host = kzalloc(sizeof(*host), GFP_KERNEL);
2266        if (!host)
2267                return 0;
2268
2269        host->acre = NVME_ENABLE_ACRE;
2270        ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2271                                host, sizeof(*host), NULL);
2272        kfree(host);
2273        return ret;
2274}
2275
2276/*
2277 * The function checks whether the given total (exlat + enlat) latency of
2278 * a power state allows the latter to be used as an APST transition target.
2279 * It does so by comparing the latency to the primary and secondary latency
2280 * tolerances defined by module params. If there's a match, the corresponding
2281 * timeout value is returned and the matching tolerance index (1 or 2) is
2282 * reported.
2283 */
2284static bool nvme_apst_get_transition_time(u64 total_latency,
2285                u64 *transition_time, unsigned *last_index)
2286{
2287        if (total_latency <= apst_primary_latency_tol_us) {
2288                if (*last_index == 1)
2289                        return false;
2290                *last_index = 1;
2291                *transition_time = apst_primary_timeout_ms;
2292                return true;
2293        }
2294        if (apst_secondary_timeout_ms &&
2295                total_latency <= apst_secondary_latency_tol_us) {
2296                if (*last_index <= 2)
2297                        return false;
2298                *last_index = 2;
2299                *transition_time = apst_secondary_timeout_ms;
2300                return true;
2301        }
2302        return false;
2303}
2304
2305/*
2306 * APST (Autonomous Power State Transition) lets us program a table of power
2307 * state transitions that the controller will perform automatically.
2308 *
2309 * Depending on module params, one of the two supported techniques will be used:
2310 *
2311 * - If the parameters provide explicit timeouts and tolerances, they will be
2312 *   used to build a table with up to 2 non-operational states to transition to.
2313 *   The default parameter values were selected based on the values used by
2314 *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2315 *   regeneration of the APST table in the event of switching between external
2316 *   and battery power, the timeouts and tolerances reflect a compromise
2317 *   between values used by Microsoft for AC and battery scenarios.
2318 * - If not, we'll configure the table with a simple heuristic: we are willing
2319 *   to spend at most 2% of the time transitioning between power states.
2320 *   Therefore, when running in any given state, we will enter the next
2321 *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2322 *   microseconds, as long as that state's exit latency is under the requested
2323 *   maximum latency.
2324 *
2325 * We will not autonomously enter any non-operational state for which the total
2326 * latency exceeds ps_max_latency_us.
2327 *
2328 * Users can set ps_max_latency_us to zero to turn off APST.
2329 */
2330static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2331{
2332        struct nvme_feat_auto_pst *table;
2333        unsigned apste = 0;
2334        u64 max_lat_us = 0;
2335        __le64 target = 0;
2336        int max_ps = -1;
2337        int state;
2338        int ret;
2339        unsigned last_lt_index = UINT_MAX;
2340
2341        /*
2342         * If APST isn't supported or if we haven't been initialized yet,
2343         * then don't do anything.
2344         */
2345        if (!ctrl->apsta)
2346                return 0;
2347
2348        if (ctrl->npss > 31) {
2349                dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2350                return 0;
2351        }
2352
2353        table = kzalloc(sizeof(*table), GFP_KERNEL);
2354        if (!table)
2355                return 0;
2356
2357        if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2358                /* Turn off APST. */
2359                dev_dbg(ctrl->device, "APST disabled\n");
2360                goto done;
2361        }
2362
2363        /*
2364         * Walk through all states from lowest- to highest-power.
2365         * According to the spec, lower-numbered states use more power.  NPSS,
2366         * despite the name, is the index of the lowest-power state, not the
2367         * number of states.
2368         */
2369        for (state = (int)ctrl->npss; state >= 0; state--) {
2370                u64 total_latency_us, exit_latency_us, transition_ms;
2371
2372                if (target)
2373                        table->entries[state] = target;
2374
2375                /*
2376                 * Don't allow transitions to the deepest state if it's quirked
2377                 * off.
2378                 */
2379                if (state == ctrl->npss &&
2380                    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2381                        continue;
2382
2383                /*
2384                 * Is this state a useful non-operational state for higher-power
2385                 * states to autonomously transition to?
2386                 */
2387                if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2388                        continue;
2389
2390                exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2391                if (exit_latency_us > ctrl->ps_max_latency_us)
2392                        continue;
2393
2394                total_latency_us = exit_latency_us +
2395                        le32_to_cpu(ctrl->psd[state].entry_lat);
2396
2397                /*
2398                 * This state is good. It can be used as the APST idle target
2399                 * for higher power states.
2400                 */
2401                if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2402                        if (!nvme_apst_get_transition_time(total_latency_us,
2403                                        &transition_ms, &last_lt_index))
2404                                continue;
2405                } else {
2406                        transition_ms = total_latency_us + 19;
2407                        do_div(transition_ms, 20);
2408                        if (transition_ms > (1 << 24) - 1)
2409                                transition_ms = (1 << 24) - 1;
2410                }
2411
2412                target = cpu_to_le64((state << 3) | (transition_ms << 8));
2413                if (max_ps == -1)
2414                        max_ps = state;
2415                if (total_latency_us > max_lat_us)
2416                        max_lat_us = total_latency_us;
2417        }
2418
2419        if (max_ps == -1)
2420                dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2421        else
2422                dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2423                        max_ps, max_lat_us, (int)sizeof(*table), table);
2424        apste = 1;
2425
2426done:
2427        ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2428                                table, sizeof(*table), NULL);
2429        if (ret)
2430                dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2431        kfree(table);
2432        return ret;
2433}
2434
2435static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2436{
2437        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2438        u64 latency;
2439
2440        switch (val) {
2441        case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2442        case PM_QOS_LATENCY_ANY:
2443                latency = U64_MAX;
2444                break;
2445
2446        default:
2447                latency = val;
2448        }
2449
2450        if (ctrl->ps_max_latency_us != latency) {
2451                ctrl->ps_max_latency_us = latency;
2452                if (ctrl->state == NVME_CTRL_LIVE)
2453                        nvme_configure_apst(ctrl);
2454        }
2455}
2456
2457struct nvme_core_quirk_entry {
2458        /*
2459         * NVMe model and firmware strings are padded with spaces.  For
2460         * simplicity, strings in the quirk table are padded with NULLs
2461         * instead.
2462         */
2463        u16 vid;
2464        const char *mn;
2465        const char *fr;
2466        unsigned long quirks;
2467};
2468
2469static const struct nvme_core_quirk_entry core_quirks[] = {
2470        {
2471                /*
2472                 * This Toshiba device seems to die using any APST states.  See:
2473                 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2474                 */
2475                .vid = 0x1179,
2476                .mn = "THNSF5256GPUK TOSHIBA",
2477                .quirks = NVME_QUIRK_NO_APST,
2478        },
2479        {
2480                /*
2481                 * This LiteON CL1-3D*-Q11 firmware version has a race
2482                 * condition associated with actions related to suspend to idle
2483                 * LiteON has resolved the problem in future firmware
2484                 */
2485                .vid = 0x14a4,
2486                .fr = "22301111",
2487                .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2488        },
2489        {
2490                /*
2491                 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2492                 * aborts I/O during any load, but more easily reproducible
2493                 * with discards (fstrim).
2494                 *
2495                 * The device is left in a state where it is also not possible
2496                 * to use "nvme set-feature" to disable APST, but booting with
2497                 * nvme_core.default_ps_max_latency=0 works.
2498                 */
2499                .vid = 0x1e0f,
2500                .mn = "KCD6XVUL6T40",
2501                .quirks = NVME_QUIRK_NO_APST,
2502        }
2503};
2504
2505/* match is null-terminated but idstr is space-padded. */
2506static bool string_matches(const char *idstr, const char *match, size_t len)
2507{
2508        size_t matchlen;
2509
2510        if (!match)
2511                return true;
2512
2513        matchlen = strlen(match);
2514        WARN_ON_ONCE(matchlen > len);
2515
2516        if (memcmp(idstr, match, matchlen))
2517                return false;
2518
2519        for (; matchlen < len; matchlen++)
2520                if (idstr[matchlen] != ' ')
2521                        return false;
2522
2523        return true;
2524}
2525
2526static bool quirk_matches(const struct nvme_id_ctrl *id,
2527                          const struct nvme_core_quirk_entry *q)
2528{
2529        return q->vid == le16_to_cpu(id->vid) &&
2530                string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2531                string_matches(id->fr, q->fr, sizeof(id->fr));
2532}
2533
2534static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2535                struct nvme_id_ctrl *id)
2536{
2537        size_t nqnlen;
2538        int off;
2539
2540        if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2541                nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2542                if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2543                        strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2544                        return;
2545                }
2546
2547                if (ctrl->vs >= NVME_VS(1, 2, 1))
2548                        dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2549        }
2550
2551        /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2552        off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2553                        "nqn.2014.08.org.nvmexpress:%04x%04x",
2554                        le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2555        memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2556        off += sizeof(id->sn);
2557        memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2558        off += sizeof(id->mn);
2559        memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2560}
2561
2562static void nvme_release_subsystem(struct device *dev)
2563{
2564        struct nvme_subsystem *subsys =
2565                container_of(dev, struct nvme_subsystem, dev);
2566
2567        if (subsys->instance >= 0)
2568                ida_simple_remove(&nvme_instance_ida, subsys->instance);
2569        kfree(subsys);
2570}
2571
2572static void nvme_destroy_subsystem(struct kref *ref)
2573{
2574        struct nvme_subsystem *subsys =
2575                        container_of(ref, struct nvme_subsystem, ref);
2576
2577        mutex_lock(&nvme_subsystems_lock);
2578        list_del(&subsys->entry);
2579        mutex_unlock(&nvme_subsystems_lock);
2580
2581        ida_destroy(&subsys->ns_ida);
2582        device_del(&subsys->dev);
2583        put_device(&subsys->dev);
2584}
2585
2586static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2587{
2588        kref_put(&subsys->ref, nvme_destroy_subsystem);
2589}
2590
2591static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2592{
2593        struct nvme_subsystem *subsys;
2594
2595        lockdep_assert_held(&nvme_subsystems_lock);
2596
2597        /*
2598         * Fail matches for discovery subsystems. This results
2599         * in each discovery controller bound to a unique subsystem.
2600         * This avoids issues with validating controller values
2601         * that can only be true when there is a single unique subsystem.
2602         * There may be multiple and completely independent entities
2603         * that provide discovery controllers.
2604         */
2605        if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2606                return NULL;
2607
2608        list_for_each_entry(subsys, &nvme_subsystems, entry) {
2609                if (strcmp(subsys->subnqn, subsysnqn))
2610                        continue;
2611                if (!kref_get_unless_zero(&subsys->ref))
2612                        continue;
2613                return subsys;
2614        }
2615
2616        return NULL;
2617}
2618
2619#define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2620        struct device_attribute subsys_attr_##_name = \
2621                __ATTR(_name, _mode, _show, NULL)
2622
2623static ssize_t nvme_subsys_show_nqn(struct device *dev,
2624                                    struct device_attribute *attr,
2625                                    char *buf)
2626{
2627        struct nvme_subsystem *subsys =
2628                container_of(dev, struct nvme_subsystem, dev);
2629
2630        return sysfs_emit(buf, "%s\n", subsys->subnqn);
2631}
2632static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2633
2634static ssize_t nvme_subsys_show_type(struct device *dev,
2635                                    struct device_attribute *attr,
2636                                    char *buf)
2637{
2638        struct nvme_subsystem *subsys =
2639                container_of(dev, struct nvme_subsystem, dev);
2640
2641        switch (subsys->subtype) {
2642        case NVME_NQN_DISC:
2643                return sysfs_emit(buf, "discovery\n");
2644        case NVME_NQN_NVME:
2645                return sysfs_emit(buf, "nvm\n");
2646        default:
2647                return sysfs_emit(buf, "reserved\n");
2648        }
2649}
2650static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2651
2652#define nvme_subsys_show_str_function(field)                            \
2653static ssize_t subsys_##field##_show(struct device *dev,                \
2654                            struct device_attribute *attr, char *buf)   \
2655{                                                                       \
2656        struct nvme_subsystem *subsys =                                 \
2657                container_of(dev, struct nvme_subsystem, dev);          \
2658        return sysfs_emit(buf, "%.*s\n",                                \
2659                           (int)sizeof(subsys->field), subsys->field);  \
2660}                                                                       \
2661static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2662
2663nvme_subsys_show_str_function(model);
2664nvme_subsys_show_str_function(serial);
2665nvme_subsys_show_str_function(firmware_rev);
2666
2667static struct attribute *nvme_subsys_attrs[] = {
2668        &subsys_attr_model.attr,
2669        &subsys_attr_serial.attr,
2670        &subsys_attr_firmware_rev.attr,
2671        &subsys_attr_subsysnqn.attr,
2672        &subsys_attr_subsystype.attr,
2673#ifdef CONFIG_NVME_MULTIPATH
2674        &subsys_attr_iopolicy.attr,
2675#endif
2676        NULL,
2677};
2678
2679static const struct attribute_group nvme_subsys_attrs_group = {
2680        .attrs = nvme_subsys_attrs,
2681};
2682
2683static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2684        &nvme_subsys_attrs_group,
2685        NULL,
2686};
2687
2688static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2689{
2690        return ctrl->opts && ctrl->opts->discovery_nqn;
2691}
2692
2693static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2694                struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2695{
2696        struct nvme_ctrl *tmp;
2697
2698        lockdep_assert_held(&nvme_subsystems_lock);
2699
2700        list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2701                if (nvme_state_terminal(tmp))
2702                        continue;
2703
2704                if (tmp->cntlid == ctrl->cntlid) {
2705                        dev_err(ctrl->device,
2706                                "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2707                                ctrl->cntlid, dev_name(tmp->device),
2708                                subsys->subnqn);
2709                        return false;
2710                }
2711
2712                if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2713                    nvme_discovery_ctrl(ctrl))
2714                        continue;
2715
2716                dev_err(ctrl->device,
2717                        "Subsystem does not support multiple controllers\n");
2718                return false;
2719        }
2720
2721        return true;
2722}
2723
2724static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2725{
2726        struct nvme_subsystem *subsys, *found;
2727        int ret;
2728
2729        subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2730        if (!subsys)
2731                return -ENOMEM;
2732
2733        subsys->instance = -1;
2734        mutex_init(&subsys->lock);
2735        kref_init(&subsys->ref);
2736        INIT_LIST_HEAD(&subsys->ctrls);
2737        INIT_LIST_HEAD(&subsys->nsheads);
2738        nvme_init_subnqn(subsys, ctrl, id);
2739        memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2740        memcpy(subsys->model, id->mn, sizeof(subsys->model));
2741        memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2742        subsys->vendor_id = le16_to_cpu(id->vid);
2743        subsys->cmic = id->cmic;
2744
2745        /* Versions prior to 1.4 don't necessarily report a valid type */
2746        if (id->cntrltype == NVME_CTRL_DISC ||
2747            !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2748                subsys->subtype = NVME_NQN_DISC;
2749        else
2750                subsys->subtype = NVME_NQN_NVME;
2751
2752        if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2753                dev_err(ctrl->device,
2754                        "Subsystem %s is not a discovery controller",
2755                        subsys->subnqn);
2756                kfree(subsys);
2757                return -EINVAL;
2758        }
2759        subsys->awupf = le16_to_cpu(id->awupf);
2760        nvme_mpath_default_iopolicy(subsys);
2761
2762        subsys->dev.class = nvme_subsys_class;
2763        subsys->dev.release = nvme_release_subsystem;
2764        subsys->dev.groups = nvme_subsys_attrs_groups;
2765        dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2766        device_initialize(&subsys->dev);
2767
2768        mutex_lock(&nvme_subsystems_lock);
2769        found = __nvme_find_get_subsystem(subsys->subnqn);
2770        if (found) {
2771                put_device(&subsys->dev);
2772                subsys = found;
2773
2774                if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2775                        ret = -EINVAL;
2776                        goto out_put_subsystem;
2777                }
2778        } else {
2779                ret = device_add(&subsys->dev);
2780                if (ret) {
2781                        dev_err(ctrl->device,
2782                                "failed to register subsystem device.\n");
2783                        put_device(&subsys->dev);
2784                        goto out_unlock;
2785                }
2786                ida_init(&subsys->ns_ida);
2787                list_add_tail(&subsys->entry, &nvme_subsystems);
2788        }
2789
2790        ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2791                                dev_name(ctrl->device));
2792        if (ret) {
2793                dev_err(ctrl->device,
2794                        "failed to create sysfs link from subsystem.\n");
2795                goto out_put_subsystem;
2796        }
2797
2798        if (!found)
2799                subsys->instance = ctrl->instance;
2800        ctrl->subsys = subsys;
2801        list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2802        mutex_unlock(&nvme_subsystems_lock);
2803        return 0;
2804
2805out_put_subsystem:
2806        nvme_put_subsystem(subsys);
2807out_unlock:
2808        mutex_unlock(&nvme_subsystems_lock);
2809        return ret;
2810}
2811
2812int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2813                void *log, size_t size, u64 offset)
2814{
2815        struct nvme_command c = { };
2816        u32 dwlen = nvme_bytes_to_numd(size);
2817
2818        c.get_log_page.opcode = nvme_admin_get_log_page;
2819        c.get_log_page.nsid = cpu_to_le32(nsid);
2820        c.get_log_page.lid = log_page;
2821        c.get_log_page.lsp = lsp;
2822        c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2823        c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2824        c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2825        c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2826        c.get_log_page.csi = csi;
2827
2828        return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2829}
2830
2831static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2832                                struct nvme_effects_log **log)
2833{
2834        struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2835        int ret;
2836
2837        if (cel)
2838                goto out;
2839
2840        cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2841        if (!cel)
2842                return -ENOMEM;
2843
2844        ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2845                        cel, sizeof(*cel), 0);
2846        if (ret) {
2847                kfree(cel);
2848                return ret;
2849        }
2850
2851        xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2852out:
2853        *log = cel;
2854        return 0;
2855}
2856
2857static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2858{
2859        u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2860
2861        if (check_shl_overflow(1U, units + page_shift - 9, &val))
2862                return UINT_MAX;
2863        return val;
2864}
2865
2866static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2867{
2868        struct nvme_command c = { };
2869        struct nvme_id_ctrl_nvm *id;
2870        int ret;
2871
2872        if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2873                ctrl->max_discard_sectors = UINT_MAX;
2874                ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2875        } else {
2876                ctrl->max_discard_sectors = 0;
2877                ctrl->max_discard_segments = 0;
2878        }
2879
2880        /*
2881         * Even though NVMe spec explicitly states that MDTS is not applicable
2882         * to the write-zeroes, we are cautious and limit the size to the
2883         * controllers max_hw_sectors value, which is based on the MDTS field
2884         * and possibly other limiting factors.
2885         */
2886        if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2887            !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2888                ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2889        else
2890                ctrl->max_zeroes_sectors = 0;
2891
2892        if (nvme_ctrl_limited_cns(ctrl))
2893                return 0;
2894
2895        id = kzalloc(sizeof(*id), GFP_KERNEL);
2896        if (!id)
2897                return 0;
2898
2899        c.identify.opcode = nvme_admin_identify;
2900        c.identify.cns = NVME_ID_CNS_CS_CTRL;
2901        c.identify.csi = NVME_CSI_NVM;
2902
2903        ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2904        if (ret)
2905                goto free_data;
2906
2907        if (id->dmrl)
2908                ctrl->max_discard_segments = id->dmrl;
2909        if (id->dmrsl)
2910                ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2911        if (id->wzsl)
2912                ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2913
2914free_data:
2915        kfree(id);
2916        return ret;
2917}
2918
2919static int nvme_init_identify(struct nvme_ctrl *ctrl)
2920{
2921        struct nvme_id_ctrl *id;
2922        u32 max_hw_sectors;
2923        bool prev_apst_enabled;
2924        int ret;
2925
2926        ret = nvme_identify_ctrl(ctrl, &id);
2927        if (ret) {
2928                dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2929                return -EIO;
2930        }
2931
2932        if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2933                ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2934                if (ret < 0)
2935                        goto out_free;
2936        }
2937
2938        if (!(ctrl->ops->flags & NVME_F_FABRICS))
2939                ctrl->cntlid = le16_to_cpu(id->cntlid);
2940
2941        if (!ctrl->identified) {
2942                unsigned int i;
2943
2944                ret = nvme_init_subsystem(ctrl, id);
2945                if (ret)
2946                        goto out_free;
2947
2948                /*
2949                 * Check for quirks.  Quirk can depend on firmware version,
2950                 * so, in principle, the set of quirks present can change
2951                 * across a reset.  As a possible future enhancement, we
2952                 * could re-scan for quirks every time we reinitialize
2953                 * the device, but we'd have to make sure that the driver
2954                 * behaves intelligently if the quirks change.
2955                 */
2956                for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2957                        if (quirk_matches(id, &core_quirks[i]))
2958                                ctrl->quirks |= core_quirks[i].quirks;
2959                }
2960        }
2961
2962        if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2963                dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2964                ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2965        }
2966
2967        ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2968        ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2969        ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2970
2971        ctrl->oacs = le16_to_cpu(id->oacs);
2972        ctrl->oncs = le16_to_cpu(id->oncs);
2973        ctrl->mtfa = le16_to_cpu(id->mtfa);
2974        ctrl->oaes = le32_to_cpu(id->oaes);
2975        ctrl->wctemp = le16_to_cpu(id->wctemp);
2976        ctrl->cctemp = le16_to_cpu(id->cctemp);
2977
2978        atomic_set(&ctrl->abort_limit, id->acl + 1);
2979        ctrl->vwc = id->vwc;
2980        if (id->mdts)
2981                max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2982        else
2983                max_hw_sectors = UINT_MAX;
2984        ctrl->max_hw_sectors =
2985                min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2986
2987        nvme_set_queue_limits(ctrl, ctrl->admin_q);
2988        ctrl->sgls = le32_to_cpu(id->sgls);
2989        ctrl->kas = le16_to_cpu(id->kas);
2990        ctrl->max_namespaces = le32_to_cpu(id->mnan);
2991        ctrl->ctratt = le32_to_cpu(id->ctratt);
2992
2993        if (id->rtd3e) {
2994                /* us -> s */
2995                u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2996
2997                ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2998                                                 shutdown_timeout, 60);
2999
3000                if (ctrl->shutdown_timeout != shutdown_timeout)
3001                        dev_info(ctrl->device,
3002                                 "Shutdown timeout set to %u seconds\n",
3003                                 ctrl->shutdown_timeout);
3004        } else
3005                ctrl->shutdown_timeout = shutdown_timeout;
3006
3007        ctrl->npss = id->npss;
3008        ctrl->apsta = id->apsta;
3009        prev_apst_enabled = ctrl->apst_enabled;
3010        if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3011                if (force_apst && id->apsta) {
3012                        dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3013                        ctrl->apst_enabled = true;
3014                } else {
3015                        ctrl->apst_enabled = false;
3016                }
3017        } else {
3018                ctrl->apst_enabled = id->apsta;
3019        }
3020        memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3021
3022        if (ctrl->ops->flags & NVME_F_FABRICS) {
3023                ctrl->icdoff = le16_to_cpu(id->icdoff);
3024                ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3025                ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3026                ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3027
3028                /*
3029                 * In fabrics we need to verify the cntlid matches the
3030                 * admin connect
3031                 */
3032                if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3033                        dev_err(ctrl->device,
3034                                "Mismatching cntlid: Connect %u vs Identify "
3035                                "%u, rejecting\n",
3036                                ctrl->cntlid, le16_to_cpu(id->cntlid));
3037                        ret = -EINVAL;
3038                        goto out_free;
3039                }
3040
3041                if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3042                        dev_err(ctrl->device,
3043                                "keep-alive support is mandatory for fabrics\n");
3044                        ret = -EINVAL;
3045                        goto out_free;
3046                }
3047        } else {
3048                ctrl->hmpre = le32_to_cpu(id->hmpre);
3049                ctrl->hmmin = le32_to_cpu(id->hmmin);
3050                ctrl->hmminds = le32_to_cpu(id->hmminds);
3051                ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3052        }
3053
3054        ret = nvme_mpath_init_identify(ctrl, id);
3055        if (ret < 0)
3056                goto out_free;
3057
3058        if (ctrl->apst_enabled && !prev_apst_enabled)
3059                dev_pm_qos_expose_latency_tolerance(ctrl->device);
3060        else if (!ctrl->apst_enabled && prev_apst_enabled)
3061                dev_pm_qos_hide_latency_tolerance(ctrl->device);
3062
3063out_free:
3064        kfree(id);
3065        return ret;
3066}
3067
3068/*
3069 * Initialize the cached copies of the Identify data and various controller
3070 * register in our nvme_ctrl structure.  This should be called as soon as
3071 * the admin queue is fully up and running.
3072 */
3073int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3074{
3075        int ret;
3076
3077        ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3078        if (ret) {
3079                dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3080                return ret;
3081        }
3082
3083        ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3084
3085        if (ctrl->vs >= NVME_VS(1, 1, 0))
3086                ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3087
3088        ret = nvme_init_identify(ctrl);
3089        if (ret)
3090                return ret;
3091
3092        ret = nvme_init_non_mdts_limits(ctrl);
3093        if (ret < 0)
3094                return ret;
3095
3096        ret = nvme_configure_apst(ctrl);
3097        if (ret < 0)
3098                return ret;
3099
3100        ret = nvme_configure_timestamp(ctrl);
3101        if (ret < 0)
3102                return ret;
3103
3104        ret = nvme_configure_directives(ctrl);
3105        if (ret < 0)
3106                return ret;
3107
3108        ret = nvme_configure_acre(ctrl);
3109        if (ret < 0)
3110                return ret;
3111
3112        if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3113                ret = nvme_hwmon_init(ctrl);
3114                if (ret < 0)
3115                        return ret;
3116        }
3117
3118        ctrl->identified = true;
3119
3120        return 0;
3121}
3122EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3123
3124static int nvme_dev_open(struct inode *inode, struct file *file)
3125{
3126        struct nvme_ctrl *ctrl =
3127                container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3128
3129        switch (ctrl->state) {
3130        case NVME_CTRL_LIVE:
3131                break;
3132        default:
3133                return -EWOULDBLOCK;
3134        }
3135
3136        nvme_get_ctrl(ctrl);
3137        if (!try_module_get(ctrl->ops->module)) {
3138                nvme_put_ctrl(ctrl);
3139                return -EINVAL;
3140        }
3141
3142        file->private_data = ctrl;
3143        return 0;
3144}
3145
3146static int nvme_dev_release(struct inode *inode, struct file *file)
3147{
3148        struct nvme_ctrl *ctrl =
3149                container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3150
3151        module_put(ctrl->ops->module);
3152        nvme_put_ctrl(ctrl);
3153        return 0;
3154}
3155
3156static const struct file_operations nvme_dev_fops = {
3157        .owner          = THIS_MODULE,
3158        .open           = nvme_dev_open,
3159        .release        = nvme_dev_release,
3160        .unlocked_ioctl = nvme_dev_ioctl,
3161        .compat_ioctl   = compat_ptr_ioctl,
3162};
3163
3164static ssize_t nvme_sysfs_reset(struct device *dev,
3165                                struct device_attribute *attr, const char *buf,
3166                                size_t count)
3167{
3168        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3169        int ret;
3170
3171        ret = nvme_reset_ctrl_sync(ctrl);
3172        if (ret < 0)
3173                return ret;
3174        return count;
3175}
3176static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3177
3178static ssize_t nvme_sysfs_rescan(struct device *dev,
3179                                struct device_attribute *attr, const char *buf,
3180                                size_t count)
3181{
3182        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3183
3184        nvme_queue_scan(ctrl);
3185        return count;
3186}
3187static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3188
3189static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3190{
3191        struct gendisk *disk = dev_to_disk(dev);
3192
3193        if (disk->fops == &nvme_bdev_ops)
3194                return nvme_get_ns_from_dev(dev)->head;
3195        else
3196                return disk->private_data;
3197}
3198
3199static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3200                char *buf)
3201{
3202        struct nvme_ns_head *head = dev_to_ns_head(dev);
3203        struct nvme_ns_ids *ids = &head->ids;
3204        struct nvme_subsystem *subsys = head->subsys;
3205        int serial_len = sizeof(subsys->serial);
3206        int model_len = sizeof(subsys->model);
3207
3208        if (!uuid_is_null(&ids->uuid))
3209                return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3210
3211        if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3212                return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3213
3214        if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3215                return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3216
3217        while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3218                                  subsys->serial[serial_len - 1] == '\0'))
3219                serial_len--;
3220        while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3221                                 subsys->model[model_len - 1] == '\0'))
3222                model_len--;
3223
3224        return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3225                serial_len, subsys->serial, model_len, subsys->model,
3226                head->ns_id);
3227}
3228static DEVICE_ATTR_RO(wwid);
3229
3230static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3231                char *buf)
3232{
3233        return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3234}
3235static DEVICE_ATTR_RO(nguid);
3236
3237static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3238                char *buf)
3239{
3240        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3241
3242        /* For backward compatibility expose the NGUID to userspace if
3243         * we have no UUID set
3244         */
3245        if (uuid_is_null(&ids->uuid)) {
3246                printk_ratelimited(KERN_WARNING
3247                                   "No UUID available providing old NGUID\n");
3248                return sysfs_emit(buf, "%pU\n", ids->nguid);
3249        }
3250        return sysfs_emit(buf, "%pU\n", &ids->uuid);
3251}
3252static DEVICE_ATTR_RO(uuid);
3253
3254static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3255                char *buf)
3256{
3257        return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3258}
3259static DEVICE_ATTR_RO(eui);
3260
3261static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3262                char *buf)
3263{
3264        return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3265}
3266static DEVICE_ATTR_RO(nsid);
3267
3268static struct attribute *nvme_ns_id_attrs[] = {
3269        &dev_attr_wwid.attr,
3270        &dev_attr_uuid.attr,
3271        &dev_attr_nguid.attr,
3272        &dev_attr_eui.attr,
3273        &dev_attr_nsid.attr,
3274#ifdef CONFIG_NVME_MULTIPATH
3275        &dev_attr_ana_grpid.attr,
3276        &dev_attr_ana_state.attr,
3277#endif
3278        NULL,
3279};
3280
3281static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3282                struct attribute *a, int n)
3283{
3284        struct device *dev = container_of(kobj, struct device, kobj);
3285        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3286
3287        if (a == &dev_attr_uuid.attr) {
3288                if (uuid_is_null(&ids->uuid) &&
3289                    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3290                        return 0;
3291        }
3292        if (a == &dev_attr_nguid.attr) {
3293                if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3294                        return 0;
3295        }
3296        if (a == &dev_attr_eui.attr) {
3297                if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3298                        return 0;
3299        }
3300#ifdef CONFIG_NVME_MULTIPATH
3301        if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3302                if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3303                        return 0;
3304                if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3305                        return 0;
3306        }
3307#endif
3308        return a->mode;
3309}
3310
3311static const struct attribute_group nvme_ns_id_attr_group = {
3312        .attrs          = nvme_ns_id_attrs,
3313        .is_visible     = nvme_ns_id_attrs_are_visible,
3314};
3315
3316const struct attribute_group *nvme_ns_id_attr_groups[] = {
3317        &nvme_ns_id_attr_group,
3318        NULL,
3319};
3320
3321#define nvme_show_str_function(field)                                           \
3322static ssize_t  field##_show(struct device *dev,                                \
3323                            struct device_attribute *attr, char *buf)           \
3324{                                                                               \
3325        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3326        return sysfs_emit(buf, "%.*s\n",                                        \
3327                (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3328}                                                                               \
3329static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3330
3331nvme_show_str_function(model);
3332nvme_show_str_function(serial);
3333nvme_show_str_function(firmware_rev);
3334
3335#define nvme_show_int_function(field)                                           \
3336static ssize_t  field##_show(struct device *dev,                                \
3337                            struct device_attribute *attr, char *buf)           \
3338{                                                                               \
3339        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3340        return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3341}                                                                               \
3342static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3343
3344nvme_show_int_function(cntlid);
3345nvme_show_int_function(numa_node);
3346nvme_show_int_function(queue_count);
3347nvme_show_int_function(sqsize);
3348nvme_show_int_function(kato);
3349
3350static ssize_t nvme_sysfs_delete(struct device *dev,
3351                                struct device_attribute *attr, const char *buf,
3352                                size_t count)
3353{
3354        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3355
3356        if (device_remove_file_self(dev, attr))
3357                nvme_delete_ctrl_sync(ctrl);
3358        return count;
3359}
3360static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3361
3362static ssize_t nvme_sysfs_show_transport(struct device *dev,
3363                                         struct device_attribute *attr,
3364                                         char *buf)
3365{
3366        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3367
3368        return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3369}
3370static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3371
3372static ssize_t nvme_sysfs_show_state(struct device *dev,
3373                                     struct device_attribute *attr,
3374                                     char *buf)
3375{
3376        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3377        static const char *const state_name[] = {
3378                [NVME_CTRL_NEW]         = "new",
3379                [NVME_CTRL_LIVE]        = "live",
3380                [NVME_CTRL_RESETTING]   = "resetting",
3381                [NVME_CTRL_CONNECTING]  = "connecting",
3382                [NVME_CTRL_DELETING]    = "deleting",
3383                [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3384                [NVME_CTRL_DEAD]        = "dead",
3385        };
3386
3387        if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3388            state_name[ctrl->state])
3389                return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3390
3391        return sysfs_emit(buf, "unknown state\n");
3392}
3393
3394static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3395
3396static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3397                                         struct device_attribute *attr,
3398                                         char *buf)
3399{
3400        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3401
3402        return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3403}
3404static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3405
3406static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3407                                        struct device_attribute *attr,
3408                                        char *buf)
3409{
3410        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3411
3412        return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3413}
3414static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3415
3416static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3417                                        struct device_attribute *attr,
3418                                        char *buf)
3419{
3420        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3421
3422        return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3423}
3424static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3425
3426static ssize_t nvme_sysfs_show_address(struct device *dev,
3427                                         struct device_attribute *attr,
3428                                         char *buf)
3429{
3430        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3431
3432        return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3433}
3434static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3435
3436static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3437                struct device_attribute *attr, char *buf)
3438{
3439        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3440        struct nvmf_ctrl_options *opts = ctrl->opts;
3441
3442        if (ctrl->opts->max_reconnects == -1)
3443                return sysfs_emit(buf, "off\n");
3444        return sysfs_emit(buf, "%d\n",
3445                          opts->max_reconnects * opts->reconnect_delay);
3446}
3447
3448static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3449                struct device_attribute *attr, const char *buf, size_t count)
3450{
3451        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3452        struct nvmf_ctrl_options *opts = ctrl->opts;
3453        int ctrl_loss_tmo, err;
3454
3455        err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3456        if (err)
3457                return -EINVAL;
3458
3459        if (ctrl_loss_tmo < 0)
3460                opts->max_reconnects = -1;
3461        else
3462                opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3463                                                opts->reconnect_delay);
3464        return count;
3465}
3466static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3467        nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3468
3469static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3470                struct device_attribute *attr, char *buf)
3471{
3472        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3473
3474        if (ctrl->opts->reconnect_delay == -1)
3475                return sysfs_emit(buf, "off\n");
3476        return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3477}
3478
3479static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3480                struct device_attribute *attr, const char *buf, size_t count)
3481{
3482        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3483        unsigned int v;
3484        int err;
3485
3486        err = kstrtou32(buf, 10, &v);
3487        if (err)
3488                return err;
3489
3490        ctrl->opts->reconnect_delay = v;
3491        return count;
3492}
3493static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3494        nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3495
3496static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3497                struct device_attribute *attr, char *buf)
3498{
3499        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3500
3501        if (ctrl->opts->fast_io_fail_tmo == -1)
3502                return sysfs_emit(buf, "off\n");
3503        return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3504}
3505
3506static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3507                struct device_attribute *attr, const char *buf, size_t count)
3508{
3509        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3510        struct nvmf_ctrl_options *opts = ctrl->opts;
3511        int fast_io_fail_tmo, err;
3512
3513        err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3514        if (err)
3515                return -EINVAL;
3516
3517        if (fast_io_fail_tmo < 0)
3518                opts->fast_io_fail_tmo = -1;
3519        else
3520                opts->fast_io_fail_tmo = fast_io_fail_tmo;
3521        return count;
3522}
3523static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3524        nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3525
3526static struct attribute *nvme_dev_attrs[] = {
3527        &dev_attr_reset_controller.attr,
3528        &dev_attr_rescan_controller.attr,
3529        &dev_attr_model.attr,
3530        &dev_attr_serial.attr,
3531        &dev_attr_firmware_rev.attr,
3532        &dev_attr_cntlid.attr,
3533        &dev_attr_delete_controller.attr,
3534        &dev_attr_transport.attr,
3535        &dev_attr_subsysnqn.attr,
3536        &dev_attr_address.attr,
3537        &dev_attr_state.attr,
3538        &dev_attr_numa_node.attr,
3539        &dev_attr_queue_count.attr,
3540        &dev_attr_sqsize.attr,
3541        &dev_attr_hostnqn.attr,
3542        &dev_attr_hostid.attr,
3543        &dev_attr_ctrl_loss_tmo.attr,
3544        &dev_attr_reconnect_delay.attr,
3545        &dev_attr_fast_io_fail_tmo.attr,
3546        &dev_attr_kato.attr,
3547        NULL
3548};
3549
3550static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3551                struct attribute *a, int n)
3552{
3553        struct device *dev = container_of(kobj, struct device, kobj);
3554        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3555
3556        if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3557                return 0;
3558        if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3559                return 0;
3560        if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3561                return 0;
3562        if (a == &dev_attr_hostid.attr && !ctrl->opts)
3563                return 0;
3564        if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3565                return 0;
3566        if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3567                return 0;
3568        if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3569                return 0;
3570
3571        return a->mode;
3572}
3573
3574static const struct attribute_group nvme_dev_attrs_group = {
3575        .attrs          = nvme_dev_attrs,
3576        .is_visible     = nvme_dev_attrs_are_visible,
3577};
3578
3579static const struct attribute_group *nvme_dev_attr_groups[] = {
3580        &nvme_dev_attrs_group,
3581        NULL,
3582};
3583
3584static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3585                unsigned nsid)
3586{
3587        struct nvme_ns_head *h;
3588
3589        lockdep_assert_held(&subsys->lock);
3590
3591        list_for_each_entry(h, &subsys->nsheads, entry) {
3592                if (h->ns_id != nsid)
3593                        continue;
3594                if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3595                        return h;
3596        }
3597
3598        return NULL;
3599}
3600
3601static int __nvme_check_ids(struct nvme_subsystem *subsys,
3602                struct nvme_ns_head *new)
3603{
3604        struct nvme_ns_head *h;
3605
3606        lockdep_assert_held(&subsys->lock);
3607
3608        list_for_each_entry(h, &subsys->nsheads, entry) {
3609                if (nvme_ns_ids_valid(&new->ids) &&
3610                    nvme_ns_ids_equal(&new->ids, &h->ids))
3611                        return -EINVAL;
3612        }
3613
3614        return 0;
3615}
3616
3617static void nvme_cdev_rel(struct device *dev)
3618{
3619        ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3620}
3621
3622void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3623{
3624        cdev_device_del(cdev, cdev_device);
3625        put_device(cdev_device);
3626}
3627
3628int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3629                const struct file_operations *fops, struct module *owner)
3630{
3631        int minor, ret;
3632
3633        minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3634        if (minor < 0)
3635                return minor;
3636        cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3637        cdev_device->class = nvme_ns_chr_class;
3638        cdev_device->release = nvme_cdev_rel;
3639        device_initialize(cdev_device);
3640        cdev_init(cdev, fops);
3641        cdev->owner = owner;
3642        ret = cdev_device_add(cdev, cdev_device);
3643        if (ret)
3644                put_device(cdev_device);
3645
3646        return ret;
3647}
3648
3649static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3650{
3651        return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3652}
3653
3654static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3655{
3656        nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3657        return 0;
3658}
3659
3660static const struct file_operations nvme_ns_chr_fops = {
3661        .owner          = THIS_MODULE,
3662        .open           = nvme_ns_chr_open,
3663        .release        = nvme_ns_chr_release,
3664        .unlocked_ioctl = nvme_ns_chr_ioctl,
3665        .compat_ioctl   = compat_ptr_ioctl,
3666};
3667
3668static int nvme_add_ns_cdev(struct nvme_ns *ns)
3669{
3670        int ret;
3671
3672        ns->cdev_device.parent = ns->ctrl->device;
3673        ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3674                           ns->ctrl->instance, ns->head->instance);
3675        if (ret)
3676                return ret;
3677
3678        return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3679                             ns->ctrl->ops->module);
3680}
3681
3682static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3683                unsigned nsid, struct nvme_ns_ids *ids)
3684{
3685        struct nvme_ns_head *head;
3686        size_t size = sizeof(*head);
3687        int ret = -ENOMEM;
3688
3689#ifdef CONFIG_NVME_MULTIPATH
3690        size += num_possible_nodes() * sizeof(struct nvme_ns *);
3691#endif
3692
3693        head = kzalloc(size, GFP_KERNEL);
3694        if (!head)
3695                goto out;
3696        ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3697        if (ret < 0)
3698                goto out_free_head;
3699        head->instance = ret;
3700        INIT_LIST_HEAD(&head->list);
3701        ret = init_srcu_struct(&head->srcu);
3702        if (ret)
3703                goto out_ida_remove;
3704        head->subsys = ctrl->subsys;
3705        head->ns_id = nsid;
3706        head->ids = *ids;
3707        kref_init(&head->ref);
3708
3709        ret = __nvme_check_ids(ctrl->subsys, head);
3710        if (ret) {
3711                dev_err(ctrl->device,
3712                        "duplicate IDs for nsid %d\n", nsid);
3713                goto out_cleanup_srcu;
3714        }
3715
3716        if (head->ids.csi) {
3717                ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3718                if (ret)
3719                        goto out_cleanup_srcu;
3720        } else
3721                head->effects = ctrl->effects;
3722
3723        ret = nvme_mpath_alloc_disk(ctrl, head);
3724        if (ret)
3725                goto out_cleanup_srcu;
3726
3727        list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3728
3729        kref_get(&ctrl->subsys->ref);
3730
3731        return head;
3732out_cleanup_srcu:
3733        cleanup_srcu_struct(&head->srcu);
3734out_ida_remove:
3735        ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3736out_free_head:
3737        kfree(head);
3738out:
3739        if (ret > 0)
3740                ret = blk_status_to_errno(nvme_error_status(ret));
3741        return ERR_PTR(ret);
3742}
3743
3744static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3745                struct nvme_ns_ids *ids, bool is_shared)
3746{
3747        struct nvme_ctrl *ctrl = ns->ctrl;
3748        struct nvme_ns_head *head = NULL;
3749        int ret = 0;
3750
3751        mutex_lock(&ctrl->subsys->lock);
3752        head = nvme_find_ns_head(ctrl->subsys, nsid);
3753        if (!head) {
3754                head = nvme_alloc_ns_head(ctrl, nsid, ids);
3755                if (IS_ERR(head)) {
3756                        ret = PTR_ERR(head);
3757                        goto out_unlock;
3758                }
3759                head->shared = is_shared;
3760        } else {
3761                ret = -EINVAL;
3762                if (!is_shared || !head->shared) {
3763                        dev_err(ctrl->device,
3764                                "Duplicate unshared namespace %d\n", nsid);
3765                        goto out_put_ns_head;
3766                }
3767                if (!nvme_ns_ids_equal(&head->ids, ids)) {
3768                        dev_err(ctrl->device,
3769                                "IDs don't match for shared namespace %d\n",
3770                                        nsid);
3771                        goto out_put_ns_head;
3772                }
3773        }
3774
3775        list_add_tail_rcu(&ns->siblings, &head->list);
3776        ns->head = head;
3777        mutex_unlock(&ctrl->subsys->lock);
3778        return 0;
3779
3780out_put_ns_head:
3781        nvme_put_ns_head(head);
3782out_unlock:
3783        mutex_unlock(&ctrl->subsys->lock);
3784        return ret;
3785}
3786
3787struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3788{
3789        struct nvme_ns *ns, *ret = NULL;
3790
3791        down_read(&ctrl->namespaces_rwsem);
3792        list_for_each_entry(ns, &ctrl->namespaces, list) {
3793                if (ns->head->ns_id == nsid) {
3794                        if (!nvme_get_ns(ns))
3795                                continue;
3796                        ret = ns;
3797                        break;
3798                }
3799                if (ns->head->ns_id > nsid)
3800                        break;
3801        }
3802        up_read(&ctrl->namespaces_rwsem);
3803        return ret;
3804}
3805EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3806
3807/*
3808 * Add the namespace to the controller list while keeping the list ordered.
3809 */
3810static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3811{
3812        struct nvme_ns *tmp;
3813
3814        list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3815                if (tmp->head->ns_id < ns->head->ns_id) {
3816                        list_add(&ns->list, &tmp->list);
3817                        return;
3818                }
3819        }
3820        list_add(&ns->list, &ns->ctrl->namespaces);
3821}
3822
3823static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3824                struct nvme_ns_ids *ids)
3825{
3826        struct nvme_ns *ns;
3827        struct gendisk *disk;
3828        struct nvme_id_ns *id;
3829        int node = ctrl->numa_node;
3830
3831        if (nvme_identify_ns(ctrl, nsid, ids, &id))
3832                return;
3833
3834        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3835        if (!ns)
3836                goto out_free_id;
3837
3838        disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3839        if (IS_ERR(disk))
3840                goto out_free_ns;
3841        disk->fops = &nvme_bdev_ops;
3842        disk->private_data = ns;
3843
3844        ns->disk = disk;
3845        ns->queue = disk->queue;
3846
3847        if (ctrl->opts && ctrl->opts->data_digest)
3848                blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3849
3850        blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3851        if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3852                blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3853
3854        ns->ctrl = ctrl;
3855        kref_init(&ns->kref);
3856
3857        if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3858                goto out_cleanup_disk;
3859
3860        /*
3861         * Without the multipath code enabled, multiple controller per
3862         * subsystems are visible as devices and thus we cannot use the
3863         * subsystem instance.
3864         */
3865        if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3866                sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3867                        ns->head->instance);
3868
3869        if (nvme_update_ns_info(ns, id))
3870                goto out_unlink_ns;
3871
3872        down_write(&ctrl->namespaces_rwsem);
3873        nvme_ns_add_to_ctrl_list(ns);
3874        up_write(&ctrl->namespaces_rwsem);
3875        nvme_get_ctrl(ctrl);
3876
3877        if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3878                goto out_cleanup_ns_from_list;
3879
3880        if (!nvme_ns_head_multipath(ns->head))
3881                nvme_add_ns_cdev(ns);
3882
3883        nvme_mpath_add_disk(ns, id);
3884        nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3885        kfree(id);
3886
3887        return;
3888
3889 out_cleanup_ns_from_list:
3890        nvme_put_ctrl(ctrl);
3891        down_write(&ctrl->namespaces_rwsem);
3892        list_del_init(&ns->list);
3893        up_write(&ctrl->namespaces_rwsem);
3894 out_unlink_ns:
3895        mutex_lock(&ctrl->subsys->lock);
3896        list_del_rcu(&ns->siblings);
3897        if (list_empty(&ns->head->list))
3898                list_del_init(&ns->head->entry);
3899        mutex_unlock(&ctrl->subsys->lock);
3900        nvme_put_ns_head(ns->head);
3901 out_cleanup_disk:
3902        blk_cleanup_disk(disk);
3903 out_free_ns:
3904        kfree(ns);
3905 out_free_id:
3906        kfree(id);
3907}
3908
3909static void nvme_ns_remove(struct nvme_ns *ns)
3910{
3911        bool last_path = false;
3912
3913        if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3914                return;
3915
3916        clear_bit(NVME_NS_READY, &ns->flags);
3917        set_capacity(ns->disk, 0);
3918        nvme_fault_inject_fini(&ns->fault_inject);
3919
3920        mutex_lock(&ns->ctrl->subsys->lock);
3921        list_del_rcu(&ns->siblings);
3922        if (list_empty(&ns->head->list)) {
3923                list_del_init(&ns->head->entry);
3924                last_path = true;
3925        }
3926        mutex_unlock(&ns->ctrl->subsys->lock);
3927
3928        /* guarantee not available in head->list */
3929        synchronize_rcu();
3930
3931        /* wait for concurrent submissions */
3932        if (nvme_mpath_clear_current_path(ns))
3933                synchronize_srcu(&ns->head->srcu);
3934
3935        if (!nvme_ns_head_multipath(ns->head))
3936                nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3937        del_gendisk(ns->disk);
3938        blk_cleanup_queue(ns->queue);
3939
3940        down_write(&ns->ctrl->namespaces_rwsem);
3941        list_del_init(&ns->list);
3942        up_write(&ns->ctrl->namespaces_rwsem);
3943
3944        if (last_path)
3945                nvme_mpath_shutdown_disk(ns->head);
3946        nvme_put_ns(ns);
3947}
3948
3949static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3950{
3951        struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3952
3953        if (ns) {
3954                nvme_ns_remove(ns);
3955                nvme_put_ns(ns);
3956        }
3957}
3958
3959static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3960{
3961        struct nvme_id_ns *id;
3962        int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3963
3964        if (test_bit(NVME_NS_DEAD, &ns->flags))
3965                goto out;
3966
3967        ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3968        if (ret)
3969                goto out;
3970
3971        ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3972        if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3973                dev_err(ns->ctrl->device,
3974                        "identifiers changed for nsid %d\n", ns->head->ns_id);
3975                goto out_free_id;
3976        }
3977
3978        ret = nvme_update_ns_info(ns, id);
3979
3980out_free_id:
3981        kfree(id);
3982out:
3983        /*
3984         * Only remove the namespace if we got a fatal error back from the
3985         * device, otherwise ignore the error and just move on.
3986         *
3987         * TODO: we should probably schedule a delayed retry here.
3988         */
3989        if (ret > 0 && (ret & NVME_SC_DNR))
3990                nvme_ns_remove(ns);
3991}
3992
3993static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3994{
3995        struct nvme_ns_ids ids = { };
3996        struct nvme_ns *ns;
3997
3998        if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3999                return;
4000
4001        ns = nvme_find_get_ns(ctrl, nsid);
4002        if (ns) {
4003                nvme_validate_ns(ns, &ids);
4004                nvme_put_ns(ns);
4005                return;
4006        }
4007
4008        switch (ids.csi) {
4009        case NVME_CSI_NVM:
4010                nvme_alloc_ns(ctrl, nsid, &ids);
4011                break;
4012        case NVME_CSI_ZNS:
4013                if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4014                        dev_warn(ctrl->device,
4015                                "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4016                                nsid);
4017                        break;
4018                }
4019                if (!nvme_multi_css(ctrl)) {
4020                        dev_warn(ctrl->device,
4021                                "command set not reported for nsid: %d\n",
4022                                nsid);
4023                        break;
4024                }
4025                nvme_alloc_ns(ctrl, nsid, &ids);
4026                break;
4027        default:
4028                dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4029                        ids.csi, nsid);
4030                break;
4031        }
4032}
4033
4034static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4035                                        unsigned nsid)
4036{
4037        struct nvme_ns *ns, *next;
4038        LIST_HEAD(rm_list);
4039
4040        down_write(&ctrl->namespaces_rwsem);
4041        list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4042                if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4043                        list_move_tail(&ns->list, &rm_list);
4044        }
4045        up_write(&ctrl->namespaces_rwsem);
4046
4047        list_for_each_entry_safe(ns, next, &rm_list, list)
4048                nvme_ns_remove(ns);
4049
4050}
4051
4052static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4053{
4054        const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4055        __le32 *ns_list;
4056        u32 prev = 0;
4057        int ret = 0, i;
4058
4059        if (nvme_ctrl_limited_cns(ctrl))
4060                return -EOPNOTSUPP;
4061
4062        ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4063        if (!ns_list)
4064                return -ENOMEM;
4065
4066        for (;;) {
4067                struct nvme_command cmd = {
4068                        .identify.opcode        = nvme_admin_identify,
4069                        .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4070                        .identify.nsid          = cpu_to_le32(prev),
4071                };
4072
4073                ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4074                                            NVME_IDENTIFY_DATA_SIZE);
4075                if (ret) {
4076                        dev_warn(ctrl->device,
4077                                "Identify NS List failed (status=0x%x)\n", ret);
4078                        goto free;
4079                }
4080
4081                for (i = 0; i < nr_entries; i++) {
4082                        u32 nsid = le32_to_cpu(ns_list[i]);
4083
4084                        if (!nsid)      /* end of the list? */
4085                                goto out;
4086                        nvme_validate_or_alloc_ns(ctrl, nsid);
4087                        while (++prev < nsid)
4088                                nvme_ns_remove_by_nsid(ctrl, prev);
4089                }
4090        }
4091 out:
4092        nvme_remove_invalid_namespaces(ctrl, prev);
4093 free:
4094        kfree(ns_list);
4095        return ret;
4096}
4097
4098static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4099{
4100        struct nvme_id_ctrl *id;
4101        u32 nn, i;
4102
4103        if (nvme_identify_ctrl(ctrl, &id))
4104                return;
4105        nn = le32_to_cpu(id->nn);
4106        kfree(id);
4107
4108        for (i = 1; i <= nn; i++)
4109                nvme_validate_or_alloc_ns(ctrl, i);
4110
4111        nvme_remove_invalid_namespaces(ctrl, nn);
4112}
4113
4114static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4115{
4116        size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4117        __le32 *log;
4118        int error;
4119
4120        log = kzalloc(log_size, GFP_KERNEL);
4121        if (!log)
4122                return;
4123
4124        /*
4125         * We need to read the log to clear the AEN, but we don't want to rely
4126         * on it for the changed namespace information as userspace could have
4127         * raced with us in reading the log page, which could cause us to miss
4128         * updates.
4129         */
4130        error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4131                        NVME_CSI_NVM, log, log_size, 0);
4132        if (error)
4133                dev_warn(ctrl->device,
4134                        "reading changed ns log failed: %d\n", error);
4135
4136        kfree(log);
4137}
4138
4139static void nvme_scan_work(struct work_struct *work)
4140{
4141        struct nvme_ctrl *ctrl =
4142                container_of(work, struct nvme_ctrl, scan_work);
4143
4144        /* No tagset on a live ctrl means IO queues could not created */
4145        if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4146                return;
4147
4148        if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4149                dev_info(ctrl->device, "rescanning namespaces.\n");
4150                nvme_clear_changed_ns_log(ctrl);
4151        }
4152
4153        mutex_lock(&ctrl->scan_lock);
4154        if (nvme_scan_ns_list(ctrl) != 0)
4155                nvme_scan_ns_sequential(ctrl);
4156        mutex_unlock(&ctrl->scan_lock);
4157}
4158
4159/*
4160 * This function iterates the namespace list unlocked to allow recovery from
4161 * controller failure. It is up to the caller to ensure the namespace list is
4162 * not modified by scan work while this function is executing.
4163 */
4164void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4165{
4166        struct nvme_ns *ns, *next;
4167        LIST_HEAD(ns_list);
4168
4169        /*
4170         * make sure to requeue I/O to all namespaces as these
4171         * might result from the scan itself and must complete
4172         * for the scan_work to make progress
4173         */
4174        nvme_mpath_clear_ctrl_paths(ctrl);
4175
4176        /* prevent racing with ns scanning */
4177        flush_work(&ctrl->scan_work);
4178
4179        /*
4180         * The dead states indicates the controller was not gracefully
4181         * disconnected. In that case, we won't be able to flush any data while
4182         * removing the namespaces' disks; fail all the queues now to avoid
4183         * potentially having to clean up the failed sync later.
4184         */
4185        if (ctrl->state == NVME_CTRL_DEAD)
4186                nvme_kill_queues(ctrl);
4187
4188        /* this is a no-op when called from the controller reset handler */
4189        nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4190
4191        down_write(&ctrl->namespaces_rwsem);
4192        list_splice_init(&ctrl->namespaces, &ns_list);
4193        up_write(&ctrl->namespaces_rwsem);
4194
4195        list_for_each_entry_safe(ns, next, &ns_list, list)
4196                nvme_ns_remove(ns);
4197}
4198EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4199
4200static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4201{
4202        struct nvme_ctrl *ctrl =
4203                container_of(dev, struct nvme_ctrl, ctrl_device);
4204        struct nvmf_ctrl_options *opts = ctrl->opts;
4205        int ret;
4206
4207        ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4208        if (ret)
4209                return ret;
4210
4211        if (opts) {
4212                ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4213                if (ret)
4214                        return ret;
4215
4216                ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4217                                opts->trsvcid ?: "none");
4218                if (ret)
4219                        return ret;
4220
4221                ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4222                                opts->host_traddr ?: "none");
4223                if (ret)
4224                        return ret;
4225
4226                ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4227                                opts->host_iface ?: "none");
4228        }
4229        return ret;
4230}
4231
4232static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4233{
4234        char *envp[2] = { NULL, NULL };
4235        u32 aen_result = ctrl->aen_result;
4236
4237        ctrl->aen_result = 0;
4238        if (!aen_result)
4239                return;
4240
4241        envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4242        if (!envp[0])
4243                return;
4244        kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4245        kfree(envp[0]);
4246}
4247
4248static void nvme_async_event_work(struct work_struct *work)
4249{
4250        struct nvme_ctrl *ctrl =
4251                container_of(work, struct nvme_ctrl, async_event_work);
4252
4253        nvme_aen_uevent(ctrl);
4254
4255        /*
4256         * The transport drivers must guarantee AER submission here is safe by
4257         * flushing ctrl async_event_work after changing the controller state
4258         * from LIVE and before freeing the admin queue.
4259        */
4260        if (ctrl->state == NVME_CTRL_LIVE)
4261                ctrl->ops->submit_async_event(ctrl);
4262}
4263
4264static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4265{
4266
4267        u32 csts;
4268
4269        if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4270                return false;
4271
4272        if (csts == ~0)
4273                return false;
4274
4275        return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4276}
4277
4278static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4279{
4280        struct nvme_fw_slot_info_log *log;
4281
4282        log = kmalloc(sizeof(*log), GFP_KERNEL);
4283        if (!log)
4284                return;
4285
4286        if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4287                        log, sizeof(*log), 0))
4288                dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4289        kfree(log);
4290}
4291
4292static void nvme_fw_act_work(struct work_struct *work)
4293{
4294        struct nvme_ctrl *ctrl = container_of(work,
4295                                struct nvme_ctrl, fw_act_work);
4296        unsigned long fw_act_timeout;
4297
4298        if (ctrl->mtfa)
4299                fw_act_timeout = jiffies +
4300                                msecs_to_jiffies(ctrl->mtfa * 100);
4301        else
4302                fw_act_timeout = jiffies +
4303                                msecs_to_jiffies(admin_timeout * 1000);
4304
4305        nvme_stop_queues(ctrl);
4306        while (nvme_ctrl_pp_status(ctrl)) {
4307                if (time_after(jiffies, fw_act_timeout)) {
4308                        dev_warn(ctrl->device,
4309                                "Fw activation timeout, reset controller\n");
4310                        nvme_try_sched_reset(ctrl);
4311                        return;
4312                }
4313                msleep(100);
4314        }
4315
4316        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4317                return;
4318
4319        nvme_start_queues(ctrl);
4320        /* read FW slot information to clear the AER */
4321        nvme_get_fw_slot_info(ctrl);
4322}
4323
4324static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4325{
4326        u32 aer_notice_type = (result & 0xff00) >> 8;
4327
4328        trace_nvme_async_event(ctrl, aer_notice_type);
4329
4330        switch (aer_notice_type) {
4331        case NVME_AER_NOTICE_NS_CHANGED:
4332                set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4333                nvme_queue_scan(ctrl);
4334                break;
4335        case NVME_AER_NOTICE_FW_ACT_STARTING:
4336                /*
4337                 * We are (ab)using the RESETTING state to prevent subsequent
4338                 * recovery actions from interfering with the controller's
4339                 * firmware activation.
4340                 */
4341                if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4342                        queue_work(nvme_wq, &ctrl->fw_act_work);
4343                break;
4344#ifdef CONFIG_NVME_MULTIPATH
4345        case NVME_AER_NOTICE_ANA:
4346                if (!ctrl->ana_log_buf)
4347                        break;
4348                queue_work(nvme_wq, &ctrl->ana_work);
4349                break;
4350#endif
4351        case NVME_AER_NOTICE_DISC_CHANGED:
4352                ctrl->aen_result = result;
4353                break;
4354        default:
4355                dev_warn(ctrl->device, "async event result %08x\n", result);
4356        }
4357}
4358
4359void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4360                volatile union nvme_result *res)
4361{
4362        u32 result = le32_to_cpu(res->u32);
4363        u32 aer_type = result & 0x07;
4364
4365        if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4366                return;
4367
4368        switch (aer_type) {
4369        case NVME_AER_NOTICE:
4370                nvme_handle_aen_notice(ctrl, result);
4371                break;
4372        case NVME_AER_ERROR:
4373        case NVME_AER_SMART:
4374        case NVME_AER_CSS:
4375        case NVME_AER_VS:
4376                trace_nvme_async_event(ctrl, aer_type);
4377                ctrl->aen_result = result;
4378                break;
4379        default:
4380                break;
4381        }
4382        queue_work(nvme_wq, &ctrl->async_event_work);
4383}
4384EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4385
4386void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4387{
4388        nvme_mpath_stop(ctrl);
4389        nvme_stop_keep_alive(ctrl);
4390        nvme_stop_failfast_work(ctrl);
4391        flush_work(&ctrl->async_event_work);
4392        cancel_work_sync(&ctrl->fw_act_work);
4393}
4394EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4395
4396void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4397{
4398        nvme_start_keep_alive(ctrl);
4399
4400        nvme_enable_aen(ctrl);
4401
4402        if (ctrl->queue_count > 1) {
4403                nvme_queue_scan(ctrl);
4404                nvme_start_queues(ctrl);
4405        }
4406}
4407EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4408
4409void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4410{
4411        nvme_hwmon_exit(ctrl);
4412        nvme_fault_inject_fini(&ctrl->fault_inject);
4413        dev_pm_qos_hide_latency_tolerance(ctrl->device);
4414        cdev_device_del(&ctrl->cdev, ctrl->device);
4415        nvme_put_ctrl(ctrl);
4416}
4417EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4418
4419static void nvme_free_cels(struct nvme_ctrl *ctrl)
4420{
4421        struct nvme_effects_log *cel;
4422        unsigned long i;
4423
4424        xa_for_each(&ctrl->cels, i, cel) {
4425                xa_erase(&ctrl->cels, i);
4426                kfree(cel);
4427        }
4428
4429        xa_destroy(&ctrl->cels);
4430}
4431
4432static void nvme_free_ctrl(struct device *dev)
4433{
4434        struct nvme_ctrl *ctrl =
4435                container_of(dev, struct nvme_ctrl, ctrl_device);
4436        struct nvme_subsystem *subsys = ctrl->subsys;
4437
4438        if (!subsys || ctrl->instance != subsys->instance)
4439                ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4440
4441        nvme_free_cels(ctrl);
4442        nvme_mpath_uninit(ctrl);
4443        __free_page(ctrl->discard_page);
4444
4445        if (subsys) {
4446                mutex_lock(&nvme_subsystems_lock);
4447                list_del(&ctrl->subsys_entry);
4448                sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4449                mutex_unlock(&nvme_subsystems_lock);
4450        }
4451
4452        ctrl->ops->free_ctrl(ctrl);
4453
4454        if (subsys)
4455                nvme_put_subsystem(subsys);
4456}
4457
4458/*
4459 * Initialize a NVMe controller structures.  This needs to be called during
4460 * earliest initialization so that we have the initialized structured around
4461 * during probing.
4462 */
4463int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4464                const struct nvme_ctrl_ops *ops, unsigned long quirks)
4465{
4466        int ret;
4467
4468        ctrl->state = NVME_CTRL_NEW;
4469        clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4470        spin_lock_init(&ctrl->lock);
4471        mutex_init(&ctrl->scan_lock);
4472        INIT_LIST_HEAD(&ctrl->namespaces);
4473        xa_init(&ctrl->cels);
4474        init_rwsem(&ctrl->namespaces_rwsem);
4475        ctrl->dev = dev;
4476        ctrl->ops = ops;
4477        ctrl->quirks = quirks;
4478        ctrl->numa_node = NUMA_NO_NODE;
4479        INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4480        INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4481        INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4482        INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4483        init_waitqueue_head(&ctrl->state_wq);
4484
4485        INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4486        INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4487        memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4488        ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4489
4490        BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4491                        PAGE_SIZE);
4492        ctrl->discard_page = alloc_page(GFP_KERNEL);
4493        if (!ctrl->discard_page) {
4494                ret = -ENOMEM;
4495                goto out;
4496        }
4497
4498        ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4499        if (ret < 0)
4500                goto out;
4501        ctrl->instance = ret;
4502
4503        device_initialize(&ctrl->ctrl_device);
4504        ctrl->device = &ctrl->ctrl_device;
4505        ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4506                        ctrl->instance);
4507        ctrl->device->class = nvme_class;
4508        ctrl->device->parent = ctrl->dev;
4509        ctrl->device->groups = nvme_dev_attr_groups;
4510        ctrl->device->release = nvme_free_ctrl;
4511        dev_set_drvdata(ctrl->device, ctrl);
4512        ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4513        if (ret)
4514                goto out_release_instance;
4515
4516        nvme_get_ctrl(ctrl);
4517        cdev_init(&ctrl->cdev, &nvme_dev_fops);
4518        ctrl->cdev.owner = ops->module;
4519        ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4520        if (ret)
4521                goto out_free_name;
4522
4523        /*
4524         * Initialize latency tolerance controls.  The sysfs files won't
4525         * be visible to userspace unless the device actually supports APST.
4526         */
4527        ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4528        dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4529                min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4530
4531        nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4532        nvme_mpath_init_ctrl(ctrl);
4533
4534        return 0;
4535out_free_name:
4536        nvme_put_ctrl(ctrl);
4537        kfree_const(ctrl->device->kobj.name);
4538out_release_instance:
4539        ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4540out:
4541        if (ctrl->discard_page)
4542                __free_page(ctrl->discard_page);
4543        return ret;
4544}
4545EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4546
4547static void nvme_start_ns_queue(struct nvme_ns *ns)
4548{
4549        if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4550                blk_mq_unquiesce_queue(ns->queue);
4551}
4552
4553static void nvme_stop_ns_queue(struct nvme_ns *ns)
4554{
4555        if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4556                blk_mq_quiesce_queue(ns->queue);
4557        else
4558                blk_mq_wait_quiesce_done(ns->queue);
4559}
4560
4561/*
4562 * Prepare a queue for teardown.
4563 *
4564 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4565 * the capacity to 0 after that to avoid blocking dispatchers that may be
4566 * holding bd_butex.  This will end buffered writers dirtying pages that can't
4567 * be synced.
4568 */
4569static void nvme_set_queue_dying(struct nvme_ns *ns)
4570{
4571        if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4572                return;
4573
4574        blk_mark_disk_dead(ns->disk);
4575        nvme_start_ns_queue(ns);
4576
4577        set_capacity_and_notify(ns->disk, 0);
4578}
4579
4580/**
4581 * nvme_kill_queues(): Ends all namespace queues
4582 * @ctrl: the dead controller that needs to end
4583 *
4584 * Call this function when the driver determines it is unable to get the
4585 * controller in a state capable of servicing IO.
4586 */
4587void nvme_kill_queues(struct nvme_ctrl *ctrl)
4588{
4589        struct nvme_ns *ns;
4590
4591        down_read(&ctrl->namespaces_rwsem);
4592
4593        /* Forcibly unquiesce queues to avoid blocking dispatch */
4594        if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4595                nvme_start_admin_queue(ctrl);
4596
4597        list_for_each_entry(ns, &ctrl->namespaces, list)
4598                nvme_set_queue_dying(ns);
4599
4600        up_read(&ctrl->namespaces_rwsem);
4601}
4602EXPORT_SYMBOL_GPL(nvme_kill_queues);
4603
4604void nvme_unfreeze(struct nvme_ctrl *ctrl)
4605{
4606        struct nvme_ns *ns;
4607
4608        down_read(&ctrl->namespaces_rwsem);
4609        list_for_each_entry(ns, &ctrl->namespaces, list)
4610                blk_mq_unfreeze_queue(ns->queue);
4611        up_read(&ctrl->namespaces_rwsem);
4612}
4613EXPORT_SYMBOL_GPL(nvme_unfreeze);
4614
4615int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4616{
4617        struct nvme_ns *ns;
4618
4619        down_read(&ctrl->namespaces_rwsem);
4620        list_for_each_entry(ns, &ctrl->namespaces, list) {
4621                timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4622                if (timeout <= 0)
4623                        break;
4624        }
4625        up_read(&ctrl->namespaces_rwsem);
4626        return timeout;
4627}
4628EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4629
4630void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4631{
4632        struct nvme_ns *ns;
4633
4634        down_read(&ctrl->namespaces_rwsem);
4635        list_for_each_entry(ns, &ctrl->namespaces, list)
4636                blk_mq_freeze_queue_wait(ns->queue);
4637        up_read(&ctrl->namespaces_rwsem);
4638}
4639EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4640
4641void nvme_start_freeze(struct nvme_ctrl *ctrl)
4642{
4643        struct nvme_ns *ns;
4644
4645        down_read(&ctrl->namespaces_rwsem);
4646        list_for_each_entry(ns, &ctrl->namespaces, list)
4647                blk_freeze_queue_start(ns->queue);
4648        up_read(&ctrl->namespaces_rwsem);
4649}
4650EXPORT_SYMBOL_GPL(nvme_start_freeze);
4651
4652void nvme_stop_queues(struct nvme_ctrl *ctrl)
4653{
4654        struct nvme_ns *ns;
4655
4656        down_read(&ctrl->namespaces_rwsem);
4657        list_for_each_entry(ns, &ctrl->namespaces, list)
4658                nvme_stop_ns_queue(ns);
4659        up_read(&ctrl->namespaces_rwsem);
4660}
4661EXPORT_SYMBOL_GPL(nvme_stop_queues);
4662
4663void nvme_start_queues(struct nvme_ctrl *ctrl)
4664{
4665        struct nvme_ns *ns;
4666
4667        down_read(&ctrl->namespaces_rwsem);
4668        list_for_each_entry(ns, &ctrl->namespaces, list)
4669                nvme_start_ns_queue(ns);
4670        up_read(&ctrl->namespaces_rwsem);
4671}
4672EXPORT_SYMBOL_GPL(nvme_start_queues);
4673
4674void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4675{
4676        if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4677                blk_mq_quiesce_queue(ctrl->admin_q);
4678        else
4679                blk_mq_wait_quiesce_done(ctrl->admin_q);
4680}
4681EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4682
4683void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4684{
4685        if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4686                blk_mq_unquiesce_queue(ctrl->admin_q);
4687}
4688EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4689
4690void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4691{
4692        struct nvme_ns *ns;
4693
4694        down_read(&ctrl->namespaces_rwsem);
4695        list_for_each_entry(ns, &ctrl->namespaces, list)
4696                blk_sync_queue(ns->queue);
4697        up_read(&ctrl->namespaces_rwsem);
4698}
4699EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4700
4701void nvme_sync_queues(struct nvme_ctrl *ctrl)
4702{
4703        nvme_sync_io_queues(ctrl);
4704        if (ctrl->admin_q)
4705                blk_sync_queue(ctrl->admin_q);
4706}
4707EXPORT_SYMBOL_GPL(nvme_sync_queues);
4708
4709struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4710{
4711        if (file->f_op != &nvme_dev_fops)
4712                return NULL;
4713        return file->private_data;
4714}
4715EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4716
4717/*
4718 * Check we didn't inadvertently grow the command structure sizes:
4719 */
4720static inline void _nvme_check_size(void)
4721{
4722        BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4723        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4724        BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4725        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4726        BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4727        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4728        BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4729        BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4730        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4731        BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4732        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4733        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4734        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4735        BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4736        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4737        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4738        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4739        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4740        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4741        BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4742}
4743
4744
4745static int __init nvme_core_init(void)
4746{
4747        int result = -ENOMEM;
4748
4749        _nvme_check_size();
4750
4751        nvme_wq = alloc_workqueue("nvme-wq",
4752                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4753        if (!nvme_wq)
4754                goto out;
4755
4756        nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4757                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4758        if (!nvme_reset_wq)
4759                goto destroy_wq;
4760
4761        nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4762                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4763        if (!nvme_delete_wq)
4764                goto destroy_reset_wq;
4765
4766        result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4767                        NVME_MINORS, "nvme");
4768        if (result < 0)
4769                goto destroy_delete_wq;
4770
4771        nvme_class = class_create(THIS_MODULE, "nvme");
4772        if (IS_ERR(nvme_class)) {
4773                result = PTR_ERR(nvme_class);
4774                goto unregister_chrdev;
4775        }
4776        nvme_class->dev_uevent = nvme_class_uevent;
4777
4778        nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4779        if (IS_ERR(nvme_subsys_class)) {
4780                result = PTR_ERR(nvme_subsys_class);
4781                goto destroy_class;
4782        }
4783
4784        result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4785                                     "nvme-generic");
4786        if (result < 0)
4787                goto destroy_subsys_class;
4788
4789        nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4790        if (IS_ERR(nvme_ns_chr_class)) {
4791                result = PTR_ERR(nvme_ns_chr_class);
4792                goto unregister_generic_ns;
4793        }
4794
4795        return 0;
4796
4797unregister_generic_ns:
4798        unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4799destroy_subsys_class:
4800        class_destroy(nvme_subsys_class);
4801destroy_class:
4802        class_destroy(nvme_class);
4803unregister_chrdev:
4804        unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4805destroy_delete_wq:
4806        destroy_workqueue(nvme_delete_wq);
4807destroy_reset_wq:
4808        destroy_workqueue(nvme_reset_wq);
4809destroy_wq:
4810        destroy_workqueue(nvme_wq);
4811out:
4812        return result;
4813}
4814
4815static void __exit nvme_core_exit(void)
4816{
4817        class_destroy(nvme_ns_chr_class);
4818        class_destroy(nvme_subsys_class);
4819        class_destroy(nvme_class);
4820        unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4821        unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4822        destroy_workqueue(nvme_delete_wq);
4823        destroy_workqueue(nvme_reset_wq);
4824        destroy_workqueue(nvme_wq);
4825        ida_destroy(&nvme_ns_chr_minor_ida);
4826        ida_destroy(&nvme_instance_ida);
4827}
4828
4829MODULE_LICENSE("GPL");
4830MODULE_VERSION("1.0");
4831module_init(nvme_core_init);
4832module_exit(nvme_core_exit);
4833